%PDF-1.4 %˜ߖ 7341 0 obj << /Linearized 1 /L 4262089 /H [ 826 2848] /O 7343 /E 16168 /N 198 /T 4115216 >> endobj xref 7341 24 0000000017 00000 n 0000003674 00000 n 0000003840 00000 n 0000004028 00000 n 0000004060 00000 n 0000005531 00000 n 0000005731 00000 n 0000006344 00000 n 0000006536 00000 n 0000007170 00000 n 0000007875 00000 n 0000008059 00000 n 0000008709 00000 n 0000009526 00000 n 0000009715 00000 n 0000010429 00000 n 0000011242 00000 n 0000011428 00000 n 0000012142 00000 n 0000012878 00000 n 0000013072 00000 n 0000013738 00000 n 0000013792 00000 n 0000000826 00000 n trailer <)(:s<@g#})] /Prev 4115203 /Info 1250 0 R>> startxref 0 %%EOF 7364 0 obj <> stream HWyXSW(K 0#&!TjAæ 8qa許VlZ((SS Vڪ3VD6ZGJG͹羇9s޻{' Èƹ\̌rx^/z%ӇymƛӢp~GFhv@ߊb<0~ Hg#J C5yIaWC* DߡR}SgQ^Vw7txV4S}SmW/S C#Js5}utQ)a#^V{.4ȵ }U9n]SG VsPܭd?.R0Y[5xyoG? +bY9;@]mMȪPwfxuE:6#ibbG &5ISw&:u'K=UR- ab?2? v`)t_Vy8mĦ%!>Ut}5nVRлڵlTaPݚ#OG9br݈8r0a|T~W'(N:eϒ_mpw9{ᯃ6dwЌ?g Mˇ,4s2nωr2elޱ`7Ykvݺs3rD +Kmn M]8o/ yd,rZN,W#+T?R^#U9ڍ KŠenU &kx}m߸*GR5lyؑXt#Gk¹Q{[?9d3REmMta2)y?~c׍1%̝037t$)lkwGm:R%{.VW 9v{ Ms۽2Uc{^h,$p_=!"v]޾㎛;.XX*´0,/2clỴ T;+=.t-U6@H _ .Gy}v R/irpdXy; f\h}RUpѺP P8䡓z2FYL|g4G|l "8 k8&y ܟty!GASU]g΢ce*L9(B_L\Ѱ۷<&G sBE%\7[0xth{j6__^aj*Fīrwd=Cz)VgD *f]U0cXA8A jsH!Pjv!uk'nYG.buM8v!*qByف?j@` U*Q!iyHHE9e,m.Z Z%88A%HԸTv9+ u,<$p:m4Hij6dpTyPcn{ބAFz- 5v7P9N,BGYL58jH[;pk1T$IP ε\I(1bT@MϾsQ$zǎP{]&d']"Oփwys=rJfZUbHJ]!<|ܔ[HA;nzxi±ϳp $4"4ZӚ($T,5mG+.V2Tq785 Xjh,Az+68 cL4Fhw(ΘXk?Xi0!f@q[D1d`^o2+3L¸BU"pEASoNGډ}I&u8FvB!LZ` hÂ0$sQX%c4tDa;9$`id>4hNT&-l`u&Ǭм:g %JWZ xuLRM&Pl<914NXr2 .x3A49iO?ZN,Tд[V^=ePp!$aQq<`6<3NtKXd % 9f Ct( F @ؔbED=䜝˄:"$!4=.tKqU ŗ" kZi5y@!?LAC_2jKɸ ;Hml٢Feh;M~i[}\|vdjog6ڡ*$>/ZܲX͟21˳)e)*HWPD<6v1bREqww_$1}_5$f:2}b&azte*ыpǍM+H3D@ endstream endobj 7342 0 obj <> /Metadata 7338 0 R /OutputIntents[7339 0 R] /Pages 7315 0 R /StructTreeRoot 1251 0 R /Type/Catalog>> endobj 7343 0 obj <> endobj 7344 0 obj [7345 0 R] endobj 7345 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 498 0 0 787 0 0 cm /ImagePart_2020 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 72.95 643.95 Tm 103 Tz 3 Tr /OPExtFont0 21.5 Tf (Combining Statistical Methods ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 21.5 Tf 103 Tz 3 Tr 1 0 0 1 99.849 610.1 Tm (with Dynamical Insight to ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 21.5 Tf 103 Tz 3 Tr 1 0 0 1 76.099 576.5 Tm (Improve Nonlinear Estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 21.5 Tf 103 Tz 3 Tr 1 0 0 1 225.349 411.399 Tm 37 Tz /OPExtFont1 70 Tf (911Թ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 70 Tf 37 Tz 3 Tr 1 0 0 1 212.9 312.05 Tm 99 Tz /OPExtFont2 16 Tf (Hailiang Du ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 16 Tf 99 Tz 3 Tr 1 0 0 1 180.5 285.649 Tm 92 Tz /OPExtFont3 13 Tf (Department of Statistics ) Tj 1 0 0 1 105.599 259.25 Tm (London School of Economics and Political Science ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 92 Tz 3 Tr 1 0 0 1 146.65 171.149 Tm 93 Tz (A thesis submitted for the degree of ) Tj 1 0 0 1 191.3 144.75 Tm 96 Tz /OPExtFont4 13 Tf (Doctor of Philosophy ) Tj 1 0 0 1 221.5 116.2 Tm 90 Tz /OPExtFont3 13 Tf (April 2009 ) Tj ET EMC endstream endobj 7346 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 7347 0 obj <> endobj 7348 0 obj <> endobj 7349 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (BookmanOldStyle-BoldOPExtFont0) /Ordering (UCS) /Supplement 0 >> def /CMapName /BookmanOldStyle-BoldOPExtFont0 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 12 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2C> <2E> <002C> <30> <3B> <0030> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 7350 0 obj <> /FirstChar 0 /FontDescriptor 7351 0 R /LastChar 130 /Subtype/TrueType /ToUnicode 7352 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 277 333 474 0 0 0 0 237 333 333 389 0 277 333 277 277 556 556 556 556 556 556 556 556 556 556 333 333 0 0 0 610 0 722 722 722 722 666 610 777 722 277 556 722 610 833 722 777 666 777 722 666 610 722 666 943 666 666 610 333 0 333 583 0 333 556 610 556 610 556 333 610 610 277 277 556 277 889 610 610 610 610 389 556 333 610 556 777 556 556 500 389 0 389 0 0 333 350 556]>> endobj 7351 0 obj <> endobj 7352 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Arial-BoldMTOPExtFont1) /Ordering (UCS) /Supplement 0 >> def /CMapName /Arial-BoldMTOPExtFont1 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 14 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <2A> <0027> <2C> <3B> <002C> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5E> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <203A> <81> <81> <2022> <82> <82> <00A7> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 7353 0 obj <> /FirstChar 0 /FontDescriptor 7354 0 R /LastChar 136 /Subtype/TrueType /ToUnicode 7355 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 333 408 0 500 833 777 180 333 333 500 563 250 333 250 277 500 500 500 500 500 500 500 500 500 500 277 277 563 563 563 443 0 722 666 666 722 610 556 722 722 333 389 722 610 889 722 722 556 722 666 556 610 722 722 943 722 722 610 333 0 333 469 500 333 443 500 443 500 443 333 500 500 277 277 500 277 777 500 500 500 500 333 389 277 500 500 722 500 500 443 479 0 479 0 0 350 500 500 1000 443 333 548 399 759]>> endobj 7354 0 obj <> endobj 7355 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (TimesNewRomanPSMTOPExtFont2) /Ordering (UCS) /Supplement 0 >> def /CMapName /TimesNewRomanPSMTOPExtFont2 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 17 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <3F> <0024> <41> <5B> <0041> <5D> <7B> <005D> <7D> <7D> <007D> <80> <80> <2022> <81> <81> <00A7> <82> <82> <20AC> <83> <83> <2014> <84> <84> <201E> <85> <85> <2018> <86> <86> <00B1> <87> <87> <00B0> <88> <88> <00AE> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 7356 0 obj <> /FirstChar 0 /FontDescriptor 7357 0 R /LastChar 136 /Subtype/TrueType /ToUnicode 7358 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 319 299 379 0 620 899 799 220 299 299 439 600 319 399 319 600 620 620 620 620 620 620 620 620 620 620 319 319 600 600 600 540 0 680 739 739 799 720 640 799 799 339 600 720 600 919 739 799 620 799 720 660 620 779 700 959 720 640 640 299 0 299 0 500 339 580 620 520 620 520 319 540 660 299 299 620 299 939 660 560 620 580 439 520 379 680 520 779 560 540 479 279 0 279 0 0 459 520 620 1000 399 220 548 399 740]>> endobj 7357 0 obj <> endobj 7358 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (BookmanOldStyleOPExtFont3) /Ordering (UCS) /Supplement 0 >> def /CMapName /BookmanOldStyleOPExtFont3 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 18 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <3F> <0024> <41> <5B> <0041> <5D> <5D> <005D> <5F> <7B> <005F> <7D> <7D> <007D> <80> <80> <2022> <81> <81> <00A7> <82> <82> <20AC> <83> <83> <2014> <84> <84> <201E> <85> <85> <2018> <86> <86> <00B1> <87> <87> <00B0> <88> <88> <00AE> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 7359 0 obj <> /FirstChar 0 /FontDescriptor 7360 0 R /LastChar 131 /Subtype/TrueType /ToUnicode 7361 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 299 319 359 0 0 0 819 200 279 279 0 600 299 319 299 600 620 620 620 620 620 620 620 620 620 620 299 299 600 600 600 540 0 700 720 720 739 680 620 759 799 319 560 720 580 859 720 759 600 779 700 640 600 720 680 959 700 660 580 259 0 259 0 500 339 620 600 479 640 540 339 560 620 279 279 600 279 879 620 540 600 560 399 540 339 620 540 879 540 600 520 359 0 379 0 0 1000 459 399 479]>> endobj 7360 0 obj <> endobj 7361 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (BookmanOldStyle-ItalicOPExtFont4) /Ordering (UCS) /Supplement 0 >> def /CMapName /BookmanOldStyle-ItalicOPExtFont4 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 14 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <26> <29> <0026> <2B> <3F> <002B> <41> <5B> <0041> <5D> <5D> <005D> <5F> <7B> <005F> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <2022> <82> <82> <00B0> <83> <83> <201E> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 7362 0 obj [/PDF/Text/ImageB/ImageC/ImageI] endobj 7363 0 obj <> stream 0 ,,j*6'Qg+JchX%>R"Frkm)j^?Ɛ*kUF$5 C|QG7g2@sw;C.y/= ?dOd5P?y6fK[U!Wm!,/܆yH5/(n\`=2w?;lY{K,-##V#u[N0 uzջxUQL,V{q; Gy!7\M P_G*9 1>9H_ wsClxڸۊDsN+*dVN` }X3q\ %3N+# aD(F pU ;rǏAgO]}=Y:j l&63C',+s5ynv=V%t`F_tL'ʹ>̄<^(NZsՏ>vL/EI8- 7$} ڝ13BԘkPrS]5Ci(Q-(K/>*0Bq'8b^U>|I23v{8{%i؄Gމn)Mq:5aX $Tl'p NiC3˛PGhɨX)/(>`}T}>*~ X&<9Tej~=;h!6 3k_9ݩbu6b_/@Ыx_w!ԃ$l> BK͠ms&+oJe$4x4瀖lgP# G=Vinv[i$jxKG,kyvXn1l(i* Aޛ<|e k҅g횪¸NnoQC_++d}``BjKD3uhՅ/N#>1?pxS)b4MѠ]C(S2E7>NDhfڦ@"@{c&g!j/sdf_{4P;ւ/φl&־vHD ˰\`%e2­_B͵pˢ^ǦY('Xi*G+uey;Z[ ,cĿ}p!Cy& i.A2{k=o!o~p!HH%\2΢,R<5?wcFWvJlp,= tJ,N~l Qt߅ %! pa'>WֈW*bѷn}5KPŅY41`E[x @w h 녈~QK6x{w;ۢCg(Pe!v/-?{*1L[.J <41QNSA~Km~9FQOg/c p =p 3?Yc4qxQB6 .xbO,;[u<81yKiRAQhbĦ)JQPÏEu %lnd'ko|YwHC,J5 y[|~(УT(|wq.tNg-Q']\K}U Hoawtrִܥ> 2 :L[D c#;$|Hi\l]l ?ln~xmV4a!_hV=D%~:3yX@,k3$*$fxA}z(CX4fX'n.>H7+V$_Y <wv#[N;_T[Y;0U^ցfГUaec\ ׻ID+\ /)O2:Ko [F[>b3V!h#fԮe,ј>1W3S`(= w4H$H 1Ι_m'syǭiͺ-p a? P_X"R9<5;ғguqC>KyEjN%%?Q*d J#l@z_<#Gikx=4.ϸ"IKTaBM 9QPCUDk5pIͯE(-轖Db;:; x$HzzY32t=-)]iG @= Ð,#` endstream endobj 1 0 obj <> endobj 2 0 obj [3 0 R] endobj 3 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 618 0 0 841 0 0 cm /ImagePart_2021 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 225.099 706.35 Tm 127 Tz 3 Tr /OPExtFont2 13 Tf (Statement of Authenticity ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13 Tf 127 Tz 3 Tr 1 0 0 1 146.65 653.1 Tm 104 Tz /OPExtFont5 12 Tf (I confirm that this Thesis is all my own work and does riot include any ) Tj 1 0 0 1 130.3 626.45 Tm 103 Tz (work completed by anyone other than myself. I have completed this docu-) Tj 1 0 0 1 130.099 599.799 Tm (ment in accordance with the Department of Statistics instructions and with ) Tj 1 0 0 1 129.849 573.149 Tm 102 Tz (in the limits set by the School and the University of London. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 102 Tz 3 Tr 1 0 0 1 146.65 493.5 Tm 101 Tz (Signature: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 101 Tz 3 Tr 1 0 0 1 404.899 493.5 Tm 96 Tz (Date: ) Tj 1 0 0 1 429.35 493.699 Tm 839 Tz (\t) Tj 1 0 0 1 454.55 494.449 Tm 96 Tz (2-19 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 96 Tz 3 Tr 1 0 0 1 308.399 139.25 Tm 68 Tz (1 ) Tj ET EMC endstream endobj 4 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 5 0 obj <> stream 0  ,, ֔j]jYESxQCVA]_m&$l%9M X*賕V#æs " &ڜXFkB#79#J;!ڰn//x~GGAw0YO-uv#'Fi992M! ?s%1 D f͓vU+t/]oO7)#!AjZhNI_S6㜘v?Κa+3a£!}H[ᲱUPh;ulB?Hqh,/ cIma+'rڠXMQEanʚЄmQ*D/0^5=ȗ E:(6*v@uWoJrD2hɰVl"8{p iʘoFj ё)% /@3>B {\~V}Gjnqp4P8zlTǽmX3 I %=d:R8$m j3yI{NTX'*=F|a Wҟj4 |E001ie@p5`Ț,<(OsVGQ/O}ސҝGWSGHb-B8Y\a t 8k}LkYj9rʡtsqTʣ<Ӧ9󩅶.r8<߈ΑGp;CY؝cpŕ`Ӡ vӱQ({bjy?}* (ԇFQײ"uB78WkRqjcL`H&\턅=fm2@v0O (Y#aH܁/6&4ԔJ32H۠sEpXf;CkHb K 3`Cwg8 ʸf/8ԗ]j.qVqh@5?g%n523=rq&A.\mTwM-JEFڜanz+ #qvHtoꅿp5Xo3Vrw|܃CL]WDYJLƚ׋_Ow=`FH;5[Z~Pȶ4B_Xǁ3/QcIva[0>NsJ pK󤝞Vh4)sPA-CXc@Ƨtx$bUcouYUh}|A%-*jQ ~`خs\śr FߘPک mQ̓zsTJ.nRDg:N_25q@2<,t̏چCGŧߺN o 5YA/VQ3Կ_U>lLsBox w^H2Dwc*(M4)1dM2xg:mK ų)\/'X:j}IOWQz>½vȜ .gQ'%WȭhA!wV"ٻKI]Ѳl7*PPH=.;xe1I'-D m`mxIesbHp؟I}o; C>ǖ;8*AE`KDzt\v*ԍV:2FLPm> l<@o|Hc*NZDC ]KToMHw)Jsz vS9_JfʖoY7eQwNR%K5A<,y%\Y9x )]pIG頗v2|FGlq7UVw O֭NMU2v خ%C&=Vdw會Oj oma[Q~B<#čef-O<,7[~6:I)( ޹vA^~&I*,-hXN(ˆw2CL쑉tR洊1ˢfRi'ZCkX*.Hɷ^՗B3{TtwDEcW+"W0z#7!0[Rc{2.ܶZn8=*JrpAj0NW{vѼ'BiNm.9ssqeV 5 VAw)|]j խF=S/|V[|cuURi#%$q{ !T7+M[ ՞4,練$_K#"i=zgd7Ç͊ ĺ1I\lء(Ϋۦٵ4Ae;& ln93l$^φC4kl+-JO eҁSX]cLUք=d҈H`F?ϕ! 9E)bף'w_=!E{ 3sڞ~R+Ƴ~}[]GLQl) 0RJ/FE`()^:t 2'-7:; h_K=csxk;B_MWֱP"p;:|KcR"{~"-H)O)ϟRdgK#Bp2*+*RaxuΒMDcx#{0ّS 1g٦4"|UvO:Bj`}P-Fϥ51n}'ɮ*1 #<z6^Jƽs`ԛԊZ'$e_u hw"{ K:8 b*.=;-%3IJe2 h[̴ҌOC,WAuݡD$i /[?E\Zυf+U.V‚_S@:UO;0`F|2I<}`%dnb}ؕ,9@CS2~Nk]}޶vtFy+*gN)NNW+;ٸܺj,*>8y}ame+_8N I,Yx 杻% ހƶ \<gةذ92pkd*ܬ?iC3[0,egQm£?;0:n]-bºe;z߳l 8}Wl~=~LtDޒ=>   -#;IrksObia jf:>@_6귳Ķķ*VҥI܄@A⥳ݰ<{H~xj|ugN(swߑH[]xy#Ȟ]2VrCv>FnKUJvgBtY\r6+E K>-Q n_2ﭣ:G)+)-5nF%X9p]͇Xx#>P)e["ENh[Pv$="}yήM9S*FY+o(&VmyN{]J#}@K9Hk/9j/dGD'7eI }b+^ yJ չ,},Wչ8I&2}m HgI,U ҨOF?݈WhײBg3ϑEqG%fUTay_պV--%eqpgOp]cͦ!Ԛ:;_S)(>˫({@3~f^xk: h(aMmFxݷALWwN@cYd@)d㵏|?<T.'"?Ap+*Mmms6o}&Nc0bC&"[:pMJj J{9-~\yV}C $7q4RY7lҽK3ť% kXDi'R[Nʱ8%0\(ciGK)oj[լ#v6k}- t<l ad-eۅL얾I€3a25jcl9, otЕ\D33PWnr5u-E 3!I@5|GϨrdRSv M"sr endstream endobj 6 0 obj <> endobj 7 0 obj [8 0 R] endobj 8 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 618 0 0 840 0 0 cm /ImagePart_2022 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 293.05 620.649 Tm 109 Tz 3 Tr /OPExtFont3 15.5 Tf (Abstract ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 109 Tz 3 Tr 1 0 0 1 158.4 567.1 Tm 94 Tz /OPExtFont3 11 Tf (Physical processes such as the weather are usually modelled using ) Tj 1 0 0 1 158.15 549.85 Tm 96 Tz (nonlinear dynamical systems. Statistical methods are found to be ) Tj 1 0 0 1 158.15 532.549 Tm 93 Tz (difficult to draw the dynamical information from the observations of ) Tj 1 0 0 1 158.15 515.299 Tm (nonlinear dynamics. This thesis is focusing on combining statistical ) Tj 1 0 0 1 158.15 497.75 Tm 92 Tz (methods with dynamical insight to improve the nonlinear estimate of ) Tj 1 0 0 1 158.15 480.5 Tm 91 Tz (the initial states, parameters and future states. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 158.15 458.399 Tm 94 Tz (In the perfect model scenario \(PMS\), method based on the Indistin-) Tj 1 0 0 1 157.9 441.35 Tm 89 Tz (guishable States theory is introduced to produce initial conditions that ) Tj 1 0 0 1 158.15 423.85 Tm (are consistent with both observations and model dynamics. Our meth-) Tj 1 0 0 1 157.9 406.3 Tm 95 Tz (ods are demonstrated to outperform the variational method, Four-) Tj 1 0 0 1 157.9 388.8 Tm 90 Tz (dimensional Variational Assimilation, and the sequential method, En-) Tj 1 0 0 1 157.699 371.5 Tm 92 Tz (semble Kalman Filter. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 157.699 349.449 Tm 91 Tz (Problem of parameter estimation of deterministic nonlinear models is ) Tj 1 0 0 1 157.9 331.899 Tm (considered within the perfect model scenario where the mathematical ) Tj 1 0 0 1 157.449 314.649 Tm 92 Tz (structure of the model equations are correct, but the true parameter ) Tj 1 0 0 1 157.449 297.35 Tm 89 Tz (values are unknown. Traditional methods like least squares are known ) Tj 1 0 0 1 157.449 279.85 Tm 88 Tz (to be not optimal as it base on the wrong assumption that the distribu-) Tj 1 0 0 1 157.449 262.299 Tm 90 Tz (tion of forecast error is Gaussian IID. We introduce two approaches to ) Tj 1 0 0 1 157.699 244.799 Tm 92 Tz (address the shortcomings of traditional methods. The first approach ) Tj 1 0 0 1 157.449 227.299 Tm 91 Tz (forms the cost function based on probabilistic forecasting; the second ) Tj 1 0 0 1 157.449 210 Tm 92 Tz (approach focuses on the geometric properties of trajectories in short ) Tj 1 0 0 1 157.449 192.5 Tm 91 Tz (term while noting the global behaviour of the model in the long term. ) Tj 1 0 0 1 157.449 174.95 Tm 95 Tz (Both methods are tested on a variety of nonlinear models, the true ) Tj 1 0 0 1 157.199 157.7 Tm 91 Tz (parameter values are well identified. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 157.449 135.35 Tm 94 Tz (Outside perfect model scenario, to estimate the current state of the ) Tj 1 0 0 1 156.949 117.85 Tm 93 Tz (model one need to account the uncertainty from both observatiOnal ) Tj ET EMC endstream endobj 9 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 10 0 obj <> stream 0  ,,''f҂VT,oycW{.6EOyk0GD7O'o(Ӓ@@q'ߤ* _q\a1*Ë.o ^$1bP_ ۾[:-(抴18É"ŌA1-,Ί(`ETvJycgTHAc붪lpf"w ${ɟBU-RdRq L-L%fb-w֧ٓypdsz&cKT Lu d3o HTMPCc+Jv<䒹Z(QV0!is׾Vw4T[I<, _@{|pz '>-P|:^l)W*oA爘B[y( fR->Ma'wul;OpX+i"+@h(ozh$Bn  A>K_vnݟn(c1 En4hOHQØ0ߓ7DA)Ċ`Z "YR+ F']Щ]3>EA7 r')o!dM9!)@U yAދP:T _XU:c3ajMZmW;kʼsY{%$Qc?>+%Fm~6bj+ ) Fע(9mj(1X3Sj; 0/4M9$Sgg97Kc>>L<;`#(ɜ EkH`0yU[C!doȰfkEIsz`TT^cNTK/^̛>e4uaqVޔ euOVa< $ Cq8<(ZO"Fʟ4T= Bʦ1ZG0rٯ:E7yJTarꤻ]m5㛩`"_H&WeF̠m3 USӴ㲆p>],X7+Ѣ'5:VxEʁ`vs PFg]tepߺԭ!ĻaiK(tcN{񨳖;p2^CꯕN8r BIMí%Fj:_Y@f?VCgS!dߣB%qϨ&N?9W8fGN^,"p[mj,'E{ӡy8EbH ,˲XGPе՟˸ ; C7J.We#0 ]6^8wKeRgN'4yH'd43Μzs%Uf,N8dX­AW?Wiq볣W%:+Dm~y'aU'9JvqT#(ؼM60d-\G*象1BO©mH24e ?Rg׫C)i\,w9$ T{a:].AmDA*O٭Aÿ㏑eZ-D? "r G3#Q` =tD!?MsNV\ tC<&Xlp7ɏ.:Rhwků|~?_H~Cb0!WUJ|Eq5[}fTq [Dz7 WM{s8eT͏rx|*LKk̨@F1}WU+8ϭ$eMO%w$@g;eHʕ=LckoC恘%bW"u3Ih[f1Qw6 wtcه!^S uXLBԁxbbP BHYJ8ƾ5p{ﱩyy A"uSB"aen\Z 3^n*^+a:Fon"6?HͼRzφ;PACRPSyN;[8ždιHvOޞ:\@&/~*`#z)H'P7 Blڹ9cW#;,?O/4t#&Y>: bNDX/| $? 8u-lCqxWxhY׹R(J10Y䂶[:|,W.B}>QuH~*Y6Ѿ7\?$[tG+Ԁ3?R3)F~ )I?.JMG >;{ ӻa[&)o~y;9~ d.zuQ6Cǀ>ڍضճ9XЯӎI^ݡ@S7c?tƘS[r*Y@9C W&n N ǁW7-SXFS *!G؃liC, ^`{y,P:1Nv60cWiwwU ĺ5:y؋Vǵkc5[?E|KnJ^3Ӭ辭 1Ӿ< bTW*lX4qWl{= Zzp @%jXn^  Fb~Ӊ?c\-b|ũIm>+[{3a5#k:RqJ=Vne\{jtuD >f&9ء8żR fؐkW➳5l{\%~P-0D=Eژ?F%b<܅LpN?$ܠ䖤UY:5~ořei : 024N­Ef#,PC xvv=3$͐@GM%Piˉ&2HbڭW΅,Sz8hV|hȱ=5|NO+#^gX8ҟa12j'olǭm="^ʐ,:5 M#xC*6Ӯ 3`KuCʈ ,!%[ձ :>,XTp V< p|7M[='2iq8i!?.![[8]GD3u9 0sP=xQj⑾txwoZ4_b o H+PPq>7PC1]8V5ܫٌhO\.CH0NMtk+y5-ד't4xNO rHL{Wk-P(fS /</   x/31h>1z#}=R7"fwRpÖ9ױx*Ֆ3u[zl2c"L?ePh9W%!pN`#RϩK.4Zu&ozEr?,~og @ꟃFPLwGӚTb)rKVkNpIN>.׻uZNYYtӪD1J## >`> 꼕!/$0"o|q~*+C:r1;\>d﵇\&d 8Dp፽Kv7Q)d^jqe"ԠSk'*YSP[r n*SnXjAbVRPS?GsJo7ICjHLaBa[g$k\YZ;#MIZ#j_~"V ˮUU*LbYmzH+at8AT>2l&++GP۾`dzҰz.+nٱ԰䜴ܽ<K1b?885$کy?5+!}g(M}F]x؈niKTCgxvk<" rt(vJi%>:^j3& ^0 $Ѩ݁YФ^O\4:V&~T#սtч(9Cɴ:8G{4H{']ƤY3kE}6X }k YBnUhOԜƔ_/–QbkMB+j['>rM*EM#3iI&zoŴĊ*bɸsQp(-Ш Pbaj`4jZ%Sl Ul 37B)01qhHx +  6Ƚ(Y?5t͊!-ggBy[?gq״hk10a1xbSdV(G=Ogbp6yoʰ ۖf?1@3]]SA+b UxZqw 6O!@FSjsus#.M:Qw[g~~ɟRg;'gJݾ0r9(p3:{w+*a_,vP0 *4MI)M4 mC+/cK-Xr#@ 9V?XĦ KQr4B]ڴ-Mar*^ԯߛ9;e?YglG;R  ra 5h{`Ǡ(22|r{Unj<'0w Q'5d#HoټҚ0Ha6)$weKk@P\Zh2IE}[Z;;7 П q'C({~]U@|3|ַx\IP:m0˸}EAD> u/){`,(_"q\e% h?T@#0!-6Hte sd07oūهΠT @bžWGhw"Ȭ6+v kl[A(JU:(Z2g|7xZi{ka<.` nXl jo@ɃEŘYGdLuLDvpk(͞%M]?Mhl@l0Ͽ?'l c(F027A{؀')P|:0$d=bG>PwU-We@)!BE1Da2O$"(t:Cl-*A嗙J~E= /9VrtV~x՚Z*1-(5F!,QKlER*DpV,/B/3subY`H}v]$*oJyv)^}gx Sw]01a"R`LD!`ݰmC毫/qk㖅apO8|¥ӆr~(&5dDSNS395V .Uovqw۹WJ ۞}pX!0I%n2wfnafЉ{-t4m?a+Ƥ)3KcGEҕjfzԂ\9&i3 3΁0`u@Ir;8iP'c̆UH`?dTjVE\ی3tF|1Y|UV)jڻ'_"͸ e n,% `Z=ʷeJQgcbS?]Bt醉vۭ]aJa}"vH6tg"Txr4t0bk'<e&>*(B-!R᝭f[b#2dRǵ{ .*ͦe1KkB endstream endobj 11 0 obj <> endobj 12 0 obj [13 0 R] endobj 13 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 616 0 0 841 0 0 cm /ImagePart_2023 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 156.699 679.5 Tm 91 Tz 3 Tr /OPExtFont3 11 Tf (noise and model inadequacy. Methods assuming the model is perfect ) Tj 1 0 0 1 157.199 662.2 Tm 92 Tz (are either inapplicable or unable to produce the optimal results. It is ) Tj 1 0 0 1 156.699 644.899 Tm 94 Tz (almost certain that no trajectory of the model is consistent with an ) Tj 1 0 0 1 156.699 627.399 Tm 91 Tz (infinite series of observations. There are pseudo-orbits, however, that ) Tj 1 0 0 1 156.949 610.1 Tm 94 Tz (are consistent with observations and these can be used to estimate ) Tj 1 0 0 1 156.699 593.1 Tm 91 Tz (the model states. Applying the Indistinguishable States Gradient De-) Tj 1 0 0 1 156.5 575.799 Tm 90 Tz (scent algorithm with certain stopping criteria is introduced to find rel-) Tj 1 0 0 1 156.699 558.299 Tm (evant pseudo-orbits. The difference between Weakly Constraint Four-) Tj 1 0 0 1 156.699 541.25 Tm 92 Tz (dimensional Variational Assimilation \(WC4DVAR\) method and Indis-) Tj 1 0 0 1 156.699 523.7 Tm 90 Tz (tinguishable States Gradient Descent method is discussed. By testing ) Tj 1 0 0 1 156.699 506.449 Tm 95 Tz (on two system-model pairs, our method is shown to produce more ) Tj 1 0 0 1 156.699 488.899 Tm 97 Tz (consistent results than the WC4DVAR method. Ensemble formed ) Tj 1 0 0 1 156.699 471.649 Tm 90 Tz (from the pseudo-orbit generated by Indistinguishable States Gradient ) Tj 1 0 0 1 156.699 454.35 Tm 93 Tz (Descent method is shown to outperform the Inverse Noise ensemble ) Tj 1 0 0 1 156.25 437.1 Tm 91 Tz (in estimating the current states. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 156.699 415 Tm 95 Tz (Outside perfect model scenario, we demonstrate that forecast with ) Tj 1 0 0 1 156.5 397.5 Tm (relevant adjustment can produce better forecast than ignoring the ) Tj 1 0 0 1 156.5 379.699 Tm 94 Tz (existence of model error and using the model directly to make fore-) Tj 1 0 0 1 156.699 362.449 Tm 91 Tz (casts. Measurement based on probabilistic forecast skill is suggested ) Tj 1 0 0 1 156 345.149 Tm 93 Tz (to measure the predictability outside PMS. ) Tj ET EMC endstream endobj 14 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 15 0 obj <> stream 0 ,,  jnk0+{<[Oz4qas ȃ卸"(7#aⱖYJt:l!VJ{(Pc`경cDg_֖+1Dˆq&+K A 5M_")Cwa/H#1~B !I|W^E~T_GsΛ~a!6SL9w5f<,! f1>}ހ%~tdj@03M2?phw}ApBRko]} "I:$934>K7 mòߛnWI]"Is}?BtR DOdžWj αBhҀTBK+IPO@B>{3Uff׵Ҳ%% X`[۽]+<#ݷ-#I'9Ⱦ`zFL9!ZÞq -,3 ŀa&?Až:uZ#۵)ik% zֲnoN%W@uf{v; kHb\eE ijG0t@:KXs<7 m6]eHh0#a4PjTf|BXreƙR"cGwf){!&8kQ}2sCjO2#{C^J5L=0ui2j/ߌ-xIRq0W5~ v)i=YwVnà؃S N}`B MJ}3pW{0nƨ~VlKSbqh/$~/Z_IqW^hf2K+ok:7U-x Bc=##f)J=MC؞"|^:L J/V)f%ElzɏyA- D.*x$\2?"Fl[TS+灾܍"ј.7VdE~W&9~wQNS_"箷MZcy>ɳҕ'Բ~հ۳$U*KUyJk$}'73G69Fd-3ꖎd텪mNièn7syA[5Ϟ?1~M\13v2n4T%(|;s>\/V g k ڛ"w&㜀83ǟ(=CX<\k* Pe݊ ȆYnwRU?Ϸ8h<~OkYԉvZŀB4b1\WvO ٢#Ed0e,kp& ` 5S'p>Ǥ&&ܴ0*ۖ?DZ&ڿ/DMU2&Գ!K<"zZơNcY#]&yqRP>T~)*,8, KI鳡B;?-؅`~V>hMPkX= 9(3uLeT6_?EuC/D[[8K 2r&)o*5a#K.ȕuECCIp;,!$9)kFg~Fߐh7g~0V [O2ֻ2ݜkDVJh#ynn ɑR͂uOI\G*\\PSdZ|euyvg N MCxd2OY2q0|!S9 ŌOքBXGx7&!^xyi~"G81JgBP{ tkOMwP]5x&8Pޕ[y.E?Kp$&`k# Sџ n^P2!;txVƻvzyQXw3y#^*);j iyw|@&rDx29ȅa 6.a5@+Ȁ!"aZj,,fBbddP4%?" ?-?Djyn$L0r.}-CH!Hgqk``ƾnՎp{iW D6'7]D{JaQv< `ѤnF sDa1+ui QYM0뼹" !3:Pn@cfpR;oi^}1QLt륑!^Wz">߳Zbn MMxj:VPVKwb|2r: Z@v8!Ї0EN/,6=5a>Dq U؏~ PbcDņ◪y:-}G +ĴDS-2(g =H6+c;{E.rjA,!Y=—hM:]Ļj/^ٞET+0T9R4ۭUW[4aOWP+mq۫U{qwH3bh=l :H02Gr.;jKVYr}S*9^H{"Vhӈ|j@4OPֆ  ,CWQH%E?=.般兝@0$[(:40tgjTy1,QJ,= N?)ڼ_lV'^(71"lOr^/nPB>3$.)%<j؊8409i95oJJ/,H"(eE(CR踛l"yaG=x>G^0vk!#\ *}${Juv_a˜\YOwC,υ" "'PRZPR> i#8ss6d OZZ>~^̶1uM~OR@\@_]D 8DĞ\lQct3L$LK Zmfd{G\"3݉ԝH'x&w*X4?̸~d vG \'A 4Xes ˙ k 3* bX!?s30$oAfQ kdM|/LZI\IO(V!TAseKe;Gz7)dƛ.G  | ,wҊ٦K'1UPgyzFiހ#+>!K1{[E 7gƸ(IbI;70I,˦<ipKZ6cblpfݖ/٘ccK14C8T#6wI;ѝS^WωGL924Z.`+RPV{vKo5Τ 8dڋ&C 0oԘ㹛<]*b yPyx~_A1U"lb%5y05G.g0Db< NuCI0wqrڈaǾL*ڍ8BLz峳pHGE:bs%NsGx2[3~Ζ&',2fcbAjfqc):Oga}H5ȽOVhue]/*;)Co69J &,M]-(=+пwѼ,+Z$TOgYg@/5ä%]Hg鼛6n1gj|"w3LH=F>P$Wcng3Y ka|͉xRs};,VDQl !+KL'Li0(%5_?}rAPR69%[ S.x21Tv,h@|4 WU%اEצWL8ZXq,[qyN4^ʹyR CJ"= YPTz$T78:P%vp[ NdGُ, W9yq:ia]G:% m#rj^ Xp2HMf۲'Y%wH8dǫTǛD=O`&:*  < `g9G1jωF j dԠک Ɋdύ*켎d.5:~1= R(*Ws!AMx*^SMfn)X&o0LF!DA~-zmA1x Ѫl$<$#/Ql}# i/&V~0?"bud@jAtA&; tw,aj l[l"x?ΫQ-Xx3Mo'[P8,jS[ļm#8a! !MkHRQj=0tbj9}/y)4 *q~$cBZZZ=Oc*2F>eJ1b̷);| "cOy>է}4D .#{sm# 7Jr97 #<Ms{ (BQhrkQ(Q~ֵU;H8q%ͷԳr"_4x|nN棷 ni"4aZK"pKsZwPeHRסѓ:bDD$=B ^+0ؤ kJ;ZAׁ0g]<1;3b3 $Qsy)޷H0G I+eǏX%\dmz`= ل I$:l)`)t.٭-|nx*֙#/2*?);_C?%m^ 1*.ެɔJ6V1աSo `>D: swZ[*H^PUON9.^Ql 'HfԸ3b 5+< J9XڜңӠ@8}9_M+E,zQEPaL &b(_q;"/5v;I. 6/}%%J- ECEtGD~OE\* 3KF'Fc ;B9Zr Ub}j]τ]]kx;\TSbp<<IzCnF82DxP3Z3)ה8ʕ۫ޒQJ'CJF;T^vmVʒ+DMIwZD6"M s C\u*8(L/8QlB%HSud#q .1) X%0M0*M *du%E͎=JpF>Dh`#uΰ^բ endstream endobj 16 0 obj <> endobj 17 0 obj [18 0 R] endobj 18 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 616 0 0 840 0 0 cm /ImagePart_2024 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 130.3 595.899 Tm 101 Tz 3 Tr /OPExtFont3 23 Tf (Contents ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 23 Tf 101 Tz 3 Tr 1 0 0 1 129.349 529.45 Tm 74 Tz /OPExtFont3 11 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr 1 0 0 1 145.9 529.2 Tm 105 Tz (Introduction ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 520.1 529.2 Tm 63 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 63 Tz 3 Tr 1 0 0 1 129.099 501.6 Tm 77 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 77 Tz 3 Tr 1 0 0 1 145.9 501.35 Tm 102 Tz (Background ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 519.35 500.649 Tm 74 Tz (5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr 1 0 0 1 145.9 484.1 Tm 90 Tz /OPExtFont5 12.5 Tf (2.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr 1 0 0 1 171.599 484.1 Tm 102 Tz (Dynamical system ) Tj 1 0 0 1 266.149 484.1 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 484.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 520.1 483.35 Tm 82 Tz (5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr 1 0 0 1 145.9 466.55 Tm 93 Tz (2.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 171.849 466.8 Tm 101 Tz (Flow and Map ) Tj 1 0 0 1 248.4 466.8 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 466.8 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 520.549 466.3 Tm 77 Tz (6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr 1 0 0 1 145.9 449.3 Tm 93 Tz (2.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 172.099 449.3 Tm 96 Tz (Chaos ) Tj 1 0 0 1 212.65 449.3 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 449.3 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 520.549 448.8 Tm 82 Tz (7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr 1 0 0 1 145.9 432 Tm 94 Tz (2.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 94 Tz 3 Tr 1 0 0 1 171.599 432 Tm 104 Tz (Analytical systems ) Tj 1 0 0 1 275.05 432 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 432 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 520.549 431.5 Tm 74 Tz (8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 74 Tz 3 Tr 1 0 0 1 171.849 414.5 Tm 95 Tz (2.4.1 ) Tj 1 0 0 1 193.9 414.5 Tm 446 Tz (\t) Tj 1 0 0 1 207.849 414.5 Tm 101 Tz (Logistic map ) Tj 1 0 0 1 284.149 414.5 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 414.5 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 520.549 414 Tm 77 Tz (8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 77 Tz 3 Tr 1 0 0 1 171.599 397.199 Tm 98 Tz (2.4.2 ) Tj 1 0 0 1 194.15 397.199 Tm 438 Tz (\t) Tj 1 0 0 1 207.849 397.199 Tm 96 Tz (Henon map ) Tj 1 0 0 1 274.8 397.199 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 397.199 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 171.599 379.899 Tm 98 Tz (2.4.3 ) Tj 1 0 0 1 194.15 379.899 Tm 438 Tz (\t) Tj 1 0 0 1 207.849 379.899 Tm 100 Tz (Ikeda map ) Tj 1 0 0 1 266.149 379.899 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 379.899 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 379.699 Tm 82 Tz (11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr 1 0 0 1 171.599 362.649 Tm 98 Tz (2.4.4 ) Tj 1 0 0 1 194.15 362.649 Tm 430 Tz (\t) Tj 1 0 0 1 207.599 362.399 Tm 100 Tz (Moore-Spiegel system ) Tj 1 0 0 1 319.449 362.399 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 362.399 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 362.399 Tm 83 Tz (12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr 1 0 0 1 171.849 344.899 Tm 95 Tz (2.4.5 ) Tj 1 0 0 1 193.9 344.899 Tm 446 Tz (\t) Tj 1 0 0 1 207.849 344.899 Tm 99 Tz (Lorenz96 system ) Tj 1 0 0 1 301.699 345.1 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 345.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 345.1 Tm 83 Tz (12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr 1 0 0 1 145.449 327.6 Tm 93 Tz (2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 171.349 327.6 Tm 101 Tz (Nonlinear dynamics modelling ) Tj 1 0 0 1 328.55 327.35 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 327.35 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.5 327.6 Tm 84 Tz (14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr 1 0 0 1 171.599 310.1 Tm 94 Tz (2.5.1 ) Tj 1 0 0 1 193.449 310.1 Tm 460 Tz (\t) Tj 1 0 0 1 207.849 310.1 Tm 100 Tz (Delay reconstruction ) Tj 1 0 0 1 319.699 310.1 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 310.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.5 310.1 Tm 68 Tz (1.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 68 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 68 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 68 Tz 3 Tr 1 0 0 1 171.599 292.549 Tm 98 Tz (2.5.2 ) Tj 1 0 0 1 194.15 292.549 Tm 430 Tz (\t) Tj 1 0 0 1 207.599 292.799 Tm 99 Tz (Analogue models ) Tj 1 0 0 1 301.899 292.799 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 292.799 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.75 292.799 Tm 79 Tz (15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr 1 0 0 1 171.349 275.299 Tm 98 Tz (2.5.3 ) Tj 1 0 0 1 193.9 275.299 Tm 438 Tz (\t) Tj 1 0 0 1 207.599 275.049 Tm 103 Tz (Radial Basis Functions ) Tj 1 0 0 1 328.55 275.049 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 275.049 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 274.799 Tm 83 Tz (16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 83 Tz 3 Tr 1 0 0 1 171.599 258 Tm 98 Tz (2.5.4 ) Tj 1 0 0 1 194.15 258 Tm 438 Tz (\t) Tj 1 0 0 1 207.849 257.75 Tm 102 Tz (Summary ) Tj 1 0 0 1 265.899 257.75 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 257.75 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.5 257.5 Tm 88 Tz (17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 128.65 229.7 Tm 74 Tz /OPExtFont3 11 Tf (3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr 1 0 0 1 145.199 229.7 Tm 108 Tz (Nowcasting in PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 108 Tz 3 Tr 1 0 0 1 513.85 228.95 Tm 82 Tz (19 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr 1 0 0 1 145.199 212.399 Tm 89 Tz /OPExtFont5 12.5 Tf (3.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 89 Tz 3 Tr 1 0 0 1 171.099 212.399 Tm 101 Tz (Perfect Model Scenario ) Tj 1 0 0 1 292.55 212.399 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 212.399 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 212.149 Tm 85 Tz (20 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr 1 0 0 1 145.449 194.899 Tm 93 Tz (3.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 171.099 194.899 Tm 103 Tz (Indistinguishable States ) Tj 1 0 0 1 301.899 194.649 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 194.649 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.049 194.899 Tm 88 Tz (22 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 145.449 177.6 Tm 93 Tz (3.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 171.099 177.35 Tm 102 Tz (Nowcasting using indistinguishable states ) Tj 1 0 0 1 382.3 177.35 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 177.35 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.049 177.1 Tm 90 Tz (25 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr 1 0 0 1 171.099 160.1 Tm 97 Tz (3.3.1 ) Tj 1 0 0 1 193.449 160.1 Tm 444 Tz (\t) Tj 1 0 0 1 207.349 160.1 Tm 103 Tz (Reference trajectory ) Tj 1 0 0 1 319.449 160.1 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 160.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 159.85 Tm 90 Tz (27 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr 1 0 0 1 171.099 142.549 Tm 98 Tz (3.3.2 ) Tj 1 0 0 1 193.699 142.549 Tm 436 Tz (\t) Tj 1 0 0 1 207.349 142.299 Tm 103 Tz (Finding a reference trajectory via ISGD ) Tj 1 0 0 1 417.85 142.299 Tm 1336 Tz (\t) Tj 1 0 0 1 459.6 142.299 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 142.299 Tm 88 Tz (28 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 170.9 125.299 Tm 98 Tz (3.3.3 ) Tj 1 0 0 1 193.449 125.049 Tm 444 Tz (\t) Tj 1 0 0 1 207.349 125.299 Tm 101 Tz (Form the ensemble via ISIS ) Tj 1 0 0 1 355.199 125.299 Tm 2000 Tz (\t) Tj 1 0 0 1 459.6 125.299 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 515.299 125.049 Tm 88 Tz (29 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 322.55 52.799 Tm 106 Tz (iii ) Tj ET EMC endstream endobj 19 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 20 0 obj <> stream 0  ,,ggb7 [ d<-c E K<ށ4L™8IQwz+1G>t?ڰ3ѵ.[P۲2< w pஃXd8]Kӳ iO?VTlv!Ч@zM9 :⁰_ZLa?FWݵl8+,ڐFk/6*f֢)G5k\Yݤ-Һ6 SENi, +|gX|'XtJc5%I)G:nQWAX@HI @%? ]`M7x-|nb8|0c1BI.oni ޹7>$'_j%EAj'MyQUߥz+XMwYf 琱PԃBGcC5)0">bЪ⪻j2d~fȅqU UtJ g7 eY-Nus1mU&DL E@ SϣfX?bDC5[ JkeCPvM/OV~v~fߪ|`@ Y=o(@'̐IA3 Nb(2걙 sapǮ& x?^kV-m'JГz0$u|jt*=Y)SEt=0&{Psop 93\$ztb~E`a\jo݃o+4mV6x69B_Zϩw8P 7]Mw^цtd t8KpUuMPƒBjorl:ʮ)ƺ6^jXD1Z6_&:I8,m qI2>riʚMyVTVsP bsa>?VRrx↺Z% Rh:՘!U$hV4./ꆓW=jPw]^=7὞V<ux"rp%؂d9BU9gIz6+ L7B Rr:\XwykXa]WK\N oPY+Tb2goѿRw%#~[npn@qftem3)?6SڬH~-mzW ~WWY/ 1]eoYy3=&y?DBjk|xD_pawY{>/AцIcvr[}%u7d࠸I6!Vz,/Zhۈ&QIFlR!D@ >՝37։"܃΋ҲڽFٱ)S=3Pkά>4;n+/eɊ.5 䃭.]IU!ׯ;D~R瑅̱$wi"Wi[.s;CRWskRژ_tQ96Q4!K d2Yןhi/@s|ĴޓV*ocj'ֳʼ_Oj_L4v7޵7h4<>dKvlS%>P=roX@z 6)Hb͡V3z{5H)*>p}OkR )Kz.ązxL@CO:>+N[ B_hk}UB8ɯOaC㬗?4@ٻ>fs>I>ren1ᶛ=R5]:֚6pU&t,K7h;zy (eF:H.)XW]iufY*}rUUbw*֔Oݳvpj!MO0lDLNQT榍ܺsE=b |kuSk07H0Ƽ EK߾tBj6V܍w ]\kHJ4Ln +h(ߟkGi}9b g ο neiOAK§qL"̽k鳖Y!'x,LlvP/숡l`%$~]ܼ-|~9Qb ՗ ^ [In9o*mK CX@|GZj 38v&*`^TA<`„\7NgWʑMe qax))XHw̆4#UF;>?If@vgҮCP{6eW.'٭^OxB܁|ન_;J RŵELow$csz~3A'0*~ruS\r$pz*צ{~v rTĂPt~A=*4ّGG*=&+Jk|^XwF&wkҜ#G &L+zZc}lJ`8|3 Ij'S뜔L%]?W.ڎI[;=,OAPl$;2".+Brű#+߳ cTKq-7R^Өy] %bm3td9Zg$쟮e**$P-N)N7g٪M"{"nX1:/$ ^vf 6قH S8`'?ʐ)7VIhUmR;]XM>G#Wѵ   `9̑QPOajƣ7gt"E؍{⚯|Pꂝ'd P~]X>%?qߴW폼ǰZۻ%澨ʵa<т.]7a<ym7-I&D U6Ǧ Q1P N4Dp"=% `t?X;\&ջ-= CgⲤ|!BBi(y/py~QvN|44yTt dyX8g@Fznvx\pJQT+h8x\lE]M!NI{Pa7Ars7^"QͥusI ] ה.IA]]UQue}:}e]#O>M.r]~~e] zĵ0]8'vQh 'a;^CSu9gyiwͥJ,宴AQڛ`بS/:H]rљ|jlYR#:z ,Y,ļv\}}n$LP/?*S|6{lEVc޴NMK+Yy͟i1ydAjAJ"3x^V9܀K/"G%0o׊ @IP0')kN9h+}hp1_*HKy# բƚIhMJ`rϡ Ehߙ!7`&.O8xz7;Fm:/t1=J⋆nՕ_|4rV:5xF׃ѝwu+ݛ+, WM9;fmZ ?$M1:ݕzAQb6VĊU%΂~(UPq %lR`Dq:NvَEQg:XOmzrFUvAV 99Aޠ/sY.Z5q$<];ДNѥ>&-DJE@uL)>`!EYȔ@(XL}`9bLɠYui'غi沄6,7ංc)d; M"#bkm:hHYh}bYj?Ե&=' ~1,ܷ* PFa+aHôKaah 2F;:BAzqA)nlmLW-g_ ~I,ep>oQiOU3ewGSO}fHBt XzI1ЮS遡L*c\."Ľ iEA:K&յ>F2]&2[.5ybVqi},O&]P0YxU[Q⺱~2fck۷hv("GSd %&c> аX!y\Cftt{$KvJ$T Ȗ؁PPtGٴN>A@IU#mg>k;X[Wg>xxs j\+ od2s|  @v˞QF߉zLR3!/Y@]jͅ#;gl.Cie#j,@/ e5E(xi=Zl %m/13m`5± ,ؒf,ڣ/+4epKExF@/KIg#/HYd|Kw441NcfKx\&JH\O+ }<ܦͲ~K endstream endobj 21 0 obj <> endobj 22 0 obj [23 0 R] endobj 23 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 615 0 0 841 0 0 cm /ImagePart_2025 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 451.899 722.45 Tm 107 Tz 3 Tr /OPExtFont5 12.5 Tf (CONTENTS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 107 Tz 3 Tr 1 0 0 1 170.65 679.5 Tm 115 Tz (3.3.4 Summary ) Tj 1 0 0 1 264.949 679.7 Tm 2000 Tz (\t) Tj 1 0 0 1 497.75 679.7 Tm 169 Tz ( 31 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 169 Tz 3 Tr 1 0 0 1 144.949 662.45 Tm 109 Tz (3.4 4DVAR ) Tj 1 0 0 1 220.3 662.45 Tm 2000 Tz (\t) Tj 1 0 0 1 513.1 662.45 Tm 88 Tz (32 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 170.4 644.899 Tm 110 Tz (3.4.1 Methodology ) Tj 1 0 0 1 282.699 645.149 Tm 2000 Tz (\t) Tj 1 0 0 1 497.75 645.149 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 170.65 627.649 Tm 102 Tz (3.4.2 Differences between ISGD and 4DVAR ) Tj 1 0 0 1 407.5 627.649 Tm 2000 Tz (\t) Tj 1 0 0 1 498 627.649 Tm 171 Tz ( 33 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 171 Tz 3 Tr 1 0 0 1 144.699 610.35 Tm 107 Tz (3.5 Ensemble Kalman Filter ) Tj 1 0 0 1 300.699 610.35 Tm 2000 Tz (\t) Tj 1 0 0 1 497.75 610.1 Tm 175 Tz ( 36 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 175 Tz 3 Tr 1 0 0 1 170.65 593.299 Tm 113 Tz (3.5.1 Kalman Filter ) Tj 1 0 0 1 282.699 593.299 Tm 2000 Tz (\t) Tj 1 0 0 1 513.35 592.85 Tm 90 Tz (37 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr 1 0 0 1 170.4 575.799 Tm 109 Tz (3.5.2 Extended Kalman Filter ) Tj 1 0 0 1 336 576.049 Tm 2000 Tz (\t) Tj 1 0 0 1 497.75 575.549 Tm 159 Tz ( 4\(\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 159 Tz 3 Tr 1 0 0 1 170.4 558.299 Tm 108 Tz (3.5.3 Ensemble Kalman Filter ) Tj 1 0 0 1 336 558.299 Tm 2000 Tz (\t) Tj 1 0 0 1 498 558.299 Tm 168 Tz ( 41 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 168 Tz 3 Tr 1 0 0 1 144.5 541 Tm 107 Tz (3.6 Perfect Ensemble ) Tj 1 0 0 1 255.599 541 Tm 2000 Tz (\t) Tj 1 0 0 1 513.1 541 Tm 93 Tz /OPExtFont2 11.5 Tf (44 ) Tj 1 0 0 1 523.899 541 Tm 32 Tz /OPExtFont5 12.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 144.699 523.7 Tm 116 Tz (3.7 Results ) Tj 1 0 0 1 210.949 523.7 Tm 2000 Tz (\t) Tj 1 0 0 1 498 523.7 Tm 173 Tz ( 48 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 173 Tz 3 Tr 1 0 0 1 170.4 506.449 Tm 106 Tz (3.7.1 ISGD vs 4DVAR ) Tj 1 0 0 1 300.699 506.449 Tm 2000 Tz (\t) Tj 1 0 0 1 498 506.449 Tm 173 Tz ( 48 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 173 Tz 3 Tr 1 0 0 1 170.4 489.149 Tm 110 Tz (3.7.2 ISIS vs EnKF ) Tj 1 0 0 1 282.699 489.399 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 489.399 Tm 168 Tz ( 51 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 168 Tz 3 Tr 1 0 0 1 170.4 471.899 Tm 105 Tz (3.7.3 ISIS vs Dynamically consistent ensemble ) Tj 1 0 0 1 416.649 471.899 Tm 2000 Tz (\t) Tj 1 0 0 1 498 471.899 Tm 174 Tz ( 54 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 174 Tz 3 Tr 1 0 0 1 144.5 454.6 Tm 108 Tz (3.8 Conclusions ) Tj 1 0 0 1 238.099 454.6 Tm 2000 Tz (\t) Tj 1 0 0 1 498 454.6 Tm 171 Tz ( 61 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 171 Tz 3 Tr 1 0 0 1 126.95 426.5 Tm 125 Tz (4 Parameter estimation ) Tj 1 0 0 1 267.1 426.5 Tm 2000 Tz (\t) Tj 1 0 0 1 512.399 426.3 Tm 96 Tz (63 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 144 409 Tm 105 Tz (4.1 Technical statement of the problem ) Tj 1 0 0 1 354.25 409 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 409 Tm 176 Tz ( 64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 176 Tz 3 Tr 1 0 0 1 144 391.5 Tm 109 Tz (4.2 Least Squares estimates ) Tj 1 0 0 1 300.5 391.5 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 391.25 Tm 173 Tz ( 65 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 173 Tz 3 Tr 1 0 0 1 143.75 373.949 Tm 107 Tz (4.3 Forecast based parameter estimation ) Tj 1 0 0 1 363.1 373.949 Tm 2000 Tz (\t) Tj 1 0 0 1 498 373.949 Tm 178 Tz ( 67 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 178 Tz 3 Tr 1 0 0 1 169.699 356.899 Tm 108 Tz (4.3.1 Ensemble forecast ) Tj 1 0 0 1 300.5 356.899 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 356.199 Tm 173 Tz ( 68 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 173 Tz 3 Tr 1 0 0 1 169.699 339.399 Tm 108 Tz (4.3.2 Ensemble interpretation ) Tj 1 0 0 1 336.25 339.399 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 339.399 Tm 174 Tz ( 70 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 174 Tz 3 Tr 1 0 0 1 169.699 321.899 Tm 107 Tz (4.3.3 Scoring probabilistic forecasts ) Tj 1 0 0 1 362.899 321.899 Tm 2000 Tz (\t) Tj 1 0 0 1 498 321.899 Tm 174 Tz ( 73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 174 Tz 3 Tr 1 0 0 1 169.699 304.6 Tm 118 Tz (4.3.4 Results ) Tj 1 0 0 1 246.699 304.6 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 304.35 Tm 173 Tz ( 75 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 173 Tz 3 Tr 1 0 0 1 143.75 286.85 Tm 106 Tz (4.4 Parameter estimation by exploiting dynamical coherence ) Tj 1 0 0 1 461.3 286.85 Tm 1174 Tz (\t) Tj 1 0 0 1 498 286.85 Tm 174 Tz ( 78 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 174 Tz 3 Tr 1 0 0 1 169.699 269.549 Tm 110 Tz (4.4.1 Shadowing time ) Tj 1 0 0 1 291.35 269.549 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 269.299 Tm 174 Tz ( 79 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 174 Tz 3 Tr 1 0 0 1 169.199 252.299 Tm 106 Tz (4.4.2 Further insight of Pseudo-orbits ) Tj 1 0 0 1 371.75 252.299 Tm 2000 Tz (\t) Tj 1 0 0 1 498.25 252.049 Tm 174 Tz ( 82 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 174 Tz 3 Tr 1 0 0 1 169.449 235 Tm 118 Tz (4.4.3 Results ) Tj 1 0 0 1 241.699 235 Tm 2000 Tz (\t) Tj 1 0 0 1 514.1 234.75 Tm 87 Tz /OPExtFont2 11.5 Tf (83 ) Tj 1 0 0 1 524.149 234.75 Tm 32 Tz /OPExtFont5 12.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 169.449 217.5 Tm 108 Tz (4.4.4 Application in partial observational case ) Tj 1 0 0 1 416.649 217.25 Tm 2000 Tz (\t) Tj 1 0 0 1 498.5 217.25 Tm 174 Tz ( 86 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 174 Tz 3 Tr 1 0 0 1 143.75 199.7 Tm 111 Tz (4.5 Outside PMS ) Tj 1 0 0 1 246.699 199.7 Tm 2000 Tz (\t) Tj 1 0 0 1 498.699 199.5 Tm 175 Tz ( 89 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 175 Tz 3 Tr 1 0 0 1 143.5 182.45 Tm 109 Tz (4.6 Conclusions ) Tj 1 0 0 1 237.849 182.45 Tm 2000 Tz (\t) Tj 1 0 0 1 514.299 182.45 Tm 78 Tz (9\(\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 78 Tz 3 Tr 1 0 0 1 321.1 53.549 Tm 105 Tz (iv ) Tj ET EMC endstream endobj 24 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 25 0 obj <> stream 0  ,,b7 u7qq4%MU %Iʬ# iز;3Q͕TeIۡ\c_w8Nr>@pYfNXΫ枞i/Fn@ CŞ«&^!>E5/B-7EJύO">Eீ {_~SŷN[lahsXtm'8 ~HJ+TߦWay(D(J[ٸyƜ ~.Z{:Ov;V$ O򙝑S -AKܤ3ל`GQYn~i\/*džW%XUϞtUkKĽ3djID+wVQʘpj,Gt ->;EKYPjEWvn5{G!o+V,,b͏oȜK2O(V͑Z8 =Fs}f3Y6saF$OG<^!Zq3#2aL2NgEW";9%X 1r ڳYrV/paϨv0vA5՗7M:lŽdd*@b9gQc/>L]L )n#vEXxxoN$fЙOVy1 *vIaE5#Q qg}bK8y`-03xg7=쿻-d|Mj5va 8ypl`RʿHfeb΄E8kC֢S' 3)lǝw`X9O72tt9 n yC ׁ..z^i'{ldOe){2P )|?e%q}D[5@H*Tz5?Vfk!?.G $3HYԅ 5@/3 m sfº淵es; kc3-ЕFMސXM\D_ _pY {^{>  )`ѬLǨ 6YL6^ʂXMSkxTA]5h *U9E1C[o( 4_ s纱xڼ==t꽴<<χ}{E.t,DhBR7d&ݲ~B\ކV4b㼸KB6.9RSO+Ht'O aHP͇6utrg#TN0/5Ҙ P '%[zz9O Or\Gpd j? R1x(sDқjyr7w.@5L^ X7FnA=Bڷ+4t(o"*m#h/vU:|TTRS֣c@=sc\vd VR0∙\!Tokk#g WQ?e{ͬV?|!A{*IX8AJ ]} Xa'G/]*AqU$![5WHWXmi׍c"9aQ:bD! {6T9ay`0pa81Rд p<6ʳ 0)(6-0~M7YWz T#\D۩PV֧OY+o.s Bkp (¥C ly"=4N7FG[ VYP2ݓŋ_m)[Mh}^2uoF7ܔsuvVqpm:}YiUPYG4_mf>CwBj:K!4Y%(BA]"r bTWt}+GaNn8hn2y$S#z|MP )2+@h*fqi5pn7Bl>'9-|*fUūg+KɣRDfRa`wM FQIk߿rcDžv=6RQ8^5I(rZod;n9z>u5ERX8i~+ag `58f^X*F~=O40ɲIzʟB?ty'DhF;@I({"]ŲkO,C{PI,f}lSa5+UWdץ~Yx~˯"2Q -n^GҝIWs~Or2;eSϞ*Cǽ߿jʫƫSkj[Qf)puI X"P.Y4D ҂^𴇞]Or} GOՃ:,mLEHĸ왈d_)_a6dZF0v󂡸ҭ3S{}vΡ4P}/m&oSC C~TҊdN[,(I"H4Nl<ь w&|>ʻ夞bܳ󰭱ʜǰڂW!МO檐/Zmru#Was"7v3i|FW :t`I>#n$4*4@r}ÂaX ;FeN& b⃭{ulcXS\Yn\"7z*o]lNt:@ /MrG.lA/w_|ct ;E2h'0@ >4ٱͳsy;J.^1>X+/'Kp =V &3Mk Q|{]IBfNXCKZo]40׺qѻ:buV\|mD`?_Mv>9&1Yv݇Q-&M6CX'UxgyQO|L\;#J]& r[w ŗ 9625dL ^DeFǖ<%o$J$܀jDчq/5A׾~kŠ1Hx.t%FoS(ew| tbuñh],bȺ-W l(}AltyKT97ع(y_f6xPmCw冷اVS* %ǐjh; KX %+;1D+dDt;,N̈7-*x$XGXeeoE%tJ_'E?HA'IHVs ֟1TJNO {Dʽ9tŶp S['BgeS["󌟙IBHUg#TFb9~ k/w>HܹK3䱹\<[I@~nwn#)Ff"Ո(k;OSq#-, &.x {E. }Ǐtt 'ao+DYx}-R,]l3^U(FQ#]?xo  I  1neh*^devB OZ}Z;{a|y,lT1o{-X9kRKZ& >bFҮ3A[גIrvD팜Q ,5i` ,}Z%Gld1zBq!=RsQz H0~e5wõbScD}r|5RK Wi|=q 7ȯS.@^q'5Hʶݗը*$&2%$  }clE8=fQo@0>sąS@~b3l~b_W!Ѝ.6XP\Kڰ a ܙy#ez/Xֺ\! `$P½έC.b ~SX %ْOCzĔHe@#R;nK9i2.&?HvAn 6Ƙ{oq7nj.К#pF՛uoU%,gY?KHb|CPf)0ta4C"+:±k\W}$p_Y>n;M^o+_!17 )fK'j!No`6  *801OD zu~3d<Ax:I8h=ڔҚ&|\djQP~~ L4QrBZ76EO\HW](BR2#c&QNa Dd)GIA _Z#5#- &|k%I'?*;gFyu#B>0~}90Edz5-ܸ;=.Q}@#*Ú1Yc>緡ܘe'g_XDz+j,,8278%҄ tF˅GZ.fcu[1`d?E%vnS( OBc[Q.d>Ǔ Y#ܻᠦjUEƊ'8ZKOu}>5jjS˰ȨJ6nC4oD/r\hA6€_GGg˥a,Rf;}Q=eJ7N2t|ǯu Pcq#PW@_|h bJWx xoʹ-"Fo2%}o7KƆ7cIɯ eD#'\H#<=!u{ݹǭ8PdrzjOdK ݧ g'0%%|[F1]9 EMTy$Hΐ9lIgD 1Bg*q6͘_d:-LBe:Sȕ xӾƆiK6KuwemIk<N3ɤŎs endstream endobj 26 0 obj <> endobj 27 0 obj [28 0 R] endobj 28 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 616 0 0 840 0 0 cm /ImagePart_2026 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 451.449 721.2 Tm 114 Tz 3 Tr /OPExtFont3 11 Tf (CONTENTS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 114 Tz 3 Tr 1 0 0 1 128.15 677.5 Tm 74 Tz (5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr 1 0 0 1 144.949 678.25 Tm 107 Tz (Nowcasting Outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 511.449 678.5 Tm 82 Tz (92 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr 1 0 0 1 145.199 660.95 Tm 89 Tz /OPExtFont5 12.5 Tf (5.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 89 Tz 3 Tr 1 0 0 1 170.65 660.95 Tm 100 Tz (Imperfect Model Scenario ) Tj 1 0 0 1 309.35 660.95 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 660.95 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 512.899 661.2 Tm 88 Tz (94 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 145.199 643.7 Tm 91 Tz (5.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 91 Tz 3 Tr 1 0 0 1 170.9 643.7 Tm 101 Tz (IS methods in IPMS ) Tj 1 0 0 1 282.699 643.7 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 643.7 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 512.899 643.899 Tm 85 Tz (98 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr 1 0 0 1 170.9 626.399 Tm 95 Tz (5.2.1 ) Tj 1 0 0 1 192.949 626.399 Tm 446 Tz (\t) Tj 1 0 0 1 206.9 626.399 Tm 102 Tz (Assuming the model is perfect when it is not ) Tj 1 0 0 1 434.149 626.399 Tm 1451 Tz (\t) Tj 1 0 0 1 479.5 626.399 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 513.1 626.649 Tm 86 Tz (98 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 171.099 609.1 Tm 97 Tz (5.2.2 ) Tj 1 0 0 1 193.449 609.1 Tm 430 Tz (\t) Tj 1 0 0 1 206.9 609.1 Tm 99 Tz (Model error ) Tj 1 0 0 1 274.1 609.1 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 609.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 512.899 609.1 Tm 88 Tz (98 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 170.65 591.85 Tm 99 Tz (5.2.3 ) Tj 1 0 0 1 193.449 591.85 Tm 430 Tz (\t) Tj 1 0 0 1 206.9 591.85 Tm 99 Tz (Pseudo-orbit ) Tj 1 0 0 1 273.85 591.85 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 591.85 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 512.899 591.85 Tm 88 Tz (99 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 170.65 574.299 Tm 99 Tz (5.2.4 ) Tj 1 0 0 1 193.449 574.299 Tm 422 Tz (\t) Tj 1 0 0 1 206.65 574.299 Tm 101 Tz (Adjusted ISGD method in IPMS ) Tj 1 0 0 1 380.649 574.1 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 574.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.55 574.549 Tm 79 Tz (101 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr 1 0 0 1 170.9 556.799 Tm 96 Tz (5.2.5 ) Tj 1 0 0 1 193.199 556.799 Tm 438 Tz (\t) Tj 1 0 0 1 206.9 557.049 Tm 101 Tz (ISGD with stopping criteria ) Tj 1 0 0 1 353.75 557.049 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 557.049 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.1 557.049 Tm 84 Tz (105 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr 1 0 0 1 145.199 539.5 Tm 89 Tz (5.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 89 Tz 3 Tr 1 0 0 1 170.4 539.75 Tm 100 Tz (Weak constraint 4DVAR Method ) Tj 1 0 0 1 345.1 539.75 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 539.75 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.1 540 Tm 84 Tz (111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr 1 0 0 1 170.9 522.25 Tm 95 Tz (5.3.1 ) Tj 1 0 0 1 192.949 522.25 Tm 430 Tz (\t) Tj 1 0 0 1 206.4 522.7 Tm 100 Tz (Methodology ) Tj 1 0 0 1 282.949 522.7 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 522.7 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.3 522.7 Tm 84 Tz (111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr 1 0 0 1 170.9 504.949 Tm 98 Tz (5.3.2 ) Tj 1 0 0 1 193.449 504.949 Tm 430 Tz (\t) Tj 1 0 0 1 206.9 505.199 Tm 96 Tz (Differences between ) Tj 1 0 0 1 308.149 505.199 Tm 60 Tz /OPExtFont6 12 Tf (1) Tj 1 0 0 1 311.75 505.199 Tm 37 Tz /OPExtFont4 12 Tf (-) Tj 1 0 0 1 314.149 505.199 Tm 101 Tz /OPExtFont6 12 Tf (SGDc ) Tj 1 0 0 1 348 505.199 Tm 98 Tz /OPExtFont5 12.5 Tf (and WC4DVAR ) Tj 1 0 0 1 434.149 504.949 Tm 1451 Tz (\t) Tj 1 0 0 1 479.5 504.949 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.3 505.199 Tm 87 Tz (113 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 145.199 487.449 Tm 93 Tz (5.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 170.65 487.699 Tm 100 Tz (Methods of forming an ensemble in IPMS ) Tj 1 0 0 1 381.1 487.899 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 487.899 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.8 487.899 Tm 84 Tz (116 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr 1 0 0 1 170.9 470.399 Tm 95 Tz (5.4.1 ) Tj 1 0 0 1 192.949 470.399 Tm 452 Tz (\t) Tj 1 0 0 1 207.099 470.399 Tm 102 Tz (Gaussian perturbation ) Tj 1 0 0 1 327.35 470.399 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 470.399 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.3 470.649 Tm 87 Tz (116 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 170.65 452.899 Tm 99 Tz (5.4.2 ) Tj 1 0 0 1 193.449 452.899 Tm 430 Tz (\t) Tj 1 0 0 1 206.9 453.1 Tm 101 Tz (Perturbing with imperfection error ) Tj 1 0 0 1 389.75 453.1 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 453.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.3 453.35 Tm 87 Tz (116 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 170.65 435.6 Tm 99 Tz (5.4.3 ) Tj 1 0 0 1 193.449 435.6 Tm 422 Tz (\t) Tj 1 0 0 1 206.65 435.6 Tm 103 Tz (Perturbing the pseudo-orbit and applying ) Tj 1 0 0 1 417.1 435.85 Tm 92 Tz /OPExtFont6 12 Tf (ISG_Dc ) Tj 1 0 0 1 461.05 435.85 Tm 614 Tz (\t) Tj 1 0 0 1 479.5 435.85 Tm 33 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12 Tf 33 Tz 3 Tr 1 0 0 1 508.55 435.85 Tm 88 Tz /OPExtFont5 12.5 Tf (117 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 144.949 418.1 Tm 89 Tz (5.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 89 Tz 3 Tr 1 0 0 1 170.65 417.85 Tm 102 Tz (Results ) Tj 1 0 0 1 211.199 417.85 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 417.85 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.8 418.55 Tm 86 Tz (118 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 170.9 401.05 Tm 95 Tz (5.5.1 ) Tj 1 0 0 1 192.949 401.05 Tm 446 Tz (\t) Tj 1 0 0 1 206.9 401.05 Tm 86 Tz /OPExtFont6 12 Tf (_TSGDc ) Tj 1 0 0 1 246.699 401.05 Tm 98 Tz /OPExtFont5 12.5 Tf (vs WC4DVAR ) Tj 1 0 0 1 327.85 400.8 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 400.8 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.8 401.3 Tm 84 Tz (118 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr 1 0 0 1 170.65 383.5 Tm 99 Tz (5.5.2 ) Tj 1 0 0 1 193.449 383.5 Tm 422 Tz (\t) Tj 1 0 0 1 206.65 383.75 Tm 100 Tz (Evaluate ensemble nowcast ) Tj 1 0 0 1 345.35 383.75 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 383.75 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.55 384 Tm 86 Tz (121 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 144.949 366 Tm 91 Tz (5.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 91 Tz 3 Tr 1 0 0 1 170.65 366 Tm 97 Tz (Conclusions ) Tj 1 0 0 1 238.3 366.25 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 366.25 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 508.8 366.5 Tm 87 Tz (126 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 127.9 337.899 Tm 77 Tz /OPExtFont3 11 Tf (6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 77 Tz 3 Tr 1 0 0 1 144.699 338.149 Tm 107 Tz (Forecast and predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 506.399 338.399 Tm 85 Tz (128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 144.949 320.649 Tm 89 Tz /OPExtFont5 12.5 Tf (6.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 89 Tz 3 Tr 1 0 0 1 170.4 320.649 Tm 101 Tz (Forecasting using imperfect model ) Tj 1 0 0 1 345.6 320.649 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 320.649 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.05 320.899 Tm 87 Tz (129 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 170.65 302.899 Tm 96 Tz (6.1.1 ) Tj 1 0 0 1 192.949 302.899 Tm 438 Tz (\t) Tj 1 0 0 1 206.65 303.1 Tm 102 Tz (Problem setting up ) Tj 1 0 0 1 309.85 303.1 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 303.1 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.05 303.35 Tm 86 Tz (129 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 170.4 285.35 Tm 99 Tz (6.1.2 ) Tj 1 0 0 1 193.199 285.6 Tm 430 Tz (\t) Tj 1 0 0 1 206.65 285.6 Tm 103 Tz (Ignoring the fact that the model is wrong ) Tj 1 0 0 1 416.649 285.85 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 285.85 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.05 285.85 Tm 87 Tz (130 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 170.4 268.1 Tm 99 Tz (6.1.3 ) Tj 1 0 0 1 193.199 268.1 Tm 430 Tz (\t) Tj 1 0 0 1 206.65 268.1 Tm 102 Tz (Forecast with model error adjustment ) Tj 1 0 0 1 399.1 268.299 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 268.299 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.3 268.299 Tm 84 Tz (130 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 84 Tz 3 Tr 1 0 0 1 170.4 250.799 Tm 100 Tz (6.1.4 ) Tj 1 0 0 1 193.449 250.799 Tm 422 Tz (\t) Tj 1 0 0 1 206.65 250.799 Tm 102 Tz (Forecast with imperfection error adjustment ) Tj 1 0 0 1 434.649 250.799 Tm 1435 Tz (\t) Tj 1 0 0 1 479.5 250.799 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.3 250.799 Tm 86 Tz (140 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 144.949 233.5 Tm 91 Tz (6.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 91 Tz 3 Tr 1 0 0 1 170.4 233.5 Tm 105 Tz (Predictability outside PMS ) Tj 1 0 0 1 309.85 233.5 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 233.5 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.3 233.75 Tm 86 Tz (146 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 170.4 216 Tm 98 Tz (6.2.1 ) Tj 1 0 0 1 192.949 216 Tm 446 Tz (\t) Tj 1 0 0 1 206.9 216 Tm 99 Tz (Lyapunov Exponents ) Tj 1 0 0 1 318.949 216 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 216 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.3 216.25 Tm 88 Tz (147 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 170.65 198.25 Tm 99 Tz (6.2.2 ) Tj 1 0 0 1 193.449 198.25 Tm 436 Tz (\t) Tj 1 0 0 1 207.099 198.5 Tm 100 Tz (q-pling time ) Tj 1 0 0 1 274.3 198.25 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 198.25 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.3 198.7 Tm 87 Tz (148 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 170.65 180.95 Tm 99 Tz (6.2.3 ) Tj 1 0 0 1 193.449 180.95 Tm 422 Tz (\t) Tj 1 0 0 1 206.65 180.95 Tm 104 Tz (Predictability measured by skill score ) Tj 1 0 0 1 399.6 180.95 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 180.95 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.5 180.95 Tm 86 Tz (150 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 144.699 163.45 Tm 93 Tz (6.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 170.65 163.45 Tm 97 Tz (Conclusions ) Tj 1 0 0 1 238.8 163.45 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 163.45 Tm 32 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 509.5 163.7 Tm 87 Tz (154 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 87 Tz 3 Tr 1 0 0 1 127.9 135.6 Tm 77 Tz /OPExtFont3 11 Tf (7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 77 Tz 3 Tr 1 0 0 1 145.199 135.1 Tm 99 Tz (Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 506.899 135.6 Tm 86 Tz (156 ) Tj ET EMC endstream endobj 29 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 30 0 obj <> stream 0  ,,x  jQr;ݒ_g1j kp6E+0dcE*PJV5؝i*'zS.Kt $QJX$ه('nǮElH|, `&_1,|Ou]jRaw@ؑNΆwh.P@-xjNuaq6r-K돐3Gm6όpRH6leG0dv +މ_HAg'ܦ28ܼjrGRG\5u@& 9ۧ?6 :#cؗxq=2~6]a&PHb4&v,3@(xӽ-rd/W> EwФ385IYۚ)VEt4]<&TqU uCX//q puޢ),.(=ł e*izcpyL:͔+ήR|r+ijTCM~$RR4Lx@MFFe> t9Qb^? 6M<`pF9Cy=B߈ɜkeuE.(Ca&bG1FhN?pxULxh#yBroivQXahJ CՖQN%?'OO)t t8ƈ@}I{mC2y1Dmc#sƎ,_t4x kis)| Չiئjx[m2'>R>) !h: #I0K(קh{WEt#DsgOX-J羢1 h#jH(i @$nS\ajT i]` <8bB#R\mRxP6FˌT3எr<;)wT'% g 8tBǤnӜr^C !&p KtzrdG]/4n`P4tw*ޛ9oY6y f&P&:Kۅ14`ԀD3!_n%>v2 %rJ1._'Tp !OFJ10~ f^`JQntB7 ׹sbX[¹`e| G8s-D>&ZE?}? KAq(ن0?: ~)E|LzO'-65$2=y`?BIo$\<5O+Eo*YZ/ٗ9Q^j)|ӄܞcmOxprx 'Jh6qÞDDb]!u<+'s>ۄx+!7txX{8uS AY,Ml =͊P}AրqYe.zm O3x_Px3idNj//6rGYF ݪhPwsCR1CX M}| z{A*e1X[zfڿ92}'vF7,[&W"uN at!Ç厞?Lv#.|宏;4&*/1`~cVRԋ].eB-.&J++՚.Ui% !p#]fR}f-v=Ao2`|_Afu:{d|rSܬa9U-`W>FZta"噼I”rCAjX%%pSzp-kKi qj>VIbR &P4]*6C :4-'TMf}RQ6*İ,Eʹ7֪>7(xl [b#z,ބ2葘m~o}HԙNg Y X܊tCm``tBM qJtqVVC]yGb@"pLQ#I8{ MzYs_P^zRON bV<6`P+CqvbzM OpJ;2|kx{VCwDJux@kMo(Y`56jIz:47Ztdy44Ȅh{Hwy_|ިm\_^X⨖A-At1Dt/'( 01!_of=YGGd&9iKRsoFi 6`5h }lbUf.h=>O xB]׾TቈTeMkh7h^p?3ڢWzȩÒYs_N_RtzsC g"{yi⩣ kT:L^xpN|.F _{QNgA<~vށ9},m~wk_[>cM9ĞVH  sfo(s5+qve]FB`ȟUVMS?p4BvgS," <{ {XT2v_3MA8Og<\*̮itRlIxE;<ư#}"= 'R1^5 6oA 8d)Z(~CPJ ~ѠK~`ﳖ9)ϏԳW~o}cN m )i9O05h3l4/]*XjʭR7X" "Ǻ0{N˩ SX|Ŏ]/HiK!VX;ʊ-pۜg>5tOC b[L)_ȡKf9䆙h[}SOe|%o<[28H \XLsϹ=^ɢ.Hm,W{~G>ڰіjAg7ҁ۵ʏM1go[eұ2.ճ2#k-<݀@@1NǾHU0!׫cȆ$ґ!ȫ\~dZOn+kM4zۢO~DOL?Ţ-刟3 "GE( :apu1$R"Un<z+ca`Ta&~~V&5G@4$MPy#]瀲@;Gn!yqd\C1vE㕊vdlƓmH '2pR%,y/3e!}91O {Z6rEwc'P͵c&X6 '`5֡|N<8o1bb`dH_f *!t4L!B<+k*vIFlo`C^N1JRwbR//E?(ZD{;ɘ ="M]o r[`@IJl ڻ02)̑[uDnpnңgp>3Y`I Xc0T7>7"FGFRbՀa"D\SBZW6[qn HԵm+LȪ1bzl*gewVa0՝Q9azp& NsLzpi0H=Si5GN%=X,hTQu]շeKv"RΝM7Rc46#N67{|ݶ79֎"z+m-*l GS ҡv@o*0z7+*ʬhbX1<> bΊͽpu9P3yLnj5M[`a`jċ{Uf$ `겂1ƿ56{u)ÂvؓIXk}c.,"q5.TPȻ).f;S( e0J^uͳ1Xe4]%/Jr_A#%\}4IkچG- |w7m$$k\P} QVp|{(?/OW.ȏTB!R-`hkܮ>^v7ȗaD1%^FAhfvTb$7)@bƹ$]Ҍ6nň/Uf]w.ؿ8UKpnI,oMBsH ig(n`0*N ΔD{9.t} S( Ʈ+c%I |/CK_}7 ~.TOgP9.Dӹ+Lƕȡcd<.BDf VG-DtEq@T]^] ~~".&*.SfP>Xd?n5-3E~|gneJTBJԙqwܶ&$rWI,sEuFuAuɒ3B#l><D~1!yO<:.2梪~]4FVJuv?c8K!&`'/džKִmӖ*w65c Cv&'f銚TȪMD°WYD-0b_2討#s15%ڸ^4wUU>S4|hSr1-" `ʊ958) ( \k2R69z೭ `?&%ۀEl:=$ZLۡ4P `(s&or0Y˝҃kh<q'3FGD*X#%)fgŎ͐L᱖lDk3'=όlAA=V%;/Di#{f_;JQ$1Kޒ(P,mx39тfWIH B;.M'j"(ש&`C[% 6 .z;=28/2 7:e|\qK?ryjNLm~ƊH(VSE(Fj!xak!D4eNqd]@ƒp[Na*O(}Uw)rk9Z) tBY>ǩFճ+ʽ@!ulP!א΅J2n9cj^j,d4ޢXX:28!AEXt~\v $|Jy Hi(4<4^1fc`6$ÖpHǪm.nSbT^ 'v“-pC﷮0׉ &Iέqaí@cx }u𴸫6~ j=vHrj&y=YJ]|r߲/`u<1%IoXG*Kh vۭSz1o雊M XJbo0b[;ODH Bm)vg.@ps]z5Q@=} &kSA84Q4R7ߤs&^e[!0餝)C+3O"ɯM٦p̃6*2ȳ cW;/ziWt / Ao{ >V&b %9էjHAst $ӄ &1ִ'ۡzU9XxK~Z$U0ho.krQ[{}a Wn]jYi18'4d%ZHxZ{_# &Q(Ʉ)Ȃ;l:%v&^0$Y.I,2f ^8 P* J@' 8?OhtK]Q$)uL'&N!_+Vz֎I(<[q::=p2Oiz>pqS,,xEmjNjhЅhDӶ*Fuj4o {`qYM*}ۂ+VS^HAM_m^@ (f4FN3 [q"{" M]!qQC6Z2YFÛ  \ ]t4I,?E:`X^ͼx_H^D..0O9N?gK)ՕFP[9F,BA [{ܮLL |mM=Ht%Vr_/SlyFÊAaw,1(p'P74Lċ͜`]P#z?±;. 0m[v?߰΁ g9lO'$mrJ51J+8M1I[F J16Q=i_w;< / ŒU+\Agz$.KQ^_KfP_#!~I$5ZQbi<,> R=rjZ0QGrgNJ[D+$zs3KVyiq5?#O2aЫTAgo-3ZTXfh؄_ ' 崣"#=kK0JKΚ~azRH6w5.JVf!L t9z؈!A eeΣZfQ#6;j}y5KZEDsg7F5@,!8ՂA]vԤPpߣ\j|EJM>!\(?}R:R@'A^ }-*߁HZRC;Y5@Xfo^T;{ >Ĵټ0'0Z(NҴʱ#ղѹ07^<&ܺ%T ')_ӑ?3I[֖ di"| RPuN s YS%ȣ._-y9;w}"Xǝ6mjg倶T|J@EuMDInb9pߖW@D>iL[3%#=H 7aQISV RPwaDE71i~r!4d5=~2\) !otvAI'FZū.}ǵQ[)1yAwgj3ӥ7"}^ӉBO:|(ŪcLpbOdǩ L]t@k#vEwV< 7 ƽX̩@Y;?6V0pjW%4͚8kJ t(g! ) æTz,mVs 'S?)vb'"K'YH;۠]W1I3:qܐ3j1]A=˫-yDO]:H*w&Idq\.ʭ|FlLBตWԳrCz ? xt:]5ま53Q#Ëxl>ŃԱ!!")<>9N^%%*E MλP'>Zz~- ,1Qϡ-Hр4`N%(_ Ya'OCt,{:-M?sMfZS8J0Ԧ¤A('YPgJS1l&ϛXP6!c'4 iK.F9E/Ә*kFFh_hXԙՆhet91@tշJkގt>J*Fט%&MEGfO^,&,01=K%C]V@&˜T ;̀ 4tH*vm ɘC҃/~lk&`!@PzҥI5sPͼ)O19Ӭ4z 9I`߇F3HUtwMրuG:s#1(GE<1v=WsG!Nĺ#xZLyi.S=]-Mqsnjjj Dp//yD3*SjuGzsx"Fa|CC 3嫏'W)h F#nѣ:jqY(a&֐XtX^+ I0$6\NαK.De`Dz9vItگQ;bHyB<3k`B>]z8P W>]?j{d͉dWk՘pl0-qmyōט|&/=7!zQleࠂTA e9lWda0&(9_l%4"dm q+kV1ZHx*M\6=aCKP+hGNH$5|N40n?? endstream endobj 31 0 obj <> endobj 32 0 obj [33 0 R] endobj 33 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 615 0 0 840 0 0 cm /ImagePart_2027 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 451.449 721.2 Tm 114 Tz 3 Tr /OPExtFont3 11 Tf (CONTENTS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 114 Tz 3 Tr 1 0 0 1 127.9 678.25 Tm 110 Tz (A Gradient Descent Algorithm ) Tj 1 0 0 1 306.5 678.25 Tm 2000 Tz (\t) Tj 1 0 0 1 504.949 678.25 Tm 86 Tz (160 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 127.9 650.399 Tm 109 Tz (B Experiments Details ) Tj 1 0 0 1 259.449 650.649 Tm 2000 Tz (\t) Tj 1 0 0 1 505.199 650.399 Tm 85 Tz (162 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 127.9 622.299 Tm 103 Tz (References ) Tj 1 0 0 1 187.699 622.549 Tm 2000 Tz (\t) Tj 1 0 0 1 505.199 622.1 Tm 86 Tz (166 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 321.1 52.1 Tm 98 Tz (vi ) Tj ET EMC endstream endobj 34 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 35 0 obj <> stream 0  ,,PPb6u*KRr=N Ӽy]jcHK1y2:p\ NcRw&gst)[e?![IJ 4N_5Жy|婹})>`lGBbYc475loh-mpeIek5}O8FIj ސzbD.A, xOCdRGW[F[c+pǻ?5}ȐϘ$}";P?/7jr(c0'zLZ!Htjd&һArV̿N&(jD3HMJu$zc^ bz | &I_b^:U(OI˿=7ޞ?0ƾJ \6Ls eMȅGov! d/^j|ȍsPj n ,wyixڪMox(C_2?Y!eub_w'%Pjw>$08 d:*Or︛(#P@#3cHE.37!qkXUa@/ ouӥ Ccw t8/8 v sg~L4JC] ̶A Da5E~cN{{qgAOy`=O`-e]-EvuI1cf{>۱ ޭզwyCww;t71c_e»)AUϿY]ÿ)SukƼZOEsWj?u8FpNy^(U;Yo;'9Bs =mF UĨX ֍k•C![Ռ*?ܗ/)7sI'.@1m2Ӧ5*ԄU?G.#svl)X=ZR9Yg^b93▲=2` 9:y9tgOd$Kg5壙W <Ӊ`N fP%58V#SɬcxMv+gawܣjqOv xȝQ)vag1`,[S-!s|]L rr<2YuF!ʨ kIJwDN*I3k˅Ѕ#k䨶J  D4>g|Z;v bp}zǐ4K ^>:|ṔM`iej/(.r]j %7</ݦܖF -  j4n<4#k7 ^=e`m9"Y9|U^3Rgm`A]fovSq|3>0hG HE$uẸigGYe)> A 9Ś|>VJȢf& "^ۣyyX҆:H19$y82+:1)BH"o*<=dsnR}Sz\6W5@EKY%?iXͫ ? endstream endobj 36 0 obj <> endobj 37 0 obj [38 0 R] endobj 38 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 610 0 0 841 0 0 cm /ImagePart_2028 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 121.9 596.2 Tm 105 Tz 3 Tr /OPExtFont3 22.5 Tf (Chapter 1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 105 Tz 3 Tr 1 0 0 1 120.95 542.45 Tm 107 Tz (Introduction ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 107 Tz 3 Tr 1 0 0 1 120.7 480.75 Tm 88 Tz /OPExtFont3 11 Tf (Nonlinear dynamical systems are frequently used to model physical processes such ) Tj 1 0 0 1 120.7 457.5 Tm 92 Tz (as the dynamics of breeding population, the electronic circuit and weather. The ) Tj 1 0 0 1 120.5 434.449 Tm 93 Tz (ultimate goal we have in mind is forecasting the future states of the system. Of ) Tj 1 0 0 1 120.5 411.649 Tm (course there are many operational details involved, but the mathematical prin-) Tj 1 0 0 1 120.25 388.6 Tm 96 Tz (ciple is simple, first estimate the state of the model of the dynamical system, ) Tj 1 0 0 1 120.25 365.1 Tm 91 Tz (then integrate this initial condition forward to obtain a forecast. When the equa-) Tj 1 0 0 1 120 341.8 Tm 93 Tz (tions of motion that describe the system are known, which is the perfect model ) Tj 1 0 0 1 120 318.75 Tm 95 Tz (scenario case, the key to the problem is the accurate estimation of state given ) Tj 1 0 0 1 120 295.7 Tm (observations. But given a perfect model of a chaotic system and a set of noisy ) Tj 1 0 0 1 120.25 272.45 Tm 96 Tz (observations of arbitrary duration, it is not possible to determine the state of ) Tj 1 0 0 1 120 249.149 Tm 92 Tz (this system precisely. Traditional approaches to statistical estimation are rarely ) Tj 1 0 0 1 120 225.899 Tm 93 Tz (optimal when applied to nonlinear models. Even in the perfect model class sce-) Tj 1 0 0 1 120 202.6 Tm 91 Tz (nario, likelihood methods have difficulty in estimating either the initial condition ) Tj 1 0 0 1 120 179.1 Tm 94 Tz (or the model parameters. The question is besides getting information from the ) Tj 1 0 0 1 120 156.049 Tm 91 Tz (observations, how much the information we can draw from the nonlinear system ) Tj 1 0 0 1 119.75 133 Tm 94 Tz (itself \(that is, information implicit in the equations\). Our aim is to enhance the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 316.8 53.1 Tm 57 Tz /OPExtFont3 11.5 Tf (1 ) Tj ET EMC endstream endobj 39 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 40 0 obj <> stream 0 ,,55juxL/)JXȐFLD)G"aGB˺,0BcMvEВl@v);J=uj <#>KB^^4Z1b4?O# Y'3z1h![?WBnKLheط5 y=+#@E _-ְJ6|h@\ @@m m0G0,?4K[kmOZCPRIc/XGuzKM9y7^PmUÃűLL<`X^9o;m~AE<ԳjJrwKx0uŴ9FUeQ αGѩGIYiͳp ȅNExJ*LXs-:hxLrj9ђcEm7S`X*KU<. )MMkgY}sۮq[@ y'J{h=}puxh{D6,G#Of0\~+`C6?KkDhz;`:W6KĈETLX/)*Ke)ڼ0f)*$'"r)؟p+}1e¡zH0$ѫP?_8/1+O0Ym >[7Ҏn:WnEt5)llw7XŔe3ƽuɞb #zj G$X9=>01,&Y3oքבv+jȘ&鼅7-wS]83+8KI\&65:4;mtޯwS$ LfVԙ?Uk$ZuRS`r?J.h)$TG^b,d+WzqVLrEPCKBI?<ߺ4O={"|3t/['XWq!vfI0˿Hr+|3~Iq,X`qVw]EH4%" |?zB2 r)na,X {o3f^'h~458Ԣw'U&ja?K;@ Ft0pԛЭUYo<ͯ0GnIn" HA4= `Ðc҃jQxōxNaKP%W L ,Qy,>ؑanJcw"~C?^M(ocpS_WXa1sK|xw:ZUn|R+H8h2s]e UoEJ(WL75-]Z6H)#}J/7}/S̈(KELFip!B3CK ?*@9ؠ$GJ˵2X aP2H?OG4jJm}lyǒx#וp$sgk긘 GnNu5NEul`4?mȇaXXj-Z)v͓ n$)fV$ qwvIiɺsMN<_ׄh޴,9r'Zk[e-Vnf,n5\ٹ=T q.G06>qEhQ%?thz^_Ɓf,K5RC7hNDR@8cu K,J`פY{: d-pk Y"5a8Xs}iDEo0Daf8?PhHF"ֆKWuMzgRaؓV#]W$t|n!?2 k?suOOE]}A9`Rc9VYMFS7skggaM,,@bdd7" P o5]f8B5=gW.pyW{#]gb4>|<"X5rt՞~(Lr#$1k'#c=!k IFLG9Le7aVy"QV( xy#}}lȊ_3\ttǭ rc,T$澮l ;/R?4PQ͡6@iYD.d#Ct't>gQa~g[Ô]T99[fGݔcEk{w2_:mU {*)J)!'b'%'U GSxʪ%b?Ίf00 {#J|kz3*c{41A (RK@t |8lX9q7I/[)" ruSq ":AY#F6{NP.P9h.Sİml1S;K*;T|j>ٗ¾筲ϣ0³*7%0ܲ|ݦeQ4&(ڱ%մݸɻ墨(v<;켻`~ &͘UwNE,)w-č"ʙ愿jÉ(+l 1J2 OѮseį"d*;9tT?nTMJгKaoqrddWe?&iU82NmSp"G3]>&Zb"3kݚNWPbNyw齸 FM 4nmK Rq,sY (N:QVg̀؝U#x3T3KH5FO߈G6 b2V 36#!cβJ0`_݅ }>Lгύwoi4Mi-p3WzQ~OΥE }[+y)csXwlqPY8PlH^W>4[)NGr\9~Po||urvCiTDB 2W0HQѤ^c6b'-D!GŻj4TM;7pWKMp2҆굯tFl> q>ө,-pk+o U+kž&y5/$kx:/AhW幷}3:̳Yʺuh3ooZ Z,+KRX%;AO.xI#j~UJ @*>^1?n >enLU.:L}ř#MuJM ^1uRK]-`2 ,A mXC%6G2nb0:1r.7 z21hnA:323t gq=JUReaG\2`6 .8dFL2yG'wam5FF G}0 DZZB{$H93XHοR`:7-lc W->ŵ G8NuU8~ӔIYk?jF IUS2xw" gdߘcZ6kXj朔wPbUr2#&]"fn`fڬsпcɼD95M< &eOʊ]  [O6hxb@>j S$pǥq#ذ>ͰVòϰ&թ(-̾J<4n~#fv ;Y$u-CDbz6fIL;?ԙc(/t83)h`Tg>cGԍT3"(6.п>ސ0i3ϭQ(IJ%0&##5߽r|8PFǶn2:>ΘPMLj>|!>-ɿ՟D&ћհͱ9._l/ru縿^6{(eGfG.Ud3N]y Oȵ+С>/4 rPOfm(4*["uoZcCNX> RGC ɂLmnZ 53BvV2WMeuEn:{drVWx)UZp S[ۥ"U.sO$ʲ+ŸLh*ŚT`]JYY0J o#ykzR,<Z)AOV8OKSC`0S7]xaoTUX$>q;>-Cy丝>6qtKto4=o|t?$tHJWu}y \h+,軐j< nq=2]/aIw8ȼf7,NUa"k8h(:i6.G8سY(y6ID~B+5dtHwj⋍C-BS}B Z,SÆhl/oM0a F ex[{ĄD|ſt7p-}3aTy*WZ\.ba+Lipd{.@S98!Aph[wc z־zV#x|8w!RQHL@آgw%  lQڞrW"Y-cq|i]eXZav2{B Aw\ϒw bT@<m!f3zT:BЧ4/ E.aqxz9I" aΖ_w$^+V_Jb2za ɍ@ ?'ZT]d.H\Y[dQy$GpStORQ ?(0[fNDx69NwNJ*;-"r+T|TF1/Sn S>ڟy{cPfYWC$AUS鑦V H`%_zCϙ4("%LrS6ߖW@w/q ~3EL /Dm-g=,m=l4 ndvw@cNs2}˼ ZUǨw7K믯KD+DNj>Y#*]ߺ +O44Ѥg}gic% s@[e3~p)5Uy3=dmiUwx-6ϦD>?77&)ڽ"ψZx<+RPؙ l;9,agM^.d" k_>sgd%Rq]`QrmKtcW:GBLVS#1)011h~J}|BE K_N~<՞?V n2|+C2)Ƥ,2 zh.5fEeXN7*~0[K+67T1 Qz{KBMh7=#OLS4ʆFOyOM@.ݪGҋ} ;4Ri6*?-NvIPn2@$J_]ןWZu|τPm(Ƚ';-?hǧv04wo\4嫎D׈OmGyc|[ i 9_qH\4q<[vŅ~3kki@clRGToti³sAJOk#Kzđ$1ӄo`f$;r endstream endobj 41 0 obj <> endobj 42 0 obj [43 0 R] endobj 43 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 842 0 0 cm /ImagePart_2029 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 123.849 679.049 Tm 90 Tz 3 Tr /OPExtFont3 11 Tf (balance between the information contained in the dynamic equations and the in-) Tj 1 0 0 1 123.849 656 Tm (formation in the observations themselves. Outside perfect model scenario, things ) Tj 1 0 0 1 123.849 633.2 Tm 92 Tz (become more difficult. The uncertainty of the initial conditions comes from both ) Tj 1 0 0 1 123.849 610.149 Tm 93 Tz (observational noise and model inadequacy. To estimate the future states of the ) Tj 1 0 0 1 123.599 587.1 Tm (model by interacting the initial condition forward will eventually fail to shadow ) Tj 1 0 0 1 123.599 563.85 Tm 92 Tz (the observations no matter what initial condition is used. To produce more con-) Tj 1 0 0 1 123.599 540.799 Tm 91 Tz (sistent estimate of the current or future states, information from the model error ) Tj 1 0 0 1 123.599 517.5 Tm 98 Tz (need to be extracted. This chapter provides an overview of the thesis. Some ) Tj 1 0 0 1 123.599 494.5 Tm 90 Tz (terms undoubtly are new to the reader, all terms are defined in the later chapters ) Tj 1 0 0 1 123.599 471.449 Tm (when they are first used. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 141.349 448.399 Tm 102 Tz (Outline of the thesis: In Chapter 2. Some terminologies of dynamical ) Tj 1 0 0 1 123.349 425.35 Tm 90 Tz (system are introduced and general properties of nonlinear dynamical systems are ) Tj 1 0 0 1 123.599 402.1 Tm 89 Tz (illustrated. An overview of the systems and models used in the thesis is presented. ) Tj 1 0 0 1 123.599 378.8 Tm 93 Tz (Other than details on the system-model pairs, nothing new is presented in this ) Tj 1 0 0 1 123.599 355.5 Tm 86 Tz (chapter. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 140.65 332.25 Tm 93 Tz (In Chapter 3. we consider the nowcasting problem in the perfect model sce-) Tj 1 0 0 1 123.099 309.2 Tm 94 Tz (nario. We illustrate a new ensemble filter approach within the context of indis-) Tj 1 0 0 1 123.099 285.7 Tm 93 Tz (tinguishable states \(48\), using Gradient Descent to find a model trajectory from ) Tj 1 0 0 1 123.099 262.649 Tm 92 Tz (which an ensemble is formed. An introduction of traditional variational method, ) Tj 1 0 0 1 123.349 239.1 Tm 96 Tz (Four-dimensional Variational Assimilation \(4DVAR\), is presented. The differ-) Tj 1 0 0 1 123.099 215.85 Tm 91 Tz (ence between our method and 4DVAR is discussed. Results presented show that ) Tj 1 0 0 1 123.099 192.799 Tm 93 Tz (4DVAR is only applicable to short assimilation windows while our method does ) Tj 1 0 0 1 122.9 169.5 Tm (not have such shortcoming. The popular sequential method, Ensemble Kalman ) Tj 1 0 0 1 122.9 146.25 Tm 98 Tz (Filter, is also applied to solve the nowcasting problem. For the first time we ) Tj 1 0 0 1 122.9 122.95 Tm 94 Tz (demonstrate that the indistinguishable states approach systematically outper- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 319.899 53.1 Tm 70 Tz (2 ) Tj ET EMC endstream endobj 44 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 45 0 obj <> stream 0 ,,ffb7!e.qí&dWM(R JjR t῱ ^9kMǍ4g1o+c`w"FN>Wp|N]wU62Ԧ.Y3ck\od ٓRtXX;תC\i]Yu'Ztn]'VA?Yܿ}/;G _F郘F#Wr9$`J(+w>7OFΗ.}/;x)6'eڐB[յ7}mb|grMiI4aڝ,r`S5yF{rkhK %;DC-Yz HO؆v?F<2,oa;;z&jV|R? x +_ \}gޥϪE( l=qg+0n`79(D7: qxsi)%.i D [nU9x4}^P>wվ3ݳ51u$mad'OaІ2Ă<ݞxwt(7_cےW2*;@;*$Kq`%Ƞ'GQx0zj:_i֟2c ̵p;c"sC5$ 'qL:h=OU+HaZ- SxIwjzگmbS+ }vFԻ?쉞 +4SWJs6W{tA`)>bTeMdb)n.Ptc#*'4ěeϳwDt=:svҬʨ糏!"7C:Mř\w-$aj cc<߬ !, MqG{b%ڼ]^^3Ge+ÛI8r|tIm҅i soI-2I[{Hlmxc˞l ]zv}m5M?F^}iS"^b8+rw'V"c'O@U]FFxqquR* ٔt&P)snh͖ ԄS9U9.lT.K1ܒg/ ހPĆΔgPOX]n9#D-a/^TsyQRuo3HkgVs$f(p{֓53-'8b!a R$,N#EG0l%DXZΫ\`ZIΚQw^uPyvwflI# XSOM9h%-S4 L؞=YbOTVo~[J"_O{!*}ퟧwT胜\@+6-KI;.關k)7INQm2rhL51^n&WynaqŤ /+w m&27_CBI%W!.17vVzJǶ+fC!g˯ >WzKL^4oUΜmY5UޜC]Yr 5d,:ƻwh6A$케L&8~YVS˓wYUq.AX&(yLyt٧1=luqfvb٩\el)#b|}G# $ h&r4(.C了Oy&=P?B[?Q+f̭%߀sJ0B,^U-%?0xB2< Lmp u=5| 2̓G*>,јHpʳ氨5NJr>䬙َ԰9볾FѰq::[ľi3e)!;"9qH$L0h7jԤ:۪=0LG\nwq.z9 YqI1?;8tH>9tl9W/;J]X0eA?zf)\)"&ȯOw@ s@0|dA%4gX0u~619lQ0i3h#X_1E:PݗjМbi/@ZyBVjk!zC`c\/^]Fe!YqG/Q`\0KuRs=#-u^fT_΢uavn=r Fj@6 46TfKM)7ZDU?Qj&mP?ܙ^(RNmer.>ɻyq~BL nKӴ!rTk.4W<6> JycF˼8.Ԫ/XqOmO{L7ڴ}@7 WF mfPǯqB@dqb7|pQ07t fbSxɊ 2i?cݼoz3dg:YGi<Lzs3j`G@>,nc6E(j#SցZWlD- gi)p?(ߨ~| |z(mX&^-W-ϯ D3O1uH?#2ڲ)u1AF$rKC"Za-Dh暂گe,UrҤqDm'?C$c8.&kތS=o~챛~n[SHe}R|ֲ=UyF՟cAtv@JVCȫŠXOo01|AsRCQUtwɄQG'B9Y8aFV)e9e?DAY{\``~^Q2Wr5an%t–G\aGM-kENgb7^-oBb}j޾SiZ# ?Щi!/SwX+՚$lʐmx3K/ķهk\!*MJg (ța)(m@8}>9P=_J'&X[Gz~iAd2ܫ>R @0_5©%_*x|,2Zh~]SN2~o<xT,m3!' OkЯaƧowPWPaG%+!!=1խij13^v> R )ľ~0.:*^3ii<>W6D%J r[Rtb|ܒ>̃ѤlRYwAO6u]tu@ %WUqLRwi¹SOIKg։(U9TlQf$ZPO-."u&tEaYgbKŊip2q{I7!¼LD5eF>nWnsN /~N~N |׽*M_gh l&-ZV; WLZLn=\:/"r^ƒU0|; p*NZ Xg [l:-q*7gJkHtqaAjFz(m_13ӼT^:|> &TLyat8g6}@@F%~U jSrT;Շd˜O~a3Ab Hhʻ󫠒<)0Kp%Igx*a&~ + >vXŸ()MXη[|b.*3Fzq~;SrM-S=1 >ua[0zyitпGۅ +ǘJ䟶*7=\jŰ"٢@AI%pdqƇpdfQ?&~8 r9.OEAA'i08 ]p@C]tak?8b7〞 W׎Ox5 1AS#j 2N^RX58؏YՓv迵Tg˪/M=?q=姃.(6[:멁3PܴŸɤ-l<W W#&Xv.6^ 1Zm%Z#ҕ3S3rL@$^U_Zh\.yr h8X NFi֝m}_wnilM$-֏/ܕ6YWRDe{ uIUI컆k7t>f|sy%N8p6s8oAsQ"Cͩ$Nw% gTBtQM^j@zy5 T |\$!kQ mpM誳;(/Z@浟=([Vv[VfCk"B\M^xyĨ֌UvW70x Anrs(g|2a.$Lp{0jeMlI=TT S3Tu 4e&n%b]uj 66N-HOz|\q'xFZ5oPȇ@ 1S%BM=p;|E\9vb6=,m7AOFމ[if64.xE/2?$}Ir)J =ۖ(\xLw!wFF5TM26S!cO&/E~*@g\ཐʅ8t۬UaGYSC5qtŒ(/Uy4Eւz2:ST[]9fbޯ  kM2) 22o毡i<DėS"Α9igdm=.d.> ,-[ao#иM޿p 8㒕^%0[VLJn=ցFTW v;H9τh;:Tg{s^ڤqml z9%Tۻv12LkdgB( !dwAq|~Ȕv6.V# ^|$ADZ`.ug]ν &6K%{K?1"xflr8\̷+& 3s}Ͼg%Kiwp-3g~pBO'L A}u3ݣV#"|<8a* [ q֯~slߌ wƎk;L,+nsYjV}4=7⁔YU]I{#}PcLi#^p eBYf/%q= endstream endobj 46 0 obj <> endobj 47 0 obj [48 0 R] endobj 48 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 841 0 0 cm /ImagePart_2030 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 123.599 679.25 Tm 92 Tz 3 Tr /OPExtFont3 11 Tf (forms the Ensemble Kalman Filter in both low dimension Ikeda Map and higher ) Tj 1 0 0 1 123.599 656.2 Tm 89 Tz (dimension Lorenz96 system. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 140.4 633.149 Tm 99 Tz (In Chapter 4. we provide new results to solve the problem of parameter ) Tj 1 0 0 1 123.599 610.1 Tm 93 Tz (estimation of deterministic nonlinear models within the perfect model scenario ) Tj 1 0 0 1 123.349 587.1 Tm 95 Tz (where the mathematical structure of the model equations are correct, but the ) Tj 1 0 0 1 123.349 564.049 Tm 92 Tz (true parameter values are unknown. Traditional parameter estimation methods ) Tj 1 0 0 1 123.099 541 Tm 89 Tz (like least squares often base on the assumption that the forecast error is Gaussian ) Tj 1 0 0 1 123.099 517.5 Tm 91 Tz (distributed. Unlike linear models, when one put a Gaussian uncertainty through ) Tj 1 0 0 1 123.099 494.449 Tm (the nonlinear model, one will get non-Gaussian forecast error. Results show that ) Tj 1 0 0 1 122.9 471.399 Tm 88 Tz (the least squares estimates may even reject the true parameter value of the system ) Tj 1 0 0 1 123.099 448.35 Tm 94 Tz (in preference for incorrect parameter values \(64\). Two new approaches are in-) Tj 1 0 0 1 123.099 425.1 Tm 91 Tz (troduced to address the shortcomings of traditional methods. The first approach ) Tj 1 0 0 1 122.9 402.05 Tm 92 Tz (forms the cost function based on probabilistic forecasting; the second approach ) Tj 1 0 0 1 122.9 378.75 Tm 91 Tz (focuses on the geometric properties of trajectories in short term while noting the ) Tj 1 0 0 1 122.9 355.699 Tm 96 Tz (global behaviour of the model in the long term. Both methods are tested on a ) Tj 1 0 0 1 122.9 332.449 Tm 91 Tz (variety of nonlinear models, the true parameter values are well identified. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 139.699 309.399 Tm 94 Tz (In Chapter 5. we) Tj 1 0 0 1 226.55 309.149 Tm 50 Tz /OPExtFont3 3 Tf (, ) Tj 1 0 0 1 228.699 309.149 Tm 91 Tz /OPExtFont3 11 Tf (consider the nowcasting problem outside the perfect model ) Tj 1 0 0 1 122.65 285.899 Tm 96 Tz (scenario. Outside perfect model scenario, to estimate the current state of the ) Tj 1 0 0 1 122.65 262.6 Tm 95 Tz (model one need to account the uncertainty from both observational noise and ) Tj 1 0 0 1 122.9 239.299 Tm 90 Tz (model inadequacy. Methods assuming the model is perfect are shown to be either ) Tj 1 0 0 1 122.65 216.049 Tm 94 Tz (inapplicable or unable to produce the optimal results. It is almost certain that ) Tj 1 0 0 1 122.4 192.75 Tm 95 Tz (no trajectory of the model is consistent with an infinite series of observations. ) Tj 1 0 0 1 122.65 169.7 Tm 91 Tz (There are pseudo-orbits \(50\), however, that are consistent with observations and ) Tj 1 0 0 1 122.15 146.45 Tm 94 Tz (these can be used to estimate the model states. Applying the Indistinguishable ) Tj 1 0 0 1 122.65 123.149 Tm 95 Tz (States Gradient Descent algorithm with a stopping criteria is found to be able ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 95 Tz 3 Tr 1 0 0 1 318.949 53.299 Tm 74 Tz (3 ) Tj ET EMC endstream endobj 49 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 50 0 obj <> stream 0 ,,RRb7 l8_+uDW9 b`SiŒ##DX *0 PI a+f.-JLEDK՝lO!.3N_*jrN0ֹ a{oMf& vԹ {AV&dq[+5$PrӉ{@;%.tM?U\{T&O$tj(B7c_F2+i};&%٧4S(q骩z֜f $zs{0uғJ5jj1|~H- [׎1RAkXdz"þ'~+Q" sس9ҜSsZ= ӸĠwN1`R: k(֏X^l3QvyZ%0fKo@ąk e}ͧz =ޟ.`!StM@cFȧ Q;F&r6)jd+:zIm"aXȠC-'Lbn{qU2 m:/(KQpŀUIiT;P7=zPfg/u;.}ć:̽V/qLY, &LAY0G="TJIܾ\./ KOhSPd@vR@r:cxw{`Rxn:Hcû_?0y?%5Ꚇ-hx(*-Zaڹ`? LuIs49zfy; 6p{mrɓ4=< H% vQuTBp~ddXδRP4ݏAlxVbq3 '_FP)Km7Dl QMmmF&!;ű6P|4Jհ- Mc>^*f Uyx+fUK1此 Z?lIOB{T,)>z^fsO/ڐ)Ჲ֦b;VKv(טk}2qyqlϫ\cB-cJo: WdX?" "/^:2;1Ps { _b_,٠*-3xDVAہ>o}i"x=s+Hv]b4ZѼ)Ǣ4學粉z{"bƁG}v"?-Z RMo>h"Q_%>l)TNK8~~0/NHՂW? Zi%>"}oF]ux!~ϗOOFBSm;pUelLq +jY÷ gay5/ Y7\Z,:/:!=d+D`^ 'y!-Ǎ$УuqtZ9li#3l!;ecM GCi.lzG8w'As|ZgBZY0NmSo!A1L$I[.!-ꅝǐgӚIy SixvjfSK$U@hiY"|ިRP$НEGr$熦E~xlJ7}aQPj^3Xe6sWB{T m 3nۖ~ա:OK" Aumܾ A vd}žޭt%~-Nj4y7/=lh&3ʪ& K.`x$QZҰ\OHʹV:]O;p[ХZgW J*}ǂ{MWe497{ۀ%-M?Կ:xo֡W]_+Dy_-Vnv"6/ꮏ]+%E\)c꘭dkx[~7mž3^fWVYCBS_e Mn579WtZ0 ?8HVm~yADw-VOs"f%`Ob^Ѧ!#ix3*phH2y{җ!ԪzՊt";l0T(V}.yN?;Qb *z㯑CPJRvt"QhMCZ/l}YSetibwzK]IY%;xST`Z \:2ULLsg~QVH_w #eV W!yevri,*D[U1Uҡj8첳0;i*8\"[z(mX䆑:<2M'OI,IpXUKZZoCƣ_CN;4{'FEoQF3&EtOt/E1a׽:a]1,x̓ æHcOWI=Tn=s0s=qTڜ"5kcev3e8R Os L8pD$c! U۟B%)Ga@ ҇]&6d}Vc 'E`MAdz@ N' *[xbYtH3:P |ՓI&IY$-Z*fWg~k^nA`!!O_ޥgD*=e{<];t\nG(' ֟ *qs/;5Υ<ؐ$ < dsp: M@?,ljaNΤ4g`;(}2FҍȢA)yR_v}4ОXM [0gl@(L9Ԣe8V. Lik֚#+L: =2[+:Q^Cq%WɝDh//TeǨH[n~FX;N7LY bYXDUf(:Pm(¡KjC]r,5!OV< q'x^s5eʟWTWq ?svGJ,[wɚ܂U ͒}A`}^;UЏPe/:92R'U7ʾKE.jM졗^>PIZxiD%EC/B/(9d. (.$BXv UT01@Z[n[n%%q$X5eAᔗoGW}Kbès{D͍@15PX&*4m0;L`kqk۟dT.̢x%gV R}wDjgci`q9l )g<<SFyh5 \N;7;=q, "*ZE8%;ѳtwŒa{eU*_V%8%]\1x){m,1\oW DK _y.;5 f;l믁w'@;RKw4X;P$9Z0.F \Z/iR 20kvR&(RVO.CV j:\BH!f<OXWS!4Lc8md{oF-ح9*ƌ74)º0Ox ͠s[3;`D̔ ўg=.TfX!X!F_^'zx0Y%Z]铙≯# [ 9 R[V*[`W 3*(^OΟLs.ْĦ647ƫb0'&i򮺎(ykfy#7!d(9$ v ϕXdĨDN|%w6; _8a0B;_ika=X?$nySfr2dӹӻD+čq5o_N6B=dzG=)q/\wzmU2%O,A,:F,>.XWH8 ;W|EO<@N։p5b@RQgcmEqV=Qq0I5dwA!Ys11g 21^ e+-Gp@#alVdU-KZ{E [LJ4~s# "Obh-P[Q;˰$hak jw# 52xrKnI&`>%T@J7 J9ceʯ>B;l[I௩;K6?˳ÑKWYO oDw  )1n* KQ6ĝe-XN֕KNZ|J[x`[Xj&*%OцPߕKS4K8'Jb[]Tm`F%is\[ pmZu# RFܡ}_ ݔ05ʄn)EX3Ph\d]sPdNQE8>k/Q.<0*^kuօO99LQ>\J8z nu:XҪ-ftlǣWdmnCs @Vϭ1IqVzFؕ*) Y/wyPCI1D.Em8VR?Vscyd3E( Ag"wi]SuCma$9^E7WMŢP,^)7ho-fK.IZ 3vUCF=>>,<ڌ̣|_ pۦ`1|Q}?.6eL)m?Kssk%2!~/ڰ"ߜ Kf aUZ(DMHM5Odpu[$['9z]pR\ ;T#ηMıޕ7js<9چ=Tb$i нv VK+^UC;h/<%̱ɡZ gƐJ㽘TYD/1+sUUHUc&->=!نȴڑ-4-dzڴʱDLպٰ>m!ad<+tF*>,W@Wx ެ V_ZVI#gB [[=08CfX5Sg-u #u hSvay?Fr3]ll7\k<{ ԽnŁ֠9YVzw[Y _7QN~ޔCF 8)ћh\ΙזS+a>@ۊOĭqItzIwbK(,)T=Z`hTle~PRlEvjk}Wo}mGy{x ɑǰe޲/~!x l;$Z"cʍZdYKyGkoL 5fΡ " /g1 - wep:mܕyAAicאּp@[NQP?ugwEx̅*ѷW6Gj88,܊C$p,3*߻-7zxMeH(4LqbR$⽬0!?7Vunmf w{V^۶Ҳ%NMp2a PGNB -O:b,.(5\n{ߍ\3eogYdupZo{ؿ+&@HfƂTO4,L̓{$:ihQ [{?Mb5 ; L"!!14җ\!zRݢD-|u v1bU:٢C-$S吴)s^e:[@2/Mكm!)A?ּ%Ub@h(s^WtB˥Q|<;Pkm=J֟+kˍ$4fzxŮR|iekA^!*g2U&7ڿ~r.`3s.4_SBP}<.$~'q+mi_z)w D9QZr?r}Y5g$], >*ٿʎi9ϻ S6oTRA܃\}jV ,r$C-;>} ÄOO/k+i1eUXK z?OfLl'Ʈ M"BԤ&[ot2\[0Lw,D׽Xf ;eӁ<\)PZKDk7m tv#$$86^ivn,4 ϘUFzh?_؎+cc`gKFU|MҲXL8˽4xk"FrzOB[ ͝\RN"„&F,! w'%Xu|>L NE LA9xɃ%Pe@+OԍQX8!΃ѱ[ΝksoL\G s(rO Hq a$$(![@ XNWF49rwsw>F[>";s0v|$&mbţ:|`;tMx?-|CYv[H 5*ȁ0l)MrjMN'R.Ie7OFִ>0K߅q?{/^T|xݣy2%glwQYhe2DOPIuI1*.U cF5[aF07b9]Ezj –Ekp\rr(T*A{`m4` Jn?oՋYX 0'YL$"g!``jAH=Q\f>;'ƄػAKT.7O;. )pkנ 3tt|:`Pd(pzoL%GjgN sQ9C2x--D0aQǀF6qJ{؛_ endstream endobj 51 0 obj <> endobj 52 0 obj [53 0 R] endobj 53 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 841 0 0 cm /ImagePart_2031 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 123.849 679.25 Tm 92 Tz 3 Tr /OPExtFont3 11 Tf (to produce more consistent pseudo-orbit and estimates of the model error than ) Tj 1 0 0 1 123.599 656.45 Tm (the Indistinguishable States approach introduced in the PMS and the approach ) Tj 1 0 0 1 123.849 633.399 Tm 90 Tz (introduced in Judd and Smith 2004. An introduction of Weak Constraint 4DVAR, ) Tj 1 0 0 1 123.599 610.6 Tm 91 Tz (is presented. Although the Weak Constraint 4DVAR method accounts the model ) Tj 1 0 0 1 123.599 587.299 Tm (inadequacy by introducing the model error term in the cost function, like 4DVAR ) Tj 1 0 0 1 123.599 564.299 Tm 94 Tz (method it still suffers from the increasing density of local minimums. Our new ) Tj 1 0 0 1 123.599 541.25 Tm 89 Tz (method is shown to produce more consistent results than the WC4DVAR method. ) Tj 1 0 0 1 123.599 517.95 Tm 94 Tz (Ensemble formed from the pseudo-orbit generated by Indistinguishable States ) Tj 1 0 0 1 123.849 494.899 Tm 92 Tz (Gradient Descent method is shown to outperform the Inverse Noise ensemble in ) Tj 1 0 0 1 123.599 471.899 Tm 90 Tz (estimating the current states. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 140.4 448.85 Tm 91 Tz (In Chapter 6. we consider the problem of estimating the future states outside ) Tj 1 0 0 1 123.349 425.3 Tm 93 Tz (the perfect model scenario. We demonstrate that forecast with relevant adjust-) Tj 1 0 0 1 123.349 402.3 Tm 92 Tz (ment can produce better forecast than ignoring the existence of model error and ) Tj 1 0 0 1 123.599 379 Tm 90 Tz (using the model directly to make forecasts. The adjustment can be obtained from ) Tj 1 0 0 1 123.349 355.949 Tm (the estimates of the model error using Indistinguishable States Gradient Descent ) Tj 1 0 0 1 123.349 332.699 Tm 96 Tz (with a stopping criteria. Methods of interpreting predictability are discussed. ) Tj 1 0 0 1 123.099 309.649 Tm 92 Tz (We suggest using the probability forecast skill to measure the predictability out-) Tj 1 0 0 1 123.099 286.1 Tm 96 Tz (side PMS. Traditional ways of evaluating the predictability of one model, e.g. ) Tj 1 0 0 1 123.099 262.85 Tm 93 Tz (Lyapunov exponents and doubling time, are discussed. Measurement based on ) Tj 1 0 0 1 123.099 239.549 Tm 90 Tz (probabilistic forecast skill is suggested to measure the predictability outside PMS. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 139.9 216.5 Tm 93 Tz (A bullet point list of new results is on Page 157. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 319.449 53.299 Tm 76 Tz (4 ) Tj ET EMC endstream endobj 54 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 55 0 obj <> stream 0 ,,FFb7 +`wGJ{ZKƺ;2RZQZœ8ьk+]!لhƈ.W_Y! kǚ{#KhvݚϚܤ%FJP`xDɧ!fIbm}v4(! %TxbF)Rg$dVbՖtqz|e xc}~9XL:@}DI+nI-((-}IaFC4[֕"IUwWo6:?]7U tARTl)Ζ)S]oh#L".B}ZqQ[ECx[E-ZKY&|ú+ihu簔br 09Q=c Gb2I|@,VO[,)I9'ƫ&{_ɲ,||mD34\H55qŏ|mzIJ9Ļc sGN]M=iPezeHrJ65%+:jWyO;Fo4y]=%[ýqL{mStZs%1*iZ_I}1ծqi(+ 9i(/ޚdg^Nぁ Tq^lwfJzjFm`Μ5!&>5e[m,=gN_*8.˾g: u4 }]hZBV'3`[tr@U-?ӫ "WcFfZFx?&^U8h@b7igN~UQݝWR@ Xfhy@4v/&Y9zAk'QAB:8]4 :/Y٬LM#?5q8jq=F܁ έ06nz7bLvpܿP'4QVhCʂ?#,u>-A~ܓ=n+l`WElc/qB(wrf߭5'Vg@G# ROf&oҭXhQ:n8/Am8^*8&?ͽ灵+noCh+FpwdI)lCONzyYoȖsaL&5[! 1b7n5d ivhoY<;>p FI =2%%o 3{4=gacSuCTʐ BVO?8wAB8ƴ7pc͛i8MZ|N*qiKJgByٻ?+|?taxr ԋ͓ / ikL2Z*ͤ'ҊNSыJ0T n',G,F4GVɕBkfWvck~e3|dϽ4h#<h HUVむ=ZZlhtCa~ñٛm_O =y>2VS~4п<*.APcMeW5ݢ )D> y4O0~mwy=nZ]dT[ ySح-5FÑOxI, bA5nEUn/dz'ނ 4.vw؛i*#[,s AOFzIUBD)HmbF~_@F߭5@  \+ b%h kq$ ,\inoFj~[??Cug*W0 X 4Jk "DSGz@ qy.'G8P 8o5(4h8[3+H TdmM׽ dGk,vnxQt$䭂gl\QAk4S5 Y*ZAΟXѬo`Y7s$' Gե(C)Wzmp+( WM5u ?U$P+#BPຕvt;0::j\k%U#LtvA)ДdW0A)j}=a%~W >/ϩ f皑pUio34#eut@X 1~$9[\LTy E=TpfǙjԪРfK%7M~VNȷ݋ܪS+ -qcp,ƑEۥ6=<o4(t6p}QpuVTaK~n;XS$g8bv3ԗ~HE>s=?th \seMPGFץW̥iBKq&CM^J])`I\^ui/$MGc xW-!za`r&qI\b~n}!O?yۛ(Y %` Ί=,XbuC@r3 !3-`|tD$pL"}rG$w_z r%|Ӭ!ι"NҊf,a/O50_Iرyi eHw+D;"Djt:$D{{q12A4b09LT 9i\L{kTDčmԓ2_?jtӌ c+dȤztbuFF}M67y%_·HMl\kAh0W(uv- <KlęQ\N%ކZ{: ?.ig>C- Ge= lhÎZh\tX*>v{r39Za΅`ks\Y?&QDirGe⬝E4O9>C1- 3^芺˸jt0oCK,P4 \wy~RupID~=iZu{z+d[ʼnf'U葉%A!bF*|+hEz|$x`0Yctn{ Õ6(9jɥ@oϵ}߳DΫIW?YEe}-8V$yFMq`RrbV:vkq: CkE0QsҞc (ta'_-B`f͑q?  /[n啨=Kz Vس7jBp'ےbNPeڞCQ88K_x~[CJwCpjࠐ>cI~c#s QwQZ |^n܃`wT[Qh41Beўe \lR_%Pb[L򫛽J@IE,ɀ_n"9}~b@"P~[2JN%kq˙?lߺC%z>xތ~ b98E^<z0ݕ\Tvص|W v d|}@k`F&YLCBl :>n@guONqRuҖ Φ46g6X?h>u ,*DždF4=Z/k1aW3=_d8Y'QH}H3G kVzۍ332?4X)@}| E4-YeOfN.#C^Od̹V`{#s>WuXe$DY,FWJGsXoq'Xw0>$`X\4̦mV&\Ϻ@5m+}F1JJ~86\'Rr ʱ~Y0+ӎّ;DU3syxfhX[]dHӿ-"Gg3N\XBbqn3(DRAV)lЌYsI*EASWPrv2q|BupyY'zj~p _?یH5#.[T&],3L-U*_&ϡw zÐCPjG^a١R2f%cDh yWSQuH+D LO1p<4O%4hph٫$eMb( IYJ Z] ~^~8ʍ^)'6#}9W7(?2 |&"@%qtI+ lN*v]{}M/dJslIuyYz6%䰨Ő;䰿ɛ5'.Gْ3҉*1Ƅ/O*Զ03!Y2{8ӴᲵჸ4컻hαʵeDZ2׶`'ҙ.::3!3λ¹;-ڳلňҴ++٧ᴥĵ>mx9'<ܭR H;#sKCQ#de&Y<Ϲ$b 7$"BB\@l)@lJKq1 +51Zm`_9픦geTA$ǝ;hY͚c= {UN_atN@RdAXmWV,ɑK%w}aF_U D'Z2qϑ!J&_ƛ/,/lK\ $M~':H(<^>l (fꕞGki7HګG$,õMJё4+˳':;N Q)B'R*jM.fN 4&i +BмDLֆЉ=ե*mewML'vAvҟ](<{JU7Vg,TR*Y*(㍆HIV nXOHT9NVZQΨ+I$z:cv][&ETl&k]?! ftl(&us+faBZĚS0I ;7;g.D@_u2jݗ0Ѱj_ #PQ [\3b'CKvfרSU}\h;S?_ևTJD!u4<="-&\>TߓD(CW_Zlx(K_ b$#.r8&` 9C=bG8,Pڲ6xnc9<ЎmAxդ&5}9}S;E c Ǹ&OӔ3E)mE>xJ<n pT$"Q1IwNroJ8dž̩dW]Wg|5Ez eRߎZ) ̽JV> endobj 57 0 obj [58 0 R] endobj 58 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 841 0 0 cm /ImagePart_2032 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 124.099 583.25 Tm 105 Tz 3 Tr /OPExtFont3 22.5 Tf (Chapter 2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 105 Tz 3 Tr 1 0 0 1 122.9 516.049 Tm 103 Tz (Background ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 103 Tz 3 Tr 1 0 0 1 122.65 454.35 Tm 91 Tz /OPExtFont3 11 Tf (In this chapter we will first introduce some terminology of dynamical system and ) Tj 1 0 0 1 122.4 431.1 Tm 89 Tz (the properties of nonlinear dynamical systems. Details of the systems used in this ) Tj 1 0 0 1 122.4 408.05 Tm 90 Tz (thesis are then provided. In the end, some relevant nonlinear dynamics modelling ) Tj 1 0 0 1 122.4 385 Tm (methods are described. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 122.9 332.449 Tm 113 Tz /OPExtFont3 15.5 Tf (2.1 Dynamical system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 113 Tz 3 Tr 1 0 0 1 121.9 297.649 Tm 106 Tz /OPExtFont3 11 Tf (A ) Tj 1 0 0 1 136.3 297.399 Tm 92 Tz /OPExtFont4 11 Tf (Dynamical system ) Tj 1 0 0 1 232.099 297.399 Tm 101 Tz /OPExtFont3 11 Tf (is a system that evolves in time. The set of rules that ) Tj 1 0 0 1 122.15 274.1 Tm 94 Tz (determine the evolution of the state of the system in time are called ) Tj 1 0 0 1 468 274.1 Tm 89 Tz /OPExtFont4 11 Tf (Dynamics. ) Tj 1 0 0 1 121.9 250.85 Tm 92 Tz /OPExtFont3 11 Tf (For example we write x) Tj 1 0 0 1 236.65 250.85 Tm 68 Tz (t ) Tj 1 0 0 1 239.5 250.85 Tm 170 Tz ( = \(x) Tj 1 0 0 1 279.1 250.85 Tm 52 Tz (0) Tj 1 0 0 1 284.149 250.85 Tm 91 Tz (\) where ) Tj 1 0 0 1 323.5 250.85 Tm 123 Tz /OPExtFont4 11 Tf (F ) Tj 1 0 0 1 335.5 250.85 Tm 89 Tz /OPExtFont3 11 Tf (represents the dynamics, x represents ) Tj 1 0 0 1 121.7 227.799 Tm 90 Tz (the ) Tj 1 0 0 1 143.5 227.799 Tm 84 Tz /OPExtFont4 11 Tf (state ) Tj 1 0 0 1 171.099 227.799 Tm 95 Tz /OPExtFont3 11 Tf (of the system, ) Tj 1 0 0 1 248.4 227.799 Tm 112 Tz /OPExtFont3 12.5 Tf (x e ) Tj 1 0 0 1 274.55 227.549 Tm 96 Tz /OPExtFont3 11 Tf (S where 5 denotes the ) Tj 1 0 0 1 395.5 227.549 Tm 87 Tz /OPExtFont4 11 Tf (state space, ) Tj 1 0 0 1 457.199 227.549 Tm 94 Tz /OPExtFont3 11 Tf (which is the ) Tj 1 0 0 1 121.9 204.5 Tm 97 Tz (collection of all possible states \(typically S = Rm\) and t is the time evolution. ) Tj 1 0 0 1 121.7 181.25 Tm 95 Tz (The starting state x) Tj 1 0 0 1 222.25 181.25 Tm 58 Tz (o ) Tj 1 0 0 1 225.849 181.25 Tm 93 Tz ( is called the ) Tj 1 0 0 1 294 181.25 Tm 95 Tz /OPExtFont4 11 Tf (initial condition. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11 Tf 95 Tz 3 Tr 1 0 0 1 138.699 157.7 Tm 94 Tz /OPExtFont3 11 Tf (Mathematically dynamical system can be categorised into two types, deter-) Tj 1 0 0 1 121.7 134.45 Tm 95 Tz (ministic and stochastic. The evolution of a ) Tj 1 0 0 1 344.149 134.45 Tm 91 Tz /OPExtFont4 11 Tf (stochastic dynamical system ) Tj 1 0 0 1 487.199 134.45 Tm 88 Tz /OPExtFont3 11 Tf (is irre- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 318.25 52.35 Tm 63 Tz (5 ) Tj ET EMC endstream endobj 59 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 60 0 obj <> stream 0 ,,77[{n!Yoy,`r=dt6%YGޯ8i3b0G.DXNB[]@؏xߏQ0g\m>;Y7tr}k)@\ Xh#ipյ 6 h$gL{݄&p6;8*1U.M8/7ePr4?8?H/DeFC9ZQyʯsD<W \-k SӨޒYUgvtFL\kDȮX/%d׬N: uEQܖ`+\1xvBm*wΎ3b{ۂYXRT,l6n F}aBlI"sWQH吤;xcw&e%MӨ2@9y0(@t!Ʌw/oGy1H{phf {$б/3i})f#\7nh8471TJ08j{Ǧ[轴,6 gO \REή!t͓XXw )2:P 0]+4g>e/$J|ʽ&p4Utrt'('gdU+Ԥk)AJxϿs' ="[QC 'o8ۨ4#HNabc+em||l>3 Dy#CGD9D ) =3Q3ⲳz6>aҼ׹?Bmr]rgGNQVUb;x3v 5ٻ^UHťa'} .mi1xP):w*3'$>g.(&*G@D I3C21-/SY`F]h)A--J̜L!SB^zr>BGNGa m/nNBWN>t2Xwʜw ~4Aƙx %!>J'M |jYU=xSp7$^%ZWAj*r诜FsiH"m=>2Vօ_2ջ\""鳧հdwŶղсA䰨Գݳ GLUL ݆8C:}ie V?խ !2 D^.iuY;'?ϾwD"Hv8o$`9Ky3@DXH*WrOHEE(IN񊉥P Jk ;AV9^$7/4Et =;x7*xVo&+[\?=Q#T4gBn:ljNK ހXثfpMэ}2n(5J<aqiv't6X\d68|5|s¬2y tPNO}רpi@o,swμwA\YT[^*V/iux/6_v>wz/̐R`cYך8c\Y'+彬V}J؀*cqDxC|-9lCi?,I snd"nc|!YmQ f^QYFFEK 'Ca.κ_ۄrd8{9 ੮&=Zpì }xs~50ANOi:v@iWߛ?,zK.2lG~ʕԕwH4ӑ^h̻ܨ\ fkʾժ m% +zsX<[ ;ie~ZT<@g‡ kG pG'>9(o)r#%ŦTΦ8vs`%i ͸˽ddǰ+>p8}0u02pJ`7LhpB- `Vy퉜>f{m^$*f%!KO>#XFZC1yB%=2ݒMO:o^(>;\)0 ʢ~.+mCl. G#\~`SCH@\%@d+7u yia9iSJ$1Kp=~|%+Rf>H@l}?wqQaREn,\ڜ>:f:ð t@:N>W- 1!?{_C">Pv&JN,7¥>27tsf$gSL·bݫR`,7m:FXJ)jjO~?LH"q́澵r"H :/o0Eh Mh4gZPXѫIТ<FΊ5EΎN&H'@vɩڴ0y_Б+rjcA &.WSl$>7[, }K^0xf aN,V.Ԣj8aWuTTZ};"[&ֹP?5Dܻ"ZMOoR#m  |Ke=貹G6vD}f0!H$?B]2bkp*Gz{n֣Ic+*ZRuzNHg]^T\][1bŪ/GKPM[jW'NO>bKpTKiRT-G7Pvm7qWI?Ǎ6T9Bì% U՟S .U%a5z?Yğ}$@Rݖm U0FjWwhibl,T8ݩ.(q7Nu0rĘ"e(_[TAfFB*jS.O~g$?L(/N@?.Նr!STSg3-UJ5<7;J ov{{ͭQ#a[F&s򔏽*KT,yL!Ud>3DX󶕋tw‚E);2x08+1Ył!ӓ=ðg,Ef|m{Lk.*RJ!*o yf?%DDe]Ջ^]o(OȪrGSfke[|sr0jhg0v:~* JTrxz󤍅x䔜3E&3/oD*9 +XSDڡwڇt`f`[` ՗=9e(z2|zgdӮTٷkӝ)An<^?d^]!_g|K֌8S+0h3 Qyom#s xj!: f!$J]Y\33DWcZ$b2;2\i^Ac #+p=G4%:ĦW+\@_7ۍ@SL,߭K+{IVrDI ѿ8C7Cd%@z'<3l$C}:4~NhyWF)X}Cŷ}M &ce7biV<ō+tR_Mэ7AÞ4hqa},]DNvgMD=ZM7r4S#rg] ,hvW2'jvgee)4&/0ԟtrt) j [ E\K~ aL5D|B| ޮw7e cr3gd%s9]Pr^?k_(s=Pٓ!::8a:`fah<:@ҫ'!Ҹyڝ*;J . -1{#+]a11U8mBung@5XLMfgF֋~}0F$8M\y (j뱝tOU $18U%]@wY/Ȓ:,Xƚ[ Z]Y7QDtY ;VĮ{6.M(%ˁ04O]xI<^42z_{#n\x)agQߍo[[ObdX!UGK@=*X&X=I궙Z9AJpfzl/i){̒J[] 5NePeO/A:7 ~4o:af+)̴C\ f_W|?h9'n!96͚s2̺PDR̃B<ͷ 33 W-L"FIbw@!fv; +׆:.˰ ˾H4PPSeLP?P6^;yf,l*'*2Lt.Sp|^W6S'"4ӂؿVi'hkóIDr/I8>-Lh\/Iuhzkn0{ʯ{bSdwkh]^#,̶ vaJa3>m5L2'WIϊܥeq)&8 yʜ(V5{-'HqaRrLv%B,yZŢl6_Q޾i$t=@Why %H#X?V \8v.7=[W%bҦDKsEQ3g]ɜoK.5!ָb6U1sZ'nU;{*G t a-y  vbU5`ȶ ;C[ʌ5j3R߮3 !V9kxTW(7+ўjF.Zoh?48p8ȾݤQrsn;61#rt;y yF+lhQB 7HTzA*ʘ~:rDp}W'+㟴F4{Tzv~y`6E[arzik%4a"yUi,sUʝzZ PNZa*u lx5cp/ >,u!%7+O[ɉBG{gPNqtI Ж.LFJ`nBYImeӴ#+\zsoJ\o1zҁOEO=7 ː+h3d6z@K Z;T^2O؃:ݳ hi'pN5i/Sdk]\|!68(°٠E+bGNH>6^+LhSs,1)tB,i?Z EsȬ ˬF^EY{=(S-Q=ON`f ߣ垜wz Kg08hF$6!6$5`O7! s2gvhCS''Du-?yPgonN5Z!rk>1|_泙#x(`y+1g?T0WKSE|/ҌHt_l[ܞ'{DJֽS?we,{%XV֡F:hB*VXZ0ynF\t: ;u7`NLʧZ+OP6,Y& R@byoB]"i!HH5^bҨ%O%7p\qd3fyQI^psҗGϞa1 qBۗ7*[͵F>3W|Zx) GCѶ`ܽg(Q3NnS#HDTŗjzk7Q$*1٬ݬ&6j7\߱-J%>-!- bqKW d'LX12_PQ}6 2{![hrHQ_" Íf? ׮<_)tczw%l1iC!qڂ{hU*k[bŷ?%Mu}iOxqXUC{T^d O~R*{5b */4[Ũ#tPUC\Hk>iϲ洸鳦##> endobj 62 0 obj [63 0 R] endobj 63 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 841 0 0 cm /ImagePart_2033 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 416.399 722.2 Tm 120 Tz 3 Tr /OPExtFont2 11.5 Tf (2.2 Flow and Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 120 Tz 3 Tr 1 0 0 1 123.099 679 Tm 104 Tz /OPExtFont5 13 Tf (ducibly random. A ) Tj 1 0 0 1 226.8 679 Tm 92 Tz /OPExtFont4 11 Tf (deterministic dynamical system, ) Tj 1 0 0 1 390 679.25 Tm 101 Tz /OPExtFont5 13 Tf (on the other hand, is one ) Tj 1 0 0 1 122.9 656.2 Tm 100 Tz (for which the dynamics and initial condition define the future state unambigu-) Tj 1 0 0 1 123.099 633.149 Tm 97 Tz (ously. In this thesis, we will only study the case where the system is deterministic ) Tj 1 0 0 1 123.099 610.35 Tm 99 Tz (and especially ) Tj 1 0 0 1 196.3 610.35 Tm 89 Tz /OPExtFont4 11 Tf (nonlinear. ) Tj 1 0 0 1 250.3 610.35 Tm 96 Tz /OPExtFont5 13 Tf (The evolution of a nonlinear system involves nonlinear ) Tj 1 0 0 1 122.9 587.1 Tm 98 Tz (dynamics and the observed behaviour of system can be irregular. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 123.599 534.5 Tm 113 Tz /OPExtFont3 16 Tf (2.2 Flow and Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 16 Tf 113 Tz 3 Tr 1 0 0 1 122.9 500.199 Tm 103 Tz /OPExtFont5 13 Tf (Dynamical systems may evolve either continuously or discretely in time. The ) Tj 1 0 0 1 122.9 476.899 Tm 99 Tz (continuous dynamical system, called ) Tj 1 0 0 1 307.199 476.899 Tm 87 Tz /OPExtFont4 11 Tf (flow, ) Tj 1 0 0 1 334.55 476.899 Tm 100 Tz /OPExtFont5 13 Tf (is usually represented as a set of first ) Tj 1 0 0 1 122.65 453.899 Tm 97 Tz (order ordinary differential equations of the form ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 279.1 419.3 Tm 102 Tz /OPExtFont4 11.5 Tf (dx\(t\) ) Tj 1 0 0 1 303.6 417.899 Tm 139 Tz /OPExtFont7 11 Tf ( = ) Tj 1 0 0 1 320.899 419.3 Tm 113 Tz /OPExtFont8 11 Tf (F \(x\) ) Tj 1 0 0 1 344.149 419.3 Tm 30 Tz /OPExtFont4 11 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11 Tf 30 Tz 3 Tr 1 0 0 1 287.05 403.5 Tm 86 Tz (dt ) Tj 1 0 0 1 296.399 416.1 Tm 2000 Tz (\t) Tj 1 0 0 1 497.3 411.399 Tm 87 Tz /OPExtFont3 11 Tf (\(2.1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 122.4 368.899 Tm 99 Tz /OPExtFont5 13 Tf (where the state x and the dynamics ) Tj 1 0 0 1 300.949 368.899 Tm 119 Tz /OPExtFont4 11 Tf (F ) Tj 1 0 0 1 312.949 369.149 Tm 96 Tz /OPExtFont5 13 Tf (are defined for all real values of time t ) Tj 1 0 0 1 501.1 369.399 Tm 98 Tz /OPExtFont2 10 Tf (E ) Tj 1 0 0 1 511.199 369.399 Tm 97 Tz /OPExtFont5 13 Tf (R ) Tj 1 0 0 1 122.65 345.899 Tm 100 Tz (and {x) Tj 1 0 0 1 156.949 345.899 Tm 53 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 161.05 346.1 Tm 69 Tz /OPExtFont5 13 Tf (}) Tj 1 0 0 1 166.099 345.899 Tm 52 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 166.3 345.899 Tm 68 Tz (T) Tj 1 0 0 1 169.199 345.899 Tm 88 Tz /OPExtFont5 13 Tf (_) Tj 1 0 0 1 175.449 345.899 Tm 49 Tz /OPExtFont3 13 Tf (o ) Tj 1 0 0 1 179.05 345.899 Tm 100 Tz /OPExtFont5 13 Tf ( forms an unbroken trajectory in the system state space. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 139.449 322.85 Tm 104 Tz (The evolution of a discrete dynamical system, called ) Tj 1 0 0 1 418.8 322.85 Tm 84 Tz /OPExtFont4 11 Tf (map, ) Tj 1 0 0 1 448.3 322.85 Tm 106 Tz /OPExtFont5 13 Tf (takes place at ) Tj 1 0 0 1 122.4 299.549 Tm 99 Tz (regular time intervals. The mathematical form of a map is defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 279.35 257.1 Tm 134 Tz /OPExtFont2 9 Tf (Xt+i = ) Tj 1 0 0 1 315.85 254.2 Tm 130 Tz /OPExtFont8 11 Tf (F\(xt\) ) Tj 1 0 0 1 342.5 265.95 Tm 2000 Tz (\t) Tj 1 0 0 1 497.5 257.1 Tm 93 Tz /OPExtFont5 13 Tf (\(2.2\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 122.15 214.6 Tm 97 Tz (where time ) Tj 1 0 0 1 180.949 214.6 Tm 89 Tz /OPExtFont4 11 Tf (t ) Tj 1 0 0 1 188.9 214.35 Tm 98 Tz /OPExtFont2 10 Tf (E ) Tj 1 0 0 1 198.949 214.35 Tm 84 Tz /OPExtFont5 13 Tf (Z. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 84 Tz 3 Tr 1 0 0 1 139.199 191.1 Tm 97 Tz (For continuous dynamical systems, solving the ordinary differential equations ) Tj 1 0 0 1 122.65 167.799 Tm 98 Tz (analytically may prove difficult, or even impossible. One can, however, study the ) Tj 1 0 0 1 122.15 144.5 Tm 100 Tz (flow by numerical procedures. In this thesis, continuous dynamical systems are ) Tj 1 0 0 1 122.15 121.25 Tm 98 Tz (simulated by 4th-order Runge-Kutta approximation and we define the numerical ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 318.699 52.85 Tm 75 Tz (6 ) Tj ET EMC endstream endobj 64 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 65 0 obj <> stream 0 ,,xxb7 [6bY-ְoo:>NZl7y8 nrĢ\to=7Ⱥ8G-R/] Md|9Z;M.lGI (v+k6bu'0\1s'9E{F)G NMDZk?R) I87FP]88~| ;OxPThD4s"WY]ݷ4EKwmEyb[Uꃔ쌷F2sÃIC$ lELw?r٨M2:!E2$~ 7ϰ`x."e<\*DQ=ZP>&'ɞ"q{-M5{ Cu`x((C(i+1Ↄ|lhFփ*ͧ0ڟE #t~#/ -D9zT8%^[c]>L N>Ae?nK0G+l%_[`)7:vX8T ,J{f#gV={&؞2Aϓ;moh2y - 8siDf(;kP ],djL@B)?ki~+c,;%z`sJFܒ"g9SWy_OM+«WN [dܼ9>Օi8U$u '_ޠxQ!@쇯^B aml_éooF}Z:pQ:4k]H#8ԭi=!Uqm4(<-d`2LN?A1lPjJX- ZgbĦ+~}fBLŐ ;m5ITP-7K$w` *Di ́E~-dѿUnhEZ7*m2F\z\JӒS6p1F}0/&@&\b|֣ ,6(#(|A0l+5R\lT8[+ ǁQ$iM|A6kɳNbX3Nt`wfa((X5;CэancILzEAGƶuӂ϶ r@MXG\HlxSR3XekUj:גGg@[:T^5]`꽄Hh!YT_+䲵*zgf,@p 8B#KP* +suo\ru߻u}XSOsJKc+G R Lēd J1sŮumM0Vy Q1!f՜z2t&jLT-7LTu.~f?Eֶ) :a5IL#ieX Hq㗎UBj|4 %1ɽI:89A4+!VXҳrnf81p12 k3:bŢwαa)*'=ۇW<=ć pz-(c55?}/ggΛl+κBv)|[ُtXKrz/qrPmU9}QAB$Ռq1TZ FیS襪0w2 Z?ppzN@$Kqjp /|vd~r0ro!M]Ӌ.p vdԊŃ8rԛ 8ce4C+-J6v7g&֜jOpֺU(܈r%lge8n\w@yşmKF'} Ad[oIQ>}W-s-QW7mQѶ`V'!P:u2`6lwGnq"(})#G>Q_ L:/b7y:/a؎ ȑ}=(65/Kn~ V{BN~DJi|v}$H8ʦP/[~<.YA"DLvh \21.6mWl9WU?ua@jNfv ΋N"ojl8ƒue0jI[xMlq 9SIY]5f\ ~mϬ"^CXiqؔla%\K}2WfS {并$Hð`#t0-.MZ1@@,75ڋtqaGVPזl|2^?7\/s#vdwlW33hqxq z%_A~o_@1t@C{A}E 2+0#{gh/Y[gPWӡLFs7Θlg\?ɒZW˪+~u˘FI>:mzvҔY2JޑOV"%|1fҭv_\j:]Eeu$I+s,WWT%yyj/b~C2iaj%V68vN$/1BPWUvX>tJ l?c7Is&#$b?gr]ځKKvtFXGF1e V5߁JBң }E; ]F ,w=,*ם)$} vO(^tёwKp4?"sw.iavEޮ-U pğ2xryąhk pE]\XxÙR-F+ء0@Vae[JnRyтMv ߅v&nez|+Z.HÏ|dTX!="$Rn NvC 1wo>F@2_p*d4^BYrÓ"\J~*]G*Xi~Qh/A$l*#Z8_/GIq%syfRʒ r%[L ~y!qzL~HW:dC ?:qR.,"w): J-[d\b%yŠNVRe~,NrhtjN1+ָ@^H9v7uj'h\HTT40mLPi#9,adPfnp9dY=۲jOd`Ad4.K} 6ږZlFmixތMx<3cn侞B;\ީ"hH2Mȝܷۜg`-M(${)f(0ơ#X]M)bx/g<[>GԲe&E(jk.걟FWEېamPť9l E8 Lë}3g^;t/CVPMpu4c#{B@dʧ9XǪ=s +5` :i\Q oKdC:t2&!#TOGhEQ)_*;nPYj@X잦W`Sr_^My3qg'nPoC`k! s}~T7B6>צ'#i{ ?vG,ǒ;[Gyt!.abbDeFZbuѲz'F=tx'Q{m7TGu?OEeM"4Y;e{IqC1?oIP>v]SbD=-/1f |4gjVmy֨5RTWlhGr ާoܰ,.h +VG@bEдOǑ" V\ $-5f7͡"|"me|$/ "!]݌^E!\ti!HGB^$1*]b#tnl=-tՐL@^:pB#՘ Be͈͡u%$ir@ar7$WxM 6+$B]( $fLi"0<1~ rZпXUǩ-Gl*C)$gjG&fGŸcX.dxc,+$׺ZLYfSi? B^wAp@||I8󱎘"whƾ ]1HxD^ʜO3Vf\cQel>z'ÕkT*E5:/fp &-/ui8 !m됷-#c(2~6fDd-L#9#LmrǑ"Y[&QIw.p %D0}ڇ~뎌>m.f4L UF=."J*^s1;8jr\| +=)OIYU" I>\VntBN[=}6ޙ5.9&b|[mya_`S>t:[i ziL-M|~u~@E„U:dݸϣoNU"ߨA|L׊HD8e1^U׿bD{C)ՇʂH˘e~YJ3"(Y[{v4ʉgqw[q=2Hpj|qA?0֖qrdTUR%)Bt]C46t GOv]CK1b˥.u_ ~k/_Xqح6)Ժfnd4jxd씆dvq3joV2]^HtF EΠa򽆇I@u39&}JlnKXT̼ml@XqczV1 YR.\U!oM(6:{; !m_>=!w5?d ř%Ug\DDU9DcG9p5@f8F{=gHf &KUyRυ6\owF()fR@= "wVS"m.pnoZ/K;Ph5%$a9E7 KA&񵘴ğǎ BFtF9䨡g!jklˑGIw=!ys/AǴ;>6ZG9F@͉|ZCËeq+Cx]Z۳Yc\("IQɳg-f[YgD=2@qG?H\}7~mb~67=WXdt/Ji+V|>kK n++ 6F:sn8<(t rÈ=Ha!VAZ@M%g( l\|K0_6=Ȍ\-> nSܺ8cw)w&atfEBMjW n?VsyaΔA$#Z P ,|Hgcφayd>g~JcM5ɷOy8hzx;.μHPm=/V>H\>AlK_ +lKi%̓$y }ac &0˻#6u1vfٷ5;F%70_biP ~lY+䊏@fMmwGaJԆClܛmH2Oy6sD?kǽ* @v2_Xrqi O,r 09rP(}D97BU?. dN6FpeEjQR;Nwʪ Oa~Io!{qjsKGhxzIJ)nEKJ\3l̤h~7 n.o4! Ewj?~|z.3㟖O,Q@5 ({ͽ!F]_HJtZ/6 ņ$u{'ʯ ix23P{4㿩~(w2;X2#U3YdFXh=2l0!s_ qHYe9ZX#06g<]ܑ1g !B][g>>i,o MΥc;<łAyI6:K1C:h2ɋ鯏103oN,Ui  \fXr,0KF@IQx#^)qi#݁P7$] @Kw?~OydGM㔖Eu ϑ(M _D>GaEl!'V|Is \ՎF,ީœ_a 0&@͡q ;AOn5`mcjؤl[ xUö|MN##?93ÙƙΤ`)4*~,bsfU'Bi7|e}|dY`Z |98b>h}2ܮ -C٪%72 endstream endobj 66 0 obj <> endobj 67 0 obj [68 0 R] endobj 68 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 840 0 0 cm /ImagePart_2034 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 463.199 721.45 Tm 98 Tz 3 Tr /OPExtFont3 11 Tf (2.3 Chaos ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 98 Tz 3 Tr 1 0 0 1 122.4 678.25 Tm 93 Tz (realization to be the ) Tj 1 0 0 1 226.8 678.25 Tm 82 Tz /OPExtFont4 11 Tf (system. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11 Tf 82 Tz 3 Tr 1 0 0 1 122.9 626.149 Tm 118 Tz /OPExtFont3 15.5 Tf (2.3 Chaos ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 118 Tz 3 Tr 1 0 0 1 122.65 591.85 Tm 93 Tz /OPExtFont3 11 Tf (Given the state space S of a deterministic dynamical system, A subset A C S is ) Tj 1 0 0 1 122.4 568.549 Tm 89 Tz (an invariant set ) Tj 1 0 0 1 203.5 568.799 Tm 35 Tz (1 ) Tj 1 0 0 1 205.9 568.799 Tm 94 Tz ( for the dynamics ) Tj 1 0 0 1 298.55 568.799 Tm 119 Tz /OPExtFont4 11 Tf (F ) Tj 1 0 0 1 311.05 568.799 Tm 107 Tz /OPExtFont3 11 Tf (if F) Tj 1 0 0 1 330.5 568.799 Tm 81 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 334.55 568.799 Tm 103 Tz /OPExtFont3 11 Tf (\(x\) E A for x ) Tj 1 0 0 1 403.899 568.799 Tm 86 Tz /OPExtFont5 11 Tf (E ) Tj 1 0 0 1 414.5 568.799 Tm 96 Tz /OPExtFont3 11 Tf (A and all t. A closed ) Tj 1 0 0 1 122.15 545.75 Tm 94 Tz (invariant set A C is called an attracting set if there is some neighbourhood U ) Tj 1 0 0 1 122.4 522.7 Tm 111 Tz (of A such that Ft\(x\) E U for t > 0 when Ft\(x\) A as t oo, for all x E U ) Tj 1 0 0 1 123.099 499.449 Tm 99 Tz (\(35\). The attracting set, also called ) Tj 1 0 0 1 314.649 499.699 Tm 97 Tz /OPExtFont4 11 Tf (on attractor ) Tj 1 0 0 1 378.5 499.699 Tm 89 Tz /OPExtFont3 11 Tf (or ) Tj 1 0 0 1 394.55 499.699 Tm 92 Tz /OPExtFont4 11 Tf (invariant measure ) Tj 1 0 0 1 488.649 499.699 Tm 97 Tz /OPExtFont3 11 Tf (of the ) Tj 1 0 0 1 122.15 476.149 Tm 94 Tz (dynamical system, describe the long term behaviour of the dynamical system. ) Tj 1 0 0 1 122.15 453.1 Tm 95 Tz (The probability distribution of states in the set of invariant measure is called ) Tj 1 0 0 1 122.4 430.1 Tm 91 Tz (unconditional probability distribution, which can be treated as prior distribution ) Tj 1 0 0 1 122.15 407.05 Tm 95 Tz (of the states before any state information is available. The invariant measure ) Tj 1 0 0 1 122.15 383.75 Tm 92 Tz (is, however, rarely known analytically, but can be approximated by evolving the ) Tj 1 0 0 1 121.9 360.5 Tm 94 Tz (system forwards over a long period of time if the system dynamics are known. ) Tj 1 0 0 1 122.15 337.449 Tm 93 Tz (We define the observed invariant measure to be ) Tj 1 0 0 1 368.149 337.449 Tm 88 Tz /OPExtFont4 11 Tf (climatology. ) Tj 1 0 0 1 431.75 337.449 Tm 94 Tz /OPExtFont3 11 Tf (Without knowing ) Tj 1 0 0 1 122.15 314.149 Tm 95 Tz (the dynamics of the system, the distribution of all previously observed states, ) Tj 1 0 0 1 122.15 290.899 Tm 90 Tz (termed ) Tj 1 0 0 1 161.05 290.899 Tm 91 Tz /OPExtFont4 11 Tf (sample climatology, ) Tj 1 0 0 1 261.6 291.1 Tm 92 Tz /OPExtFont3 11 Tf (is usually treated as the estimate the unconditional ) Tj 1 0 0 1 121.9 267.85 Tm 91 Tz (probability distribution. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 139.449 244.549 Tm 90 Tz (Given a nonlinear system whose long term dynamics converges to the attract-) Tj 1 0 0 1 122.15 221.299 Tm 93 Tz (ing set A, ) Tj 1 0 0 1 175.449 221.299 Tm 84 Tz /OPExtFont4 11 Tf (chaos ) Tj 1 0 0 1 205.449 221.299 Tm 91 Tz /OPExtFont3 11 Tf (is often observed from the phenomena, ) Tj 1 0 0 1 402.949 221.5 Tm 90 Tz /OPExtFont4 11 Tf (sensitive dependence on ) Tj 1 0 0 1 122.65 197.75 Tm 95 Tz (initial conditions, ) Tj 1 0 0 1 214.3 198 Tm /OPExtFont3 11 Tf (where points that are initially close are separated on length ) Tj 1 0 0 1 121.9 174.7 Tm 94 Tz (scales commensurate with the range of the dynamics over relatively short lead ) Tj 1 0 0 1 121.9 151.7 Tm (times. Mathematically, for every initial condition x) Tj 1 0 0 1 376.8 151.7 Tm 54 Tz (o ) Tj 1 0 0 1 380.149 151.7 Tm 110 Tz /OPExtFont5 11 Tf ( E ) Tj 1 0 0 1 395.5 151.7 Tm 95 Tz /OPExtFont3 11 Tf (A, and any lei > 0, there ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 95 Tz 3 Tr 1 0 0 1 138.25 130.1 Tm 100 Tz /OPExtFont5 11 Tf ('We assume that A can not be decomposed into smaller invariant sets ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11 Tf 3 Tr 1 0 0 1 318.25 53.049 Tm 76 Tz /OPExtFont3 11 Tf (7 ) Tj ET EMC endstream endobj 69 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 70 0 obj <> stream 0 ,,+b7!ںQ!DE"n|s׌e:.ڰlWWK'akzw$)G{2f<=BhYJ< FŝH`v9=;ȬO9UO;"207/< ⏛:WkXT$W P:+Pu|)0@.y~eCy%l n!fj,LtzÙm!'}T#͔ TlBm6Jhp)Of'$_`-D(|R9^p<_4i{HhQcbҠ~DB2VUe?U0⭂G.Ehƒ$P]x4d4(i{É{S0K5oGrs1:]̏F=#Ak>_h1L[]d; |H n?6` Fl=> '?MtpA|%p+ !t6P섳ci}6lRۊB?8 w !S0fS/5]9HguC5a{v mYt6V_yug*ο3A2z])2o"+3j2P楄у8cN>Å0p%biKk7 Vȣ Sm&c}٨+/{tIeV| {ؘdN5$90sf̚I{{܂)01ͪ3 \xV#Mᅂ"ý`2vNT]7a(ry*{;},-fWX:T䤹nS_6q".H-74\HmG|Zm|DB%vj׷FPI-6x:4&AL?*Evm960P~ ?m@GƗ '< -,dma)۽QPNLG#I\(CJZ(w9d+\ ̶8)뭵*=rk]F(G-S8N!ePP%Y6zbYE{ RfudB|Y:$!u5 c]֯- Oʆ%%Z'C&)b(ك 1(h־.&"vwm.f17'."Fayᠼso63Pօpi\$~QLZp_vmgҰm.Gt8hƮM?NFV, OKK%Dj0 8/Q{DQgE}_\~CHFͣ7YtWۏ@5ٛ33d5snt78[NI!0Ζfkm2W|U=@? ]yJ<\2С+bj:+hwdҤ{?pW` u:\t|:4MtpNWWCbd*Z@m{:ygf*"|QԹk5̢09WPQnl'ZVXf?) Y2gRz$KpFZ[ fxr֛U4-3ʼU㺗R,&H9.9{3S4 T3> y|_Di_r=L}]U!U) vka),nLJ{I@fú6&"h LuDLEƯDjvPF-ԑCN";ש,8H.'UlYʽW <} &\e>%y1M4` + P+g dMUS?7'"-;ࢇ PMv1&e!U3B|_Bnjo-hj6UQL}!" )+͡}e@Q*fiw{NCXeIے&?{x.lle g n3LV93# c>>[O^߸y/:nͺm4-bw\w)b9=P!F a)d{R-#be'ްcRpt$4ꗭ=COK 3v+71[2M;j352~0 s@.d5H ]b0zY(v}l0yio#"Ǡ% x7dqQisR~#8yH /*"rk_yn(4*i8ZL3z=<Yux8az04-|f܊l%]?ޒr# Y|=ПQ6rCC3Vz"@0^f1>Ϟ#&&Iv+Vv$z>iI ki3&JXt40Vi&Cfe,nY@_'N-]Lmζ,38ffAutcV+F|6.@߆JY{eb㌋Ҟߚ$}~do(J+d2%Hl:2'4[ԁǀ^G?wd!chK>?9YCqFzpV (AYpTƍ=] R73ҹYGZ{[+P[J@wWoҎa>TciP b6evbxd3W?vdqvJCnC=AhX4DjE<2O?7ձ7#C4.˔Z؛Iє̆ΐ^fHE d#opG/#XWIFlevʝ/;>yY"0p\6G p:TW%~muD-,ߟ RkG5GTƄ;AmɭC߀NBwezL@;[|zw1%_te+mrn9L4(wA h݉5UЙڴλU7*|3:a("4+׶w-[PG$271;Lٙ+ d~De^}8_#euEҖ! Q3U' xbݢQ~^s3@vEݱ9[J3Z^Ayz1MoFS̖y9O=* J0i>|ݤ{H`Աxϣɼ3 9.oQC46Y z̠XœCeqk"hZ88wZ0\7]z-iith0J!,1] E\!L#( NщM#mF6vv0.Ur.ŕ !<6̑ݜ >[Cs;Sڿ+\kc@nugX0[] Wk۞-|ZV'xxZQiL2W* $[*)#9f۫bT| d&6WPLhbVj6iZf΄q(NƥʖS]6809vgߊ[ ֻB?ũ(ץl[K8 S*K%Oz Y@լע#0|{3d'P v8C/7bUM<\T!oL,a-jFRk[F[f4 Դr=51*mKhKXr {DDY\j *[o u<ń^@dv@ՇK='u)džIժQbAV-O8ȉ=;Ǔ6z^a.AGvY"F&(K;59Ϟޫ(38hKQ#WQU@‰HД(c¿cJT-ȷW@^ UQz ի"9j| ЖGiTNEm!f[ hG 6d&'b9YͤF',`c)X6IC<{Qܫ~c4srRʨC\xEbub=lkK7Ԑ%ms1.~AB%xi78'avuTˤz Y$^4dOzHA|Ms'+bXWB˂&?}KK??Ș~;*+$XMy g@?O 3 F^ȑU5-BwVߓ~J1'=j2:Jf4`|6\$\sˉXTmT[$ eLԪ5QwEoo z!Ԧ6rA`8/}}6?C$-y-qV|hΌѰ֠(a:*JY(߼cGuXkk\rB B%Q5tl6frVwخxNNaV  >컖˷¶ı?ƥ4A!,TZ'ɱ42b'󲹱#˄Һ㜁֗"M+洳<-aC"_A/0F3? Εk419@:{viw W8D&FQI j a@:ݗ;s/Y‡:S`F!3j70VAG|>7&jRΣzB Rh{trẙ>/<8 tSP|^ 4 t\]<1Y~DNx=g4S [޲DAyB`%Ӷ8`;tM? eblpqTuEG J%ɀkq׭13 *8#Xk va e^P{m h$.aoiISt黯zhF\nhEtޑ8m'! D-CQhz1}D=BPy@W7Ym!I0`Ew Q97V ^|C$qOum׃ 1K"4aj$lf+ȹr.)dďb1nVWKn&\è<]F #fC1VK `U ,"2 耚$O붚h&Q1,N: 1!Fޑ1vڟi(]C-Y>{K aݰG뙗NJZSœs)@:.!ΞdD ԅJS3@=m8|5]!W/_~5a/l'c@0̃" 2:y[b/(@Ltբ1 ކ)VP\jV}a[Lҽ,?칺`57{{Z^(rbq-]:FmvMg ശn+6>rz0l66'ܵ7Z嶡!7<`)!\Hh35#IvFSTɞ:6؍|JAvʮCjB:ckACީ=+},3_Hvއcⲁ,(J;#E:O]ܾDA fMs/.a e )u-,84WI8t?yFyT@ƒ\-#ݶ߭~> P[씸nws]9 Vtv&&6+ tPp"e7YӰK(*\=Q/ fAYwކ=NM]2gQCyD#oLF& MU iTa%pěv1AH5<. ׎qMLX1C yn-#T7X ] /=NSϴbϾs-2:#V#}DB|Μw2:= ku؋!:iMzMEWTroJqEk0G+؜K;{$3U[p'Xys}u^,5ruBR`!AO5M˞wzJ 3|ϪƣwĘ|&  A  h3+biTOea[?"xpW nfg[CU\.S9%ax`tg;Ncw$j'(&{)HxԨzx J]'~ƽ;'#9R"BdFEg0%H#)\|/dd%H]ȁKFpGAy1/}D ͏ɤj]3*< e겗r0ݯh]]08Jm6ؗa uPH**su<+:G=e^ƪ<=C±M'5eP }@0[VDM!sLK?4̐&mm A1Z.Pf`m"(lDT !JNVyƵ x-1$2%$hϻo 8uW q5C(Ha }nNj%$QgZNK%#<"ìNe^ľTUW":v/s_(9"}W~yA=ط–%e*J_n6w Bs&7RXe{<\DA  ]ف X\unj˵ro#AoqG1ɧddj,A2mV6hJgQ3PKJ9;ji={Qc)_>Q5UF`0ɋzp.!`>y/ uf{)2y& +w wTXCs["@Y,5?Τg> jvx2W?i2mb`6`-Q\ʞLJ*>r ӕ("'Dlw[SJy9WqvKwpيO>j^\e/&t T՗/XA Hx%LiMtx}m6p#V75)mkPb~s{"=ӼE&Ehp*"3{@cBʾfKɄ\+ g|`E^&MktꟑxjŋllA'*L@!W~ԟVʃّ{|.D3'"j‹]P^ 7g2͙.^/2zGW?Z ѥnhJߖ@ 4yp2ƀ4<`NgzQએ! jީ=.s'd6f= }ZG)jp]5BȚ5pJ?[EZzZ짡O))![Jb;>fݱFF̏ 47uomU8y {M`ӟYzʒ 1Mp}lv(_?Jfxա+Eh^Oaѥ2*OԵ.J 3FMUWWA?44J'C%a?[62TьvϢܺ+qlBف2ދ@ƺ? 3m\kLIxXsb~y xmubRXN`» *skC;ygvJ@%ıLkNMrNh*>lZL%N%zs޷ ΆJ 3Q^d^cdQI\N2ކClEaݚ͖=6ęo1 ԰QZ\N.lY|8S̋^ܣ`ZWRގASMׅ /0jOy_3{1fϱ\ 65Q&B3 ?%W6/V-J_6=jJx~JȰDTEG8w4GɎ rmKF!7C<3g.І P8yCF## ![U05jߗ~B)N=wX.!g"p@URx* teC ڣgFmSc$Vxp-;|bR>73VY?&M;/%z%~.mWx [^r>W!n W`]MR@6'͌kym35Q%4#p;ffk09:**\9K599T.cwu;5]yuMի8`%@;Sd&ْ10- endstream endobj 71 0 obj <> endobj 72 0 obj [73 0 R] endobj 73 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 840 0 0 cm /ImagePart_2035 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 392.649 721.7 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (2.4 Analytical systems ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 123.599 678.7 Tm 86 Tz (exists ) Tj 1 0 0 1 155.75 678.95 Tm 103 Tz /OPExtFont6 12 Tf (S > ) Tj 1 0 0 1 179.75 678.95 Tm 93 Tz /OPExtFont3 11 Tf (0 such that for some ) Tj 1 0 0 1 289.699 678.7 Tm 116 Tz /OPExtFont6 12 Tf (t > ) Tj 1 0 0 1 312.5 678.7 Tm 103 Tz /OPExtFont3 11 Tf (0, II Ft\(x) Tj 1 0 0 1 360.25 678.7 Tm 62 Tz (o ) Tj 1 0 0 1 364.1 678.7 Tm 128 Tz ( \) F) Tj 1 0 0 1 414.5 678.5 Tm 81 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 418.8 678.7 Tm 102 Tz /OPExtFont3 11 Tf (\(xo\) II> S. Another ) Tj 1 0 0 1 123.349 655.899 Tm 91 Tz (property of chaotic system is ) Tj 1 0 0 1 269.05 655.899 Tm 96 Tz /OPExtFont6 12 Tf (recurrent ) Tj 1 0 0 1 316.3 655.7 Tm 93 Tz /OPExtFont3 11 Tf (but not periodic. A system is recurrent if ) Tj 1 0 0 1 123.099 632.899 Tm (the state of the system returns to itself, i.e. for any initial condition ) Tj 1 0 0 1 465.1 632.899 Tm 94 Tz /OPExtFont3 10.5 Tf (xo E ) Tj 1 0 0 1 490.8 632.899 Tm 97 Tz /OPExtFont3 11 Tf (A, we ) Tj 1 0 0 1 123.349 609.85 Tm 105 Tz (require that x) Tj 1 0 0 1 201.349 609.85 Tm 58 Tz (o ) Tj 1 0 0 1 204.949 609.85 Tm 99 Tz ( Ft\(x) Tj 1 0 0 1 243.849 609.85 Tm 56 Tz (0) Tj 1 0 0 1 248.9 609.85 Tm 99 Tz (\) Il< ) Tj 1 0 0 1 274.1 609.85 Tm 67 Tz /OPExtFont6 12 Tf (e ) Tj 1 0 0 1 281.75 609.85 Tm 91 Tz /OPExtFont3 11 Tf (for any ) Tj 1 0 0 1 321.1 609.85 Tm 95 Tz /OPExtFont2 11 Tf (E > ) Tj 1 0 0 1 340.8 609.85 Tm 93 Tz /OPExtFont3 11 Tf (0' \(Note t could be very large\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 123.599 557.5 Tm 114 Tz /OPExtFont3 15.5 Tf (2.4 Analytical systems ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 114 Tz 3 Tr 1 0 0 1 122.9 522.95 Tm 95 Tz /OPExtFont3 11 Tf (In order to demonstrate that our results is rather general than restricted in a ) Tj 1 0 0 1 122.9 499.899 Tm 92 Tz (particular system, methods will be applied to a variety of systems with different ) Tj 1 0 0 1 122.9 476.649 Tm 90 Tz (properties. In this section, we define those analytical systems that will be used to ) Tj 1 0 0 1 122.9 453.35 Tm 89 Tz (illustrate the questions to be addressed and discuss the difference among different ) Tj 1 0 0 1 122.65 430.55 Tm 87 Tz (methods. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 123.099 385.699 Tm 114 Tz /OPExtFont3 13 Tf (2.4.1 Logistic map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 114 Tz 3 Tr 1 0 0 1 122.9 354.949 Tm 93 Tz /OPExtFont3 11 Tf (The logistic map is a one dimensional map first introduced by Hutchinson \(14\) ) Tj 1 0 0 1 122.65 331.449 Tm 94 Tz (in order to investigate the role of explicit delays in ecological models. It is then ) Tj 1 0 0 1 122.9 308.399 Tm (applied in modelling the dynamics of breeding population to capture the effect ) Tj 1 0 0 1 122.15 285.1 Tm (that the growth rate of the population varies according to the size of the popu-) Tj 1 0 0 1 122.15 262.1 Tm 93 Tz (lation \(GO\). The mathematical form of the logistic map is defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 265.449 219.6 Tm (x) Tj 1 0 0 1 271.699 219.6 Tm 94 Tz (i+i ) Tj 1 0 0 1 284.149 219.6 Tm 108 Tz ( = ax) Tj 1 0 0 1 312.949 219.35 Tm 72 Tz (i ) Tj 1 0 0 1 315.35 219.35 Tm 82 Tz ( \(1 x) Tj 1 0 0 1 347.05 219.35 Tm 72 Tz (i) Tj 1 0 0 1 350.649 219.35 Tm 60 Tz (\) , ) Tj 1 0 0 1 356.899 219.35 Tm 2000 Tz (\t) Tj 1 0 0 1 497.5 219.35 Tm 90 Tz (\(2.3\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 122.15 176.899 Tm 94 Tz (where x) Tj 1 0 0 1 162.25 176.899 Tm 72 Tz (i ) Tj 1 0 0 1 164.65 176.899 Tm 97 Tz ( represents the population at year i. Logistic map is a non-invertible ) Tj 1 0 0 1 122.15 154.1 Tm 92 Tz (map as each state ) Tj 1 0 0 1 216.949 153.85 Tm 104 Tz /OPExtFont6 12 Tf (x) Tj 1 0 0 1 223.199 153.85 Tm 55 Tz /OPExtFont4 12 Tf (n ) Tj 1 0 0 1 228 153.85 Tm 94 Tz /OPExtFont3 11 Tf ( has two preimages. The invariant measure of the logistic ) Tj 1 0 0 1 121.9 130.549 Tm 95 Tz (map strongly depends on the parameter value of a. Figure 2.1 shows how the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 95 Tz 3 Tr 1 0 0 1 318.25 53.049 Tm 70 Tz (8 ) Tj ET EMC endstream endobj 74 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 75 0 obj <> stream 0 ,,b6%Erյ 毡3[Q)z'C醟}a RUD]K"N[?3U~m;8k;EjikafeMpݘ M2x0ŖagmCSD3'u( + a9Å>_MT?Gdyy~$v@&ZU9ġQ^L`Wv\Up/@ `)F + M3Cd൯1A,IݵG\?X6 +nACEġ9f ts˞i*R'Yxz#׭_H)^r10|mJ-yn"}4-FRe⎈Zǫ1Ae $E ꗳi4l))י]0mi~ }8%_@f+4S݅ijmvnGBw@Lޗ18NOس2!rߎN5j)|=yO-;9`g_2|'IiJ /Pfe nl̶WhfTW}beȮdTAh9t3PtC~x#(٠qJ9b1t^2ռ0:w_A~Vo*N{- 0B+xyoqpZ?OjZ G4ۜjymjZx-7QߚY Q> D]NA<S׵ljNv R)}ѭk$r4ꯉkcSVk̻܇Vs?ڙ%h]vA!ͺg%^XRTL Li̩t0}HX=LT8wMj{J(ó-6aw T jkŸj_!}Fy$SS[|P]s6M :ڻ}JՋo]L}zUL5wq1;w?2ʇ)m,< C+1>^BNjRo e-bP_,ƛ0Ձ:Ps?ir҃ED(ǧb&R_ƉK1eY tYJ.YOA#*dQ%}Vf8`Cz, 6ҳ!݂sR zU8"|Ms2?c~ AbơYh鵺~b-~7eRIQwG {/cmL -G*wt96'R?׶cL-{NFkx:XpюF@$I JNg&/Q-382\lR>{|{xa)WMrڿ>>VXTaŪ5p#zc+W::!٤AcdbP86̇,7mps)_0ޑ? D>O@_ p`vo\ BW B Q\tef/TeJQC轘'b ;&rdxNn#W)Dl$@yO?s泖9^gA8.:>r2v:QfUA#atd̨auU@ Im@2cǞMB xP8hL(!G2HFŔ 3vMZGjIH$  ,CG޲@{,XZܡ2}"߄Y)\zY T0A4 []I*/tJ nT˒Q9so0c:Cխm'֬A˜w>J ƔE(f{ĆʢMjZ/JM+qch3BшKVVIeAB>j ήQ8/M"sTo?Ș,k”+|+to2Ӧ&ZL! ?gDU.|;5*td?"}в Fn\eS#s|9oϋ'XyRhC_4TVZx[o[\eH¤Zi/LlV] w}Z;<)~ YwX*ݔ*1;izrg#zd =y]IEAvQ(Uq&x:ӧp <yeGLVH:7=#|Tӄ4:xr hM{̪=Q[M-N5Vjoom0m4ĞĹ74&đ*Y߃xG/#q;aNi=M=Jcm)Zg)B&nR+NuD~By=+ܝi%-wt~R,(VD1y=%( fօEH撖]x=I0NFҳ8e2工jlBO"DudU$n9(.nC]F$Y;7_S})\_, df1 ZO.*%T%iq3O%5" E4G_w/Fb%T''naes$:fk ͜Ϗ"E[{0e{P}U*Ҙt!M?E ՟H$*EI ^ֹjJM Z5L3Gޮ@UŨ3nzގͺL^1_H3>M9]9Z |4OI%:2^` чϺ.iD84̹E cϖ-)$~O]ѫWd4uZ+ۏ Obqh$ӛZ5Ð˃: f @\(QPs9L"Jf8l >=E'2>k11+]?8p`,k7dokkQŻ +@1Wr%NhWïi~pZ#]W5$&x+dlK-3|qKKrrϸB[<֢w )5He.l,4}"H'bMF!eR 8ƸV{Ubd[d~RXf4{|]@EDQ9 l0oyK0o@" {HÄ|p͊fu9>VÌߡ}@K/w|K(/3XV#d{bjY18H͔No]' {! H3xlyD;.ʁy|}_c 27!9Ri*309uEIql0A*߽M()~72hGOuFzGQ̶oCM|{ʇ@ݩPh(J٦Vb%S1a/2zi+mZe\~_M шw!auك$LQ ES(X_=hI,D~lR"ҞX\o"wWoSnIr‡:#Mgi!2 '-=GjK_uOMsEgv78~"7o_e̕ {**r6t*ꏏ . R6QPH97,-'y*v ݪ ]8FXq N2SU Cđ0yI6RC.v@h{@Uf a5q/UۃӾD)lga oxf=N^t\wE 9.C-B3W7ICG Iy^oRR/EiM)g5Y6| Z5EgȑOM~Hg waaXaFyX~ɞ+3q`F.@t&P=NkMB(rԊL:i AYyXH'ȟrBH:븻O䵔Dm mky w>钞wfBǼi群?57ɪP$ːOµ0w%_ZkO9 X"B1ZO>-g;mۢdlcg:x>?Q=w=88k|Iq(*#ivÔ 7E7jmEN3 eT!p'=ܭj0H 3oEJa 9͜Q3,A|oaC}Q{?Zan(S:QR٩pJ`ZVV*cP;y(úIvdIĻ{HjWm-KOri Jjz\!d 󋣕fJUyE U@ $l]W9 1]H:D~dLjo[Mncg1z!`h .7.uQ\pVU__=1Wߒe\=5dAeN mA?ZHQ@=M=dk䰬_hBR舕 g|M Z2ߒtjJ}O5sF ~&;yͲ rNxy1䴠G`7{l{cɽ (nsҖa oh0nc.C'ŤBpchAsLWd0DW|ɮ=Ѷi6zv fEB_l{m`Ht4xHk[4z~d\F3ã$P;y"I+Sd3dBxW[_5mµ:WEkr`zyA9 plj@C6 {V~<=l1Ռ 4⠋K_i3%ycǦ'absrhcvmAYl>5tɨP)b{wQ,^b%eM :h؀gWGЯ/` c>iե٘ ,M"7vc? e`(EdCU0c: V9ҺГ4<&N?5oW'.`,m0MېJwye(|/qđ?v8W11PКA=c#cܛP ~Ci:ah&O3DfW<vw;$c+9# WMZM{Eɣ!JqNiq^mV7lsm"%?z{Kp~%o@r:@5!N1L,^SJRC탕fVY[" #T=ȇ>ZŬl0-S2,==F#`8.POT"ܭrXy@ ~< ɸ~ɻtZoe:2P~P*ήSaD mMbi U" ǯ" V{iڒe0غC` ꉸhlX>\k91ho/pU Vl@¨T穊~aP\phFMbb>N Hw 2 %ЊMûph] ]$tnd:e`U ৖)7ԩ ,\f'&Gn:Qd;\ 9"T($[ꕞo2oY=wp!dqJVeAF̦Naf`~ q, }6k86]-v6\ }WN O m4vP- M~?y)M@#+Pr@A#֡w~ۡ{  %-#oz﬜\6%5 z"#n/wC>V8S@Bbu1Ex|DQ.U8J=Dh 0}47N-BC<֮' ^k]\Ω$tx$tGR~ li>**?q`yb|+ʇv?h~igrXP藊F(H&q]-CÞu5^*!{KE[u3y Unlqlj$kW2Z ,aƏdtW[Di10_M_#G]:D*eiyR&f W, h̸e/r [R]#ӂ(G]5Uft&1Dʽk KQ3ZIw+*?~, E?|`%oڔ ! ms_y($dR!08DGf')rYy"Y,IXbM螲Q=ҦJ{1Wz⛼lJItA[SC2Uf+ɍM\t* KQ)of7yuϓae铆"$TAAzƍ.k("yBVX8r?-(^T:, Qo|yFa':P~\k"mtzPRaWp'>ʲ1ױ1t7se}gX2ԯ?`Olpvr.Tk-2Y)~-LXKiGĞxUȝvn5\w@%Vi_ml+68FkHRkF /v/m(,s)|s,@^1Gv\l삓)D=0~@`Iͫ"#@3{ 26){ i \39V4wiPJr?߹fRٲxj[sljGƶ&E 1G Q7P=c]s(Bb6dV1sHb$uPs)uP91Ikv {E^ 2pgqAPgt8Jxl!i%ez(l-3+H0#&{u"͓S+Ѹ鰪U<#MO.߮.@/'l{6Fe0,_76ҬUg. IH4N \Ϳ,[Y;d[. mg"j#WW|t1|IEU&5cu!  ..Z\z',P⌈LJ\?ʬy5E-&_/7A3g)3#ٗf]qX{pINT:!y^*5$m=N0u--X*0K?ޕ(gk| vp#A"5 ^9#g@DVʷ/TOQ̇%; Qփ374T4_lBH5o}xM,kl u[Ou Wפ=W0|`?&HM&qT\(587y,?53_1xz:G`FVkz+X2UiI*J+N7o"G \ pt/ӭn"SK'YWŨM.K3vΖ;:$YfF*!]1lӊ0(> endobj 77 0 obj [78 0 R] endobj 78 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 840 0 0 cm /ImagePart_2036 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 391.899 721.899 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (2.4 Analytical systems ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 122.4 678.95 Tm 92 Tz (system behaviour changes corresponding to the value of a. For a=4, a change of ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 204.25 552 Tm 37 Tz /OPExtFont3 17.5 Tf (....._-1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 37 Tz 3 Tr 1 0 0 1 218.65 539.75 Tm 18 Tz /OPExtFont3 10 Tf ( 111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 18 Tz 3 Tr 1 0 0 1 177.599 513.6 Tm 79 Tz /OPExtFont3 12.5 Tf (.--C:7411 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12.5 Tf 79 Tz 3 Tr 1 0 0 1 206.4 443.5 Tm 35 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 35 Tz 3 Tr 1 0 0 1 227.75 617.75 Tm 117 Tz /OPExtFont9 3 Tf (,,) Tj 1 0 0 1 230.15 617.75 Tm 233 Tz /OPExtFont3 3 Tf (1 ) Tj 1 0 0 1 234.5 617.75 Tm 100 Tz /OPExtFont9 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr 1 0 0 1 244.55 600 Tm 85 Tz /OPExtFont10 5 Tf (o ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 5 Tf 85 Tz 3 Tr 1 0 0 1 238.099 554.399 Tm 23 Tz /OPExtFont10 13 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 13 Tf 23 Tz 3 Tr 1 0 0 1 246.699 539.75 Tm 36 Tz /OPExtFont9 4.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 36 Tz 3 Tr 1 0 0 1 238.3 443.05 Tm 51 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 51 Tz 3 Tr 1 0 0 1 256.8 608.899 Tm 88 Tz /OPExtFont11 4 Tf (-1 ) Tj 1 0 0 1 260.649 608.899 Tm 40 Tz /OPExtFont11 7 Tf ( ) Tj 1 0 0 1 254.4 616.1 Tm 43 Tz /OPExtFont3 35 Tf (fi ) Tj 1 0 0 1 263.75 616.1 Tm 100 Tz /OPExtFont9 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr 1 0 0 1 255.599 563.049 Tm 40 Tz /OPExtFont3 17.5 Tf (r ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 40 Tz 3 Tr 1 0 0 1 255.099 525.35 Tm 19 Tz /OPExtFont3 10 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 19 Tz 3 Tr 1 0 0 1 273.85 555.35 Tm 12 Tz /OPExtFont3 17.5 Tf (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 12 Tz 3 Tr 1 0 0 1 264 525.35 Tm 11 Tz /OPExtFont3 10 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 11 Tz 3 Tr 1 0 0 1 263.05 530.399 Tm 47 Tz /OPExtFont12 12.5 Tf (,IIS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 12.5 Tf 47 Tz 3 Tr 1 0 0 1 264.949 502.1 Tm 50 Tz /OPExtFont3 10 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 50 Tz 3 Tr 1 0 0 1 270.5 443.3 Tm 35 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 35 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 35 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 35 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 35 Tz 3 Tr 1 0 0 1 291.35 538.799 Tm 22 Tz /OPExtFont3 10 Tf (I ) Tj 1 0 0 1 292.1 538.799 Tm 247 Tz (\t) Tj 1 0 0 1 300 538.799 Tm 19 Tz (Ii. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 19 Tz 3 Tr 1 0 0 1 302.399 443.3 Tm 48 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 48 Tz 3 Tr 1 0 0 1 302.149 531.85 Tm 29 Tz /OPExtFont3 10 Tf (q ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 29 Tz 3 Tr 1 0 0 1 302.899 494.399 Tm 23 Tz /OPExtFont3 12 Tf (I) Tj 1 0 0 1 304.3 494.399 Tm 13 Tz (i) Tj 1 0 0 1 303.85 494.399 Tm 26 Tz (i ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 26 Tz 3 Tr 1 0 0 1 313.899 546 Tm 22 Tz /OPExtFont3 10 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 22 Tz 3 Tr 1 0 0 1 313.699 538.799 Tm 30 Tz (P) Tj 1 0 0 1 316.1 538.799 Tm 12 Tz /OPExtFont5 10 Tf (I ) Tj 1 0 0 1 316.55 538.799 Tm 158 Tz /OPExtFont3 10 Tf (\t) Tj 1 0 0 1 321.6 538.799 Tm 4 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 4 Tz 3 Tr 1 0 0 1 317.5 515.5 Tm 13 Tz /OPExtFont3 12 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 13 Tz 3 Tr 1 0 0 1 330 610.799 Tm 15 Tz /OPExtFont11 7 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 15 Tz 3 Tr 1 0 0 1 327.6 573.85 Tm 30 Tz (-,1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 30 Tz 3 Tr 1 0 0 1 334.3 443.3 Tm 38 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 38 Tz 3 Tr 1 0 0 1 343.899 553.2 Tm 14 Tz /OPExtFont3 17.5 Tf (II ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 14 Tz 3 Tr 1 0 0 1 338.649 518.399 Tm 45 Tz /OPExtFont3 10 Tf ($ ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 45 Tz 3 Tr 1 0 0 1 338.649 515.5 Tm 42 Tz /OPExtFont3 12 Tf (or ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 42 Tz 3 Tr 1 0 0 1 341.75 484.55 Tm 26 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 26 Tz 3 Tr 1 0 0 1 347.75 546.25 Tm 17 Tz /OPExtFont3 10 Tf (r ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 17 Tz 3 Tr 1 0 0 1 354.949 484.55 Tm 23 Tz /OPExtFont3 12 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 23 Tz 3 Tr 1 0 0 1 372.25 546.25 Tm 31 Tz /OPExtFont3 10 Tf (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 31 Tz 3 Tr 1 0 0 1 372 519.6 Tm 16 Tz (1111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 16 Tz 3 Tr 1 0 0 1 372 515.5 Tm 26 Tz /OPExtFont3 12 Tf (i ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 26 Tz 3 Tr 1 0 0 1 366.25 443.3 Tm 48 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 48 Tz 3 Tr 1 0 0 1 384.5 635.049 Tm 292 Tz /OPExtFont9 3 Tf (m..,) Tj 1 0 0 1 407.75 633.6 Tm 111 Tz /OPExtFont3 3 Tf (,1 ) Tj 1 0 0 1 410.899 633.6 Tm 100 Tz /OPExtFont9 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr 1 0 0 1 375.1 546.25 Tm 21 Tz /OPExtFont3 10 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 21 Tz 3 Tr 1 0 0 1 374.149 534.95 Tm 23 Tz (11 ) Tj 1 0 0 1 377.05 534.95 Tm 277 Tz (\t) Tj 1 0 0 1 385.899 542.649 Tm 139 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 139 Tz 3 Tr 1 0 0 1 402.699 487.699 Tm 75 Tz /OPExtFont5 5.5 Tf (' ) Tj 1 0 0 1 403.699 491.75 Tm 25 Tz /OPExtFont3 12 Tf (,!1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 25 Tz 3 Tr 1 0 0 1 402.949 486 Tm 62 Tz /OPExtFont5 5.5 Tf (; ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 62 Tz 3 Tr 1 0 0 1 398.149 443.5 Tm 38 Tz (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 38 Tz 3 Tr 1 0 0 1 409.699 561.85 Tm 6 Tz /OPExtFont3 17.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 6 Tz 3 Tr 1 0 0 1 417.6 537.35 Tm 31 Tz /OPExtFont3 10 Tf (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 31 Tz 3 Tr 1 0 0 1 412.1 494.899 Tm 29 Tz /OPExtFont3 7.5 Tf (,) Tj 1 0 0 1 414.25 494.899 Tm 9 Tz /OPExtFont3 12 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 9 Tz 3 Tr 1 0 0 1 411.1 492 Tm 43 Tz /OPExtFont5 5.5 Tf (II ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 43 Tz 3 Tr 1 0 0 1 408.699 487.699 Tm 58 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 58 Tz 3 Tr 1 0 0 1 420.5 631.7 Tm 486 Tz /OPExtFont9 3 Tf (,! ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 486 Tz 3 Tr 1 0 0 1 429.1 606.25 Tm 34 Tz /OPExtFont11 7 Tf (I ) Tj 1 0 0 1 429.1 574.299 Tm 16 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 16 Tz 3 Tr 1 0 0 1 429.85 443.3 Tm 48 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 48 Tz 3 Tr 1 0 0 1 438.25 574.299 Tm 35 Tz /OPExtFont11 7 Tf (ti ) Tj 1 0 0 1 439.899 574.299 Tm 128 Tz (\t) Tj 1 0 0 1 443.05 574.299 Tm 24 Tz (11 ) Tj 1 0 0 1 445.199 574.299 Tm 234 Tz (\t) Tj 1 0 0 1 450.949 574.299 Tm 23 Tz (- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 23 Tz 3 Tr 1 0 0 1 444.5 568.549 Tm 12 Tz /OPExtFont3 17.5 Tf (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 12 Tz 3 Tr 1 0 0 1 443.3 558.25 Tm 18 Tz (i ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 18 Tz 3 Tr 1 0 0 1 441.35 538.299 Tm 44 Tz /OPExtFont3 10 Tf (HI ) Tj 1 0 0 1 442.55 534.95 Tm 22 Tz (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 22 Tz 3 Tr 1 0 0 1 441.35 629.5 Tm 163 Tz /OPExtFont9 3 Tf (,,,,,, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 163 Tz 3 Tr 1 0 0 1 438.25 492.699 Tm 59 Tz /OPExtFont5 5.5 Tf (d ) Tj 1 0 0 1 439.899 492.699 Tm 261 Tz (\t) Tj 1 0 0 1 443.5 494.899 Tm 18 Tz /OPExtFont3 12 Tf (.. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 18 Tz 3 Tr 1 0 0 1 438 487.699 Tm 74 Tz /OPExtFont5 5.5 Tf (t ) Tj 1 0 0 1 439.199 487.699 Tm 698 Tz (\t) Tj 1 0 0 1 448.8 487.699 Tm 36 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 36 Tz 3 Tr 1 0 0 1 456.25 628.549 Tm 69 Tz /OPExtFont9 3 Tf (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 69 Tz 3 Tr 1 0 0 1 460.8 538.799 Tm 67 Tz /OPExtFont5 8 Tf (I ) Tj 1 0 0 1 462.699 538.799 Tm 31 Tz /OPExtFont3 10 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 31 Tz 3 Tr 1 0 0 1 456.25 525.85 Tm 18 Tz /OPExtFont5 8 Tf (1 ) Tj 1 0 0 1 456.949 525.85 Tm 31 Tz /OPExtFont3 10 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 31 Tz 3 Tr 1 0 0 1 460.8 522.5 Tm 28 Tz (III ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 28 Tz 3 Tr 1 0 0 1 462 443.3 Tm 25 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 25 Tz 3 Tr 1 0 0 1 469.199 610.799 Tm 28 Tz /OPExtFont11 7 Tf (II ) Tj 1 0 0 1 469.199 605.049 Tm 19 Tz (11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 19 Tz 3 Tr 1 0 0 1 473.75 574.299 Tm 59 Tz (r' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 59 Tz 3 Tr 1 0 0 1 473.75 568.549 Tm 13 Tz /OPExtFont3 17.5 Tf (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 17.5 Tf 13 Tz 3 Tr 1 0 0 1 475.899 525.85 Tm 25 Tz /OPExtFont3 10 Tf (i) Tj 1 0 0 1 477.6 525.85 Tm 41 Tz /OPExtFont5 10 Tf (t ) Tj 1 0 0 1 478.8 525.85 Tm 31 Tz /OPExtFont3 10 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 31 Tz 3 Tr 1 0 0 1 460.8 510.949 Tm 97 Tz /OPExtFont3 12 Tf (H ) Tj 1 0 0 1 470.399 626.899 Tm 341 Tz /OPExtFont9 3 Tf (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 341 Tz 3 Tr 1 0 0 1 477.6 610.799 Tm 43 Tz /OPExtFont11 7 Tf (t ) Tj 1 0 0 1 477.85 605.049 Tm 27 Tz /OPExtFont11 4 Tf (1 ) Tj 1 0 0 1 478.55 605.049 Tm 40 Tz /OPExtFont11 7 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 40 Tz 3 Tr 1 0 0 1 477.85 539.299 Tm 25 Tz /OPExtFont5 8 Tf (1) Tj 1 0 0 1 479.05 539.299 Tm 11 Tz /OPExtFont3 10 Tf (1 ) Tj 1 0 0 1 479.75 539.299 Tm 180 Tz (\t) Tj 1 0 0 1 485.5 539.5 Tm 18 Tz /OPExtFont5 10 Tf (11 ) Tj 1 0 0 1 491.75 539.5 Tm 31 Tz /OPExtFont3 10 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 31 Tz 3 Tr 1 0 0 1 482.149 534.95 Tm 79 Tz (NN ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 79 Tz 3 Tr 1 0 0 1 483.1 525.85 Tm 35 Tz (I ) Tj 1 0 0 1 484.3 525.85 Tm 166 Tz (\t) Tj 1 0 0 1 489.6 525.85 Tm 33 Tz (11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 33 Tz 3 Tr 1 0 0 1 489.6 522.5 Tm 119 Tz /OPExtFont7 4 Tf (i ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont7 4 Tf 119 Tz 3 Tr 1 0 0 1 489.6 510.699 Tm 20 Tz /OPExtFont3 7.5 Tf (1) Tj 1 0 0 1 490.8 510.699 Tm /OPExtFont3 12 Tf (11 ) Tj 1 0 0 1 493.199 506.899 Tm 18 Tz (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 18 Tz 3 Tr 1 0 0 1 492.949 482.649 Tm 48 Tz /OPExtFont5 5.5 Tf (I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 5.5 Tf 48 Tz 3 Tr 1 0 0 1 199.199 434.149 Tm 87 Tz /OPExtFont11 7.5 Tf (3.55 ) Tj 1 0 0 1 214.099 439.899 Tm 729 Tz (\t) Tj 1 0 0 1 233.3 433.899 Tm 86 Tz (3.6 ) Tj 1 0 0 1 243.849 439.699 Tm 738 Tz (\t) Tj 1 0 0 1 263.3 433.899 Tm 85 Tz (3.65 ) Tj 1 0 0 1 277.899 439.8 Tm 748 Tz (\t) Tj 1 0 0 1 297.6 433.899 Tm 82 Tz (3.7 ) Tj 1 0 0 1 307.699 439.8 Tm 736 Tz (\t) Tj 1 0 0 1 327.1 433.899 Tm 87 Tz (3.75 ) Tj 1 0 0 1 342 439.699 Tm 729 Tz (\t) Tj 1 0 0 1 361.199 433.899 Tm 84 Tz (3.8 ) Tj 1 0 0 1 371.5 433.899 Tm 738 Tz (\t) Tj 1 0 0 1 390.949 433.899 Tm 86 Tz (3.85 ) Tj 1 0 0 1 405.6 439.699 Tm 738 Tz (\t) Tj 1 0 0 1 425.05 433.899 Tm 84 Tz (3.9 ) Tj 1 0 0 1 435.35 439.8 Tm 738 Tz (\t) Tj 1 0 0 1 454.8 433.699 Tm 84 Tz (3.95 ) Tj 1 0 0 1 469.199 439.699 Tm 875 Tz (\t) Tj 1 0 0 1 492.25 433.899 Tm 75 Tz (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7.5 Tf 75 Tz 3 Tr 1 0 0 1 332.149 423.1 Tm 62 Tz /OPExtFont3 12 Tf (a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 62 Tz 3 Tr 1 0 0 1 192.699 392.399 Tm 93 Tz /OPExtFont3 11 Tf (Figure 2.1: The bifurcation diagram of logistic map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 121.45 343.199 Tm 92 Tz (variables \(substitute ) Tj 1 0 0 1 227.5 343.199 Tm 108 Tz /OPExtFont6 11.5 Tf (x ) Tj 1 0 0 1 237.849 343.199 Tm 97 Tz /OPExtFont3 11 Tf (with sin) Tj 1 0 0 1 280.55 342.949 Tm 65 Tz /OPExtFont5 11 Tf (2) Tj 1 0 0 1 285.6 342.949 Tm 97 Tz /OPExtFont3 11 Tf (\(7\)\) transforms the logistic map into the tent ) Tj 1 0 0 1 121.7 319.7 Tm 92 Tz (map, which is proven to be chaotic \(69\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 138.699 296.649 Tm (The logistic map was also used as a computer random number generator by ) Tj 1 0 0 1 121.7 273.6 Tm (Ulam and Neumann \(1947\) who studied the logistic map in its equivalent form ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 162.699 621.1 Tm 86 Tz /OPExtFont11 7.5 Tf (0.9 ) Tj 1 0 0 1 162.699 601.2 Tm 84 Tz (0.8 ) Tj 1 0 0 1 162.699 580.799 Tm 82 Tz (0.7 ) Tj 1 0 0 1 162.5 560.899 Tm 84 Tz (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7.5 Tf 84 Tz 3 Tr 1 0 0 1 152.4 541.2 Tm 105 Tz (x 0.5 ) Tj 1 0 0 1 162.5 520.549 Tm 82 Tz (0.4 ) Tj 1 0 0 1 162.5 500.899 Tm (0.3 ) Tj 1 0 0 1 162.5 480.5 Tm (0.2 ) Tj 1 0 0 1 162.5 460.3 Tm 74 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7.5 Tf 74 Tz 3 Tr 1 0 0 1 168.699 440.149 Tm 80 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7.5 Tf 80 Tz 3 Tr 1 0 0 1 169.699 433.899 Tm 86 Tz (3.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7.5 Tf 86 Tz 3 Tr 1 0 0 1 297.6 230.899 Tm 91 Tz /OPExtFont3 11 Tf (= 1 ax) Tj 1 0 0 1 341.3 231.1 Tm 68 Tz (n) Tj 1 0 0 1 341.75 231.1 Tm 65 Tz /OPExtFont5 11 Tf (2) Tj 1 0 0 1 347.75 231.1 Tm 34 Tz /OPExtFont3 11 Tf (. ) Tj 1 0 0 1 348.949 231.1 Tm 2000 Tz (\t) Tj 1 0 0 1 497.05 231.1 Tm 88 Tz (\(2.4\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 317.75 53.299 Tm 70 Tz (9 ) Tj ET EMC endstream endobj 79 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 80 0 obj <> stream 0 ,,yfҁa[6di%= xu`}"ᆅ|z`ΠkcgH/11c[Z5H\Ъx2{f.pٜowCD8KUgl")t=i:~xNjV2)}Lrlȯ[YB#$%{ ;ϡb=D"+/|aN; xۣw #4_ 4~鐌ۘoMj)W}Qhޣ%;ۻQ,>H&Ħ/ڲե1쳢=9#'H,ASȥ07o=7H4<F \p;6Yɠ&@*Cϡ noi߈&YoL45s`Q˂F[P(Jk`=< Nbb!yur?x~ǵr#ol2Vک L7p(.9겇q:IM_bE7x%[x ,ꞏ7J#Zisѣz5\  GzG+T2֮yn"{c$gG fHShrL,#S7^$fN8g& nQ̂ y 7Df♇Tm&oK4+hF;ia^N;l`eO*'юl[$Yjbc}"_heW=eSF:NO7s!¸@:m[4/p iw"T^w!%CA棥ؔ];$EA3%vC8Mŋc'(̕_"v`H_@W\ED~P$Z]dg%ɳ*9M";ҫq壼/-<-6}GaQh̠ E~U֦\\]kS'iyr-)iص`G77Җ]:\i|^)FB^=v L~.ݠsKSF3ȯ16i@.5R`[h^jL/9^}IL*}/@A|J@t{W,P U&uCTuAQ;ěDw^h d:+,e|"5|)u̪в;8Gbju)A8 T -w)ATFhv7WSp(gdG)EeDH|٥1e69_,?Kg91(-p*tzAO\)~raxQ;T0T蒯)ZFWmrL\-(R,ys4 fN6B&D/rBjyZ'b̨"G=|0jl< ҈G!%7aDSSǡ\tؘJFR; aYdUlsp䤔,p2T*ʨ_tWX9q2w(%l%mPjL/CVO8ذ׳#rsps7Ӭ<+nIxzn~.!xad`ISZLK,*zfp4w#,2\q0̽ mMTmڴbõZ%n3هUuEy/m.9rq)+¶('uZMӋPMX$q!I+e0BUepΰRPqz՗#vk}b{©cʂ*b:pE Se+66wB6qDa?K⃣QiZg2MYy:, J=]yCg@wbZ#3EߣȠxW?8ϋ P4$ X#3Ҫk2WWԺl/, :)tm7H kZq0$ 9m}[ y3лʫa \+fkr2f `U`X{}ŒQ8ښMcD)aZ6b$>2#Ekz^FI56lE2cz1 +' FcZ83  ; K]ȚZO[Ja{kZ譕4 ,=eĈň|b]9rameLaPX꒡#X 8Zi9>n:ưpJoTљ;XSM;fba}LAT7Q@(UX?|4v]wDnqݜEVZ/T7^hs6jEAt\ >{kx05Q4wfɐ+\WE^wuNG"M/y'/ zgęW75L940w,tyo#N)fm<{1SH%FÒE1Ñ?ʪ8϶n7kݳw,v%O5ѿ]e(doPS7ZLWc2kou:&={Lf>'bR"u1xv@V{/v!y5cm`OV@鿸֪M9Ã/b||;_>;|*))*y{ڭ}Dƶ_73pY)6\G{*HI@1G@^-U2YtBiUSYzDih|]&*n9^f8)(Usɔ[enP^$1:ʴA޷LM]mߓ tB`ϊ}!_3נ\l3ZV.?y!VU _osA>,I.>#s*!@D1Bʏ ۳{KHA^8>+ b`+Ԇ El ẻд h7$T7E#:4ҞՓ:Eьvʹ4ji=o1چ\ҏhS/yc!iaE rN' -o'|J@PC'+zѲTμ?^%lIK\9 =(5nŸcpv2RYќN+W^" )6AKS; m$:~X?OƑb9$ڑ@@U!od[Z~ܓK͏kxxKK)ElGΝc$_/qA#[&{g @yՏ7hrw͘8\O^UXܪc'LT0;LJ)|T/Jɽ]+ 7OASRoٍ3\̖b^cg ؀ N*c{M(  .]i7"(-t72;hLG~WfkXx<~N*Qy%Ʌ)Ƚk5KKQ!GI[irq񔌡{8*bPlsŔ rP}\Zlf~stl`Sƻ=g|P)hf'hw+؏rìb*Zv`6ꅺؿa}mPGߍ4>oR9Q/ p9|_3+TkK1 OO}*qg ea& x瓇p_'F3 yº&gxct۾zA_/Fo\00 } _yp 7d0ݵgsOī+N+JI!=S%0QfwL=G`ywLB8<_[nsX Tz؛Z(#KԮGl3Ñ,3#yn˹+$?a ژluk ןf.oyw{^&$Ԁ1BsQDqCQ*ؽ:(*r\mN&x 8m22\s<@?ox?(32j(Z3ѨwCUlI-\笹IGF7}F{+)z9!gTDVmh-ZEDj)n,FP nk?E PZ<ԲEfdLnE: ׹DHYuS;l󿗉aBkOC&eZdTEybP|9PFf$㷝7LKx:eu{$KǞ5R>% ܝM?vb,f+!-H=:RTÏHd`l Lerdzv+NSWZ!\[++;ʭPjF=3laR5>L/[}0 PC8~[ &XϢ$+!% )ݸEUh-NL?xm|%tj4jIΘ ܌#^XY7OnDqʶHf?utpY>+pQ 9Tpm$⫎ Y, SAVMT?C & [)ï-Fj$A"6M-R=GHr&N npN#Ɔocԥbn8!L2RS%:tp$ Ob28տO&\+KάBj|d:3Dͱ{Wx>4&(>etlAgn6қ(=FaI8+RB:yyС[r"d?q/tWaadU3pZz)i|q_q`rM75Zٷ_*JqG$,r) ura`ĬB8A&AqZhH%" YV3fî\isךyrI\$4R2oze4k4l7b3p͌'@2"kR@wF yBW܎5婲o>u0Eˁkxj 𴴲h\=z<1ٝ1]7F*a@WJmOyDoq?~~ ۗ GzOC[q+PS)KQ:% fT㧣^ro.}]kT9gPǭߓ2'Gͩ?~=͸3iw"'ϾN\{-\}2-o/4hd씨_"{" ne銮vaU'x'ܸ sY̌/I;'2Nݓ bݸm,>~;Y qgQUD FСĦ3 ՁUd4· xpv>% $l]z7%yċ "-|a@ź (vbĻ׷YEϦE6Lt\p## 'Te}Y7(OTHۂ,!%?>N1Nzh/&%89iе`kP /Ȗ{3VbY, hJB)pY`4RbPg=^4U`1"<̔=\F"QE' Q.~т /%PWZ̊S{lz/6txDDFA)2/we+K2Tͩܯ3D3cOUrP⦢*Sb~GCVZ8'!`G6aNnp[>yȢǚ^[Y0k ވkk!"fnhU`Q0o9 %;ݎhKGU'.I.9=LD{\`D4& .KI7<鹛9^;v@kĊbFCHES8o-f͆n=·H&LN JڪБY ,q U[vɷd',!Xs/cx|1??ofKC}Mq6^O8UC.2RVa]x$ C0pSZڧ b/b&_|o* 4nөy] " &~Ѿr %]`נ0&^zb* >A-aG0usSz3S-S\W-IZ .`@JX1n0sV[꯽I+!TE*vY6fD5eY ِie >yqHv/8׿jIQ޸)/Ɔܡ,n` !UAaYU28w Op{Z1<`)2;^` yv o|Mu+X)4u]bз@7c+㡮_[Ϙ(;PAZ\(<[_?1 ^% DJLJ[baKU=hƪB?cmKy):{|5jrS @y3W'st'- *qBP_@|~0@isB!~4w[ %iU[9d ^w1Ah"عّ1{]ȶ0^#.ұ5ɣaC#qt9}3smRU3n#-'n^j$QsGa5EZ{30\L3UTF.wj14?$iRN'@'c$˖i>w WjPH샧o05TXOA &6ݳsEd#hֽLo 9z_]Ȟq{ Y=c`m6^v0} e7mT8!p\ ov`Z@Gp-Yљla'@=,zԉ-?%V7ׅw 2.J7b\4{{Z$c<-__oזB:EHՊ+V"Ht_v`gKi|e|g`r۵vVm,|o ׍N[YtV7X%7NPj^Jb@9vOYVHh1qb \J!l勷+Vem ?(Pc*sXeN܏BΘ(m^CDp:+Xze9L(pԐfV,s$ݱ5\X<dV#ǖ0ܳ4!ʭT2Dם *6䝉KzAwonx5k )^*> ߁U/`O?k#1]N4;b j|oHPm"^G̵Q$ q`[Oj @f.-% 3;3&,D7~7<^k&gWx%_<,\D3'qMXq吠 n1Lv7 6`@XJ:I=t[G=&s{E\m㒓2㌯m)Rab'p@ZED8b* Rr+ ^30ZN\%<L`+h눵vʆ fN@F`$>^(%mrJIof W`5α%k?9q0g-0Y_AAv~%kY,'.|ɍd M'b$dj~b=ΑlfSz"m."łzD_YpȄ]..vO83p:n0-@b&(ؿ%fF? /p;}#[LIy;o22Ww&ؚ߱@hK#stu ~)9HMJ뭼_[™7/ 9VܿA"QDx90B~~%jIO`8Lғ~(ly 'T:l[6 |NduiEz6Yoo|C[&p$: QL0#Nw"?[cľ #)k1|2P v ?5*%"3T"L1A@ki?o2nS9̏;Xܽ0n..|Yx_>˜o}Z,=0R ӯ"NnQHpOaCus]d nFBOG6+1_!zB<*(eiH A YzN&x! edFB͢OOj$$109GPSE*E3vZRD#tRy&%ww$QfH4knw^"ω DSїaYhpSϳ>4۸`1ؘN]1(8̀$,u? {jJMֈ?oKJJf5 $Mi՝T{;狰gQŎ鲣{Rw8]X ?Ah9[CUӫȞĤ*;^Nc8͸V]}ڝp٩6qˤb'(3 kKm qԜջ/?)F"."wnlO ݈6Nc 0j.\]uTx.)fZN gne>)8-KTnSX]S# A-pADc`o֬߯|E{!"W^^} WH쵟} N0x~ &}Pɦ(Ah^ &i'k=p@%"Csn-kĹs%/{-GSHUϱZv,/$qIXKC"Ѵ,ңٓ<&IPUXH%و,FW~ԤIYAE(}3pu[zU .UT",VZ? GE@ ӛ*:f%&UܱmDvnP%]roPx$uuP.#=>27!䍁b5& c嚔y6M0Ȝ0}W^AWxʾyMD[s~vz<ڵ-AM::TYR7 cS7`o݀ݰXr/| 0\a^ ؛Yz#Qǒ1@"w2^9򻽴qg}.IB`-…@O,hAKxW/Y<26MC?A9%7nB.A&n566޵76bn8h; "j*.PjP)*EbNg*rЕtF |WݘD,uD WzePA.Y7 b^OC85uM:czwU@)5_Ɨ]\MOYiLZv"<)nDp",M9cZ[5SS[Ȏ1%NkSöDJ\:D%Ǯ $'WLPB9yq&TXbÊu)6hU.~ѮYzPt6ܕ7 2-Q'jހ,rv:cƒD#]rPw:u\"\E"K??pn>RشLjצ+(:n_7ۭ7hTl%G0 b[] Lm^)3JqQPr46᝟e()(F\M&+kqTI` PjۭynIFWD"k|ZZ') >aEnx̵'q˟!tS;l(u tEYZLSo^MtJfhAX!7P2-]9-eM"Vl(|9@۬N~d>5/Hʀ;׾Y㷅4MF* FY5i *~[m]%I 0GK PlkUO[o_% 7:&A<|G,zܺ4f ]{5OoNI,39|]հh4c^3=}wxwr/7p:6X`@%SabꙘkK*5 95 5EB Y+CL+ Jipl:H֜i2.FԨXZs)l!N&8#z Y-/#{Dy)Xԫ-_2aS %T~:N(':ym34T4[@(_5֨@lՓ8g,u[J"^8ױ ?rʮW!{^?*S2<4]45u:}/-Ԃ, "s]`7jo`5lle[4-^-kش| FfFΜw`gYmxO,4W04v$-ϽHnPϾζ88H!Jcw !<_n^5;> POX7؊f V}-p Cs. # tL͊[Z~77;='7F݉9JqM{[kJl@O`YM4M:+*ca&<:*ijZ&rb-I4ajPѝN;DνOH|mh`Bx6MY2myxm3)@:ydz$˨Y6Zn ?^+sg oG<"rGB|^Ĕ@?{ ]obgc# Ԛƥs<[|ģ~*{iHx*Ί9m,R}D=\yN)Q2)5A""h!ZY(U5xVr3"}5葛%^b/;C@< Қ1L`Z b7lir"~5뜱i~@mܤ՘k=TN7| e_UreHVapI7{bBdLU 6~{Α*'վ1='EO$=DC2;8yMҀj?VF q\U@Ҷx? gړZk6s}?;s3 H?pwʥ15K6"Zn) P#dDc^ş~>0yI'+iM@s\,>\X岻Vk%|&37O2BuceeyzRwJ ys]R (" & oߟ^/X"]b!Q`oYmb\Ram8<*P<}}-Pi)~K;"䒬q|_-z]*2 荱[S&!U+,(ւc&G*EMMY? ׎yW.jíTtFTO:ɖN]5Ҫ: LGQ2`:./5\;IѬ8 JoMdbwa;:-Jmh/L]p)ګܰKIAj/S+Pю2'ZS5n!zAhZ+r+}ZN7{`PfzIu:䃜\0vq{[5 +eex@ӈހh$ZCzi% x{!1L҃gTM*p02:_ho6=bq3YkE= 1мj?`} x`[|Qx˞E 9mw>MJo]G\Z7-Ա͢[]3ji5l 4^} F}zW8:&ۚ t *~Ekmg ^So֙K@J] Q`ƹZ H2G'Hg1?V`$iRgg5 plDΗ(.܎{()kb@fim뽥42M ^$ &v=޾լX֚~o:]+-`!.OEl3EGsHrBpB)}Ёt/SPv:8/R &LGs]v*CuCzx_AIDL5)udϤRUv3#ۑ}u\ 6>K׮Jo5Ϗ*pM,dhwlca 'PޛԈЕc{"^SéG|O|E8ү 4|4My"#(AL9 43bM4=Oҧ0K˼J2#vy'4s"JN!#^6 m a}6$st+EsE%=BWN".wZ:),CЪ|IqQG UXoŹ4w'EꗬY62A=\k"hȽU&na!,Mw9ԎllU@G7)_Q{|my֊wF ʞ.]}ջcRVK*9QA"?PE?kXL˂b*VJ},[v3>=kȫTyn#'rHiMD9W"QkfQ0RQq؜Dmy0K 䗾QҲ=aP|ٓKAe:< W,gEu~- (hsAol\>̰yr1|^)R6Uv I5-~|R$I5K4sͩ;aulzvJ|E2ꪎE-fqn/#y ><[e@Sw/$Ճ8 #r>@Y//eƭ0R܈>Z h7] =עLLfP'J奚G~!Y4XGhDxO#-DtC4˓v_'{u=,eS,8iI>b/КY5%~ **<% |QU}UȂ)fFj@h}E9śM3hIw3MU(-pZ7ؐ΁b籟$M~(g\ޑyt?@Ojq1M >ZP;-m'-u /Bvn5[ #И Mn!!f,]V&gy :xr̀< {.#/sWu/0wvg^f{_A.IþNE~1EW{᭸4`A3P㰛yF g(YmmGUMH? 96{!SڥrVnƇD$o"3&.+wճ;/v"Ǻ`@ utڣAJ aZl.GĖNic6TDJ$zx|3)kB!;] pZD vn٫eӷof}aHA`8aġR9<ʭ0G'WU$(J .1M*Ši3b+P%Hb"#P~eg7Q1(g/J\b$u$NEכk=ZG7pMh2>Gl8Զ^mIY+H&USwܮ->1]ׯ4("xE%q5NPi=5-ɱyy ' 4ͦWU4Ekk)zQIر0 Xu:>N] h8n-kK*n A®"%+ssLTR Շ7TH.W}~+>ǝ||Bw!Hu1DM|eH?ϢQ e2pAp#%8I)Ԟ`\|"qM3i_;=Q #*~TvK1ч}AG:EFP,JJL6ֱdAwEJyp|F $zѡR1#0;!WEmf>oBwFę}s+.ǿ*Tcvj+Cln !U&# Aqɜ; _i?ȮIねjVNJTG2jQ; gA=棉_1Zpb[pDFrY(E} ;^7svi1E?^W@KXxۙ@ ,z:q4} ]ZK! \Ԕ}EBXT_,#*$\ 8 U&0KC|Z-Q} s}DhHq4D2 +5 z |_>=@&ڶ/'g!%;V `vwi Y|IB0ZXTpuדiQ,rU{V^o;~`+P4s ;\oeODwUOpX_dOs^#i@D&45nQ38kZZ9Ԅ#y؂^q57qQ.|gKuU*ĠYD8|W"Pp#KC"9Q{pE hwGw<5W֔1(_B-zHVQw3vMX$G-*4'ρY8 *̎oTs1!yu#?NّJMtJK#q-ŕQZOːBd_-6p'W&aYd+%gVc$5gę`7qy[x-; ezȞ5S0ӧ)%'ijܱ᰿󚸇-1yI=<\եLL RE=3dAWQJxxkX*[Ptr\]Jko>GL,wx$2gy#kDހW" 7Z]RȶMJm_l>Db5uώ{B?a&za"ifpJl7u0q=yY΃v(D>Zu님Aˀ}2VYv$P dlaӜMr9C3-ʌHpg-79жD6> ,eLSdķWޮC"7} DŽ(S,.0 SX;uleDd% yoS1$N@KcA)_k; T8A&qƞQ*_lQ"V}EhJl$vhS8R=u [JPp1{wA.b  ]_AW͏TtEd3. l:Q542乁"Wuq@K;tz68 ?'ΡC0oJt>x?]&MWSl JJ0Akӱ(zXFhR‡4CZ m ,G5Fk :/nD5n[$^mvII1sBxjӁOS3[NYYǰ(XZ }rk֟y ='*xG%&3X庁6Ӡ81>pC Sv ˠOs9L43.Hw\sYx|(/S$t`M}yFVGkMXJ^ o? #A1}nh$s’`_nta5%" ǻ7+pM+|,+΀A1b2&BB_r66^Un`hA#at9Nј1\A]:&$Ґ$.m|pdRMI~V޽+ b8(b܇n3O'[)`20PbrLo?LzDQXrQv2 ] `Fܖ2lh hB_$ lrS 5Y`Y437A#'kG% B_{A_Ybst\X5 3.~%Ʃe.E g;%'Y谂@T8d*n -$q0oǖBf[X VRLI/GuV:)lS*N2h߂ӫ l4f_L ތlI'5]=nb*<֣|pzɿ܂<OR«KZMs9_`̰Kvm+jN=:+lV5oVU/>#Rvtq]r0syI]8|Qb| %Y_SK]F..žν҂]?uyS[ɻs>Kli~wVf)C(A~F̽ŒTf1tP37؆NPbxb+Ie pR_e0P(qKlyl6F@,J,SYB[lʳCD1y+xH0FAu*yagMヨF ;47YiT;FඋV zZ 9?\fŷа/|ėLA`_i3>mqԥ&&ո_7PݱիyFi‹S6긿<=l'lɦ^-6-I޴,/\S tft;hg,7HvIȧĒTjVȩއ1z,+}GJz; Kbؖ5~lRi,_zR Un$(ʶ%м4i?xԧлXC-j~+*|oR9J2.Fg? ¢>h,afxGNd̾,iYk?^ R <@G9:᳆DJcz8.N3Gvkx*`+zp Iw1{^Q`!gIwX捖9 W5,,&eЃ )ޣπuf 6ne{L״ +n(,0 goC}{hlyv{%Aơ[T:Wj? nlf B)4\DZd%2.픤?W@9SΆíw$Xc(pm71e8C=Koڄt_x/Ng.,z7T.6\NKopva„?}8dæI:X00t^ UŠ/>gusXVMOqNN-{b\HIOsGCu@ޥB@@n($h&&dzSz(W!oѫ  ǂʑGiub+_IIElJh  E8 FT@9639_Ue U^=)2 Y >+ljxCybݤJF ڇ>" Nu:UkK_=f>T q(s I2k"6L1ߖQxT$Lw:t7k9%`[k~s e|$tI1dGD5Dӿqp4JBcr/!K[.,>'.MPnXsnh]'ϱOxzZ__T!GUϳ7ׅw`Ioލ?I IvI(-oppH0O 碷A0R2,W,w-,inFm^.KN7@ d˗v^ 8L 6L2 'Vw2-k.R(B 4C=1{3==o̯L)Ulp*2o6|W,0 yFE !OFKvxQ#׉ر8VLHѝy}ۗ86:)iVOPwܐ@+ (If( skM{b ѱcPIR4W8Bz12u'֦[ٸڷc!=F .^F#&?P-ͯ 0uh8nÞ$1h~^f5džay -muzlUWY*vT70'x,#₏s4̴[Ut8U!O<4<1 N˸ȀiV!]4n/\^y1 ~,*rw`á"͹]bD*V6Voڼ{0C)K#Gwyxc`8}^5xl+P0Sstr DH7F>F MEYSj[3?FEca8̅KKNfJ4Vu`J~0d6qY"#2 + +rH qDU4ye0p!vidiNEw9.k( +9&UvvX@0^J03&3;2w\~@Kȩ{\6LesŌ5Xqsщ}s7o˭~ svzq!Mu37% b^٣Q֫KsEfG,#jW39X5:@:_3 f֦l,v~Z,,Lx9KLl ݁yޅh>O" ͊*|1 ǧx<zxkɬ >c1Ε3@{BnB?ClB}JӐ*5DzW+H1})M+9JÜ} tX؅n%ӲwyLB)SJs#IϽ:Ulh?tK>ډ ڒSɬ<3 V}$!`Kk:PU`7dcGD 6Fs#\7w|ڥju#: ΂ǧJ>%WY-SN:u":'"E!_CɈ.6sJCx"#%I;W%ܧhm $MRO-{j{IT=$Caf~J-pK ujyp01,;3{2]${ Aquݾ-~ ) ]bOdf ~Yн|y!yHX(ǃ#94 Nyᒰ0Ȟx{klM-Lqh$U2vf``3toUk˻vyf1Os7e0bݣ:{Xo|'ZjrHw=Ő ;g&t`k#_͎+mwQQMKyQbrM@Tn4f'NH:$}g<]>>\j'ԐfN5!G`Z.LZײR#{uˆ%tCWeqd ^gIIFLc.8$ķs r2fVѹNٕ:԰5*' fظr5Cx_3n>e y1cKfT!%H m2Tn$?z9aZrnq As,0%!>6PcToo>a8xoHi /qu"Mt~)Ьqn5J>bVk;Nkʉ0Eq3e(ܮpI4QLlԌAye9ֈ*U.J6d9Č`- $%A 4́`y_Yꝡ2/]rn{)#$K@ v''H+p?T'3 DtG>3`6J2B3{%@k␗C.{ikuv4}0>%@25b;ٓ!,GܨUbO:hl#[]rF$N#;'&=xm5GF1lI9 j.,C_C2zC]뇦? m3D9YDDE1ɱzuC翾3 wGwoAUBӏ?_n\:D)lDvzI"xϢYvP9٨`UFZ_V`b)̅yɁa'"‡j˯SAnMtgʋv 2C 3`agM~=$+eNąا-EkJ\~d ,`cVKGn]n!h)_~pMWV 3&9$ClZ7ÛPCnwG=`Y "0~r1)r0!q<e8׶ф"<2xIO/{yGD}X ?ݢ4:' kty"e|Q_ھC8V7|Iy,=J3ymgnC> y?ds\p*hgHdvBny'0޶F"mJr <9":ʖ7Z<>!#<_A]xGXd,'ӳms01Ynw@MO5 #ܮ+̨9~_o"w FIm-Q&{C >!L+"?٭o,汹tl}ڬ\ɲ,:8-3ΰ(8<=5;bY z|^9!+5kz+7#р5चҐPFb \ 6:ɖ7Hցt@Xx5Uz. u`w!sQr@=ʭgpI2ⳢjʼvS6{Zn=v9`N&İ:ތX\_$o!J9zG oCr7qP Aq' ;N~-eRdt#^]kb67\Ց^\8j]‰yL4PvO9ElB/bGD#z$ k~"i9qےh?.'6(>7։uf.\6KHe\l2 ĸg.m)Xq*d6r!lT}tCqDyWrX~Z2=+r$v('?/>ltVm+veGx4%f1Ph8o|, ibA/iij2oj,i]C)f*mw11RNܔ:{9v@5B2iY$Q}z3i6]>?︐΍?,S B PE吳)' TEN5p@x /x}UX~pՄJ?bTb*?bCIv2S9ZxcBpp2le*tXBOHGw>Ʊݒ;&&YfP'&+2Ԥ&3ɾ|>>1%,/F,_<:F]12{\I/P@>aaM8T -h,1誵8l922C򅅂L>!tm DAma?vO+OPwđ9qrO֜ HM7(ux>J6-P wԶZ>z_PG0|xP6t#U#H2/ێ|6e$ԬEe8􇵺3ix샿W d}+,AqCT>zئ VO/6 h 7}CCA$'y񭟛cb r}9 ػSU$Z1Nvj:3T;,mتRL4쾥Ib.' [H Bʪ3T/+nzCp{\:;S|ʊ Г4(^cMF-ŴGЪt!3v:)S,T%҆@`tpLpHb&R(;OO784 @uz1+fO|7$1A D,6ױjg`/aT2Uʴ9\n-Ig'S? nřZ uᖧ5^< sO`,ok$,~Bt}+*&3vrYD8*n&++GM\̹5;5*w$8*f(oa6ͯR4.(,Fw(vHxNXk ?k㡆^j^ pnBVwM{ AJYy/F_-5Aяxzc\tBXқQ I?!E$2NR|/,3Z"w%xq$J^Z|D/ȡ J,cxcVwlrֈXLUH~˷pI~W<=TZc;Vz|ӕsmF{ ͼPNg&Z!N'"(s'w(2ƍ-bKYΉ[BTP$WYFC ygU~lB r*>΂4OBZ)H/ȴq@0- Ş"zT<[,%ńW>ܿ;ϙ%.2W₴3?.mH1**'->< sa;e1QI.^߁/3X8xɟ+lQe$l:L0(z6/`LVsԦa^ :Vp@TfNa1ÌG yg%zWAsw][dig7\ΣKQbP5BXLOvwQ(޲k.t7D x= xA>Z[@FXޚ%S{-nȗinQ K2:?22XUzH+D#+1G9hq&؜qJl{5U4%/^D ҂&҃̆ #]{hO O2>aG%*wHQdtp~3o/@Ϊ bɲ!H9lK:W6fG9u:=Xh/ VC, *\?p-*ۢ%"UI KU߅U5vOj`9C emR3?q#6Ы3FP_Dܼ3Kn(ZtY Kxݨ<}yq:)rL_s2tٕ0kns)ur򼛶YQcz<= 7(P"@+? L<\`CAӣ>Q(=Ue-vaH>R--5+‡KK2o׀Y䀳?[bŪُ4x"F^kT*딉gl1#MG4&tA\yC|ЩC5sGm ˿m&ZQ7Yk,-F?!Cz 316ҘʦZms?\ ŋ鴽o ~~"-j_4۵.H4tB9p ;W+"$DzC9x]TwV #CV ]!s$qP]+RMFOVn}J m,e o'YXr3:} RRi@8$}C gD+^6X)YTE1UvCJGkF6^ 8gG?!kbbh̪$E]Y_J҅u 5>X yEON0DHky6Ne8mB܌9Ȟ\@),r*Ē81dmT^FJBf1ofH9z"4!ٰΰ]jР8oFWgо1Իv,z waʕILH'1, UpخR@IZe=}SxCgeY<=hS.^+SH̳?A|Z젦 YϷV7=u}Ø䦱O*P ?d5qxۮ|8dDB4"PZ^\uφH>Z.(9}ru$ƶf߼.KGor䇗cU XF{N&Fs![^Td2{kʰ.ʙ-|u(=po nj Ez4!E+).`esf Td4 P>ܨ>,':L)IZsPbZbWjD'䅅B[.Z}xP| 9TKH)QhȒ] of3~|yGyRrBB/BiғX*W,xvxS(gM[F?%bOjд:'ҒXqkS s۰}T%vK?'Z{iϗJ })mnv3e!Z憢Yr觼a6TzNJߙ[yTXwDA{cERs-/_uR3I5Toڨ'JlGa KgTdB2胩Z!Ϩ<+oӭKP,yħ_ZKءno \|f$Np&b1O*z9dL8IE\6,861 G \ OQ71E (* v,L,1%^;tZtjS}|׳1-2iF:=1s 0(/)`0$3ݕ|єh0^j5 WZmِi4139חnoєiQp~y_ >]%{ 4AЪM(ߵ *AD; 0m !Zc-waX7C`4vG;g)8F3Il̋\Zqe_[fZJn$MnqYLٍ|7Riip/ljI/.VqTﺆb(N/) Ԍtjx3<dV6jg~N` 6f5ÄLJ%M|1g(,7>{Oh!l0Pn.~?>@2-X_*ۚYl)7\65s$ЃBDu1dvI6645OP W9]-uDҘ(Z$2,CS b\UJOGTVpCgFq!u ̲8AiX:}:nr>g/UC׆F1(Oh\8C[hBvyKYyZ -Q( KmsШ-VJA0U6JN򽽅FyGfU,{S,k"XvY|ʶ<"God˝ےxF:~mlRdl=ed9rO٤mo"ر0T-u k=>ɝAs-($G+Z u`ޭR^ng<]t9ovp7}٤nJo[tD7Ή9LؠB9aGqW 4yN3.]1 4am,Sv^.Kt7gMPq^>\Zl&rEUĥg*(xENI!Zuf6@Vnw lڐ3V(M /fWPX:iWGfrz}-'PpCAf,\n/ baB [Hiz53K ogB8j=yB_ɀFNSY"xJ׮CEo,/v?*8OЈURq5';*"`ň;[*-%Jle`[u H&r[N9mY}@]P (UW.$Em85F$;b][fOK1/#ofmJodQR`1͒鲲Ijjf<Z~}\wpJCMj0[B[{:h+Q4>oIxVOa%{Ї\;aH5Hd:CkQn\q2c: )~ A%[6BP7 Œl 5!)3VYkidQI?CH(q0<Ҧޏ,; ~iGl+6-+#mw}]4cIPµtM;.aB:Jt[ ·I0c@{;)}$rg&?ǿ8ēz@ q;j#szI =Z0fR&1 [M0LP|uqt?#Gs;ON;!N_>=e֏~ڏeAi@, Ƌw&/B U4MX2u9[ʼnA׿h(5Y[,S7MoɶGa+kC3d <%8o3) [ST9FyFy?<6~C^(jшk~$^?6Dm ,FMX܊\Z;8fUzdH`U5q"1F-h|4Iy Gp=ILrd SJ.*𧔆]a"̪|μkC;Nw̵̰;8C-a6CQEٳODhUfݒ76bL7&e帢v흴ltVζD(6f[VZؙZ=6J?Ya~75*'Q敒Tmk\-~Z~WK)g Ds8mS^n ZS2!9 C*^w1 f;|l zH>HXO^LG%ˀ9?oA]}go0Пf89Ы(nb`аFop%|+Q_^7 5z|ƾ,Z_wyIRu >,9,\yUt6q!2rG!hZ–7̃Kw^{ EN}mL~?/%Lcf)B%U@3GUmOPA9]gEcmI?xZ7#\ΦXzyHMhVSs8Wߣ)gԱɏ gכy!ē,m7rf3C6U+̾I`)7+xxM#xL2n8Hx?hoGLnEw1ػirS:$P*efhI: :\-5>Y(nвh o)ZQVc({x1K2́q遂UZD|s}ԫy)Cz#!C\h&&*crjEA.oM@; j`͆/ژfܴLaRarBuhLCog9_Nꙡ 8%ck҅LgTzfRP­Եz P0ΗLєB_&(B#D0*s?ݮWo8g!`+O|g0Y.*664UKtR 27x?,li4m>@%$&@yXpJyfZN_bLMq?r(2k&yZ>iM5()C7DeH4 89NHl?dw5GK{L޴a 0&Bm$jjL1OTO\MǮnfvXG+> endobj 82 0 obj [83 0 R] endobj 83 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 610 0 0 840 0 0 cm /ImagePart_2037 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 165.099 248.399 Tm 128 Tz 3 Tr /OPExtFont3 7 Tf (-1 5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 128 Tz 3 Tr 1 0 0 1 264.25 248.399 Tm 129 Tz (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 129 Tz 3 Tr 1 0 0 1 323.3 248.649 Tm 84 Tz /OPExtFont11 6.5 Tf (O ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6.5 Tf 84 Tz 3 Tr 1 0 0 1 368.899 248.649 Tm 109 Tz /OPExtFont3 7 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 109 Tz 3 Tr 1 0 0 1 468.949 248.649 Tm 103 Tz (1 5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 103 Tz 3 Tr 1 0 0 1 156.25 321.35 Tm 98 Tz (-) Tj 1 0 0 1 161.5 321.35 Tm 97 Tz (0.1 ) Tj 1 0 0 1 156 299.049 Tm 127 Tz (-0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 127 Tz 3 Tr 1 0 0 1 156.25 276.7 Tm 98 Tz (-) Tj 1 0 0 1 161.5 276.7 Tm 108 Tz (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 108 Tz 3 Tr 1 0 0 1 156.25 254.399 Tm 98 Tz (-) Tj 1 0 0 1 161.5 254.399 Tm 109 Tz (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 109 Tz 3 Tr 1 0 0 1 389.5 720.7 Tm 104 Tz /OPExtFont3 11 Tf (2.4 Analytical systems ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 121.2 677.75 Tm 113 Tz /OPExtFont3 13 Tf (2.4.2 Henon map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 113 Tz 3 Tr 1 0 0 1 120.7 647.299 Tm 104 Tz /OPExtFont5 12.5 Tf (Henon Map was introduced by Henon \(40\) as a simplified model of Lorenz63 ) Tj 1 0 0 1 120.7 624 Tm 101 Tz (model \(61\). The two dimensional Henon map is defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 0 840 Tm 32 Tz (\t) Tj 1 0 0 1 255.599 581.299 Tm 95 Tz (Xn+i = 1 aX,) Tj 1 0 0 1 333.6 582 Tm 28 Tz /OPExtFont3 12.5 Tf (L) Tj 1 0 0 1 331.899 582 Tm 58 Tz /OPExtFont5 12.5 Tf (2 ) Tj 1 0 0 1 335.3 582.25 Tm 103 Tz ( + Y) Tj 1 0 0 1 356.649 582.5 Tm 48 Tz /OPExtFont3 12.5 Tf (r) Tj 1 0 0 1 359.3 582.5 Tm 78 Tz /OPExtFont5 12.5 Tf (, ) Tj 1 0 0 1 361.449 587.649 Tm 2000 Tz (\t) Tj 1 0 0 1 494.149 582.25 Tm 96 Tz (\(2.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 0 840 Tm 33 Tz /OPExtFont2 12 Tf (\t) Tj 1 0 0 1 302.149 552.95 Tm 94 Tz (Y) Tj 1 0 0 1 308.399 553.899 Tm 116 Tz /OPExtFont5 8 Tf (rt+ 1 = ) Tj 1 0 0 1 340.1 555.85 Tm 94 Tz /OPExtFont6 13 Tf (bX) Tj 1 0 0 1 353.75 556.799 Tm 65 Tz /OPExtFont8 13 Tf (ri) Tj 1 0 0 1 360 557.299 Tm 36 Tz /OPExtFont6 13 Tf (. ) Tj 1 0 0 1 361.199 557.299 Tm 2000 Tz (\t) Tj 1 0 0 1 494.149 556.299 Tm 96 Tz /OPExtFont5 12.5 Tf (\(2.6\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 120.5 514.1 Tm 101 Tz (The parameter values used in Henon \(1976\) were a = 1.4 and ) Tj 1 0 0 1 426.5 514.1 Tm 85 Tz /OPExtFont6 13 Tf (b = ) Tj 1 0 0 1 446.649 514.1 Tm 99 Tz /OPExtFont5 12.5 Tf (0.3 in order to ) Tj 1 0 0 1 120.25 490.8 Tm 102 Tz (produce chaotic behaviour. Figure 2.2 shows the attractor of Henon Map in the ) Tj 1 0 0 1 120.25 467.5 Tm (state space. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 218.65 208.299 Tm 103 Tz (Figure 2.2: The attractor of Henon Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 313.699 52.1 Tm 85 Tz (10 ) Tj ET EMC endstream endobj 84 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 85 0 obj <> stream 0 ,,]((b72u={_1kɕFLq23\~hl2NJ=yh\S DHLiE$5˄u>E7 @|./@hr,1XD76v0Yg`dm_%_m7A^0{7#"$ yԡfQ"mRR ߊjɤ@ /m=#(D/5*~kDhWlxlz}zΎA!`(67 a"Ŝ|+Z֢UF ? FsJ.=Wh/?GGy;[f \: h,v=pwvg ɄU@)#+إj8u;'ii>-Q!VT[.:e!=ޱ瑞A$q)GmFo"k|DZѮMNL€CZe kȻV Wy/PB|:-IxDPu\YzSU| NE/d|Y"e8rrz0t@<ܼa2NGT!o 5DVىm3V3 0 DDC| F@Hs;4{pbR%#JT!^he tn0zI 3م+4eGĆ2B@KJf52׼S;bvYm> +eĢsTGJa޺Ќw7Iܒv ǏC< Rmt]m%A.HVI{e醫ܾ'gF}dK~)-*(@oiĞ0#Q MNK|(/=yHghsM/٧?<؊?KNΪ etUF5֘LB,ʳElC>Q~Զ$O"ʚ.vCt0Ͼ@m'I'n.H,QP_uD_9gf,Bx Ѓ]r6In lW8<-/okwsw:1f#P9-d`5;:?AnP2dtSId":k!`nr"/{Y= NWk7~lG}ԁb. 7L\3ZLP>Rסy5<ŏ Bc<1mHO qKKFGDɄK_Yb;>Sf.FSIvM;wYnzaJЧ+ԜAn:="#p~+P,e2+icȖaxz^AƗ=OE@6p}җ' a(^rU6/sm8))P Lf{[|#qT%qRHׂuޭfuU֦f@"aMcPנעI7ez*[ vKϩn@4}kg<"KJedz3"(WY xe fgݑ%QR$?$ &%]‡:a%n^MK&pGf!!4nCUT?PbKpƓM\TVx^C&5Ize/6"#V%<wI(@T+|b|bi&GN |69H@ WӐՎsw<ג>=MS'kK舘G\O0?5U؄;;CUxV-ƴ2XIO͊@qIOr6 !ym;„jRMuQ%gn'U~R_B|/ky*X]\%oJjH=l? mp>]W?Rܺ{mrC L3œ> " 8ZWq! Bad>Ir#9W9%~!enHY_,.(K||YZiyuQ%:4?^ ;*X/&ozdNK(m#_|BOVa츘7|lËM(7+S!r-lJ"Pl)#[juuY)꼺[﷔-s*>2|w2IT@46'*nV>Ccy|О1[d^u!lx\HR)r=-e q=F|~e搜!4tl2.hTJ,'9k)P fӖ4H .%$jכF&MH2=^\vdž=~N'Q# ?=tL5*'*Ȍ'?@84@ ܆ocH8F?^MJ qAڞ|0U]T?D= e)ׅ/(6O;KVF=Yda@cF1ZoBmuHv^TཚxC >jh.,gE -ݵdZ1ݱKf77_j& ;bDž hl"i~hyw zu|/iX~Vw3Y'g~pPjk3i=m+ 41%S`r..kS_ɂ5]Oޑ:7jRrU3jXx|n+w]|b~w~JsIW둆'GM*=]ѐux(* ߩRmq8I鍯zĔ I;n i )>噕Ȳ&,1wbɦ0_= G* F>0 CQcaN,c4 %c[5ph#[P!6x*Ƥ"?eݧ>HJg?Sb`p˰[A)eԗ=۫ILtk.4׃J ,mH&U_fi\0D1Qq^Һe,!j\'o95D>Ky~,7*4-vdQsxi@Hơ~񛘱yD8 9N~1:/m3Lρi -E;բD!e/a-O`/P-ljJ/Ƨd55]kɕ AG=aM}qLI^lSO) Hs66A`nCۣQ!_[!k3f M~^zCVž0N  ($,螲u)UnH-#cEv!(#Wy1y  $oVT/>^ŀMAт2|S}8JY*mAu3Ej8 0 `FA"}j%;K1&F+j3,.`5+x{q2y/ ,i> (>jeG{Qoֽ b" E@fK"eh.3֑V9F5AuOP_z#B1Kg֔^]g݂Va^@iw!:w~S$A)SEuqJ~l7hV|5k/Yev\`AI@ bWjrE^2zr# asUhZiÚx]Q+lW12 H܀b>7?el1*un:ɧۻɍin_u N|lHh:Kĺ^", 9]x17<Қv||xVOS9UOd ㏍VsQiXn4!1[ bxu\jE |?C '^{G3 bN_MT2oiS1*>s$)ذ0Ű!A'.Υ"ɗ5&7G-ũ;7ۗ]*Rjiմٮܩ[<_}r\2I Nҟ( ϰ'b[K߷5m+3`x=zYKx,202O:3PO"'x3cI4[bsٹX= Qd§.!`D3e!3Ľv_rdq;M\-8 +`c}UĽİ%BkKQ TRjp[[0 :׶3Pj>(Z-³*)6E x\nE*WlM ce7YdeSFώFNЛ:k+%>7Za+.{B vD\hzB*/|""S<="N zie'hp5\}aՌF*I<nL62M1(ҽdfZ p C^reSveHú&BǃwӿҩZ?K9C U( 3hBOg˓ Wc#tV88b S[?ؕJm}#6 "YZjjOi3cHQvakcTtgY.+-eKQ@))З47ۡJd9> -q1 gK:e`#^-ewQ_B i~vt'+QI% \vQ֢V=,[G%,xe?+;ۭ#!we[Ǻ-MN`.8@h2ځq@Y✴\VNP4#[1( C6`Q50%М_ԟK>l>uԴ o&<:1b'I6 }ƴ#Ie!.*Ԛ^} ;˰$\E:@F(YX{eD}69qaxE=+;vѦp6[HB~&GMCŤ;ںX\RM Ex?lXWMH9#C+nU/OK@#*:F̫E5p,$``סGX(wV؈(%-s rMy%L_[ of\B3un ̇hXs^!aF WR']f_ C 7+qTqՃXAY`)xX1 }"SX{05EjVDp\ a;|qCfnݕy,a_Lp!YWw*&Y6F׏'P8p^ʐ\ [8H{onP]lvwd^eG/nҤ\w0PG):;PrTLt[0zz HƮ#KӒDv+~΀  眫qpƊ` [֦UV?Iۤo)@@ f_U*4c+L T*0sTT:^p!P)@}Ż~Żox2c :jYjiSuNichteL-ɺlʲWʘz?)#;yRryiXjewqsfrN4 %G#QM`׼  9ŗ83(rd;k}ćy.JZC,.%icu%ϿBv+U[(6_lY"t'|S8);Emnj!~^Frٚ 086-| *u5zYNw2lM]-=vq-x-͊2D?ҵMBDyNH[I@̤6D *v_ _|u9_#D> endobj 87 0 obj [88 0 R] endobj 88 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 839 0 0 cm /ImagePart_2038 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 391.899 720.2 Tm 119 Tz 3 Tr /OPExtFont5 12.5 Tf (2.4 Analytical systems ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 119 Tz 3 Tr 1 0 0 1 123.349 677.25 Tm 131 Tz /OPExtFont5 14.5 Tf (2.4.3 Ikeda map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 14.5 Tf 131 Tz 3 Tr 1 0 0 1 122.9 647 Tm 99 Tz /OPExtFont5 13 Tf (Ikeda Map was introduced by Ikeda \(45\) as a model of laser pulses in an optical ) Tj 1 0 0 1 122.9 623.7 Tm 101 Tz (cavity. With real variables it has the form ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 101 Tz 3 Tr 1 0 0 1 0 839 Tm 33 Tz /OPExtFont5 12 Tf (\t) Tj 1 0 0 1 228 581.7 Tm 111 Tz (X) Tj 1 0 0 1 237.099 581.5 Tm 74 Tz /OPExtFont3 12 Tf (ri+i ) Tj 1 0 0 1 251.75 580.75 Tm 248 Tz /OPExtFont5 12 Tf ( ) Tj 1 0 0 1 269.5 580.75 Tm 40 Tz /OPExtFont3 12 Tf (-) Tj 1 0 0 1 271.199 581 Tm 103 Tz /OPExtFont5 12 Tf (y + u\(X) Tj 1 0 0 1 308.649 581.7 Tm 51 Tz /OPExtFont3 12 Tf (n) Tj 1 0 0 1 312.5 581.7 Tm 94 Tz /OPExtFont9 3 Tf (, ) Tj 1 0 0 1 316.3 581.7 Tm 85 Tz /OPExtFont5 13 Tf (cos 0 Y) Tj 1 0 0 1 360.25 581.7 Tm 52 Tz /OPExtFont3 13 Tf (ri ) Tj 1 0 0 1 365.3 581.7 Tm 89 Tz /OPExtFont5 13 Tf ( sin ) Tj 1 0 0 1 383.75 581.7 Tm 86 Tz /OPExtFont8 15 Tf (0\) ) Tj 1 0 0 1 393.35 581.95 Tm 2000 Tz (\t) Tj 1 0 0 1 496.3 581.7 Tm 92 Tz /OPExtFont5 13 Tf (\(2.7\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 0 839 Tm 30 Tz (\t) Tj 1 0 0 1 248.4 554.1 Tm 90 Tz (Yn+1 = u\(X) Tj 1 0 0 1 305.75 555.299 Tm 53 Tz /OPExtFont3 13 Tf (n ) Tj 1 0 0 1 310.3 555.799 Tm 90 Tz /OPExtFont5 13 Tf ( sin 0 + Y cos 0\), ) Tj 1 0 0 1 393.6 556.049 Tm 2000 Tz (\t) Tj 1 0 0 1 496.55 555.799 Tm 91 Tz (\(2.8\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 122.65 513.549 Tm 93 Tz (where ) Tj 1 0 0 1 155.5 513.549 Tm 82 Tz /OPExtFont8 15 Tf (0 ) Tj 1 0 0 1 165.349 513.549 Tm 90 Tz /OPExtFont5 13 Tf (=13 ) Tj 1 0 0 1 187.449 513.549 Tm 70 Tz /OPExtFont8 15 Tf ( a/ ) Tj 1 0 0 1 211.699 513.549 Tm 93 Tz /OPExtFont5 13 Tf (\(1 + ) Tj 1 0 0 1 232.099 513.549 Tm 981 Tz (\t) Tj 1 0 0 1 264 513.799 Tm 101 Tz (Y) Tj 1 0 0 1 270.5 513.799 Tm 55 Tz /OPExtFont3 13 Tf (n) Tj 1 0 0 1 273.35 513.799 Tm 41 Tz (2) Tj 1 0 0 1 278.149 513.799 Tm 86 Tz /OPExtFont5 13 Tf (\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 122.65 490.05 Tm 107 Tz (With the parameter a = 6, /3 = 0.4,7 = ) Tj 1 0 0 1 341.5 490.3 Tm 102 Tz /OPExtFont5 12.5 Tf (1, u = ) Tj 1 0 0 1 378.25 490.05 Tm 103 Tz /OPExtFont5 13 Tf (0.83, the system is believed ) Tj 1 0 0 1 122.4 467.25 Tm 102 Tz (to be chaotic. Figure 2.3 shows the attractor of Ikeda Map in the state space. ) Tj 1 0 0 1 122.15 444.199 Tm (An imperfect model of Ikeda Map is obtained by replacing the trigonometric ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 102 Tz 3 Tr 1 0 0 1 209.3 224.85 Tm 83 Tz /OPExtFont9 7 Tf (O ) Tj 1 0 0 1 213.849 230 Tm 1286 Tz (\t) Tj 1 0 0 1 238.8 224.85 Tm 125 Tz (0.2 ) Tj 1 0 0 1 251.05 229.899 Tm 1088 Tz (\t) Tj 1 0 0 1 272.149 224.6 Tm 123 Tz (0.4 ) Tj 1 0 0 1 284.149 229.899 Tm 1064 Tz (\t) Tj 1 0 0 1 304.8 224.85 Tm 125 Tz (0.6 ) Tj 1 0 0 1 317.05 224.85 Tm 1088 Tz (\t) Tj 1 0 0 1 338.149 224.85 Tm 123 Tz (0.8 ) Tj 1 0 0 1 350.149 229.899 Tm 1312 Tz (\t) Tj 1 0 0 1 375.6 224.6 Tm 59 Tz /OPExtFont11 7 Tf (1 ) Tj 1 0 0 1 378.25 229.899 Tm 1084 Tz (\t) Tj 1 0 0 1 404.899 224.6 Tm 118 Tz /OPExtFont9 7 Tf (1.2 ) Tj 1 0 0 1 416.399 229.899 Tm 1113 Tz (\t) Tj 1 0 0 1 438 224.6 Tm 98 Tz (1 .4 ) Tj 1 0 0 1 449.5 230 Tm 1113 Tz (\t) Tj 1 0 0 1 471.1 224.6 Tm 113 Tz (1 6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 113 Tz 3 Tr 1 0 0 1 324.699 215.5 Tm (X ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 113 Tz 3 Tr 1 0 0 1 223.449 184.5 Tm 100 Tz /OPExtFont5 13 Tf (Figure 2.3: The attractor of Ikeda Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 172.099 409.649 Tm 62 Tz /OPExtFont11 6.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6.5 Tf 62 Tz 3 Tr 1 0 0 1 163.9 373.649 Tm 123 Tz /OPExtFont9 7 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 123 Tz 3 Tr 1 0 0 1 171.349 337.899 Tm 89 Tz /OPExtFont13 8.5 Tf (O ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 8.5 Tf 89 Tz 3 Tr 1 0 0 1 158.65 302.1 Tm 98 Tz /OPExtFont9 7 Tf (-) Tj 1 0 0 1 163.9 302.1 Tm 121 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 121 Tz 3 Tr 1 0 0 1 158.4 230.6 Tm 98 Tz (-) Tj 1 0 0 1 164.15 230.6 Tm 120 Tz (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 120 Tz 3 Tr 1 0 0 1 167.05 224.6 Tm 147 Tz (-0 2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 147 Tz 3 Tr 1 0 0 1 121.7 135.549 Tm 97 Tz /OPExtFont5 13 Tf (functions in Equation 2.7 with truncated power series \(50\). The truncations used ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 315.6 51.799 Tm 84 Tz /OPExtFont5 12.5 Tf (11 ) Tj ET EMC endstream endobj 89 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 90 0 obj <> stream 0 ,,0jQqJ srI{hmNl|P$P({3W`J8o(zEKDw\Csoљ930.!c֙-Tp y=Kq%9VXPzdJSֻL DwYssPg{tOw%ctm%Q=H#o'z(%8-0{iܔDǑ3mZxMGb$ 7M[=dQI:u\P=R3&Lzb 5#T[3@ݣL!1RQC,]7#ucǔ0z1_0L`rc?!~9-rOLIOAJL~n ƣ/GUȣb[u27 |Hc~Q|6zߠX7~w i3Sk]*%h B{zMOóhopydZ(KAVm3 ͵krVsE4;ŷ=?y?g2. s4r .Ry۞8!%N[yTpCb$GeyF@Rk:ERq1S[ C|q#CVV!i '5Jsau#.McU*WC Colclk`Op[.u?c5J$Sҥ'BA_24g5 ƫ:Q;OZpg!oS/,wi6=:rq?0y '6ӊ1c![zR. `ȠOz6QFʨ\JefxeD'o͂h0PL~סe+v5 } 90kc4-c+Dgfz }>&?>8k7S!!N3u!J*l/KY i][ZïDEi2;Y 5zA`P+&6mBUٙDSL~hD =R B2[boL(AL@AS'NF;5ydgPXɂo&Ʒ_.o@FBJ&vH.sHz*]X8Վex0Yn9J- ֵrIz . Eug>tABeޖ)NJ+WT\*EUV HN*MrX);{x'C@ 4uh>i"Whb~cnCŪ-20j ƆDI2T%[1:,9sVQ(G$K, *1IXWTԫf E@U&:[tȸ|S՚fz|4SzY9*Qs!#;sIA'0NЇL \7MK-?h_PwM 5"׊ jowlҎ[$/!z 4r żo$Uqɻ[=[s>[IslñIt"JgӼӰ9IX6ޞH718pU4泣2 SBL?LkOs8gg\z&}TBŸ4Zl+?qvz(M5 u\nY@cR,¥5ؿu鸩-Q&|{JVxx?k~pmHsP%-5V0[|+l XN7.rg}~\{8Y |[bND$?k')R".o%Hx *C]]-tĻ:ɃF5wH8o0? RY&;3&S,В Mh$B~hyK,=_P$:( (*BMS8QnfPpQ^@GQk (>qFK z'f3e Msc$oRlCq u0@EQ|qBjY>fea}^l~, bsn64~?l;f-/wd̜( t!7'욪Mv n ^2'R̵O4R嚝pBkICZj'T5 .3݇Qю#Q M@,γ9}``PD\Oⴋ !~cWW^ /̒S\q_ #~wKcmۤ|Ӣ?[GBH,'tݩ+,VAJ{};s\b&M96 'w@C+EpP D2(Z4hBEi0I?Q<{ %M%i*q/Xj.ږ8b- q$b3q Rѹw2["˧IWr79J\ˡ,9^OLkLY%PVepFr;IN!, !\҂Ĕ u^jHH Yt͋U:e*`>!!o{u5T\0AïD_$8m/L$r0fSm04&div?}Z= Ťw% 2WIMIn4qN/A/mʖMLDEzLNX?m׬X,o&i:Hu@6dH~XWK A]P=EV"p.C=z B,&C๽$H7 n_0ۥgb_ oZKr쥙0 Jz~h(@.ڬUw܁zdAJ410z@Xn"~Ѓ*pʸ^mLҵ/(bbޙAj9P5π]DKo홈,0ZҡFm;nI@aHthRNKZ>BZA= + sZ`펺{wj]&m [Wt!–BO8a ̭A6tnnf-56Yc:$%k(f n 5C҈ w! p~R_>%7<*ެrpæc&ky^2zq`5i;{ %ZnAyQ!YԚP,Õ"@!$J\sGUg%v~T-ypX<T/]O-<@T+R2M 9Bh1ѭYoAQt3L)926G5ڃ6ߖROmY|mvgICR91>\HX?nۆWךR"H+RZڞ"XwU>)M^6ȁ(I_(r{otYy=@ửZ=nrQ3!8OB OH0sk@8_{k|hX RND;(4F㝀.p"_OK'O KH-n4f6fwxrI(Sw?8'#Y@.k m>"D9 Y=hQ+(l6+hUT*ms$Ju!1xMtl+8m{u22eh^܇ͷA"=Z ZGM7hj'%%%j;Є/ J]cL7č({KA5e ssZg7lhu>SK%߻2;ұշ<~&(CҲO-G:.[ %a5ϊVRPS[&˫Nղ%յgJ1s|E![qH*hAEbfC'+| Ađ|9 \jo$MB :>p$\Wl5y8=].]*!(_+iz5NC[X2WN-bX83|Ē`9FWA,?g0*꺲W fܥQ+Pڵ'="5CUY̧:FƂ$}]~G'+">.:XFzzG Ձd]itCKP~b!}k4ZP&t75W&P8~8Q]0 d=> `o:Ugꐾ?S?]=Bț}@x]~y,[ߛU%Gfj)q=Ҫ].BVf2j?Fʾ~ A 07wmբCY͆5 :Q1:{<$gU}o_l\.!=,FgxW,]Cܛ+|誱C#B.-ЕfջJ1yۭlyQvGYO'WBP Λ£*RT C9\#objǿ z}px[1kؼ,VLF`e_sҘȱ,ngl6`Q6„Oߠ2K Ů*)wx0 gj#&f$?C{^o/riǵ`3,o  (hH{%eQI0M .ƴdv}Z&dC^承5:9]RdOö2ƵAa%!##h?'=Qu:x摀kIsXYuSJJ"ȫ"5pc[O=O_KZ:;;"R,05jn>gИ+8Bշ,KXWEmaȪC|2D|C*b ,Pj h;S?IhOLKkw@y|ir*Eز/,\B6o*!lA|zm8>aYhMFS탣 V1 ;-#yQ rV?#m_&E\=-Scɧa4z D $l ]EA)!%VQ[qxL?r59=S. )ih! n˸Ci!% oZ~T^AxE!RTH޳<;#ܣmAb+d5VbB,j/dGTYSbGii38tvQӬ'q7ٕQJZOHc\&֙F'j w]EI}SJ 5 ’zi-!gl]p @hM>ɚ.M0%dÊ-Ђo_j!KZ_-)WxY`曵6 r=\ V[ cbkg)PU*7.o2z^; gn\B=veģs 6u2V<_N(_53b1 T*jv+/-).6Aa(@xuȔ8">YԔQT o:ͱ-'Zhk^WjL ) :sneU"kt*t\J!%b?8 "3.#Tf70$lxzhkǴoJȟҗFQoHitya1TwJ&'aB*׊u` h`[[Fq7SI"z`șˤ|;3{9k'P(A gq竆u&RvpdW CJroC> U*+=vYҫzن*tf̈́_,i;|/lGyAn#!Y#'UZIa*hX2@޵,?\ZlehOb&ju`&|Xg [~f| j;:q5JH:A`Pdm'_"S ^5f+s~r9a=]ʏ`P v} cbq=}'nEۄvgKwRo̮,/Qc@`B1Rh.Qo [5v3Q*iްL/-@"U*LrYQwg=^|O&ӳv d"4V+sj#}sG`" B5uUjƘeXNlz5MB#RO3˓9TLQM⍾%in|my^ *SCiͭZEZ3vT쯼0, ⶠ8BK.[plRs.e!Qh,ڞcKC"MN?"8d,_Ɏ5sTktjgĴUZq, ;llw޹:f'3 @"kɡi~r$1^ʩ&IJIp03+4t7?`$0;Uv}nN @0ظ)@HR-',ͩ[AK?DOzC ejI~ h-Hj`Z4g5'7]]b~BC1qP{zw\4Oc](`agZ"؅@%rԻ6:adиh8qF%4  L+XB0mO#<"jDw>b&GZ`L IQR>s±j)"4<U[A ^i4vMCmũ !R@q?B_.ۚTj(qIF2|h9Zͫh:cՏq;>BǭPSU"STdݝ&e-gleexͨ f . jI KH4B{٥\݁z7iD?n:tMRZš Sԕ`+^= ,a5ZBнmk ״*;i?<*\ؙD6<=gwUB&H\ic[4|/K<BS8ToYk6x.~ 8цS'0\DGMKrj[sHyL0P 黟{Y* am(_[f A80NrJW@Bʝ i"?һ_M .)@ Wc`H-s leӦdZ [)jㅇ3fby5inl@_h4^ZWm %ڏWi3R#7%p@-.9m6W#J3nl0`="G]!gVs5 ɂeSVy* yr>iR1QGWjdG|=IsP!/dŰ}ىo̭P']6&?G05EtWaG;5>W=6Q[ѓ Ӷ+Ez)±Jҁ5N ECaX0 '2b;b ~{KH1ZZpEwE#W{[Mz4n=SvŸG,L}D _WΣH@N-bW[-./M>E%/xRlFzף+' !ZO=*%cZhaن\!Qy%^ͮ®å.ڱ)iW,'C-K<-J{n)檢`ôX4ˆYuWr"*ųm\RΘCXbI<-IoRwްMT42z]쎕a#ëkKK$SF ,~#n, $ꠍf7CdE'?u%x8o9JS91@2ͤ޸~'3=(sʰP;AQ2jȏŢ%.~UoNzC \hrW4,9(/9={rc= E+l=,Rǩ)5~ Fڷ+u[HAl%WǓbGKrQt 3D BBBPNt9[ԉ݂F~-6j-9˪JvT  YT2 `CT|G \9}ý %>\Z57Zʙ8ߪ fwŭ%J5-2y"Yq>̀޹Zs KFdoG;dȐ(k\hЯv):&=cwi .?o&[ G1gM)kVjqy!=S^uc GA"_ULeF٫QDi_P"jV<ь }Q!V Wu=>׼z>mZnI1O!8xA~SI^IΊ:vx>joĮu҃AFD4NgDzK.-1 QZf=[?NhЙ6\{}VAꝓ4J Zaj̻ܶt鬺_:5R |vDnU <xTG}s1?G^7uaUzف6Em34퀛< <-+f#PpbQp08] ˨7du9-͊ m3֯j&c|%a8HhuA@1}6^9''{H(D*XX-f:!IA,͗# ތ{leȋ/RFxu"b^=uME7ru)WyC&yL#q 0C ʺR-cT_A^W<Ԣ{WQB6Kvhi~;󥞊.`Ői dˬ5yfrPBm Hm? !t'a f9XIGB_\D0a9{ N_yAHW 5E:5+hƍCf wA&vbW"tg5.`f&==%bHkE'MsޛxܑnK{z~eu򻷺+@j b`Aj!6w+!R4 ~ŊȈo=W> endobj 92 0 obj [93 0 R] endobj 93 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 839 0 0 cm /ImagePart_2039 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 392.399 719.7 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (2.4 Analytical systems ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 123.349 676.5 Tm 98 Tz /OPExtFont5 13 Tf (in the experiments of the thesis are ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 0 839 Tm 30 Tz (\t) Tj 1 0 0 1 207.849 634.5 Tm 89 Tz (cos 0 = cos\(co +701> co + 2/6 co) Tj 1 0 0 1 390.5 634.299 Tm 41 Tz /OPExtFont3 13 Tf (5) Tj 1 0 0 1 395.5 634.049 Tm 86 Tz /OPExtFont5 13 Tf (/120 ) Tj 1 0 0 1 416.899 634.049 Tm 2000 Tz (\t) Tj 1 0 0 1 496.8 634.5 Tm 92 Tz (\(2.9\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 0 839 Tm 30 Tz (\t) Tj 1 0 0 1 217.699 608.6 Tm 92 Tz (sin ) Tj 1 0 0 1 233.75 608.6 Tm 74 Tz /OPExtFont8 13 Tf (0 ) Tj 1 0 0 1 242.4 608.85 Tm 77 Tz /OPExtFont5 13 Tf (= sin\(w + 7r\) 1> 1 ) Tj 1 0 0 1 340.3 613.399 Tm 83 Tz /OPExtFont3 13 Tf (+ w2/2 w4/24 ) Tj 1 0 0 1 417.1 617.149 Tm 1789 Tz (\t) Tj 1 0 0 1 491.3 608.6 Tm 86 Tz /OPExtFont3 11 Tf (\(2.10\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 123.099 566.6 Tm 98 Tz /OPExtFont5 13 Tf (where the change of variable to w was suggested by Judd and Smith \(2004\) since ) Tj 1 0 0 1 123.349 543.299 Tm 74 Tz /OPExtFont8 13 Tf (0 ) Tj 1 0 0 1 131.75 543.299 Tm 94 Tz /OPExtFont5 13 Tf (has the approximate range 1 to 5.5, and 7r is conveniently near the middle ) Tj 1 0 0 1 122.9 520.299 Tm 99 Tz (of this range. We call this model truncated Ikeda model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 123.349 475.649 Tm 129 Tz /OPExtFont2 13.5 Tf (2.4.4 Moore-Spiegel system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13.5 Tf 129 Tz 3 Tr 1 0 0 1 122.9 445.149 Tm 99 Tz /OPExtFont5 13 Tf (The Moore-Spiegel Flow was introduced by Moore and Spiegel \(66\) as a model ) Tj 1 0 0 1 122.9 421.899 Tm 98 Tz (of the nonlinear oscillator dynamics. The flow is defined by: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 0 839 Tm 33 Tz /OPExtFont6 12 Tf (\t) Tj 1 0 0 1 352.1 379.149 Tm 96 Tz (dx I dy = y ) Tj 1 0 0 1 402.5 379.149 Tm 2000 Tz (\t) Tj 1 0 0 1 491.75 379.149 Tm 86 Tz /OPExtFont3 11 Tf (\(2.11\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 0 839 Tm 33 Tz /OPExtFont6 12 Tf (\t) Tj 1 0 0 1 354.949 353.25 Tm 96 Tz (dy I dt = z ) Tj 1 0 0 1 402.5 353.25 Tm 2000 Tz (\t) Tj 1 0 0 1 491.5 353.25 Tm 93 Tz /OPExtFont5 13 Tf (\(2.12\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 0 839 Tm 30 Tz /OPExtFont8 13 Tf (\t) Tj 1 0 0 1 220.3 327.3 Tm 104 Tz (dz/dt ) Tj 1 0 0 1 251.05 327.3 Tm 91 Tz /OPExtFont5 13 Tf (= ) Tj 1 0 0 1 263.5 327.3 Tm 98 Tz /OPExtFont6 12 Tf (z \(T R + Rx) Tj 1 0 0 1 356.399 327.3 Tm 55 Tz (2) Tj 1 0 0 1 361.199 327.3 Tm 99 Tz (\)y Tx. ) Tj 1 0 0 1 402 327.3 Tm 2000 Tz (\t) Tj 1 0 0 1 491.75 327.3 Tm 93 Tz /OPExtFont5 13 Tf (\(2.13\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 122.15 284.85 Tm 95 Tz (We use the forth order Runge-Kutta scheme to simulate the differential equations. ) Tj 1 0 0 1 122.65 261.799 Tm 106 Tz (The simulation time step is 0.01 time unit. Figure 2.4 shows an attractor of ) Tj 1 0 0 1 122.65 238.5 Tm 96 Tz (Moore-Spiegel system for ) Tj 1 0 0 1 250.8 238.299 Tm 110 Tz /OPExtFont6 12 Tf (T = ) Tj 1 0 0 1 274.8 238.299 Tm 96 Tz /OPExtFont5 13 Tf (36 and ) Tj 1 0 0 1 311.75 238.299 Tm 108 Tz /OPExtFont6 12 Tf (R = ) Tj 1 0 0 1 336.25 238.299 Tm 76 Tz /OPExtFont3 11 Tf (100 ) Tj 1 0 0 1 356.399 238.299 Tm 100 Tz /OPExtFont5 13 Tf (in the state space. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 122.65 193.649 Tm 131 Tz /OPExtFont2 13.5 Tf (2.4.5 Lorenz96 system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13.5 Tf 131 Tz 3 Tr 1 0 0 1 122.4 162.899 Tm 94 Tz /OPExtFont5 13 Tf (A system of nonlinear ODEs was introduced by Lorenz \(63\) in 1995. The variables ) Tj 1 0 0 1 122.15 139.649 Tm 101 Tz (involved in the system are analogous to some atmospheric variables regionally ) Tj 1 0 0 1 122.15 116.35 Tm 103 Tz (distributed around the earth. For the system containing m variables x) Tj 1 0 0 1 482.399 116.1 Tm 80 Tz /OPExtFont2 13 Tf (l) Tj 1 0 0 1 487.449 116.1 Tm 203 Tz /OPExtFont5 13 Tf (, x) Tj 1 0 0 1 512.399 116.1 Tm 66 Tz /OPExtFont2 13 Tf (n) Tj 1 0 0 1 516.7 116.1 Tm 84 Tz /OPExtFont5 13 Tf (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 84 Tz 3 Tr 1 0 0 1 316.3 51.299 Tm 80 Tz (12 ) Tj ET EMC endstream endobj 94 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 95 0 obj <> stream 0 ,,j !"h$SFL|Ÿs 5[8rK#~ Z6ñR^R* We|e3% 9oAB;^K@H&INl%Þݹ#EE1 hqg:/W|GgQ|~j\1 YT E?E B% < kH>;oWO8;A^ 5!0;.3zN4曍[9|џ8V=mhKcr (3-c(HcQu{`g)%&\9K-!j{#^_~ʬA Eb``'|T$}"-D H0#A~xMÄdYNI{už4b0WaLW~6W}a˟st) 1'[\JY͖Gq`i :%E +nxy&M|)SYoOm4ِ9nI )UxXsc43Dܐ4?;ka`1= ]~;n edOk| ^)S&v;x^s}KW̯?iI4 ~2A8ϯC4[NHVxtWͼ+½w-*$uވOBпMnH8c;6j~ң_ ,L&h 5>l)8_a{n\hTw%AR6Xg}*_$L97NZ>;* / 2ZpiIOIG Q|#[ *qV[7Exvז W-<~s[X )Zhw7&~V,*FOzYt.Vi&tfR6s~NVee@hў9&IqXzw%9j-74@<]SlQGHnF; ƭ`r@S,I1__5=jQnMHh^aMSo"YF@|0}~L .W^6XI 1D&Z)(῞3-]m.=YWi~t7|j*fU^q!_C6MN0%=QȊKTvL.a&wz`p_wn f ?ReQz{ V3|vrJ^i&gy߃iU_ b3<ߊUoKPGԵB `?^Ծ0s9j'm=?F_Ŭ" p* MӘ5!<Ǐ-gyC<:qNl v:մ6:;u:+(Ձ޳?ѿ肴軶ij۰OڳF5@۽JFm+ӂ`%ʅ4pvֿ-~[@]1gEReڝCȂA h%?IB$mJl]t 3 w{6.%~ákxt'3Fy|֕0MFr4? ;|hC'\- \RˁMBKqA]}Q9R]F t/NWyCL22K *SO M hfgE Vּ[,tYϽZl!//Hq΄y<64A:r;l9b'A*$Vw]WJ>QjX&L5l\' yep&llMٵfya*+%䁽xzd;z"l0I%qc ^0sM 7e!08ujCE˽ m徣rHy ybc67Eb;@[h>AG>w?6X#`,r\ HpR{ P+$eȮmϞŻs;! m^-XJr.iULtF5eEҢLMVS  } ~MS%}:ҫvnT!O a9%XEl.2c}>P&|¯om{xV _ ) \X0kZ+s)6;.P;lDxF!} F;u2ц潿 Xv[HFq0_ 9]\0W&j,j>aLYف}z )6+DFإ}>rZ-d Ex |#u}y6>&0ާhdz?ܛd(壛E";ڳ@#$#ѳϼg<4l2^! pSX6vc4P0j e*)Gc3B2@%ϰp*@}G S}er3Y뙩7j%ȖeY\2 Ĝ20ca\K1d t { }heo#Fy2ӭŚ&UKA:q>dܓ!^SǜvkT~oKQ:ͳ9tУR$#U(*}h۟ QycZo DrD)YVB8RQ&ɑ63'KȘ Sp͢ DO.(1m97 sϞ"":lFo'Ʉ8+jłyȆQ ;*fAdC \LG[mڿ_`|c!5*£0ؖIajIJM -S~wF1`Xt2cd;Q2_PZŒ׬UԍN%b;7:07⛯Ïy Y+O olrcg4͡ lX&swܻ_%>7g2v4Q&VZ-2OJL_SaHhG9JrAy~xY1:Y&n! QW Cfv-Ӟ2͝[fV 2 /sn]\ o,*[ VQ۠5N$%-{[omwVO Ǚ }UU&1$B jE YzO Tt澎VmՑ!2Ӛ͎m0oNu a^@63'^+[v.[։C_^7l#.!Q;\eRjjY.rP0tnZ"ERHb`L-P^#q6.[#4)賜k,"qӕB*oIOn{g×(}`S'\qm͐%)ƙO[X%$Nttx;K1 /W P}UG.b<`h0~BEA_ĆƚXN#^rat<'楄b*z\ إ!R 6Ѿ)s2LjqT(k1\-M'*A0ݘH q ؆LL%㈍$PT[/XU*=f`+h^0p)޶MXHaTB2%lOS)?YK c\T|"^W=8M/~(FR  fkv\S3ɐq%Ffȁ4*ڕ3J~ Ʀ5꟦͠к Hp\Ÿit KDuP{-5Nl`'Q5BY^4chYiu//&UJo 1;I0o(UUZa)Ӵoicₓ %:)`~6fΐxMBizv2zLe^y‰BF5f]N=hW {eUc,`-.m멄T]^Qŏ!Y #?,j \1Fby"8yN.H)գ=1e@K[ BϨg@.a,~y ~tU;(Xߛ/m:?߿[R(o[eu됛 :#ZA< s9›eWjߣ]>7Z]0z5R!]\r1`! 5SHpxt²F?nݣX0yȘNn:~Eu/C IiaƩ~}Rܝh٘+\Ǣ)!HDd0SAtE<[6uن"s\i@iWG'B_no0ak^2:.nI8_}_>Π8/8S܀PjTEHe:k*_Oh@֦*UZjzd}ZkC3=_?EаcrMHuÔ\Xoi+ǜsfHP\,׮8S0Oз}PI@Os?tОrD4;H{5pX^s>kL}!no2~i`$z٭f>@P/`9ڮ@(,Q k7 Ků˪/ TVW@q׷ʾfLWqroFEqN,u!E@L?wcIɣ**h]q7Z~OpJqU 1p{˧pvEU).KS?Ƨ}H yT nu7f[A$#tqIc +-=7@|ڂ?yb/톤B5Mm=i< Ïwz;7|H+4!95OD!0$T ɲH̱3zqT|Ϧi;^O˵ZU:bXe ?Lg bGvk3@\}[ʖDٟk.pbx0Jf]Hܘ֦m7iX@LHx {B=Il 7ᕌ#C&߅E\DŽ_ +*H]h ٟSF$ ?n*{8Bխԉyʓ'l[k9d"<{8b4B.%C! :TFfX '=[1Lf0Qق3i\gyeT=70Fo)Ctϫ_2kWp4nja5STt3Íw=pR7Чqe*8\V$o# ~57!)|! rیpۅy;6\M0\9FKwQozr-)4h??XZdȟH^f34`+ųժ< EnÑu e;c>Q6PkZ2x8TK*/=B >I8/V,B*(Fu{[;13G8w6IQ$neV^^u.U GPOZMcPgsYkszSIqUyb2풱ה _,wD0¯QHcH0N}tz35n YO?ѼՐǽ ?  x ڼ*h祻oHAw]fQxFRY!M2LmQmٽxm]Pz*S :_ǽ =R[gVlX#fܗ* I|;%`cBkYoϒz*S>.Y?+.D @ T ޿(_Q#TDA1K_!UZ١M<`G̠b,rprmcmޗW{F m)! dH9GTjDIÌo>#KBSYv)u,x\sakQR@F GvyU$ZaS`>Yh65U[5T -D #3|KAnPx b{ a[ud3K"m M>Ǥܮ۟~xeDXMuT3cz7rZ:{mI*{WH*F#"i IfIF7XD|@08p咞?ԣwXiPqtP@0󢾫I|LLSnHBd<"r˂bƏ7pOTԾ׼3nvcO.S2TOXu+twGdoDyil،J4䅊WY4xl77#ya4^ :i͝ (LdV oX#k)'UFh=WYM崉Α4E3qZ- >6񭍓/+?=H]GLE1p5M,oKE鎋swI5.ꥎ'+8HPbGg{L9r; -qšk}DrCjNaaeMeFR)Χ)aN,|x!JM5i)Swta̢q]7uҠM^*7=:W;}JGm鐻&8٦P Pn,M\hcYbHX0rB/mF,7kZm7_6:'P\ڶv5>O 5 0atK`A6! -_G)VzCĜ@ h5B`g- iܘz4c1U`\+1i]TƆU-+rXy4IDR}K'9;ev?\CKh w?`UZ H {wĦrY>~xBsSЙspݢª=~El$)'ĨEލ&oi&+YD2oYp q吕Cm~|m{a'qLdlѰwˣh!JÉұո j4|Yj0 b9E^A04go$ܘ\C6mrRW+ fAi,kכۯD)jxGrG,zّ<؄Pp)uA _Wx,Mf|Ui -ObFm.> endobj 97 0 obj [98 0 R] endobj 98 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 839 0 0 cm /ImagePart_2040 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 240.949 357.1 Tm 91 Tz 3 Tr /OPExtFont2 15 Tf (= ) Tj 1 0 0 1 248.65 357.1 Tm 2000 Tz (\t) Tj 1 0 0 1 394.3 358.75 Tm 82 Tz /OPExtFont6 13.5 Tf (F, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 13.5 Tf 82 Tz 3 Tr 1 0 0 1 223.699 350.85 Tm 89 Tz (dt ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 13.5 Tf 89 Tz 3 Tr 1 0 0 1 220.8 366.699 Tm 76 Tz /OPExtFont4 13.5 Tf (dx) Tj 1 0 0 1 233.05 366.699 Tm 25 Tz (ti ) Tj 1 0 0 1 235.199 366.699 Tm 24 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 13.5 Tf 24 Tz 3 Tr 1 0 0 1 492.25 358.75 Tm 87 Tz /OPExtFont3 11 Tf (\(2.14\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 393.35 720.45 Tm 104 Tz (2.4 Analytical systems ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 246.699 487.899 Tm 149 Tz /OPExtFont9 7 Tf (-20 ) Tj 1 0 0 1 261.85 492.8 Tm 2000 Tz (\t) Tj 1 0 0 1 317.5 490.3 Tm 154 Tz (-2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 154 Tz 3 Tr 1 0 0 1 356.149 479.25 Tm 80 Tz /OPExtFont13 10.5 Tf (x ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10.5 Tf 80 Tz 3 Tr 1 0 0 1 134.4 446.85 Tm 93 Tz /OPExtFont3 11 Tf (Figure 2.4: The attractor of Moore-Spiegel system for ) Tj 1 0 0 1 404.649 446.85 Tm 97 Tz /OPExtFont6 13.5 Tf (T = ) Tj 1 0 0 1 428.399 446.85 Tm 86 Tz /OPExtFont3 11 Tf (36 and ) Tj 1 0 0 1 465.35 446.85 Tm 95 Tz /OPExtFont6 13.5 Tf (R = ) Tj 1 0 0 1 489.85 446.85 Tm 74 Tz /OPExtFont3 11 Tf (100. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr 1 0 0 1 123.349 401.25 Tm 93 Tz (with cyclic boundary conditions \(where x) Tj 1 0 0 1 328.55 400.75 Tm 59 Tz (n) Tj 1 0 0 1 332.899 400.75 Tm 68 Tz (,) Tj 1 0 0 1 336 400.75 Tm 91 Tz () Tj 1 0 0 1 342.699 400.75 Tm 94 Tz (1 = x) Tj 1 0 0 1 369.1 401 Tm 35 Tz (1) Tj 1 0 0 1 373.449 401.25 Tm 93 Tz (\), The equations are ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 123.099 316.5 Tm 92 Tz (where following \(83\) and \(67\) the parameter ) Tj 1 0 0 1 344.899 316.5 Tm 102 Tz /OPExtFont6 13.5 Tf (F ) Tj 1 0 0 1 357.1 316.299 Tm 91 Tz /OPExtFont3 11 Tf (is set to be 10 in all of our exper-) Tj 1 0 0 1 122.9 293.25 Tm 92 Tz (iments. We call the ODEs of equation 2.14 as Lorenz96 Model I. As a simulation ) Tj 1 0 0 1 122.9 270.2 Tm 94 Tz (to the weather model, Lorenz \(63\) assume the time unit of the Lorenz96 Model ) Tj 1 0 0 1 122.9 247.149 Tm 93 Tz (I equal to 5 days as the doubling time of the Lorenz96 Model I is roughly equal ) Tj 1 0 0 1 122.9 223.899 Tm (that of the current state of the art weather model. In the thesis, we will use the ) Tj 1 0 0 1 122.9 200.6 Tm 91 Tz (same scaling in all the experiments related to Lorenz96 model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 139.699 177.299 Tm (In addition to equation 2.14 Lorenz also introduced another set of ODEs. The ) Tj 1 0 0 1 122.4 154.049 Tm 94 Tz (second set of ODEs consists of m x n "fast" small scale variables in addition to ) Tj 1 0 0 1 122.4 130.75 Tm 96 Tz (the m "slow" variables. The time scale of those variables are shorter than the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 316.55 52.299 Tm 72 Tz (13 ) Tj ET EMC endstream endobj 99 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 100 0 obj <> stream 0 ,, jRInMZtůQ2`MUY)i ܛe/"8@7kWF tph\S).(J EN uQE 2mR^-o\/mwy̓2DcF 6ʗ$"@^! Ugbaȹu,Ec^~c}(K5dQx5+%rSȈ:ãxJqh#!bII<>f1[XT%m([*Ux#ޠI*9qP.7ͮF1,K'*  ѩʓYGZ: <u,o^{JoV.Lol+Gz~\\)8ʵn ({F/ȢCb4_H}We DG׺yғ Cj[Y[o^xE8 R8D%zZV* %kӹG+'89?O6 y\$;D=ҽK 1r)c^>n@aP"tn wE/c׶zի !Mo@]/؂fӽuXHjd,"D{En6\D5WakoMwPe)wm3TԛBffm@o3Z-KODZwki.H\5PbdӀ.8/L:4'K޳yc e@(; w, 9i&CS׋*X=B~8'4WէAZii,4ǬpRIN4#7yQlmEJ+gU)86-قbUРԨ֗v+I0{FV@ zq`r?K`& 0[ƒK"*b˅\SF> oeL3uo%\i 8ou?QGʾgP(< t,NZB$;`IAI?)i=PG=IӣZ/%~"in Y=vxJj{NȦ+2WykEkFN_"EB +J81-н-oO٧_HQ.s/0shpq&*$ߞo Ub%8?6njfFt@iQdJ;H[jfy5?qM|͹3 [/K ߯E+[WAt<[2U=1o|(ipY gA)1ސ#|'zF]|ğ~5gFbgy~ /փ+׫|F]Ё/v&z ]!5 9}bKE ]RU9oQ?S_&ݘ&3"ֳ󳦱#᳦ҿ!<&D`/{Uי Atw_ϰt(E{9#V;.ZҿN|7pj^[gX ]*7Tnc?+ѷ8Y Np ^tF>] DC4-wAfyƐT~eZi5b\j'PF{ !c3?rهAQWGjߏkjпE)(_V>jtbSv0۞IiDnDQ1ŇI}QPO!Uo#.Y;Q cNjt?"3D8IʤLR5*/]v`]xQ$l_{jE v("޺O=#"5IHÍK@eX }T` NhMPɡ:_O\^GXhE+m7 u-fIC};@;Nm}Px.ְl_ qM@6'^^fle / Z\~HZU+\npRjSQuJZzj'}Ƴ{>3D(:`p,ASmݎd"3n{%bOL 2auݖ ICh Ug z L {ĮÞ˳*H!MIKĭ\6:> 8*ٯ[6E'iO7|P*,(ˣ"n_ 7(ű~e5 o{?Ԯ (iv_sJa>**pQt:5`0zlFHA tP=@ _P Z (/К6Nm%#Of7dB^=LEb2jמBbja%ewG 1viF“ 4YLo.DE#q||<%aLwg*7gQe!sQbITXXp>J7r\.0#B DA8V8.M?"4B(LLR={yч2}BWBlLGNAW%IO;I~[t:ϙM{rЃJ7~qf)wBu}9.C>^XCMWGʴsp#YStS% Z ݍjkuywwB_S-d 1:}@HCdE:9q8|ϵ Jk?zǍ!A`)br'a]J,16%=~Gxn˄:V.ծ"s$EϢ*¼'rO-%qs>U冩`_78qO'uw>1K'Wx, uAgUL]'+ gܤuv tA.QLWUS3 6XT}Y˺?lȶ')"Z{ӑp!imd2;BUQ+2"fUv}z`CE{b7PdTdX0RN]5ABx}Er06޷زsavh"GD@Ec뭌S9~j |AS pôLЗ#/sRg~~ q,RgYyZ*`AQϸLWΠ_`q\A.=+@'&:>w/=һ0ܓXec}g'J^%gMOeHژh,חiN>+:ʇ?uZVF|ujS]Lo*TRkTX)I3Q. Z߳:?fBL\ߊ譳,mf¨dў LBR,h:( ]8S'"BD @XPK>EsVj^Lj]5laY 5*HHb*g@)9QD.ri6"PZD;>Gj(|ftu,j dxyju=PhmԧOy9hkxGDm:C"*oWYZ#6,I붡:7SXن=8=ą2$dT+hQA <ƣduEdMjQ6HsEaO ۃ"~Ҕ#bH2}>hTaV>27WPj3 Xig|9]rZ Sm3feP=8ּ =f1F[-t&2o~#)=9ᵟ "E:t@BgH%h'u,P&Ќ[ml~,7:-얫ld .~m~WΪ08 ׵Oz#V+N6t['#.NYAoP, AzE0.HUNra8}*YDD:bHu Uң#3 t+mfcIw(VG7'ibXG{T55Lcǩ uvtLf-$\ŐK7F>nB}ѡʨNT&̼ @ t: xl锈B=EԶ}YCY48gVg/F ֚|OYbXۇs"b qS8M hԏK$Cw> ΄#6ȓz t|>SrejTO$\tMdPBMο(N @8d(&LλA6:PS ܮ>aWsz]q9KV.&~RF=Hb :˂'zY%S1睋0z#Kl˝/ biM&![EQ /$+c Z $A+{R5 z"L!Ėl o]$c*IO>=>II/dv֪b_>=vl3tP= ?e?1BK`w > Yc@wNQU,, -QmMR:@eR՝<, p?[r~.Yk6:26Ohͮ!AU]\jbL5hÁPQU wtl)*~N雪܏ 2}k8;|1:G_R]}AY0;8l,D+ ZjCo-*'aIis(̻jyy,-E 4UG1L;|)/^^- [wl%pH@)lCg#Ä 6vcXʳA ʊ7%W(]11},RlgjW_mh1&]A>: ؚ*quTya<ȁd(N$ 2s*Eyp)*u3Kc!,Ms!dZ@~[7i) s0*Q紳$/Έ1}, .qACXC xJ9Lt|v ffddӸY.Za"kAq_[T6[,uUt.atk*2Hw@p?&Rבsٳ^"U lI p֌u6 iDFPV^GY ~] (DT]J3s`CVoMԐk+--l6u3 T=^4)),ud{#J :O͍!xs7{X TH Dݭ;&$P#C<`X  (h@/^7-[:x2̳!l٢g@̽)nK|c1+~ H}c/LHq8P18ɡl Tv:踘EџaMW+v 2[lVNM.]5*mח eOwU㫵B0>8+џi;;6q6ɷ$ȳ0<jwHf+8S|R#50JYb< \M'T 1"TxQ|,wكҰzODseNKk/cKf~ xfӎWRM+S$/; 2!g/TC+EI.se,h1]F̩RhQS`N\ŜJR JUnD jw([Xݯ,@n aNb^T69`J&b4p)vaL9A/))K(,:d$_AB7hǩKЋo:yT~aWCT.h/@@镀ԽUQTt,A!)ޯq23F.|g`ST.lN}3W8 CC2yR &Q:f%"#sPEL:BZ>%ZN_-C/Ih%\{Vb^ڿ\m]JPE& ϴȚ!/z)CiI ?LZ0Q&o5K]2ܬ]7IZ'WʕCWpQc67J/``@]35{ ;Hw@cbU3 G-G1-KIj!K34 ET?땆B1 +V4ߔcl6 Qn 5i^)m6Lkpڌ|˱q՘$udei22uv@J6͉E^l~$ Pq> w w_qQ7L1|W`El>jA/kJ,2ݵ1VOoV 0XI灬RRT[8@1  , /z/Nowf2Tt~l^ˀ=I0NUJ=*y}hQr[8QTuÀyyǝȱ-CC%\^jɯ&0'Lz&β.p4֭n3v|B )y`鴺3M}8- e M [uLZ3V>uB_ln`dxbSԪ]S :p5=pF>7P?=oG6=fk?Ad2G\:ƀ$ͮ Na $oN!Ւ8|>Ŵ\!D̶"C&ܝ8\ғ,87UܹoJP:>k#܀Y<ڐ~OPj\ތqdvi.hC+xd𵛩JksJ›Y*_.r.36<]&+{trt8d)ZgoUcЖL+ -BgNhiuSL5Ju1 w!?g%2Ɲl`<\) rtMPZyo%(V%}ׅMLTpޛe)dnN۸˒}L4UʭSh\I5Fγh`v6`9m"X-6EԖӶl{I؋?Q+._Glࣸ!fݤ=dM>/qHmO!0 e %Qy5M@yAZ$#XrsLѷ&lBn`?C=Nv(ɖT7Qa¬%I7ڲ_,IذF (!9=ۂAWV./8Di@iRryn2aFrvR!> ?tHoF1mO]ەMhiq@7z<–7sv![=jI ^.1@acMl$_) h"9hX VsSq`Iʅ8IvC,-جQ.u4Rj"HJ[Xǰ7ʒyfQ_z,blpMdb1{>Ң6FO'ȍEh]7?heu)y ZCnP%v#+Z'4ĺVWaV7SDQCΠnn?<ܾ%j4TxY%uY?H}qyBm̬'vfCsZʏ܃ݱ(fN5̚ ,L%/X>HiA36! MPBGpC7YBg44rG&vP Y9_m$nX+2؉KtG zJtQP)v#E=lBYoZ9 endstream endobj 101 0 obj <> endobj 102 0 obj [103 0 R] endobj 103 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 839 0 0 cm /ImagePart_2041 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 327.6 720.2 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (2.5 Nonlinear dynamics modelling ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 124.099 677.25 Tm 100 Tz /OPExtFont5 13 Tf (variable x) Tj 1 0 0 1 172.8 677.25 Tm 68 Tz /OPExtFont3 13 Tf (i ) Tj 1 0 0 1 175.449 677.25 Tm 97 Tz /OPExtFont5 13 Tf ( in Model I. The equations of the two sets of ODEs are ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 188.9 642.899 Tm 138 Tz /OPExtFont6 8 Tf (dpi ) Tj 1 0 0 1 203.05 642.899 Tm 2000 Tz (\t) Tj 1 0 0 1 385.699 642.899 Tm 75 Tz /OPExtFont6 10.5 Tf (ii,f) Tj 1 0 0 1 393.35 642.899 Tm 48 Tz /OPExtFont4 10.5 Tf (z) Tj 1 0 0 1 397.199 642.899 Tm 86 Tz /OPExtFont6 10.5 Tf (6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 10.5 Tf 86 Tz 3 Tr 1 0 0 1 208.55 633.549 Tm 64 Tz /OPExtFont11 6.5 Tf (1-=) Tj 1 0 0 1 361.449 635.5 Tm 127 Tz /OPExtFont6 10.5 Tf (F ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 10.5 Tf 127 Tz 3 Tr 1 0 0 1 191.5 627.549 Tm 94 Tz /OPExtFont14 10 Tf (dt ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont14 10 Tf 94 Tz 3 Tr 1 0 0 1 405.85 622.299 Tm 93 Tz /OPExtFont15 8 Tf (j=1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont15 8 Tf 93 Tz 3 Tr 1 0 0 1 209.3 604.299 Tm 101 Tz /OPExtFont12 10.5 Tf (dyj) Tj 1 0 0 1 224.4 604.5 Tm 110 Tz /OPExtFont7 7 Tf (.i ) Tj 1 0 0 1 228.25 604.5 Tm 2000 Tz /OPExtFont7 11 Tf (\t) Tj 1 0 0 1 411.1 607.399 Tm 89 Tz (hoc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont7 11 Tf 89 Tz 3 Tr 1 0 0 1 214.3 591.799 Tm 135 Tz /OPExtFont14 10 Tf (dt ) Tj 1 0 0 1 241.699 599.5 Tm 2000 Tz (\t) Tj 1 0 0 1 313.199 598.299 Tm 71 Tz ( ) Tj 1 0 0 1 320.399 598.299 Tm 1039 Tz (\t) Tj 1 0 0 1 356.899 598.299 Tm 72 Tz ( ) Tj 1 0 0 1 364.1 598.299 Tm 1072 Tz (\t) Tj 1 0 0 1 401.75 599.25 Tm 108 Tz (-- ) Tj 1 0 0 1 416.899 599.5 Tm 38 Tz /OPExtFont7 10 Tf (1) Tj 1 0 0 1 411.6 599.5 Tm 128 Tz /OPExtFont14 10 Tf (7:xi ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont14 10 Tf 128 Tz 3 Tr 1 0 0 1 123.849 557.5 Tm 100 Tz /OPExtFont5 13 Tf (Let us call the ODEs of equation 2.15 and 2.16 to be Lorenz96 Model II. The ) Tj 1 0 0 1 123.849 534.45 Tm 103 Tz (small-scale variables y) Tj 1 0 0 1 235.9 534.45 Tm 92 Tz /OPExtFont3 13 Tf (i) Tj 1 0 0 1 240.25 534.45 Tm 42 Tz /OPExtFont5 13 Tf (,) Tj 1 0 0 1 242.15 534.45 Tm 61 Tz /OPExtFont3 13 Tf (i ) Tj 1 0 0 1 244.55 534.45 Tm 106 Tz /OPExtFont5 13 Tf ( have the cyclic boundary conditions as well \(that is ) Tj 1 0 0 1 123.849 511.649 Tm 101 Tz (y) Tj 1 0 0 1 129.099 511.649 Tm 72 Tz /OPExtFont3 13 Tf (n+i) Tj 1 0 0 1 144.5 511.649 Tm 33 Tz /OPExtFont5 13 Tf (,) Tj 1 0 0 1 146.15 511.649 Tm 68 Tz /OPExtFont3 13 Tf (i ) Tj 1 0 0 1 148.8 511.649 Tm 117 Tz /OPExtFont5 13 Tf ( A set of n small-scale variables are coupled to every large scale ) Tj 1 0 0 1 123.599 488.6 Tm 104 Tz (variable. The constants ) Tj 1 0 0 1 250.8 488.6 Tm 81 Tz /OPExtFont6 10.5 Tf (b ) Tj 1 0 0 1 261.1 488.6 Tm 93 Tz /OPExtFont5 13 Tf (and ) Tj 1 0 0 1 284.149 488.6 Tm 97 Tz /OPExtFont6 10.5 Tf (c ) Tj 1 0 0 1 294.25 488.6 Tm 106 Tz /OPExtFont5 13 Tf (are set to be 10, in that case the dynamics, ) Tj 1 0 0 1 123.599 465.3 Tm 100 Tz (represented by the small scale variables, is 10 times as fast and 1/10 as large as ) Tj 1 0 0 1 123.599 442.05 Tm 96 Tz (that represented by the large scale variables. In the thesis the coupling coefficients ) Tj 1 0 0 1 123.849 419 Tm 95 Tz /OPExtFont6 11.5 Tf (h) Tj 1 0 0 1 129.849 419 Tm 65 Tz /OPExtFont4 11.5 Tf (x ) Tj 1 0 0 1 133.9 419 Tm 105 Tz /OPExtFont5 13 Tf ( and h) Tj 1 0 0 1 167.5 419 Tm 58 Tz /OPExtFont3 13 Tf (g ) Tj 1 0 0 1 171.599 418.75 Tm 99 Tz /OPExtFont5 13 Tf ( are set to be 1. The design of Lorenz96 Model ) Tj 1 0 0 1 411.6 418.75 Tm 89 Tz /OPExtFont3 11 Tf (I ) Tj 1 0 0 1 419.75 418.75 Tm 93 Tz /OPExtFont5 13 Tf (and ) Tj 1 0 0 1 441.35 418.75 Tm 109 Tz /OPExtFont3 11 Tf (II ) Tj 1 0 0 1 453.85 418.75 Tm 99 Tz /OPExtFont5 13 Tf (is to simulate ) Tj 1 0 0 1 123.599 395.949 Tm 101 Tz (the reality that the model is built on the m dimensional \(slow dynamics\) space ) Tj 1 0 0 1 123.599 372.699 Tm 99 Tz (while the underlying system is also contain m x n fast dynamics variables which ) Tj 1 0 0 1 123.349 349.649 Tm (one can not observe. In this thesis, both Lorenz96 Model I and II are simulated ) Tj 1 0 0 1 123.599 326.35 Tm 102 Tz (by the forth order Runge-Kutta scheme with simulation time step 0.001 time ) Tj 1 0 0 1 123.349 303.1 Tm 96 Tz (unit. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 123.849 250.75 Tm 112 Tz /OPExtFont3 15.5 Tf (2.5 Nonlinear dynamics modelling ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 112 Tz 3 Tr 1 0 0 1 123.599 210.45 Tm 111 Tz /OPExtFont3 13 Tf (2.5.1 Delay reconstruction ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 111 Tz 3 Tr 1 0 0 1 123.099 179.5 Tm 100 Tz /OPExtFont5 13 Tf (In reality, the state of the unknown dynamical system is observed in the obser- ) Tj 1 0 0 1 122.9 156.2 Tm 99 Tz (vation space 0. It is often the case that the observation space is not sufficient to ) Tj 1 0 0 1 122.9 132.899 Tm 98 Tz (express the dynamics of the system unambiguously, for example, only one com- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 434.399 632.1 Tm 154 Tz /OPExtFont9 7 Tf (i ) Tj 1 0 0 1 436.8 632.1 Tm 2000 Tz (\t) Tj 1 0 0 1 492 635.5 Tm 93 Tz /OPExtFont5 13 Tf (\(2.15\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 492 599.5 Tm (\(2.16\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 316.8 52.299 Tm 83 Tz (14 ) Tj ET EMC endstream endobj 104 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 105 0 obj <> /FirstChar 0 /FontDescriptor 106 0 R /LastChar 130 /Subtype/TrueType /ToUnicode 107 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 600 0 0 0 0 600 600 600 0 600 600 600 600 0 600 600 600 600 600 600 600 600 600 600 600 600 0 600 0 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 0 600 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 0 600 0 0 600 600 600]>> endobj 106 0 obj <> endobj 107 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (CourierNewPS-ItalicMTOPExtFont15) /Ordering (UCS) /Supplement 0 >> def /CMapName /CourierNewPS-ItalicMTOPExtFont15 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 16 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2B> <2E> <002B> <30> <3B> <0030> <3D> <3D> <003D> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5E> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <00B0> <82> <82> <2022> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 108 0 obj <> stream 0 ,,:b6%/e\ Jzv4OlK%%nl:g+ْu> > %rTP/mn_ ~UmŹ=C_44V"GΝx"q(!Ŷ2ʀNd$(͈E>M`R,2g_7\-Ouv} y?痄b_r0S~Ț^ 6FHHĺOvjOBmDlCq(ZNm}15ZCnLCDqU)c;7& Ob)c3<-ZIiEynK0ʑ) ZGfJ'"۠<Ƴ=wOkspi`0ryYU,d&5;R$脖aHk])ؘ({kB7v2OXw5l|/ۺAGY;L /7zGcqCd ?8D; |WV%ʍeYr/ד.˕%]ۇNȶEƤџse `a@7P5a05 9䲸S1BKuǯvL{'%x0Pj\8 &i嗕 lH3%06=(yԠ2 z@^d675)ӹU-En#%s1]"Âڳ#}(ތZ1!$`='܁Z9Dܵ#bK78f'I#(20wU6ͻw&ZT$ΌuC"ٺsU7w#_B-@7|s!!Uaӡ URD!KH28# UK¨TW9iC UL vĞ5n"fs)Cfu/&Ʉ;sVzNteQ1R A+/B4:v\yc Ƚ ʭR \aP16sSM]j\wxB!:lEHGhmmո3O`Aw兏dOCY8O (JEʰO"bĥ5龠}R=Bk19B U_lТ?{絘!ҿd5IuUߌC]n\By-(gu'U]MKX&)($]\:̻ z|*[ȁb[ȑ$9?HΕ;V˪Jw;I/5 &ӌB扮4}_@z_io\̟ y"Vx+,X-3٦v²&ߣ8,)_&?')ǶG\IvuQZ\|ʟ+^'ӵ‰6zC!ϺETh4\#LSL1]_6!@jBnYyM9MҩO 1* Aqkx" o_t)3Ul:ߢwr6\Y8 MxacR.|2΁+ t dj(mn@Lv`Λicm Xq 0Z%ngWJ gxJ'c_a8$x0%fF Qujd\nsyzj%"E]")D_KC2`!>?k\XLr(}ajPs.I${@*Xs& A?];#Q0_ht?i!3t \Mp&b q!FvèNU|fNP\V1y+&mos "ާ"7ޞ`؁rtmn#GFag;Y}p#A_A#AGLe!9/t2l>f&`1)]ǟ6BW) wJLv),Bcί#҇{'^{\._4mje.W|) >{r.m_ 5v|ٕt:;iЩ?w.T?}~76tr/ς:z+57Wwʺl)*坆q3E*X,ŕb&bPʔ4gd[ [5dV8/#VZ Sft l˚1Y)*S"* lտJn CO˻ꦐK̥-!8n-쪊>ؘO *i>NiT2=CM*H@ v}Qw6}VqLq+ 5q?2c(OWjA;Z");P5*Y=ϜmL~1;Irz~NVC( Rsm.(xqA m$JxgqFc38wNKrb$aqPO&J5 @vZTBo@􎓇Ȇ_"\szSg4I}@}M)Ah0!kӱ#zBX;^/$K@]L[z~ :%q? 1EΚ0 {A-H=՞Adk1Z<<[+ҬԿ%[4{Kcmù}H/U f{iMt/x߆9 qӍXǦ}{ cRZI;5V /v ,;s-?7TLAjF #smg:w'3.و‘lϸ0D.8Ӟs`_ ݠrlBK}{_.E+ *kG]C6,4`P`QtMq#dٲ5qU??M/\`i1cq/Bhcy#KɇUlLmM1B 9ܫ?nBʓs~Is&[M5cNUI՞RӟktʬSxK(O5{\z(}U«c'@|.ɽ#f@%~pffDg H)Üq!XI|CQCv`_.iwoZxfqԯnK9j͏( :BCa.[O0}zѻa*ve$Forj{y(loPR C0YtتN fB2I0O umP|kV#I G1Ǫb#XѴ&I!kv%re`^Jd]lbҔ-r6 |[P~8/onnh{Ңa't;1Y{ۤo1s7& k?~-Oz^4١tUxy7!e>*|ZÜDdunF]rxriqcCg˨+(fq ;פgFS7#"R3qSF +?F1@a!?Û]ZZjRj't? Kuj}$BsWd) (.{_0jlC#!^A6@* ɧW@q8|zTЦ78sW4TL^>874(7=#FkQcEE,z|43\bK?y^(0c%I^dbj f^ع _"ޞ甇%6/ tM&tb8@Y2JxD>usO{1E@ee !Oөr閯3q*_F"T 9g}]3ePݡx,QF$ 7W"N0Xr0};⺩B5WqFbUf2}o'e[ÁWc[Ҧo4i3PMz))Öe/p3]b6?S ĩ`ֆ- u|h :g3D{hl\jnYOƫBr1$(Km2 C2"wrkfС+jC?Oͨ.[^ Ѐl}bLN)G@h^ :-=G B\L" '_耩wˁMt @[FJ\@Y_Nm8f,Ea~^^0+gy|Mxr3u&}d/Do[~?WnbG!ӋD%x:CG*[MN*;oC3{xgH仕O'ʚ׿}jvu-q3ĎOWPXBs=Lxf~6h:u0iJrj\} #G?McOs|dwn[TzR #6[[%2L.˿"*ĝA;WtȿP\ $œmp;icQ1su:Mˆ)_ZF\ k6*J2V'uŸgLDhU ⦴~5h3f7x"&)̄|8>u3#idkXvnSwiO&$95Ag}욇sW8 ֛`sC>yu*62Z*{HY,52sϢ(#z%rr';6rOR8jĢO$8Mİ}2cƉȼ9V)*(ޛ {uE6׏+wc֯㾷8:PB  ]/Qoݩ ;X6K"i=4 ~Id }vSdfJ|{VXPd=YZ+9()ΟC1N{ׇf IThjSzBrtjM@hk rZ/S˿sERM~Z/Z4`LlY\Ԍdgk.[n o0%I &pZgR5 V/c|j\@ariabۣ+#r S Qȱ71`]4t|cC})cDV0ջiDO-WqʼL.:@t=nI /8f½OcsWW \-$X| gv-O4"Ɂ;[uف7{iS9=ADt$dصaˇ8V9'3N}JNK?(묈6;#JKQѢ?]fd=X&;[[f + &ZO0 *s2F/T׍ xAsMeSLxHfcujR%< ƫ2_Av?w1Oyqf(-i2L2,|bd &"atoV}J9Dׄ(0EnEKPwzPFיHNbig"F K ܚ>)S3~ʵUҡ͈.ѱt->#ǴζM,1ꉏ<tUfq\D$2 UN&̶-ܣnFK8ʻC%My)g_fˋT7y˵j4 vTEkdˌIŷd"J3qeVF3QMu uZn!ell ƄsR[loV+f=ܿ*QҖ]N4K9՞A. xؤYrw\+{ov)˸ߢZ2p=Cl]G;}JFP(.61Zbe.EG5~,jMnYVT鲽f Ͽl7H=T=1/=1[ O*.-o1 6dn߁Ӧ+e+1 M\#BI$TV΋c]uV>KH*?{5AO=`9C~xK-!@z(C9={RI AſZFX~]+<$"ڃE^dKZk•fЛW%9wC D'n\uĮ& ll "3C888ت]&8(WC\ZCOm'-+ZJx:U SHd`!*toYT-B^D+Zvp $333RfxIp&$_{ /YS A իn7R*OM4R| Jm?8ۚR UiBe+EXTUS,6I p#4Gr@cyMA岮 8O0.49Wߥj9٧YRmd V k?6Ǜ4CfW3Դ5&{:bGI9aGXWyoNu6g{Ju]s³ 6| F:`lC?M>@(Ks) yԳ/n&V,ͼAGO{ o)[ǫF4.0dn endstream endobj 109 0 obj <> endobj 110 0 obj [111 0 R] endobj 111 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 840 0 0 cm /ImagePart_2042 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 326.899 721.45 Tm 111 Tz 3 Tr /OPExtFont5 13 Tf (2.5 Nonlinear dynamics modelling ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 111 Tz 3 Tr 1 0 0 1 123.849 678.5 Tm 99 Tz (ponent of the system state may be measured. Rather than model in observation ) Tj 1 0 0 1 123.599 655.45 Tm (space 0, it is therefore usual to reconstruct the dynamics of the system in a fur-) Tj 1 0 0 1 123.849 632.649 Tm 97 Tz (ther space: the model state space M. How can we construct a higher dimensional ) Tj 1 0 0 1 123.849 609.6 Tm 102 Tz (model state space given the observation is scalar? Takens' Theorem \(89\) tells ) Tj 1 0 0 1 123.849 586.299 Tm (us that we do not have to measure all the state space variables of the system. ) Tj 1 0 0 1 123.599 563.299 Tm 98 Tz (We can reconstruct an equivalent dynamical system using delays of the observed ) Tj 1 0 0 1 123.849 540.25 Tm 101 Tz (component, such method is called delay reconstruction \(79; 81\). Given a time ) Tj 1 0 0 1 123.599 517.2 Tm 96 Tz (series of scalar observations, s) Tj 1 0 0 1 269.5 517.2 Tm 53 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 274.1 517.45 Tm 95 Tz /OPExtFont5 13 Tf (, t = 1, ..., n, recorded with uniform sampling time, ) Tj 1 0 0 1 123.849 494.149 Tm 104 Tz (a trajectory of model state x) Tj 1 0 0 1 270.699 494.149 Tm 53 Tz /OPExtFont3 13 Tf (t ) Tj 1 0 0 1 273.35 494.399 Tm 102 Tz /OPExtFont5 13 Tf ( can be reconstructed in ) Tj 1 0 0 1 402 494.149 Tm 111 Tz /OPExtFont4 12 Tf (M ) Tj 1 0 0 1 418.55 494.399 Tm 96 Tz /OPExtFont5 13 Tf (dimensions from the ) Tj 1 0 0 1 123.599 471.1 Tm (single observable s) Tj 1 0 0 1 215.05 471.1 Tm 53 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 219.599 471.1 Tm 99 Tz /OPExtFont5 13 Tf (, by delay reconstructions. This yields a series of vectors ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 246 427.699 Tm 124 Tz /OPExtFont3 8.5 Tf (xt = \(St St ) Tj 1 0 0 1 298.3 427.199 Tm 62 Tz () Tj 1 0 0 1 304.1 426.5 Tm 110 Tz /OPExtFont9 5 Tf (Td 7 7 ) Tj 1 0 0 1 323.05 426.5 Tm 92 Tz /OPExtFont8 8.5 Tf (St \(Al ) Tj 1 0 0 1 349.449 426.25 Tm 94 Tz /OPExtFont14 6.5 Tf (1\)Td ) Tj 1 0 0 1 371.5 426 Tm 149 Tz /OPExtFont7 4.5 Tf (\)1 ) Tj 1 0 0 1 377.5 434.05 Tm 2000 Tz (\t) Tj 1 0 0 1 492 428.899 Tm 93 Tz /OPExtFont5 13 Tf (\(2.17\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 123.349 386.399 Tm (where ) Tj 1 0 0 1 157.199 386.399 Tm 105 Tz /OPExtFont8 8.5 Tf (Td ) Tj 1 0 0 1 171.599 386.399 Tm /OPExtFont5 13 Tf (is called the delay time. To predict a fixed period in the future, we ) Tj 1 0 0 1 123.599 363.35 Tm 95 Tz (consider a third time scale, ) Tj 1 0 0 1 255.599 363.35 Tm 109 Tz /OPExtFont3 7 Tf (Tp, ) Tj 1 0 0 1 271.449 363.35 Tm 98 Tz /OPExtFont5 13 Tf (the prediction time. Each state x) Tj 1 0 0 1 432.25 363.35 Tm 48 Tz /OPExtFont3 13 Tf (t ) Tj 1 0 0 1 434.649 363.35 Tm 98 Tz /OPExtFont5 13 Tf ( on the trajectory ) Tj 1 0 0 1 123.099 340.3 Tm 103 Tz (has a scalar image s) Tj 1 0 0 1 225.099 340.3 Tm 66 Tz /OPExtFont3 13 Tf (t+) Tj 1 0 0 1 234.25 340.3 Tm 101 Tz /OPExtFont5 13 Tf (,, and we wish to construct a predictor to determine this ) Tj 1 0 0 1 123.349 316.799 Tm 99 Tz (image for any x. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 123.599 271.899 Tm 112 Tz /OPExtFont3 13 Tf (2.5.2 Analogue models ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 112 Tz 3 Tr 1 0 0 1 123.099 241.45 Tm 99 Tz /OPExtFont5 13 Tf (Analogue modelling is a popular and straightforward method which is effective ) Tj 1 0 0 1 122.9 218.149 Tm 100 Tz (to systems whose trajectories are recurrent in state space. Extracting the spatial ) Tj 1 0 0 1 122.9 194.899 Tm 99 Tz (information of the system dynamics requires sufficient historical data to form a ) Tj 1 0 0 1 122.9 171.35 Tm (learning set from which neighbours of the preimage of the state to be predicted ) Tj 1 0 0 1 123.099 148.299 Tm 102 Tz (are defined. In this thesis the nearest neighbour is determined by the distance ) Tj 1 0 0 1 122.9 125.049 Tm 99 Tz (between the current state and its neighbour. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 316.8 53.049 Tm 80 Tz (15 ) Tj ET EMC endstream endobj 112 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 113 0 obj <> stream 0 ,, b6MhurYS=yK0VJ:,<+٨' ћSAtDHVb}q h`4%j-X;(ɒT<䶈DY1-G΋V:kWؽ.yg;&bc^9ړ pCSGgNid4.kCdO^1U5å#Ba!OjӮJ.cBDX5n"7O=96lbƙJy:A SB i:,/t@քh w\7*U/7K㞨e3)m$L^! ċnOvz4ahyoɬPEk: 7/=dϒN`{`t=9f|HƇ7)Υ5ڰρU<"juz8aeQB&߅H{;|dGр;?!U1K q4ɾD1lϣ*Q~q$s 5c0r=ןAv4&uҰ]P\iJ o4&Y[nu82@dT&0A}|̈t ȥa|^2{>h@41YQ2+5 `tC!"qf@:0{P\cǎs _UF[Z GnƘ g+&ܧ2*e3"BC9ڡWgO{X+7rbָM:ӻ/O}Ü ZO6\1-L5TpR|1*<rr~p&Cj?.3b6jQi>(~T{KfM?mQ tcFj4Y RM?={fH>CSZoBE#ia~ lqFa)co2wH4!hGھHoG~1NIՓW;FZ+rs4eܭsRP BϺDT.ס_U20Ʒx#ȦiaunD_: Eo/>Ɠ_Y!d#Mh/YhL9 1}ݬ>x1yͳᯛLU$-Rw !&% Z瞞x'zHaU-= HfNa;X˪?Y.VW5J25"Xt<_\vYǬo(w%fHzְy;qӊo)B(56p/2?}ŸEL/j{>jʭ@$'>T~z,+08ݟa^eV2B,}q"UpQ.T{P"T81DiI%x@6ďtةV;fXvj^r A0W.~JZP!\QkGeL "٬AeɕZWH ̽kFb<:ɬ"* W-}݋\i+bF"7ш.ͿgʷE~4̀ 1R< s[;G_9^*zc wb#E^ "nY^,Mߚxb&h+JVՍ|2EL~<-&۪&lcVn^E6-;nl/o;GL p^TVl  Ӫ%J~k6>3M~w@tp%n KDGZ ~15x ʹ@M~!U'>!›n˜nhu_³}*m'~v'3-̺JL!/*s#ұ\DچFir5up8SdrxVD'+)x.gU : (c v>+7obh&wK;Ȼqך\Z$v}7eT纊mx7JL{):O IGrG1n5_ڢQr|166Et zOo4T 9`Wh"<[sAFShoIHz)*eˑгޝf"i s2xŽ:UdZ;j)1䕥ʳ-4OQ)h4Sfx,cfgbjqP 7f܋b#+󾦷3ZȈ ޔZ";,n\$Oޢ, @,Aх`^(f/eR^: H,@ otܹekX> 7 {/D2<1ΎèHa@:lzV>8kBUDL ߧ._ʰpwZ0R2ьB t ܹRhȃ6Z^]!)oW 3.eR|.b,T9D,pu! 6(Ȟ,#LZw}Fn y4.pX&]1Ӳ'Fp(J>1P8_|:1 %WRyzՄ;z-L4F5pjf[Ea1|-->̉NݿYȐ8 ?ayNf8Fȥݰ*Vb1Xs"ӈKwv> mrDmyIf(5bMh}Y XU_?n|Q)@SH]s-W QqoCue~|ϟ?/l:0^~ ?VZx8΂&1n?rp*DtJeS>cZB8|Ef5*2$!E Fg΢KjAI,Zg!A-_F?2+ћ5޸whl+j#m]mex&{X6_N-'H vYQӟ5(ׇ%7RNեa*d#SOg6ǀ"@[ EH U 9;?;Be@'59Y0W(l`MTa:dBt2SpcS:  MSev&Bm8#:3=SiQl>GZ4cUa P{SwfrI7(P^'>TFyO[17ﳝ5 U*%_A1wֺМ䧳g6nrK&&)3 `$хNrv„?2s#Q?[o:?[Ȭ2 zɔL2U3e1F@9o'DM='܂R!=<^`֤䇒J}X uÅ[>EVAA #C s5]Lj͉7UG8D  \! Q11;ys;q19Tm?6ݣv*kƴ*M$O ?|:]XDXU3(E"I?Mל&YFh[Ҩ:V'/d4-RzԍxD>۳ҵ/&36<{q-UC :QNOhr$CL'8E!J 5>l#iM-}nX4Pi2i )R(D3:波='|?-9T*[Z W(Qgc 6sl'ʶسxJ'#% `K=ą)+5*m[5ղZb"Ͼ.85=:>3&EZ4:3*O!I=K4U_@ }J(Exw5Z#*YEmޒ^xʟN4V}<mmL Ib-f>3@Flͭ娕Y+iW!,>!tL9 h$1Fvk䵖$Mk,/ V"y2-k4xCŒ8h[l)\ErHR%Kړ߲}-`3QsMY:9QՐ5M/#QYV~rRΊϛCRbMT~#MJ]Qmd)e5m5bZPljK$>.")j&˳47,(!<6[JAl;$=V.o$=@BWǜB8p3*{gӞ{ O~f5+x&7A-%a?D\ z LgӖSK } P0D1 ,` H"lk~nD#q0Usf*yɊq=l lm襏y;ZDZY倲jwfHp IJkXfW- lޣ kʇ4l_H RFI#LY$F- WsC6}tfZ뗃nfuʂM0`NˢH6/|4d0_cjxρrvUC*L1c4]}&gȡ0HL: WtbearN*țQQt!pM>|VF3 CaS'5!/Q:O[ ,/=YvЯ\K+N#>Hm|C2kr.$?;­^@WipU fO]k( d#/_U!cG|ʠmk*kS<ʙ *),AˬO~Bqicᓄ4=M ɭ%آ-Q\z(ssR|SIDdG+9UANԃ$hV7u,fhJ`0좉'Y[Ȅx0dI?260ꏛ&ć@8g %xפ)RdlT* z2l>~wusPMJ sԒ^ÃaT?-Y`h099dME ':?I2Q06W[kQ[yo#WbmZ-s1Amː o9- {nj{W.# ojԙ0ˇO(/=yן,~^OPRgٳw3Gĉ|2' ;w <5"op[f/$;>Zlw뙼q"'W~Fzh|G/u\1a-8DG 0 8$; G9ע]+NI?VSdX95~rKRuP-i91B[Q 4[S'qQgP %e%B8yEK_3hsmY C`]?EsaBU}q׊ڏX\ʫ Nm=QE3q $=*XkcҪTd:˂ϽU%u"^_S'\Ҵ?wwki< B<!uneLP-aXLR]Eȴ{6IQOxs> endobj 115 0 obj [116 0 R] endobj 116 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 839 0 0 cm /ImagePart_2043 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 327.1 720.45 Tm 97 Tz 3 Tr /OPExtFont3 10 Tf (2.5 ) Tj 1 0 0 1 347.75 719.95 Tm 105 Tz /OPExtFont3 11 Tf (Nonlinear dynamics modelling ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 141.349 677.25 Tm 99 Tz () Tj 1 0 0 1 152.4 677 Tm 91 Tz (Local analogue ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 152.4 649.399 Tm 89 Tz (For local analogue, we firstly find the nearest neighbour in the model space. ) Tj 1 0 0 1 152.15 626.1 Tm 91 Tz (We then report the nearest neighbour's image as the prediction. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 141.349 594.2 Tm 99 Tz () Tj 1 0 0 1 152.15 593.7 Tm 93 Tz (Local Random Analogue ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 152.4 565.899 Tm 88 Tz (We are not always lucky enough to determine whether or not the data from a ) Tj 1 0 0 1 152.4 542.6 Tm 90 Tz (stochastic process or deterministic process. Paparella et al. \(70\) introduced ) Tj 1 0 0 1 152.4 519.799 Tm 92 Tz (a hybrid approach, Random Analogue Prediction\(RAP\), which exploits the ) Tj 1 0 0 1 152.15 496.75 Tm 95 Tz (deterministic nature of the process while incorporating variations in the ) Tj 1 0 0 1 152.15 473.5 Tm 93 Tz (local probability distribution function, thereby adhering to the stochastic ) Tj 1 0 0 1 151.9 450.449 Tm 90 Tz (nature of each observed trajectory. To produce the Local Random Analogue ) Tj 1 0 0 1 152.15 427.399 Tm 91 Tz (prediction we firstly define a local neighbourhood in the model state space, ) Tj 1 0 0 1 152.15 404.35 Tm 94 Tz (usually with a fixed radius or fixed number of k nearest neighbours. We ) Tj 1 0 0 1 151.9 381.1 Tm 92 Tz (then select a near neighbour randomly from the ) Tj 1 0 0 1 395.3 381.3 Tm 107 Tz /OPExtFont6 11.5 Tf (k ) Tj 1 0 0 1 405.35 381.3 Tm 89 Tz /OPExtFont3 11 Tf (nearest neighbours and ) Tj 1 0 0 1 151.9 357.8 Tm 92 Tz (report its image as the prediction. The probability of selecting a particular ) Tj 1 0 0 1 151.9 334.75 Tm (neighbour can be based on the distance between the preimage of the state ) Tj 1 0 0 1 151.699 311.5 Tm 93 Tz (to be predicted and that neighbour or treat the ) Tj 1 0 0 1 390.949 311.5 Tm 104 Tz /OPExtFont6 11.5 Tf (k ) Tj 1 0 0 1 400.8 311.5 Tm 87 Tz /OPExtFont3 11 Tf (neighbours equally. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 123.849 266.6 Tm 110 Tz /OPExtFont3 13 Tf (2.5.3 Radial Basis Functions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 110 Tz 3 Tr 1 0 0 1 123.599 235.899 Tm 89 Tz /OPExtFont3 11 Tf (Analogue models, when considered as a kind of local models, require constructing ) Tj 1 0 0 1 123.599 212.85 Tm 93 Tz (a new local predictor for each initial condition by searching the learning set. As ) Tj 1 0 0 1 123.599 189.299 Tm (a result, a large amount of computational resources are needed. Global models ) Tj 1 0 0 1 123.349 166.049 Tm 95 Tz (can cover the entire domain once the model is constructed. In this section we ) Tj 1 0 0 1 123.099 143 Tm 92 Tz (illustrate the Radial Basis Functions as an example of global model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 140.15 119.95 Tm 94 Tz (The Radial Basis Functions are a global interpolation technique. They con- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 317.05 52.049 Tm 75 Tz (16 ) Tj ET EMC endstream endobj 117 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 118 0 obj <> stream 0 ,,nnb6[!S ?&Ő E&L2Q|XCJ^&2 mi{!m8GDkBQڭe;j SHW*#o)NknH m˥S_>>-y-ޠO|XmHl?yvN&)d~mE,E7:Pgedȑ/XiPڑZ= )|[ 1ܳ6I[B7KJ}d?͖D_B?uJ]$3: fwH>)>e! !by F{ ETѹȟ^H!QYTcEjH)@b[Z`}bѧLLL t^*۞Z(QUH$sH#fp2=2 3#HՐP1R "@ Xع&xҋA_lI( a~J\eaOX]ŁZ77a@]õo)1M*2]b^6-nvE&a3udzqJb'Q(̀߆IUc)_^<#~+5AlŒE6gk`h&,{! ,!$~̾2v\)Ciu)SΨmZ4X[^;-T5*Ǭ3\6t{d:=춐;xx/``/~U^D"k>`|d>JjYl|f[iܽ9pp|yz_֖U`XnLTn#nl8?Q"eucfgUg.h֛e,X_ۀ@B^BO))꺗AiE7ekiVpU4Cʹ ydTl g&/j sbp5}UwCgnt^C˱3v"5;L@nVMx8 us$ gOT< ~ gB<"Yt6ٴ:iތ+gVV%4H~leGG [OϨ/G*|ڶPb0N3j\mlp|Sj*vx>f+{exZ pe$nOM?p[(RUkYZ^ Q8Q t9j.$iCfD_ustWur#Uv KIp/'kpfr WFh5i#X:SDeyD|=p ZI +X]\}k'O\L KRH>#e1UrE Efk.2-7G,෹ /b=?m\ĞGa=emW*HN͋FM]'$ ]0WP6b'f!e(>lـ[~M1;9bFo.dĪ#C!d") zP,7,iydKгGڨdY, voU$)u Q U:J> o9V#5~v[ftW>&HL4 &V1E SMAI?!wլm$I{ D7 M8i0Ȼǿ$[ ܍luyq31k0;c) }B+TF>lb3!l=^l>u@dSB2?0/mohH2rg~vN{d_ 1bsud@63\|5& [F$M%] OR[ttC{fM&% e?GeMy%EhQG'}chM/)a)SrNt6)hn2I K. LN{+J'k dTY65G?ZV)u#8Pʞkmz> jP,] ~I+(. U>f0$& WZL, S W_ UܨBC3֔hZ;fȫNT%|Kdn!E@һpz|,vE4FHn J6]F/V+h#P76cih¬`a֫xҺE?d?|؈,NP3yn48h?6+ M_ 67&P\Vm"77 E>J#2uWb OWõZ};P1u?~ |%MGŋY hX2 ?J5x?x7NJR8qOmr[ SkXcJ;e4O<m6ȕ_ӷ "wMfSpp~;cCO@1\b&` 耹5,̜?Ye! {-RBEpFZkv5`<%FHlaYuPmgsM' ~;c;Qȋ`$smn)w*h֒{.~|[ČQ(ӹM8ϦͯÂvA83?_íhW=N7@)L+3%$=*{$K݋NQ@+䯰ŀWJ.np7_ T()xD2⛟YeB)8n"w`w"x WЁ/l85j[i9 a 7ư=(dkŃ?x;ڡUJ@"S A__5LV,pm j-F&XDoyN) ~t~ ZI,`[+U;4~RLI._n'湄FXjlͧ絮0.h )4yμqo8/o}籚*K\riKw,Ÿ04 as.}GNBGtP0Yg%F,>0 z=uãyrZ~8|YPLmyq5"5\dd,t*Hu?- `I9bRl0-E'ϖkE,'o?<k.^u<1s o]!E{I*wmmBSEh~"%Gz6R $1*bg:IOL]mJ zG!/E, YIr8i҃_DMty<-% uKߜ@_:uz+ 1Ѓ5lahmTrdnZa.Ok} R'J,c8DF˖>Nv)^2m!/P4K<M/~9;(|^Q*7[JjvEkU3zlO NJamZy`㮪q'@@R>77 IIe;/0K^q Xs EeҋH6-JL]2;!wVMY9)+~ 6(i Wu$Vs!)g  -#|O[: K%k [?F-(/ xp\rx %p.F綞1mmhT `2.BjM$v:zSb<-OM?63 2b:9~wS$CmCI6|NQMj:\LVr;Pi̺Syz0Ƀ)lz>ĸ#h 9U˼m>櫓4i0RY:c}tck [C5^Kz'̦kM3ZhgwӦt?* }9&/XTȂf9P1W;ˠf2{t)!Ê,")V+*+%]>- )"B*]o9#{Wk b~J"O ;Dj0T4>MWgA$aBF&nf@ iL|e9*#arz䶾5ӥ2ynwk$n*qO5n5"eh}?@@Z/&N/@nX(ܑ[W8 \|c-fl\ A5z1؃/pa%AoE?Y=4uQ]]=?\*e+ojqdgGC;Jc{ aң_#. F:tL '̍U˙\/5 .!D?l TZ Y|29.&4[0i<3]]UF n`l^S_.i%ZdR iJQ5w`ڞˑW|%bjrA#iQ Zee(>V_F ~ـޑ-2s9pu2uJ'0!X[-vfxb 4ykλ62@J=z(jJAm7@#l0Qzߧy|zV9,44>gaeA sGM@cn*%8ǃ#Gt* W Kq{BPp 6tNy{ Ovɹ6ű -S9N#-WR]˪(hRosS`ADz}~ Fv0V6! OJ ΃Hkf39g 2ʿ嶍VYt8ƞ&}jQМ D+J]aC.ŀJ?87*sL\A~l5@63Єveر|\I߬;iqz6OY|ŒQk l٪WMu#Tv<>uƻz ;fo=V7#$o-'I'G6/mma:;BTd kHٯ,tIxM*(wmZ9-iΟZVX? Pˎ)] H6uL|˪{&2dGlB,d[}cfȪ}"$(s1s4TP`qW9_f@EV)˺o(q=}ƪGD"/Ql^ՕV|R8iV=p73ʆj?Ara<ڽ1]RvF1 < /;q'bD=ZS+'OoT&fnuh%B8^YRc'$®B=᯼BU@ 39T#Gìl>jf8*M(^@8*[ vU¶쀼k>Ț+PG kYtq!ˇ0 HѼ*0N#)X<0/BxcptHKaEBœqm c/rnLS:S4V [ G ;bl6(zl*R:S Z׉Z $/-aB'>L$ΧEWNZWۗ+n:9[)@W ~wsIAm4ɨK=1wkYjyhЮ/BHzaof.CЭ+UV3|U#:f[ypC-4WRK@į _ /'XE?e6r 2 pj ja&L#n4>ճ?a-<X  :ţrl+fWKnZ}tr%tyz7j>{K09rv B/)P/e,p񩫍ץ[*1#+`Ϙn) gcc\BM0 )P* _/ ZaC(8Jh2(LUes}tHsXƗ5dY-Os'{J0X$L'5 BO2/0 yywB."kD#-&q+~֍*7#F: endstream endobj 119 0 obj <> endobj 120 0 obj [121 0 R] endobj 121 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 839 0 0 cm /ImagePart_2044 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 328.1 720.7 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (2.5 Nonlinear dynamics modelling ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 124.799 677.95 Tm 94 Tz (struct a predictor \(map\), F\(x\) : Ern ) Tj 1 0 0 1 299.05 677.7 Tm 525 Tz (\t) Tj 1 0 0 1 317.5 677.7 Tm 90 Tz (R' which estimates the scalar observation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 125.049 654.899 Tm 74 Tz /OPExtFont4 10 Tf (s ) Tj 1 0 0 1 133.699 654.899 Tm 93 Tz /OPExtFont3 11 Tf (for any x based on ) Tj 1 0 0 1 230.9 654.899 Tm 64 Tz /OPExtFont4 10 Tf (rb) Tj 1 0 0 1 237.849 654.899 Tm 115 Tz /OPExtFont8 10 Tf (e ) Tj 1 0 0 1 241.199 654.899 Tm 91 Tz /OPExtFont3 11 Tf ( centres, denoted as c) Tj 1 0 0 1 348.699 654.899 Tm 117 Tz (j) Tj 1 0 0 1 354.25 654.899 Tm 41 Tz (, ) Tj 1 0 0 1 358.1 654.899 Tm 172 Tz /OPExtFont4 10 Tf (j ) Tj 1 0 0 1 367.449 654.899 Tm 88 Tz /OPExtFont3 11 Tf (= 1, ..., rb, where c) Tj 1 0 0 1 456.949 654.899 Tm 109 Tz (j ) Tj 1 0 0 1 460.55 654.899 Tm 125 Tz /OPExtFont2 10.5 Tf ( E ) Tj 1 0 0 1 476.399 654.899 Tm 96 Tz /OPExtFont3 11 Tf (Rm. The ) Tj 1 0 0 1 124.549 631.899 Tm (predictor F\(x\) is defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 288.5 602.85 Tm 95 Tz /OPExtFont3 7 Tf (nc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 95 Tz 3 Tr 1 0 0 1 245.05 589.149 Tm 100 Tz /OPExtFont3 13 Tf (F\(x\) = ) Tj 1 0 0 1 280.55 588.899 Tm 746 Tz (\t) Tj 1 0 0 1 311.5 587.7 Tm 73 Tz (-0\(11 x - ) Tj 1 0 0 1 351.1 587.5 Tm 429 Tz (\t) Tj 1 0 0 1 368.899 586.75 Tm 55 Tz /OPExtFont9 16 Tf (ID, ) Tj 1 0 0 1 380.149 594.6 Tm 2000 Tz (\t) Tj 1 0 0 1 492.25 589.399 Tm 87 Tz /OPExtFont3 11 Tf (\(2.18\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 285.35 576.45 Tm 106 Tz /OPExtFont3 8.5 Tf (j=1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 8.5 Tf 106 Tz 3 Tr 1 0 0 1 124.299 545 Tm 94 Tz /OPExtFont3 11 Tf (where 0\(\) are radial basis functions \(14; 15; 79\), II II is the Euclidean norm. ) Tj 1 0 0 1 124.299 522.2 Tm 95 Tz (Typical choices of radial bases functions include 0\(r\) = r, r) Tj 1 0 0 1 423.35 521.95 Tm 65 Tz /OPExtFont5 11 Tf (3) Tj 1 0 0 1 428.649 521.95 Tm 93 Tz /OPExtFont3 11 Tf (, and e) Tj 1 0 0 1 463.899 521.95 Tm 147 Tz /OPExtFont5 11 Tf (-) Tj 1 0 0 1 469.699 521.95 Tm 69 Tz /OPExtFont3 11 Tf (r) Tj 1 0 0 1 473.75 521.95 Tm 56 Tz /OPExtFont5 11 Tf (2) Tj 1 0 0 1 477.85 521.95 Tm 86 Tz /OPExtFont3 11 Tf (/a where ) Tj 1 0 0 1 124.299 499.149 Tm 89 Tz (the constant ) Tj 1 0 0 1 188.9 499.149 Tm 96 Tz /OPExtFont4 10 Tf (a ) Tj 1 0 0 1 199.199 498.899 Tm 90 Tz /OPExtFont3 11 Tf (reflects the average spacing of the centres c) Tj 1 0 0 1 411.35 498.899 Tm 95 Tz (j) Tj 1 0 0 1 416.649 498.899 Tm 90 Tz (. In the simplest case ) Tj 1 0 0 1 124.299 475.899 Tm 91 Tz (the centres are chosen to cover the region of state space. To determine the value ) Tj 1 0 0 1 124.299 452.85 Tm 90 Tz (of A) Tj 1 0 0 1 143.05 452.85 Tm 109 Tz (j) Tj 1 0 0 1 148.8 452.85 Tm 86 Tz (, we assume ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 287.05 410.6 Tm 116 Tz (F\(x\) ) Tj 1 0 0 1 310.1 410.6 Tm 484 Tz (\t) Tj 1 0 0 1 327.1 410.85 Tm 76 Tz (s) Tj 1 0 0 1 332.149 410.85 Tm 72 Tz (i) Tj 1 0 0 1 336.25 410.85 Tm 34 Tz (. ) Tj 1 0 0 1 337.449 410.85 Tm 2000 Tz (\t) Tj 1 0 0 1 492.699 410.35 Tm 85 Tz (\(2.19\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 124.099 368.35 Tm 94 Tz (The A) Tj 1 0 0 1 153.349 368.35 Tm 101 Tz (j ) Tj 1 0 0 1 156.699 368.1 Tm 92 Tz ( are then determined by solving a linear minimisation problem, i.e. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 291.85 325.899 Tm 104 Tz (b = AA. ) Tj 1 0 0 1 332.399 325.899 Tm 2000 Tz (\t) Tj 1 0 0 1 492.5 325.899 Tm 86 Tz (\(2.20\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 485.05 283.649 Tm 34 Tz (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 34 Tz 3 Tr 1 0 0 1 123.599 283.899 Tm 96 Tz (where A = [A) Tj 1 0 0 1 189.599 283.899 Tm 101 Tz (i) Tj 1 0 0 1 195.099 283.899 Tm 76 Tz (, ..., A) Tj 1 0 0 1 220.55 283.399 Tm 62 Tz (n) Tj 1 0 0 1 225.599 283.649 Tm 103 Tz (j, A is defined by A) Tj 1 0 0 1 329.5 283.899 Tm 91 Tz (ij ) Tj 1 0 0 1 335.5 283.899 Tm 1464 Tz (\t) Tj 1 0 0 1 386.899 283.899 Tm 80 Tz ( c) Tj 1 0 0 1 403.449 283.899 Tm 101 Tz (j ) Tj 1 0 0 1 406.8 283.399 Tm 97 Tz ( II\) and b = [Si ., ) Tj 1 0 0 1 504 281.5 Tm 76 Tz /OPExtFont4 10 Tf (sn) Tj 1 0 0 1 512.899 281.5 Tm 113 Tz /OPExtFont8 10 Tf (i) Tj 1 0 0 1 517.2 280.75 Tm 55 Tz /OPExtFont4 10 Tf (] ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 10 Tf 55 Tz 3 Tr 1 0 0 1 123.349 260.6 Tm 90 Tz /OPExtFont3 11 Tf (where ) Tj 1 0 0 1 155.3 260.6 Tm 96 Tz /OPExtFont4 10 Tf (n) Tj 1 0 0 1 161.75 260.6 Tm 41 Tz /OPExtFont8 10 Tf (1 ) Tj 1 0 0 1 163.699 260.6 Tm 94 Tz /OPExtFont4 10 Tf ( is ) Tj 1 0 0 1 177.599 260.35 Tm 87 Tz /OPExtFont3 11 Tf (the size of the learning set based on which the model is constructed \(14; ) Tj 1 0 0 1 124.299 237.1 Tm 85 Tz (15; 79\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 123.599 192.45 Tm 96 Tz /OPExtFont3 13 Tf (2.5.4 ) Tj 1 0 0 1 171.599 192.45 Tm 123 Tz /OPExtFont2 13.5 Tf (Summary ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13.5 Tf 123 Tz 3 Tr 1 0 0 1 123.349 161.5 Tm 94 Tz /OPExtFont3 11 Tf (In this chapter, some terminologies of dynamical system and its properties are ) Tj 1 0 0 1 123.349 138.45 Tm (defined; details of the systems used in this thesis are then provided and some ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 317.05 53.25 Tm 73 Tz (17 ) Tj ET EMC endstream endobj 122 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 123 0 obj <> stream 0 ,, b7 >_$` Sx>Qey02y;l: (ḱ vzOa^TXჾ]Lй5)+c4o;jeĪ63 x%$8H@zGz7oȋh.fFL䭗 BAȕ`Xh .q3|ӽXmh'fd  WqZML|Pdkn PU]űiI6MR!U0"˨蠨~HϩO.w)X`uxꮸ_fN7>\L3ULR 7sD&dcwV9 \-ԊiQ}x ;Q;F|sc H:?$\L?b>\p,GPmqKwJ 8ЯX"##tabR'y dtD>©r?M/2& l6"y%AM@bd՝Р|C͹v$5*1%3!L f ;,!BӰM_X4!{-.|/!̲w\rc6=kO2sLj_Pbх]?.ClIg t.e/p[:D‘-Z_Q/ ✿)|lׂ2¦%=?@r[UKV_bYA<_HPB_,jib;uXRB?S_sbdͷAgkO ~0C'8,#Z`1͹+,IS>v]'ECX"P44CC0 /= aݎ?0l\Vt 7Ϸn|.><76/Om^ڧBY# ˘Qj=q/ BM3FPTQC$c>ُC"ݱzҰOڐ#@2<fm9wx y(xcQ0U*(@עOKF;<!?Kâk`krђg4&GA$[X`^ %VuhgɼNXvE.xa0B7;@S(hi͈p&z}Mtr]Vh{|g Üśf<>( ~";Fv[JݯXȃd5•8M/t!`.Vpom8RKW|ECEfn/ CiDkƥñA#ˎh$'>BI6e']M$u3y,OnmS5"죮#,svjF2SOƳDĴG3J^ ݥPO'2DB :^WcTZσ..ݕ^1eiܧ5I|Aw¯H͚J'?b0Êڄq|צ7IFP^'4K5`2q'L=sZkoTG]#|GsvV#EPiؙ^R~AcK8;:v.?m{i 7>"fX , kd%3 ^)* %B}Dެ p01;2*V5zydA+gtm˜4'67^\Ь]aj= ?3ɰk l[n,V}_U5 )`ϊ3JMY(J5FUށZIif2c۠\XO&l)^p%bo_$M˙Iiyz"TcT\aS0d*sfq9QU0D(bQ}3/fsɁt1[I䧵94vU|ӡf^73J+1м(G}6T+! {+ R%%6#Czit$;y6a[ةGUCdhpw3ݣ?6쎎;EJv ~7el&\=a]k(B0znץSMJa`D_s*vfCOfr4 F7akT@ KBH)R=KlҖL $qFե:&o.^NYXM$i?<±e[EQ@%ec?f2J3g2)0sQ-BF,ȳ`nPXgө@1SgyNrχǛuvod\,L`4}-r)NBz* ?v<X9ƜZ`Wm:dq`1sw8>ps"Hh-eۆ'A9,%kεnP @G-bA~]5␸IUeM sc7*`Z/~6`qu3y|)ttv .:먌*S* Iy0ri}eO>PQOzHh}kt Q/ֱaY,e2 u8s|)&_`%{@keəuoo bDTV Rd1``3lS5fR۹1t_3oK+\q՜ Hp$mG-ìPbcxnRdzT4֮@g&aⷧejl銒#Y܄׃wƅ4Gϐć,F_y. @ Q5 {]"-/< ty920w7"dZ Ïy/"=c?X/Gyg2@-8 N-w6<{3Q?5O$ Vkp1k%Oz׃^{Wq;`(,p/#Rڃ`GYKӻYxkPAl9.UO2܈e³$|^/Q-0@KܷG5c L%c?n[82hp [0O+k2k:f^gS /`pf 'm\dz cgHkGp蝢v,Qt7Ӊ Eq0ڳVG>ﺇnHeHSOl2/I>CjF̫GSxAC/>J5/gRLWG.VZssxđ\}WY!GaXOnَ,pXk`hmDBDOci{|yg" hA>We ݿZ((6>xZQB3ה&/s_ 9G{e_Fk6{ٮd-p/oЗlM s.Wۥͅ'r3VR$I'UETF,Az%5H{V1'"5[#w8[21bH V>r {~sBش į x y$i06$O F9,%[1Ț*I޸Q58($2QY7?3fll+*Y1PibT0J\ ~4Ej7PV( ݺ \d ̾BG:QSLsq#WBI"]D/rf)LeF`RfSF& uxE ڄ-yB(ݰAH{T4Ł GLQфHci&.K=هk#Xt(w4%R8w-6)V^^'1Ϫ3%FÙ(Lޏ!d6j8?Z2vU03o$ e?dۀrrBXxŌ[iPzKH\g?OD= (sγTѺH"[F l63֟1B_bznHZnpf%NɌ4 /q5YոĊ隩Lgi7m 3NU=b N]'R3Pu4ݨMd@[w!-}ŧ!a] Ic#JhS-Kr[Nu-?6ʪd&Qe]a{v&HzD":t/$_4ʙdDF/rEͪ?Vӳ mك7P&ez[r$=etRʿT-ax˶_"y3sH-^0n+[d8 "cؠ;Gki\?nUyƤݱQGQ\vE) oD>5jsC 2\K bHXwIt1[oE[k?Z2*{F}@ DHM(|d@6=ݟ5 8!ef[mooߗB}v'0hވJ V$&>)NGTُ;Q0,(Q>2ZW5  /Kn/+PՊ7IuupMd}%sTu2AZ?7gY2Է>S=:i~tHcnl d7*ƬR{m`=zoғ~&un5|\r>K[]}08;@9_iv$&Ȇg\@RPEE_H:R\8b?]&ξ/cIŋ5`2+$>3i vO|ՑV/ 7\hͺ,U `) ##>$q, 2t`}1p\2 7{؈AѼJ^OhFkN(.| !郾7_Vv}Y` fFuWD`:KBPX]֚{mG՝BNvV;<S6m+D$$rwU_S"uWe]U4d3V5F| <w!"wIb[ IV8'~_zAC43ziA:E[QNTGKxS⫕ zŞ~ν/_eQ pa>GvAwkEvg!-M]wݬ' X5{ #rm(s?QGG#N_ֺi""R%rDh %xbX_ _T`زbt$~I_Gu8.\h!cg/ v@ۡrC,\x:S|m}Tؖn[3:纔`纑&w307qe^9\`J T)[j՝'0`j^)CM6槊-c6e)0er+䬳T!YdGծ mh ,'SE>0V86TL7͉z"Ǩ{y$.$ђ%QnttOH5SS(| jW/9u;*g<#}JwH}d??gPksxa+>VХݯ, ,)L֑$-> IjX2,5uO'M@ W \Y]@@ W0@ Ȃ{jէ> 4oO}2IgL2f:[%KP}!AKھYSR![~HB\A_/q d5PAHy8(.X5)u챯XCB+}oV'ܥh3! #_hYW-]* vrLG^}F(J2#Y&/0`?qTusF9* i`oZ4%^RJ<<+T;-9Q&p{ɭ sYTcHL3TN`ȏ{⣊7B$vhk^n$ںݶ?^g׍ J=0͹M VIG-q,:bwV~PApS}%Nxګ!қsLř@yLVQ,a.g{)}Mk3]wR)+5¥ c˗> endobj 125 0 obj [126 0 R] endobj 126 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 839 0 0 cm /ImagePart_2045 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 328.8 719 Tm 109 Tz 3 Tr /OPExtFont3 10.5 Tf (2.5 Nonlinear dynamics modelling ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 109 Tz 3 Tr 1 0 0 1 125.75 675.799 Tm 90 Tz /OPExtFont3 11 Tf (relevant nonlinear dynamics modelling methods are described. Although nothing ) Tj 1 0 0 1 125.75 652.75 Tm 94 Tz (new is presented in this chapter, the content of this chapter provide the back-) Tj 1 0 0 1 125.75 629.7 Tm 90 Tz (ground knowledge of the thesis. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 318.5 51.299 Tm 75 Tz (18 ) Tj ET EMC endstream endobj 127 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 128 0 obj <> stream 0 ,, ~b6|Y׽b: | %4HNsCo&V]pl*Ciȴ:gWoiXOO¾z^We0^ٟSegySkK~PJD):(6:50 ZhoLKKBx[({ƘĆ'v4ҬA>9dbc=Z;dn#-`| R`U2NJ U y.[&=Iű݊3ޫ>i43 Ι\g2CwW/Kn_*>'DU4"FPMTzIC`9\MӨN]qO%MRe,Uӊ{*; D"'~gjC+d!uryϗ")e,37gl`YAW5nUcy};RR!L/b`ߦY.)Dg8;W$ʠ?vVW+uݻ_W.גN̗f$XNV̌猡!Ķ![< gkz ćOuA65e$:qq"lML ôlF(7d;&7o|ݶzDW@X%W#%][D&ԜbL(a+51_~b%IƠuj}DDyln|/2 nRx3GM!Zd (S 8A>Ttb#c0kh(ӹ0 jYco 䙈?*gY@"O} [!YI66X.L*K;}?[ +wokzb"χ>5-zubiy+ Nsh^6c)Q}. ØL oz&y[Y4GJVAGJ1u"D@,>A(#$yfaMhD799x#]\ |{se>{ͦݴ6],3$)>+k / 2&xz7*Gy PaĖ}I8#*Ir}r51)G%~LAWb*‡.dG2=*wPН%Nnp|454~ - 30j 5\ť5@[ 혈k@!>7@=J:er&@#¼ɯ~Rjgʋ=ňp"u+0Ᏻe]~տ`ሀ}}=uʶf\rhsٿ9-n>uI|;Ue 0lycj I^7L"t |֯jWmm÷'͌}|ݯZqrWv#)c(Aq G3.niI)NJZۨ,*.]͜Drcg( G%ZB#66eެ>y78^sX2AIMG¨2{I9 @؉Ggc14a$WKKKr̿FDs9i Xf<7#|i?D0>!š5 HJQt3=nq[ bL"uUW;5%DJs!ʅvfi{Շ}iG<p쇲L,1A{2v&^>LK첳T)=boQʴcΰ™.P=< u Ftd=;(\|%my/ĺm0V`{&8_y P:f1pbXpFA95JX'*e*熈ж:T~I}^U!{)r9z޴B+m&leQnE~5NbOC9fԓe8[ = #'Z.N5JR]dVr/wˢnrXRO[{woV !uraM)JѻWBI-U/X\)oQJT ZS#]Q| jhTwfpVZ ^,kz|J=6b-&J'24):PireL}ĀQ-rY򧳨J}7a56';np*Z/BWDMW*G]!iY㷖bP# X+O>mGQ9dr* gx~ApUlЏOrsub&M33O!̍2ӿ!s/໿H?sBB h:`si0PKݕiӤYMA6r(T.QpuЁ۞8;F#x`pxx],Gozg]W`wAJ!񱘢Ȃo!~n|Y.NbUeD3r endstream endobj 129 0 obj <> endobj 130 0 obj [131 0 R] endobj 131 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 614 0 0 839 0 0 cm /ImagePart_2046 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 126.95 580.75 Tm 105 Tz 3 Tr /OPExtFont3 22.5 Tf (Chapter 3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 105 Tz 3 Tr 1 0 0 1 126.25 513.549 Tm 109 Tz (Nowcasting in PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 109 Tz 3 Tr 1 0 0 1 125.299 452.1 Tm 93 Tz /OPExtFont3 11 Tf (The quality of forecasts from dynamical nonlinear models depends both on the ) Tj 1 0 0 1 125.299 429.1 Tm 97 Tz (model and on the quality of the initial conditions. This chapter is concerned ) Tj 1 0 0 1 125.299 406.05 Tm 94 Tz (with the identification of the current state of a nonlinear chaotic system given ) Tj 1 0 0 1 125.299 382.75 Tm 96 Tz (both previous and current observations in the Perfect Model Scenario \(PMS\). ) Tj 1 0 0 1 125.299 359.5 Tm 97 Tz (It has been shown that even under the ideal conditions of a perfect model of ) Tj 1 0 0 1 125.299 336.449 Tm 93 Tz (a deterministic nonlinear system and infinite past observations, uncertainty in ) Tj 1 0 0 1 125.049 313.399 Tm 95 Tz (the observations makes identification of the exact state impossible \(48\). Such ) Tj 1 0 0 1 125.049 290.1 Tm 92 Tz (limitations mean that.a single "best guess" prediction is not an ideal solution to ) Tj 1 0 0 1 125.049 267.1 Tm 95 Tz (the problem of accurate estimation of the initial state. Instead an ensemble of ) Tj 1 0 0 1 124.799 243.799 Tm 94 Tz (initial conditions better accounts for uncertainty in the observations. Here we ) Tj 1 0 0 1 125.049 220.5 Tm 95 Tz (define the problem of state estimation of the current state conditioned on the ) Tj 1 0 0 1 124.549 197.7 Tm 92 Tz (past as a ) Tj 1 0 0 1 174.5 197.5 Tm 96 Tz /OPExtFont6 12 Tf (nowcasting ) Tj 1 0 0 1 232.3 197.5 Tm 94 Tz /OPExtFont3 11 Tf (problem. In the PMS, there are states that are consistent ) Tj 1 0 0 1 124.549 174.45 Tm 92 Tz (with model's dynamics and those states that are not. Those consistent states lie ) Tj 1 0 0 1 124.799 151.399 Tm 93 Tz (on the model's attractor. States off the model's attractor are pulled towards the ) Tj 1 0 0 1 124.799 128.1 Tm 94 Tz (attractor. For nonlinear chaotic systems, this collapse onto the attractor dom- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 318.25 51.799 Tm 72 Tz (19 ) Tj ET EMC endstream endobj 132 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 133 0 obj <> stream 0 ,,!""b1ŬjOCeDZVNo S>B8G}gP_û)d1y|рZ(^;\"wHE:C UWo/3̯D!!  ?>ʢ=8a|pW[PBT1x?N岮bxu]@آᱬ:w l.Iò81l챨Xҽ:%W/ЭV "QqcE p`tx܋n JcñNw 33驻$A9`zFV?N'W˹`bEH,XwMXLn}Bzp:&ͻo.ƮQA3A|])ݧDR6p[z]tN']a ӫD,=RK-m?ĪZz-SmY֋45f٩Iי݃/"DjzPaFG/(!B%+jR<7lly+5eJ҃#P`>b 2tN)H"( I 8(.I`{YR Y|)Gc?6Vä(+\n3=c!edgrWФǾn)(nj=*_$e/K)1Tv.M9UϞf3pZXMgr;p)28S߫ !bMaM0bUӁ** c coS*aS^ ?HmbXX(XO@[ȻZi$+1 %I& E&$ĹP &S;߉wcAv󍡯homTdyTjg+1] FƫRCEul1b&ڊ#"_EE\eFpz&婛<ZX9C'u䬽 gx.B),o8#WX 9n\cDZ]+߭v@;_E5yDTU\?G׌߀& %-}$rHhZoIup{ιADB#&#_4ӁԞMG.oVt5MUm7}',;vNrLhg,!voe_Fdz;3=꺾^֑M l.҆~m/З'©jAap "{z>/ʉGh_qTȮ1Xn+=|6}C5,; IV)6fVkfĝZ9h()q~̫d+rjXӨF2"ᕗ,!RVM٧3g墮#9 "WlȏRe.<#IuO [X2WK(_'z?%&N,W[K{/ M  5fis<5ij&\YnYr(K-~>kXS%Plo' ݠA^4K~i]vצmR-6[9/U?egB W?5a~}UT5~괊_jm}hݱ'Εey <zNA@*]|"x9V%ۂh 2}3jLkglPʠJH@r.2&ꙃ~{KEͧ!._جCM#{_FU| Lq#kw1B{q'rmēXw J&eunAW=]]l-ףVz~piq0dId(,"l0p,!8 ,(`V}PWh``AkmXs ͵2\iSgP -WR3_OEoZdq6Wپ33VB,W% 6T=Nq[%Wn|bM(̎ utqP t)BjFx,,% qҵ+FJf?Ĥݗde|R|n"Mc/`%iˀi*MS%8NR ttO$qZn7_yUݞI:697 5,> ݨ%IP ܅W&|0 ɒSoO:j7Ck3z$6`1*ܔj>Wc\ RG[t2k{&+Yn耖F^ ɥDt+&jǥ'%'A`m/@ DpsϲҠh\u9N92 B*BFJu`-gǬT? \wuo!}E6ЇPۜ"EJtqP%i\IQMx4Br{V=a6~IaCJA}fZ`OP/q]o .*:_oOÎ?2fOC6&GrM@7/!W$̓ iQ#">J#0zrݣe\nWˠ8A.^Q!Oܮ۾t8ްixW@ ѣv [e40uQ=Rs?V_ '%wwNUH\jK97(aФ8~Rr{!8k8jc?.0Uy(@[,(D|呬Rϣ͒ٹ(%Z0U!Yފ#4|EFkS]9RrK,ALSV/|H48 MbF~}[;@5z{!K=rWGb Q$uB9s+%/D580nrw,5E&G=y cwl7i Mc]d a q!\b:F[k0E##m7gϙ#6O+Y)C;4|ʱPםQwoP瀛#j_N.kjqC³G| hY4*8ɸ`^ sݥJagޘ(a]}8 <EevO1{%-uPSQœ^uU"'8weMmGH_r;8. B6uɠemAIԧGЋõ@1JӌMM }q *" r^TYnbI'6BabyrW#LB3@OhJ^ &"oא RܴvRAߣָ-yYط͓z) m>p u4F*Tfl(,Hq˻vlW 1$Р5hKt¿t5 ,QHeNlכD Ua"kByKͤFD{<2k;EX@zhYp u^^ϵ2 sp-fLRKKg8l^/pP5#>y$׭7ρ+36mnCmfB'ƂDEX/ǔ|n,  y /9M-{@<ݻSx17;};T Co0! ܙA͌u.xC14Gymb˘zE!p3pY6Z~~N!5~$ Ǔ, 's6> m^њM^wǓr_T #s=aw.|X|^Ssp'./>:hhiQʇI5v]dCQr8m0&_A}㡈 -mLGZ?^9I* )^;KZ\pL@>oʁNZV5Cl_CL7XTn;ƏVia^!Puy?mvRM|nn="]6 ޅ^.6m YɮXq JQdžs'sn1tЎ2"EYe|zR; <󄒠=kCn=!ƩPjVhR|Vln2D1 X܎Қ&/]򫾓i3.vf{ r|YN+wX ?yf$/qýx6(Qɢir!#k̻`ƚaޚ[fif  KʍPN6sCI.hd]H^RU(eݍ11'0&jSV,ZRa} E-݁h4NY!pbd?J\j 4rX>.'ƲπԟudYŞ9a8'ܸչ6?Śڴ<:? qx}q8ޏp΍*MWweI՛?eqWc _ n<MG^vs8L\CM~{7PĮzl=EdMM];c Hp'~A`Y #$S%6"f og.wO  BA_FJ3Dz#dŔC YRG4첔̽QBEKB`I-_wq @)TZ>~pI{gKUڷ掏PSoǓ4DGR T )xDέ]Z&*єx[ރ<6I-_ 9T] `3ip'lꪢ£W!X_7V5;ڨ8UGx}ISUa P،گ}gjmX1 ubSdy<>9^]ϐф訊> Œc.g5>Tr,ɝQFE9ßRTq}Fӏ&Dpyi~њ^n(:vD[ SvrTzf}> endobj 135 0 obj [136 0 R] endobj 136 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 839 0 0 cm /ImagePart_2047 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 368.899 719 Tm 106 Tz 3 Tr /OPExtFont3 11 Tf (3.1 Perfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 106 Tz 3 Tr 1 0 0 1 126.5 676.049 Tm 95 Tz (Mates the model's dynamics. Intuitively, it make sense in state estimation to ) Tj 1 0 0 1 126.25 653 Tm 91 Tz (identify those states that are not only consistent with observations but also con-) Tj 1 0 0 1 126.25 630.2 Tm 93 Tz (sistent with the model's dynamics. The perfect model scenario is firstly defined ) Tj 1 0 0 1 126.25 607.149 Tm 94 Tz (in Section 3.1. The theory of Indistinguishable States \(IS\) is then described in ) Tj 1 0 0 1 126.5 584.35 Tm 89 Tz (Section 3.2. In Section 3.3, we introduce our methodology to address the problem ) Tj 1 0 0 1 126 561.1 Tm 95 Tz (of nowcasting in PMS by first producing a reference trajectory by the method ) Tj 1 0 0 1 126.25 538.049 Tm 90 Tz (called Indistinguishable States Gradient Descent \(ISGD\) and then an ensemble of ) Tj 1 0 0 1 126 514.75 Tm 92 Tz (initial conditions being formed by Indistinguishable States Importance Sampler ) Tj 1 0 0 1 126.7 491.949 Tm 93 Tz (\(ISIS\). Other state estimation methods including Four-dimensional Variational ) Tj 1 0 0 1 125.75 468.899 Tm 96 Tz (Assimilation \(4DVAR\), Ensemble Kalman Filter \(EnKF\) and Perfect ensemble ) Tj 1 0 0 1 126 445.899 Tm 93 Tz (are described in Section 3.4, 3.5 and 3.6 respectively. Comparison are made in ) Tj 1 0 0 1 126 422.6 Tm 91 Tz (Section 3.7 i\) between ISGD method and 4DVAR method relative to the reference ) Tj 1 0 0 1 125.75 399.55 Tm 93 Tz (trajectory \(defined in Section 3.3\) they produce; ii\) between the initial condition ) Tj 1 0 0 1 125.75 376.5 Tm (ensemble generated by ISIS and that produced by EnKF; iii\) between the initial ) Tj 1 0 0 1 125.5 353.5 Tm 89 Tz (condition ensemble generated by ISIS and that of a perfect ensemble. It is the first ) Tj 1 0 0 1 125.5 330.449 Tm 91 Tz (time that IS theory is applied to produce analysis and initial condition ensemble ) Tj 1 0 0 1 125.75 307.149 Tm 93 Tz (and contrast with 4DVAR method and Ensemble Kalman Filter method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 126 254.6 Tm 132 Tz /OPExtFont2 16 Tf (3.1 Perfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 16 Tf 132 Tz 3 Tr 1 0 0 1 125.299 220.049 Tm 97 Tz /OPExtFont3 11 Tf (Let R) Tj 1 0 0 1 152.65 220.049 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 155.3 219.799 Tm 158 Tz /OPExtFont3 11 Tf ( EI) Tj 1 0 0 1 179.5 219.549 Tm 73 Tz (n) Tj 1 0 0 1 184.099 219.799 Tm 94 Tz (' to be the state of a deterministic dynamical system at time ) Tj 1 0 0 1 492.25 219.799 Tm 85 Tz /OPExtFont4 11.5 Tf (t ) Tj 1 0 0 1 500.399 219.799 Tm 98 Tz /OPExtFont2 10 Tf (E ) Tj 1 0 0 1 511.199 219.799 Tm 88 Tz /OPExtFont3 11 Tf (Z. ) Tj 1 0 0 1 125.299 196.75 Tm 92 Tz (The evolution of the system is given by ) Tj 1 0 0 1 320.149 196.299 Tm 78 Tz /OPExtFont2 14 Tf (.P\(R) Tj 1 0 0 1 340.1 196.5 Tm 63 Tz /OPExtFont5 14 Tf (t) Tj 1 0 0 1 344.399 197.25 Tm 137 Tz /OPExtFont3 11 Tf (, : Rth IR) Tj 1 0 0 1 411.35 197.25 Tm 30 Tz (71) Tj 1 0 0 1 415.449 194.35 Tm 96 Tz (/ and iit+i = F\(xt, a\), ) Tj 1 0 0 1 125.049 173.5 Tm 93 Tz (where F donates the system dynamics that evolves the state forward in time in ) Tj 1 0 0 1 125.049 150.45 Tm 96 Tz (the system space R' and the system's parameters are contained in the vector ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 125.299 127.399 Tm 53 Tz /OPExtFont13 18 Tf (a) Tj 1 0 0 1 135.349 126.899 Tm 94 Tz /OPExtFont2 10 Tf (E) Tj 1 0 0 1 145.199 127.399 Tm 76 Tz /OPExtFont3 14 Tf (W. ) Tj 1 0 0 1 141.099 127.149 Tm 22 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 14 Tf 22 Tz 3 Tr 1 0 0 1 318.25 51.799 Tm 75 Tz /OPExtFont3 11 Tf (20 ) Tj ET EMC endstream endobj 137 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 138 0 obj <> stream 0 ,,=b6Qj14۬}a|{쮂zri `zJ1 /\ڏn2'6K|HNj,]8rnnBֵUo0IZTi?e/;NP!+7{He-5PrrE54A^=rE0QdIa+s% iV䬮c+Zɀ)!\QlkI2*ǂ{]&ij4Eӫ}JqO[Jna$孋LX&˖!ɣ0F5A;P?F8.{f| 4?(Ql/1V=2н_ՑuGAF?4 uU!=*=7\KAr*/ M5P|LנE@2mʌ~xr"Xey EcE# 8\וwVx %zXv ,"Dܿ$BgX7R s<5_iS(+KŹwXܧ5)B%/~2)rAq!ׂ{N[`}{"rJDӔj²2É7n4~ER<\ c)r /.7Z%Upbe*KٍЦ:`ٜK#9H "(w1GB;y 0Rt8bZWdTʩ)`2ى2uM5(vto5,E:Ct**KIZM Iх!sR);`5*0O4U7VC׆+>C8 8>Bfi-׍ YŻ<z{+ bg F̛T2ʟU@tBdRHN{~m`t(nu{UnV \{LvzeCp$#<G̴~Di {'$MW#vKoJd.V9<}>["NyVK͞=v=ƙ Z:vH 'A Z/qϞH/3B&K /w0|.wy^ ˳t rKA`xw8tH%BϜ-gڌ҈eɌrP7VU.A=TJy iۦ[fTB} si|yP@aDNT~VL.iC0^ؽmMXx19`yPQUG| |$ 3P %#241ʛx_vrFĭ,z0_B`H/@ac"ra5.\A\jXv9>oOIgq9n7PS^_).OWJV{9=qv }kmD]f.ެokkIx>bP4UAwb uBOSyQ)՝KI?u&'/@,KœYהR Ҧ!~7x c`_|{ӝ8?a[M,5`rKGɘOsb-U\Xd~Bʺ&$,2ح;r%GzFC$̿$s *wNG徒~x: $V=6a5.x;5ZtB)"05O;M@b~k<ƈqS#1Ӏ?$;+I?rXs}8F>t`Us7O-A;ɬM; =?Mj^u{7͛7=eB!$>Ցʳ(4%;N3Lϵ;٭<:d_RshX"Wue0. B_TL&ZڕLЛ S.Daw :=fMK8CpL JN>kCjy ?y0Gx${о;O rM#1# }ay(~}8-2W8b o b%ڲn@[8K^l ڶMdǣ,uGCsoL 9"6/_B"N&vg7`s9Ǜ SWbz+9 N+OPmYwܯ~5%|MwczzXNEE)9s/#Bv.h5[ӑjM3e1 ]Sy9Ӗ@l#Nj GsVzd^oaeOU汼-֬5Xe;$ǐnBN*bu" _>xPɍ BEX)nTV7+:S8mr7gL[G5 S.XswP3pɾcN* L°4`ab\^yxo *:T| Hϰ <=A57(mb˥H'G<.!m4(eLjР[{~LAVHks#"Ա7tm}1 `u}o6h/+$E{Ȑԋ<&C.!"Ǧ^&jů"ZS SՈo\0t%6B|4q ~-=xVبی5iJ:iM~qŏh~#Elu3tihRB )D^gA}'*]A2FQxDߌ3@pz+Շ8UҨ¥Qs ɎTvRޠT7дh}ta#Tp4Powc hnIU:1$I1x4Qqx(wz;7G \|˛$/Ptk,%(j*7=Dˢn`f JJ+8< V_u1;V7-]TMC|tLx&WkZx]ߢJH@Μ},ZYlx#Z6%wَ`\AIC ೖYn~HR!"Q'=W2Ln0҈jn_iŬ6*yӏ+1 *ܑ 5yBO "7~_~\'zʶ=y,2[N=\-{V֯]xY׾̾23M͐x['QU"")$j:aÃ.cWj ٨b A5.|9uHz[.! ~~&Tb0a#Jt ճ7gGqKXgW=&"XI`k1jee44"ȄcOsg?@;Db[ӽjI mE6p,h9?pgFo("ĭ╬âuL F?*y*tIU_ c(%:gK]0Me?FviW3\H`*ݻA4Uq{61mu }^Z:|<hT=iy"m`1G\ZW:T726Dh <y<誧Swǿ߇Q~:\)7ߜ3mV%O{',&Fb6_%J\!<sH 69=עDoR 4rV5"4o6zX]>Kh1+4Ul5H綠Ө:OcU̼, o+Ƞ }osm_s?11RO+0->5#1ռFӁ4+Hiy;>:hc3Zvv.y.Ӟj|RF;hC'R V̒u($\s]7HXjs;fwv"9%O.$ϖ.$ ٠7E\&CMVQ`3`a?H|YfLɑ2EH5A ' N ?mf`8R E$aƌJn"9!L8<^.]v`#Q[}Oj,2]EQLX_e{8r Hok[~:jH@.YiZU\|2 u8zOyZ*t/e[_{PZ"A}7"3Kg$>Ըm+GՀݵ9$&)ڳ场ht7elj('^PW9}DLw os9]2Z=cPZz*"\02,G%6&k˼ @QIh4x9-OfAiD&4UF@L\s( A/?0D=;pIFfOyVb|,F~Mg` O@8 Dc{Jj *!]N`13_NލWЯ졢!M:p ps2\ ]dz p ׂ\I&T:qfjWlhĨgi끄9 0D9kg ?g3 M2,ϠD MC+:&8RZ>hͿ2Ա"e3ǝyjc15<5T0Fq'LH#Y@I7>?<@\ quNX%c.7?lJIJz「PՎ\Kc=@<>R6 2u_zqҿ^(MS T\P[<ͧIEc!|~ iE"aR/Y'K..*d&!;-  P8C P|w UyYDg͵O!]CgO+q˜fk? q&v3 ŒQ@>&4ai3n|'hY“6Hތ; /;/o"hҐo I!mRgzᴦ5 ͵]󖵷^+~TuRwM藈~N+J>ZFQxㅰ :$qW)ekmHNe_omѭ OPWm?5X2WKq]6Esʅ@,gPB& $FÅfuÿV!@@$٬(?to؅; )~Gۙg76z@ G0`m[cea$6&U˼o.OG調Ί3'n{gi2U:,MU(vK+F[Cod r-"vw;-0[ YV?A+n7I/Ɉ!x͌Avfyq_&QVdsX颜OX&w@V-W-&ϋI\TLhKsK3iU@¿aP+"j"rOQ^roN諊3O沴X`>7k_,Bb Q;"KpJ\PCpiVg{_jaHQѼyēgi d쓪Y#иF'Ce\{CeY.736̹?ȱ'X1CJ# M<= 5vB ü6Jl4tܐX.VZЎ(o?dʯreܥRIlo$G.e%vd 2yNrE))T;^ ٶXopW(mMЮ0Qs57fVVA֡F+厖i;!c,.Ydh%s=&^M&W(]Yz74էqXK8T`3JЍ{2Q}G/LS <۠4gR:45x@}A_a~s@'YO~OEOuBSHD,WRq: +uZ Ü»ڰ%]LMmICJp_6xTPJy OR "(>|O8!LLaқv{mY$-Xp}~GEfLb|i_IC w_2Ä;{IThrݙ*G}$wx^tLhLlP_|tC$OFAI&)^C&<}W q=*jޝy}roȵ}9qb<#O-c_+w%j..0mμGݡ$FcVV$p-bq(>p4EmCݓ#UXaZQ'۴ .S[0G";fO'`:{{*m%[P[vj*A'Z` % endstream endobj 139 0 obj <> endobj 140 0 obj [141 0 R] endobj 141 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 839 0 0 cm /ImagePart_2048 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 368.649 719 Tm 106 Tz 3 Tr /OPExtFont3 11 Tf (3.1 Perfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 106 Tz 3 Tr 1 0 0 1 143.05 676.299 Tm 93 Tz (Define x) Tj 1 0 0 1 184.55 675.799 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 187.199 675.799 Tm 93 Tz /OPExtFont3 10.5 Tf ( E IR"' ) Tj 1 0 0 1 222 676.049 Tm /OPExtFont3 11 Tf (to be the state of the deterministic dynamical model at time ) Tj 1 0 0 1 125.75 653 Tm 108 Tz /OPExtFont6 12 Tf (t ) Tj 1 0 0 1 133.9 653 Tm 98 Tz /OPExtFont3 11 Tf (E Z. The model is defined by F\(x) Tj 1 0 0 1 304.1 653 Tm 81 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 308.649 653 Tm 111 Tz /OPExtFont3 11 Tf (, a\) : > JR and x) Tj 1 0 0 1 416.649 653 Tm 81 Tz /OPExtFont5 11 Tf (t+1 ) Tj 1 0 0 1 429.35 653 Tm 121 Tz /OPExtFont3 11 Tf ( = F\(x) Tj 1 0 0 1 466.1 652.75 Tm 89 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 470.399 652.75 Tm /OPExtFont3 11 Tf (, a\), where ) Tj 1 0 0 1 125.75 630.2 Tm 111 Tz /OPExtFont6 12 Tf (F ) Tj 1 0 0 1 138.699 629.95 Tm 93 Tz /OPExtFont3 11 Tf (donates the model dynamics that evolves state forward in time in the model ) Tj 1 0 0 1 125.5 607.149 Tm 89 Tz (space Rrn and a\) ) Tj 1 0 0 1 211.9 606.899 Tm 93 Tz /OPExtFont2 10.5 Tf (E ) Tj 1 0 0 1 222 607.149 Tm 91 Tz /OPExtFont3 11 Tf (W donates the model parameters. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 142.8 584.1 Tm 98 Tz (We define the observation at time t to be s) Tj 1 0 0 1 366.5 584.1 Tm 67 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 368.649 584.1 Tm 116 Tz /OPExtFont3 11 Tf ( = h\(R) Tj 1 0 0 1 406.1 583.899 Tm 89 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 410.399 583.899 Tm 86 Tz /OPExtFont3 11 Tf (\) + r/) Tj 1 0 0 1 435.35 583.899 Tm 98 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 440.149 583.899 Tm 111 Tz /OPExtFont3 11 Tf (, where is the ) Tj 1 0 0 1 125.5 561.1 Tm 96 Tz (true state of the system. ) Tj 1 0 0 1 262.1 561.1 Tm 98 Tz /OPExtFont6 12 Tf (h\(.\) ) Tj 1 0 0 1 285.6 560.85 Tm 95 Tz /OPExtFont3 11 Tf (is the observation operator which projects the ) Tj 1 0 0 1 125.5 538.049 Tm 94 Tz (state in the model space into observational space. For simplicity, we take ) Tj 1 0 0 1 503.3 537.799 Tm 97 Tz /OPExtFont6 12 Tf (h\(.\) ) Tj 1 0 0 1 125.5 514.75 Tm 95 Tz /OPExtFont3 11 Tf (to be the identity. Unless otherwise stated, it is assumed that all components ) Tj 1 0 0 1 125.75 491.699 Tm 91 Tz (of si) Tj 1 0 0 1 146.4 491.699 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 149.05 491.949 Tm 100 Tz /OPExtFont3 11 Tf ( are observed, i.e. s) Tj 1 0 0 1 253.9 491.5 Tm 90 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 256.8 491.5 Tm 123 Tz /OPExtFont3 11 Tf ( E Ie. The n) Tj 1 0 0 1 333.35 491.25 Tm 98 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 336.5 491.25 Tm 143 Tz /OPExtFont2 10.5 Tf ( E ) Tj 1 0 0 1 355.449 491.5 Tm 102 Tz /OPExtFont3 11 Tf (R) Tj 1 0 0 1 364.1 491.5 Tm 81 Tz /OPExtFont5 11 Tf (th ) Tj 1 0 0 1 371.3 491.5 Tm 92 Tz /OPExtFont3 11 Tf ( represent observational noise ) Tj 1 0 0 1 126 469.149 Tm (\(or ) Tj 1 0 0 1 143.75 468.899 Tm 98 Tz /OPExtFont6 12 Tf (measurement error\); ) Tj 1 0 0 1 246.699 468.699 Tm 90 Tz /OPExtFont3 11 Tf (otherwise stated the rh are taken to be independent and ) Tj 1 0 0 1 125.049 445.649 Tm 91 Tz (identically distributed. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 142.3 422.6 Tm 88 Tz (In the ) Tj 1 0 0 1 174 422.6 Tm 99 Tz /OPExtFont6 12 Tf (Perfect Model Scenario\(PMS\), ) Tj 1 0 0 1 324.949 422.35 Tm 88 Tz /OPExtFont3 11 Tf (we assume i\) the system state and model ) Tj 1 0 0 1 125.049 399.3 Tm 93 Tz (states evolve according to the same structure of the dynamics, i.e. F = ) Tj 1 0 0 1 480.949 399.3 Tm 102 Tz /OPExtFont6 12 Tf (F. ) Tj 1 0 0 1 498 399.3 Tm 94 Tz /OPExtFont3 11 Tf (Note ) Tj 1 0 0 1 125.049 376.3 Tm 95 Tz (that it does not require the system parameters a and the model parameters a ) Tj 1 0 0 1 124.799 353.25 Tm 92 Tz (having the same values. In this chapter, however, we focus on the case that not ) Tj 1 0 0 1 125.049 330.199 Tm 90 Tz (only the model class ) Tj 1 0 0 1 228.699 330.199 Tm 114 Tz /OPExtFont6 12 Tf (F ) Tj 1 0 0 1 241.199 330.199 Tm 92 Tz /OPExtFont3 11 Tf (but also the model parameters a are identical to those of ) Tj 1 0 0 1 124.799 307.149 Tm 95 Tz (the system. ii\) the system state 5) Tj 1 0 0 1 293.75 306.899 Tm 56 Tz /OPExtFont5 11 Tf (-) Tj 1 0 0 1 293.75 306.899 Tm 94 Tz /OPExtFont3 11 Tf (c and the model state x share the same state ) Tj 1 0 0 1 124.549 283.649 Tm 98 Tz (space, i.e. fit = m. iii\) model state and system state correspond exactly and ) Tj 1 0 0 1 124.549 260.35 Tm 92 Tz (iv\) the noise model is independent and identically-distributed and the statistical ) Tj 1 0 0 1 124.549 237.299 Tm 90 Tz (characteristics of the observational noise are known exactly. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 141.599 214.299 Tm 96 Tz (The problem of nowcasting in the PMS will be interpreted as how to form ) Tj 1 0 0 1 124.799 191.25 Tm 94 Tz (an ensemble to estimate the current state R) Tj 1 0 0 1 347.5 191 Tm 68 Tz /OPExtFont5 11 Tf (o ) Tj 1 0 0 1 351.35 191 Tm 95 Tz /OPExtFont3 11 Tf ( given the history of observations ) Tj 1 0 0 1 124.549 168.2 Tm 76 Tz (s) Tj 1 0 0 1 129.349 168.2 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 133.699 168.2 Tm 92 Tz /OPExtFont3 11 Tf (, t = ) Tj 1 0 0 1 158.15 167.7 Tm 105 Tz /OPExtFont6 12 Tf (N +1,..., ) Tj 1 0 0 1 215.05 167.7 Tm 91 Tz /OPExtFont3 11 Tf (0, a perfect model class with perfect parameter values and the ) Tj 1 0 0 1 124.299 144.899 Tm (parameters of the observational noise model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 317.5 51.799 Tm 74 Tz (21 ) Tj ET EMC endstream endobj 142 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 143 0 obj <> stream 0 ,,b6%xҌu. X2 d*4 fi~OQ]eLD>ؠ\*JۅrED;s>er4[-"7Bg }JmRtD헀ʳEgB*tJ'(e Jiڷu|hd5EIqPPPA|c7TQiWD^UP60P>n!*4>pZu+7DɻE &[iZq\OŦ P, >ϳҳ p{T}%V& {t{y2/ߵ<]5k9hln;ў#ӏ(R{$Rl6h=ؼ޺WhLv8rPqw4Ssi棪ІAĞwL'Gp&'" Z)8 6]$gA[ƈ,u,5:Tՙ+qR 0B2ʪhb+$D"dkxQ3@;!P"}/y4m8倰C#)P~#8%wn8]:{'HKM1TF7ۥ|KnpDVEU&b'#$!#U˶4 qSղ)'a܍㥄T6B tɔR:0l*RifsIɀsٮF6$燅ȏ=/ɸ{(JD@^TCS3N'I*jL;FZۖFbR\:p2q밀*K6 *ߡhⷫzUS t"ɍ JB~G_Js"5~qC-&KȔ-KHnwv!etW JiPN'I|Npn7iAgb"-4&*vJOM`_ 20}"qv~bBoB5iB+Fv<.m%Kή:+ w3`ÌŒ_[*KgV>G(%A劃<}gKi-t8PbƲUW9vEjs/\x$cduFۭǞA<ԎFKFse !RQGLtt>ȯ}x ss+a0gC3,"-quB9^=`RXURnve?3adg?6`^iݳi@"ky؁ Df>,3yzf.3"䶋SMк\B\,iײ oge2h9h[zt>?mW?WnP®yw#'Py^S"Z;^v v^gfeA xNneЬ>@A%MBc"r At^7X<cj`&r:Ձi OM,3W=ME@uv%ZDEpؙ  -X~f+ӵ:y. |XqS<™=cSHa7we#2P#4v8HQ_6XaܗFTٍ@\2<"uW|Ijn]7YOh]aԖjUdTI=4b}wۨ׊_ݯ)1'l;fg9#G;vm %D[@m7\U6d[NRM=7m֙}tLXj3gט FF'zgw}FbN֯4eZ;IU?>ɲMa7IZ%WS|"۵ȧg5𳦱ԉp=4d'!7𹘰ܴ9n48+<<bc8-̾g ]]u :򀣯J,(hG(,ر=hVe&(&[q{iY]g.cOsr?=;Pzv?Y(գ%v U z g͇h0F2!~{8v9l%\\{뒶v,r<\9X==h蠾~?^wv|,#J%1%imP ٦f:.l|ڐ8SyhS>&úrğ/nUi>c?g/ʭa1ʤೢ1ᴳ9's!3<׻@}, %M[3'7li$eC:'g?k2y{5'1 |5?44dOp4q8}p๞{X=NܻH9m>^T PlCm?5E?ߖnm.]&{:ʪ)59aѕqSX{sO#bz~ޢF,}P!m#83HVm`x:sS=OukY/ɩ."+.>>7݌CM8oX<ؔdSUOQwADІ+һ'ƇR2zN$p*@c1B<]ӆ#`3rm v#>˼W.$W+Ֆc`{\Y{nN=1\KVr! yik~H:8YMҫ+5Bw6 \Xܗ 2Fp̹2?ݠv䃧usE*M\9s>bnr(# q4_j?hZoW+ւ׫ـhb4f=Hfs5_5$ٍ[(O }nv`])c{8m:>, 1" 돑Tl,U^ԥ>5Nd`H`/S `G7 5EEcnqV~oyEӜVuF=/XD#6odN? GrƖߛ!{;,:X(%*%z%4JC,|58%oB2|FCm$*B)z^Lk hv?k{@}J qzPտ oZf2SmJ#bPKl/)[9:]hl+ i@  Hht8ߦ s!ct$]&nI@0[Q<ַ cI-/*(uH\2omƹgtLs$FmVZ.e ";~WUҟn}i/h"WޛSd%:xo>٨Օfw6 l] X4p|Kz]+}T>z~*)z\٧Բm3qp*\8KQ \!&==k,{z _E|Q-`. KoÄlJQ*GA/ )ǎ `5$'2\s z[nU) }?jK@4~Z%K67Xؓk S Q2DeGo YH)k){ 7 U yWuApRڂ5)Pz[?EThnږnO_ߊpTG =?x[ (wHrn|oϡ9`ZZ_3=WQۄfvr0aQ?2 S:a Ksa[#v웄9xH|VONHu#\@pgl(s YdiLIǵvbB良V@,r{ W\r/Q8PG;ϛ U IܻUz kM}d]MRM-An:=~|m+M*y!4 <ʂd/9Dr Xh I#XͯEw5u 08͵?KIFl>1Քc [i.e͊3د\o baFf͵eB,|eFzh)%(^vHFK{xF=tݨNtk~pѠxNsgi 0;NI:VsЧBI^?}r_COõ3}+\D[\F\r1Z;S#O:"C!X72+ډO+-6٢es#?[1ͧAF 7L b/Al JA'X4補5?E<뎄-ʫjwtyA -"J.!G3"OOzS[DD1oADbu*e5-.ѡ )%;^|ǚx>;YM{L?AӕPٮ%03HTe-PmAN-B$@{ڸuƲO(n0:@S:QzHPߩAAg2)B6o%o2we@g!r ghrK*-nA 0922Di5!Gvs(ci tO>9|?6,%+'ܣ<0QXJ&z^A lEb`:?ms^ /;FԨqz%%ϯ&c!Rq))q0:r,_!1✍<}1RtlÝ3\h'b 6ٸ vQ/aR 2mJb lʢnn,+[DxT^F: GݝqY^ŭ1EJ+%-Kv";o>!u:4¤ |)Z?Jn"FωG̶X+%pəh'3$5.[=#oHҮªFm>AW6!DM"0b_2HCc]7MtpfG'8ق@N'^ֈ."@s$fH/зA>w6xxWVX0 8 jB]HffgBt~g!Yʧ["姒hI,,+$g2}Oͷ\"y 3O@붉d/ِ)Ew"wczynqdҟP@QWuAUL\}_/>aE/ &zn, [؞&V[iQDڰ +WE-1Q!g+ kf|I 1?JJ|0k[N&MVXN |k1U+13[X4%.e[4m(XD ;HHѤ%់e! 7 zn5+X5@{q^ٓo"DiCUOGm>U L/ $cͦ.^5$GJ (e$%j#&@3%{7 'L=p 8=nZ9U]9_  YEm=*OK}~!$?^[/v^s4(;U7Lܴ/L EEQIg ^ UNױ:5.: n!zuY'Bg{Ѹ&ij*^~bY"Ԫ'atun 8/\ُђIӮ^C!ɰT> endobj 145 0 obj [146 0 R] endobj 146 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 839 0 0 cm /ImagePart_2049 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 366.25 718.75 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.2 Indistinguishable States ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 126.7 675.799 Tm 110 Tz /OPExtFont3 15.5 Tf (3.2 Indistinguishable States ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 110 Tz 3 Tr 1 0 0 1 126.5 641.5 Tm 98 Tz /OPExtFont3 11 Tf (Given a perfect model, an ideal point forecast is possible if we initialise the ) Tj 1 0 0 1 125.75 618.7 Tm 96 Tz (model with the true state of the system. For periodical system, the state can ) Tj 1 0 0 1 125.75 595.399 Tm 97 Tz (be identified uniquely when t co. For chaotic systems, noisy observations ) Tj 1 0 0 1 126 572.35 Tm 94 Tz (prevent us from identifying the true state of the system precisely, nonetheless ) Tj 1 0 0 1 125.75 549.299 Tm (one can find a set of states that are ) Tj 1 0 0 1 310.8 549.299 Tm 97 Tz /OPExtFont6 12 Tf (indistinguishable ) Tj 1 0 0 1 396.25 549.299 Tm 94 Tz /OPExtFont3 11 Tf (from the true state given ) Tj 1 0 0 1 125.75 526.299 Tm 99 Tz (the perfect model and the noise model \(48\). In this section we describe the ) Tj 1 0 0 1 125.75 503.25 Tm 92 Tz (background knowledge of Indistinguishable States Theory following the work of ) Tj 1 0 0 1 125.75 480.199 Tm 96 Tz (Judd and Smith in \(48\). Figure 3.1 \(reproduced from Figure 1 in \(48\)\) shows ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 125.299 233.25 Tm (Figure 3.1: Following Judd and Smith \(2001\), Suppose x) Tj 1 0 0 1 417.35 233 Tm 90 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 420.25 233 Tm 100 Tz /OPExtFont3 11 Tf ( is the true state of ) Tj 1 0 0 1 125.049 219.299 Tm 95 Tz (the system and y) Tj 1 0 0 1 212.65 219.299 Tm 89 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 215.5 219.299 Tm 95 Tz /OPExtFont3 11 Tf ( some other state where x) Tj 1 0 0 1 347.75 219.299 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 350.399 219.299 Tm 102 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 384.949 219.299 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 387.6 219.299 Tm 136 Tz /OPExtFont2 10 Tf ( E ) Tj 1 0 0 1 404.649 219.299 Tm 106 Tz /OPExtFont3 11 Tf (R) Tj 1 0 0 1 413.3 219.299 Tm 49 Tz (2) Tj 1 0 0 1 418.3 219.299 Tm 95 Tz (. The circles centred ) Tj 1 0 0 1 125.299 205.149 Tm 99 Tz (on x) Tj 1 0 0 1 148.3 205.149 Tm 90 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 151.199 205.149 Tm 103 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 186.25 205.149 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 188.9 204.899 Tm 94 Tz /OPExtFont3 11 Tf ( represent the bounded measurement error. When an observation ) Tj 1 0 0 1 125.049 191 Tm 97 Tz (falls in the overlap of the two circles \(e.g., at a\), then the states x) Tj 1 0 0 1 462 191 Tm 90 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 464.899 191 Tm 101 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 498.949 191.25 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 501.6 191.25 Tm 97 Tz /OPExtFont3 11 Tf ( are ) Tj 1 0 0 1 125.049 176.85 Tm 96 Tz (indistinguishable given this single observation. If the observation falls in the ) Tj 1 0 0 1 124.799 162.899 Tm 97 Tz (region about x) Tj 1 0 0 1 199.9 162.899 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 204.25 162.899 Tm 96 Tz /OPExtFont3 11 Tf (, but outside the overlap region \(e.g., at ) Tj 1 0 0 1 413.5 162.899 Tm 25 Tz /OPExtFont4 11 Tf (/) Tj 1 0 0 1 414.949 162.899 Tm 95 Tz /OPExtFont4 11.5 Tf (3\), ) Tj 1 0 0 1 433.899 162.899 Tm 93 Tz /OPExtFont3 11 Tf (then on the basis ) Tj 1 0 0 1 125.049 149 Tm 97 Tz (of this observation one can reject y) Tj 1 0 0 1 308.649 149 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 311.3 149 Tm 101 Tz /OPExtFont3 11 Tf ( being the true state, i.e., x) Tj 1 0 0 1 459.1 149 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 461.5 149 Tm 108 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 498 149 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 500.649 149 Tm 102 Tz /OPExtFont3 11 Tf ( are ) Tj 1 0 0 1 124.799 135.1 Tm 90 Tz (distinguishable given the observation. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 318.25 51.549 Tm 73 Tz (22 ) Tj ET EMC endstream endobj 147 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 148 0 obj <> stream 0 ,, b7 [xPa x̜!6T渚^e;~Lc5y,jT̷UIx܏ʼn # (@IgmuOl &0LP^}F(oE>˟X[hL"^- L5Ɉ<3,Thc1׫y]=F'쬮j7_1?)BrXLJqV:uq['vuD~<0L ٺ.ʵvfcbEM3Z;cZRD{J-ȺF9Bߖa1($vV25ujjbv+E!}rs p,ZCCmۗ9v*V#oO3j_/\NɎ5ȱg&vB*Ill6XTr ="av Z.G -p9dh"^D¾]kR>7%<LטE.$WH=DaHrO#xE9KFgP똈\).pg` 2dZ'{Ҋ3}!@?72m/q :-A \ӽ4(D RA@>z" cg@ _BE iE 9g2ltء{~"hfu+&Ѵ2%Z,nKE)YnDnJ\AƛZ!Ŝh}w}c֠ACʿ ,˃]Yɩ'HTzJ?|$#e1Y^֝P7a D_{3ujDUt<1M*{yㅛlN߯H>Ɖ lhhfs܌.\gc}j))U@oBUE#Nk]4BPQc| B2j K[C6mEn@ꡒBQ-# [m9϶0yܵ<&t2PO۟blbȻ tRKA ?yuQWaqvRu=գ4UX>2RX; )_:/ rI%\?HJ|_7X(<ȐeGhnNEWp "nAih1aD6^|9czD]aCng% } yS FX"wzmG7Ďg79uLA_SWw8ͷe|>¶/4BϲMŴރݸڹЈ,)k578N& <@|/' &| +jgD y~?y@/2 |_x*YΆ2H`o}a~UB}3zPD(NF̰ 8ԷFD d+jOg-ॐb8N6viv- éMV{+5tVexDD|+) J跨zrdYUGYظBTl_VJL(5Kc]t½fni!f BFBBc6J6: \9֒vY;ep4V{3)`F `tAEJZHRYkƂD˜{1  oj/[r6(zi8 "g6m:{Ox{^%47_QuJpBJFw۫K%`nh2%/Lz:] i9^$WR;J *;R_ݚtx-)R; W7Eun\?xm=4MQ>։j K7e!QQf Խ%w>}js ٤e]DQ u-HEpxz鍧i> in(qO%>0ף8={cvMęڮeo)"}\CKt=MɣUTw[$/4QԒ#h8>E~H s#ޅcjfH0,֨vrs# > ,p94o˚wiR\ -Rw[+@u^thm$1'Q:% 1t-\-fA1evfUBEOEXUMإL3ړB^`AUc= ͣ7bg-~v5:\5㛄+-\'##9   r>"ĩĸ-i9ǖڲ4#1:`,Ͳѐ<{C(1L* >A}Xiqr v9<-L95Î0cRr0LK{Q922]yk@Ԣ{ G׸Q9RX8 >]͖nJ{7A p'jCni$4@t\lB)?zr؈{'Ӗq뱝1Ds[GH-KM1ӗV.\TE̪VQS NIE/CXs8cqE Q0ʜoWqSbF Ι)>($^,Ä :' YdIN eLy|C&B_P^eV^3 @a 잚F@PnDEۍ+G(Ctwkْuqː<쩅6lu̧_l'nNQoqRmaR҇I`!06>kŒ|Xz rмOᦝ-2eypuFRPΛzRib]~eI|p 浿Γ.p%ZD(ݡ u1)+G_41 zk0ǩӸ #'2nMXLZº)Q wbl*oճΊ{[G|y֤|^R9^|dId Ǡøk.8gASow3~?U+ԯϤ.(S=CO.]4̫/annWQk RHd↮w7r9w)A,v0g.ݲG4 ؿT'Cxq֧,Oz%>%IŸʱ᳧:/=tt۴t<áч틶!麋?Ji'Q![ ][Ig~I BpPq="-OX%r2%\ #r #u:f3) Lo8kLWJ@Brb `ySo؜zHK5 /dR6v6FIRpk@f (24oM7lGDj!=ѵ5*f3qsD/"/vs>-0a)yQc~p`rD咞*֞;57֞޴yisaFnmDr.g0KW$Z$ҧ1)YI) 2(tzuh$NSa.PZ&>zL.s0s})? "΄$ ](A?@%4fd%\ӎ_ftl6?Vqz-ڷ=Q'ט G5Kq{]Mdsp\bf΂QTQ9܈+7;a>l;.T*읳Ҿ鰪c豷ߣܰó˳ʳ[-}=Oį>ȋY'qOL,uJ \֔{3{, ^쿑mkc!G{+CrG 0MQ,K#,Zwp7~2ۀ#Gl&$vz(!9EetCGWRo'5ż@bS{XߝgW9m!."YT' !*#>;[4'IՓ1TyX++ ,+04?q ]ڞ?NUojpkp2=Ս(ƖPk–YP&KA٤lxd4Plt(HEa8,]7f(0V 5a[4F ))} z՘S 4un(@G*}9CtӳD>ְ=Ҿڅ~,{)42ʤ\6Q?%K83ɓ9-P;<1;%3ڟL*!;ZVPr'NEY_WVlT p)_EX_gؤT|8Gvg9W_UoyqSD8^l_*mcXowͬ`YyHZacPA5xtt5wUC54f9"^Og ]|݂~ͫK1±ʀMG*{{C4۫VPGE%2p;~VF /v/Y A;@6y -Gw:K" E$GreW C%!&#+U95&G\b{F8WZjڏa~(ۡ~%gʜl ڭDuOa4.:,S'7\#T瀼ݸ239&v6-%6K!Vnw~tA )=!nKnZhae,ԁh(oK)cZ]78=}gD}_rcs8z4EJΝLB,\K WIIW& U"0yȗ/`d~*"c@}Dpa4&$O0O3>$G0Sl1аԞ=$٨s9ۄǷU"<g҃f?G_ Ehfâ^̎{l<\Q/jcF AڬY W஦逅!S9eԉD]PFKuN |Z_i VNͼ*+U2uv+ЎmуQ.S;!cB|A@ӹ/:}/ /`NW}*l18qmJY]$O zđ=P,MlW,%&K*ڟ:H r=]@M;;dfz%vm{xtH7$5.بk< &Y :(O4 -YPݸb0ga}c;נN>uՑųԲ9"Ëb&)<73<*b\P xV '}-\K%βHl"LM7h [: Km`p\t=5feW }"{n$2ɻ֊eLS ^W@ N;'5b[' )-j#s`h1 ()߭oA*#z!}u>'>u.f< 6A!. 6Ew/E4u{,RVքʰ\)$"S'x80>HZw]9FW+He-aaR:9\E.U](i`]Cu! Vvƀ9 V A>J}6>fH$·iĐ- BEivzUHlڬ"( 'ﻳ,w Dܭr?vdLvnW` oY^]hvVr B'΄7:n u~BFwD }5=>TU?JD̘fAVRT+ ),<0vioՑO-h<}[t>uaeL.\7# *9FC:I@Gm?S-XVm oz/.j̎6k.$F=<ZLK>gC_&y"y4|]FVa3!NAr]!PIR:jאk 0jpܐH[ǵT 4+"/=OL’0!YstVrxo׍PC>ܸSRc /*|! |ske{g#J$[8g0RQL"ݔݻ!IWC^j^c)W{ؒ!-U:N50"zؒ1Y)b`ǼsqH/qB\ۢ>Oe t4bd`'#G 2BD/im9F9+2|b(7ާvV,s}8/6m|vjv ma!\,@4i# @4^B:`0m`n+hNoBq=:TR˓ܺ [.O+DԽ^!< j#?pe UWwp`"[S X-iC뀁xT\As{lPp)5@~_R|F '61caP}}bUQRPCq٠|Pμ"ը W/|_Bc86D#KxޝgEhZ_nL  -y|110@Hn(DsUU"*x-;W8.Xb(uuY9(%VT]ctUR 1PʫNZfS)(BrFs||J:WGr2ف%H;i:[|\^AANC*sG+ZI)XO'1c@ ,{&t4nJxZr"3xMK8XECԦT[ UR*vJ2]③-இ?z!J1C T?VX':8^>_,Vi|HgIk ܉tZlPz(,u`wwt஭cᲰD"fu54IYS4/bƐ>65aXcEIKoIj!Hpۢ GSI*v}elDn 7 q$=-cJxkbtJg ~ĵ!L\L],r["B\C o8\*(,Q'-!v - lJPykkк5Q=ĺ;xJSR\dY(kEjˈ_Ga$_2yʋ&xfg-UeJLp?@tcD簨ZZu⇬Gvs1Һm}xJ 51%#Xq6I&g ~*'_~L8~M\dQ oD+*竐5F2Ka c~BrGkH4^ef_^]=͆ܤbAr'$<*~T@32{щ|k5cI!iSgC˒}"v7I>tۭ'/+g16YZϳ8璼zFfzm8y(gpH>q y͚X9ᐽLT.0# "] />KR.kmr7nV{"NEtg~Q*ZCQYluh[mzuCB/+tMM 4./0AH_vq)>ŏp`%қUq+h=; O6y+fQ,9*%h#0Y#v!cl,L|IsnngLq賾1bU >~XQѸX[O͸Oz\6!YwnV;/.\.H1u4]} ~9+I"554HKTtžNX%ykW)7T ɑ'yCPlT^iuJw{z\5s*5 G}q2RWXaN٨N ظntםl *2,1绮Q럐Iû(W༬[Pſ\eRmR*l:J'l;4 *z4X),ucqLͲ,Pmk*+i%=CrhrS90;.(s%xs~Ųsj_,}e½gc罗׼1Bǟ^6EM.MRN ?fUj!w_BG$p|S&yt\ ˠlMt+&oZ1?XW g9;a<7|:r#yЮQ4=VB=BMk;d#aDsAd$gaJ0Hٻ\ͫd!,YE MWQ/•XBEoB`ź ;Sj/{G+~g{ܵyB=eSh F cYuMWz(wޒ0*8z3Q˦f,VRl?ʨݫx;QzZou!q(ENb`lձ?cN7Un[tY`_ĩܼ{52u˄]=G}By`X%dAwj)1cԩ9PR?~'hTyV/ns 8I{vz_0T 8JI1?x{6 3/Oy+@.ƈH9>X:$!B}$?pѐrH BQ"6/M'-C3^zw [\]Sl[j.VJ'oK=Nr%Pos P"ӿėf54SeGIͷ7+ެO6j$7ơSҿ_8}aiyY1'/x2SnL^%4FHIƐB\tn~ZD坔~J$Z'P:"ĺq9-]uGq›0JJBJ%JA@r9 ^VT5EJ7>6,h0⬌ F.F7C6a*mT: ,c'?D!@. Z6ک& |+؁ QPNlybxsU1r$P*Y3>%,Tx}Fͧy^"z]-~ ѿ$N? R p~O>cU:A \ں Cڸ(Ԍ"=@΁=Z_<7ceU'<`ɫg¢"b^-[!;uvd}Tq?@哖Q5|"9Ԓn;6`{mZ7qn_^V!铥^5kY<۩h흫xhR1@09Ju[,z_"YOdR/0ʯ1>T̹ThIҁ;{' ;P\֬jP# :6'11yxIvMRem>5 w 9ff%\x6xΦyi ڬfaZ2 v*6FpB6G9.`}Kš@Y-86R2.Bi(L!B` :oG$AEwl,H :}3}X,IfAŐ!*<;.7 endstream endobj 149 0 obj <> endobj 150 0 obj [151 0 R] endobj 151 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 839 0 0 cm /ImagePart_2050 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 364.8 720.7 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.2 Indistinguishable States ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 124.799 677.5 Tm 88 Tz (that based on one single observation s) Tj 1 0 0 1 308.649 677.7 Tm 57 Tz (t ) Tj 1 0 0 1 311.05 677.7 Tm 94 Tz ( of state x) Tj 1 0 0 1 360.699 677.7 Tm 74 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 365.3 677.7 Tm 89 Tz /OPExtFont3 11 Tf (, there exist many states y) Tj 1 0 0 1 492.25 677.95 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 494.649 677.95 Tm 87 Tz /OPExtFont3 11 Tf ( each ) Tj 1 0 0 1 125.049 654.899 Tm 92 Tz (of which is indistinguishable from x) Tj 1 0 0 1 302.399 654.899 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 305.05 654.899 Tm 92 Tz /OPExtFont3 11 Tf ( because of the observational uncertainty if ) Tj 1 0 0 1 125.049 631.899 Tm 91 Tz (the overlap region in Figure 3.1 covers the observation s) Tj 1 0 0 1 403.449 632.1 Tm 74 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 407.3 632.1 Tm 95 Tz /OPExtFont3 11 Tf (. Notice that given the ) Tj 1 0 0 1 124.799 608.85 Tm 93 Tz (bounded noise model, x) Tj 1 0 0 1 244.099 608.85 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 246.5 608.85 Tm 101 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 280.8 608.85 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 283.449 608.85 Tm 92 Tz /OPExtFont3 11 Tf ( are indistinguishable as there exist the overlap ) Tj 1 0 0 1 124.799 585.799 Tm 93 Tz (region in Figure 3.1. However, a particular realization of observation, e.g. /3 in ) Tj 1 0 0 1 125.049 562.5 Tm 91 Tz (Figure 3.1, could distinguish x) Tj 1 0 0 1 275.75 562.5 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 278.399 562.5 Tm 99 Tz /OPExtFont3 11 Tf ( from y) Tj 1 0 0 1 316.1 562.5 Tm 89 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 320.399 562.5 Tm 34 Tz /OPExtFont3 11 Tf (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 34 Tz 3 Tr 1 0 0 1 141.849 539.7 Tm 93 Tz (We describe the statistical background of Indistinguishable State Theory in ) Tj 1 0 0 1 124.799 516.7 Tm (the following. For the convenience of explanation, x) Tj 1 0 0 1 384 516.7 Tm 90 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 388.55 516.7 Tm 92 Tz /OPExtFont3 11 Tf (, y) Tj 1 0 0 1 400.3 516.7 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 402.949 516.7 Tm 96 Tz /OPExtFont3 11 Tf ( and s) Tj 1 0 0 1 435.35 516.7 Tm 90 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 438.25 516.7 Tm 95 Tz /OPExtFont3 11 Tf ( are scalars. Let ) Tj 1 0 0 1 124.799 493.649 Tm 91 Tz (the probability density function of the observational noise be ) Tj 1 0 0 1 425.3 493.649 Tm 99 Tz /OPExtFont6 11.5 Tf (p\(\), ) Tj 1 0 0 1 449.75 493.899 Tm 90 Tz /OPExtFont3 11 Tf (the joint prob-) Tj 1 0 0 1 125.049 470.35 Tm 93 Tz (ability density of ) Tj 1 0 0 1 211.699 470.35 Tm 112 Tz /OPExtFont6 11.5 Tf (x) Tj 1 0 0 1 217.9 470.35 Tm 92 Tz /OPExtFont8 11.5 Tf (t ) Tj 1 0 0 1 220.55 470.35 Tm 95 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 252.5 470.35 Tm 89 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 255.349 470.6 Tm 91 Tz /OPExtFont3 11 Tf ( being indistinguishable is then defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 252 395.699 Tm 130 Tz /OPExtFont16 34.5 Tf (f) Tj 1 0 0 1 265.449 402.899 Tm 99 Tz /OPExtFont6 11.5 Tf (P\(st xt\)P\(st y) Tj 1 0 0 1 351.35 405.1 Tm 74 Tz /OPExtFont8 11.5 Tf (t) Tj 1 0 0 1 354.949 405.3 Tm 102 Tz /OPExtFont6 11.5 Tf (\)ds) Tj 1 0 0 1 369.85 405.3 Tm 83 Tz /OPExtFont8 11.5 Tf (t) Tj 1 0 0 1 374.149 405.55 Tm 50 Tz /OPExtFont6 11.5 Tf (. ) Tj 1 0 0 1 375.6 405.55 Tm 2000 Tz (\t) Tj 1 0 0 1 498.699 405.55 Tm 87 Tz /OPExtFont3 11 Tf (\(3.1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 124.299 363.1 Tm 91 Tz (This joint density function depends only on the difference between xt and y) Tj 1 0 0 1 495.6 363.1 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 498.25 363.3 Tm 91 Tz /OPExtFont3 11 Tf ( and ) Tj 1 0 0 1 124.549 339.8 Tm (the distribution of the measurement error s) Tj 1 0 0 1 339.6 339.8 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 342 339.8 Tm 79 Tz /OPExtFont3 11 Tf ( ) Tj 1 0 0 1 357.1 340.05 Tm 108 Tz /OPExtFont6 11.5 Tf (x) Tj 1 0 0 1 363.35 340.05 Tm 100 Tz /OPExtFont8 11.5 Tf (t) Tj 1 0 0 1 367.899 340.05 Tm 41 Tz /OPExtFont6 11.5 Tf (, ) Tj 1 0 0 1 373.899 340.05 Tm 84 Tz /OPExtFont3 11 Tf (since ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 84 Tz 3 Tr 1 0 0 1 143.05 264.45 Tm 134 Tz /OPExtFont16 34.5 Tf (f) Tj 1 0 0 1 156.25 272.35 Tm 97 Tz /OPExtFont3 11 Tf (gst ) Tj 1 0 0 1 189.599 272.1 Tm 129 Tz /OPExtFont8 10.5 Tf (xt\)P\(st ) Tj 1 0 0 1 225.849 272.6 Tm 90 Tz /OPExtFont3 11 Tf ( Yt\)dst = ) Tj 1 0 0 1 276.25 273.799 Tm 122 Tz (\t) Tj 1 0 0 1 294 273.1 Tm 94 Tz /OPExtFont6 11.5 Tf (P\(st ) Tj 1 0 0 1 315.85 273.1 Tm 65 Tz /OPExtFont3 11 Tf ( ) Tj 1 0 0 1 326.649 271.899 Tm 105 Tz /OPExtFont6 11.5 Tf (xt\)P\(st ) Tj 1 0 0 1 373.899 272.1 Tm 90 Tz /OPExtFont3 11 Tf (xt + xt ) Tj 1 0 0 1 421.699 272.85 Tm 102 Tz /OPExtFont6 11.5 Tf (Yt\)d\(st ) Tj 1 0 0 1 468.25 274.5 Tm 115 Tz /OPExtFont3 11 Tf (xt\), \(3.2\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 115 Tz 3 Tr 1 0 0 1 124.549 231.799 Tm 96 Tz (The ) Tj 1 0 0 1 147.099 232.049 Tm 103 Tz /OPExtFont6 11.5 Tf (indistinguishability ) Tj 1 0 0 1 241.699 232.049 Tm 88 Tz /OPExtFont3 11 Tf (of two states ) Tj 1 0 0 1 304.8 232.049 Tm 107 Tz /OPExtFont6 11.5 Tf (x) Tj 1 0 0 1 311.05 232.049 Tm 83 Tz /OPExtFont8 11.5 Tf (t ) Tj 1 0 0 1 313.449 232.049 Tm 89 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 343.199 232.049 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 345.85 232.299 Tm 88 Tz /OPExtFont3 11 Tf ( can be quantified by the normalised ) Tj 1 0 0 1 124.299 208.5 Tm 90 Tz (density function ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 244.3 151.149 Tm 249 Tz /OPExtFont8 11.5 Tf (f ) Tj 1 0 0 1 250.55 151.149 Tm 104 Tz /OPExtFont6 11.5 Tf ( p\(s) Tj 1 0 0 1 268.8 151.149 Tm 92 Tz /OPExtFont8 11.5 Tf (t ) Tj 1 0 0 1 271.449 151.149 Tm 98 Tz /OPExtFont6 11.5 Tf ( x) Tj 1 0 0 1 292.8 150.899 Tm 92 Tz /OPExtFont8 11.5 Tf (t) Tj 1 0 0 1 297.1 150.899 Tm 102 Tz /OPExtFont6 11.5 Tf (\)p\(s) Tj 1 0 0 1 316.1 150.899 Tm 90 Tz /OPExtFont8 11.5 Tf (t ) Tj 1 0 0 1 318.699 150.899 Tm 99 Tz /OPExtFont6 11.5 Tf ( x) Tj 1 0 0 1 340.1 151.399 Tm 83 Tz /OPExtFont8 11.5 Tf (t ) Tj 1 0 0 1 342.5 151.399 Tm 108 Tz /OPExtFont6 11.5 Tf ( +) Tj 1 0 0 1 381.35 150.2 Tm 133 Tz /OPExtFont8 11.5 Tf (yt\)d\(st ) Tj 1 0 0 1 428.149 149.7 Tm 106 Tz /OPExtFont6 11.5 Tf (xt\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11.5 Tf 106 Tz 3 Tr 1 0 0 1 180.25 143 Tm 104 Tz (q\(x) Tj 1 0 0 1 196.3 143 Tm 92 Tz /OPExtFont8 11.5 Tf (t ) Tj 1 0 0 1 198.949 143 Tm 96 Tz /OPExtFont6 11.5 Tf ( y) Tj 1 0 0 1 219.349 143.25 Tm 92 Tz /OPExtFont8 11.5 Tf (t) Tj 1 0 0 1 223.199 143 Tm 90 Tz /OPExtFont6 11.5 Tf (\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11.5 Tf 90 Tz 3 Tr 1 0 0 1 267.6 134.1 Tm 96 Tz /OPExtFont3 10.5 Tf (f p\(st ) Tj 1 0 0 1 310.1 134.35 Tm 114 Tz /OPExtFont6 11 Tf (xt\)p\(st ) Tj 1 0 0 1 346.1 134.35 Tm 68 Tz /OPExtFont3 10.5 Tf ( ) Tj 1 0 0 1 357.6 134.35 Tm 129 Tz /OPExtFont8 11 Tf (xt\)d\(st ) Tj 1 0 0 1 393.85 134.35 Tm 66 Tz /OPExtFont8 10.5 Tf ( ) Tj 1 0 0 1 404.899 134.35 Tm 110 Tz /OPExtFont8 11 Tf (xt\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 11 Tf 110 Tz 3 Tr 1 0 0 1 498.949 143.25 Tm 88 Tz /OPExtFont3 11 Tf (\(3.3\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 317.75 53.7 Tm 75 Tz (23 ) Tj ET EMC endstream endobj 152 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 153 0 obj <> stream 0 ,,R}}b7 \Rp-!?TO3K3Y Or:N;u9 a1y˶=^R=to`,͈,?.%K\=qBtsZdA?\+"0d|dR9EfQyx((NC,EjuVc=5F18W *e^NII|+6 c=dTK_>_ c?U͒r0j36܊NKv#uT\W<4!1bVOFa*W؍__^krC.yiqZՈaV1],Ӷ/8 ]*x@4To{d{j2ܸO]ԓfcd `( 12tS_qb KL[iQ2h [x ]q DlmoU8|wFVvaǔOf|$|><7Kw2a/Km74/AQQ`DZ _&vwIC@ nr$En0EW^<鴂w4f CѦ"+J^غ;T*-(Ou</uFGc`c;% RFIGbLzT7fIb0 vaGfN;Mpʴ7p[nU0J6{|M5ߪJ0-p-qfyvA"4Zu*5"?H/‡&Xt@$‹rd0eLl*5ac<:NPvtm:ujE>bVz/np5[*2.m`Hr3iC }6[2GB{quTIEj6]/MbaM?7 l%6iE) tR*ʭ68֫Mc&F cu,gϓiD /А> mB 3N[Q\U/B,dP`Ip/'ЀE }@%%-ΐ4e7ƗZ:'ߒF#v8סkq} I46$8 R95TYq$-"#0V2 0vA`jeJ%=Ԟ{~m& H 5STqƌ7vĩkU%Սog;[ B\ouDpW_ EG+@:-/(͝Jo[ud6 W; v*td:opW9 p/-jB(@# p1F({ZJBVt&-IH; %E)T z q:TrֱL`.tvi6974,w s?h4}o4˕BAcf@Qo y|>*E Jh7=7<G9%?|CEtâr;$ Վ6b OY.$|g_4&Ńtyc@;))I ļ৬ 9y-_7ӯ>wlC|=&p*+WF>#Ԁ~QfezjaUۅN\s~QcߩVv?"ݥt?]=7r ta;6z#)Vnm+:cTqp?Xψ@[ ^낹/C > =`2W7~[w'>%ՒGbe_C +T ,[oR*.oN(#:l^aQ_7}vFiP"?Gʹc&gJAi&nS)7J#%֬90CcLBg E  m(Z%_,yR>R4w}c_p]yAhDMn5[1ݣZq?EFT}׉ؗ.dT72cYi+o2-b/^tE#cIl%Bq=虖? U.ΨUnUT&J\6*wQG3Fݵ{H0ħ/-br! 7@?1/.wjDSLh(wս?'AX\WSn4)CHrHi+yػvUMSi"~NUj =~>2}N2pm WF o0@;QO O~l '4Bdx.ıWS!k0NL W%\ T6DʉõiyN#bZÒuI2= i3Y˚b\ {N*,:zw8e~ANu%*2B (.$씒*gWp&LRt$*Wh޲U !/½ 805;2k8*zMn<|5| lCUqIMOF8?[ܠC<8M^בwQbuƼ{p>W5$ޫ )=Y s0A٩9Dlanp2EUena.ye&&dk%T)Kkb#\'>m>1~;"/eƭ8xXeQtҭgbd"6yAe]'ى"x I7+ƑѫXX\[LXv$#^܍QCIN8o6Ɠխ̟zFؼD^%z6 mwbp=oBrlptē8lu_ly#ZV(*o2c~C:ϰۛpr2 ĄlVV sޟo|iwj#ϤŒ8Y_v[;w0'/PP">50"&4tʴӗB85U$,֐n<o/? 7wC,}cbC2Zv=c cb@NA]x}ݚ@&;s2θa%8[?Qgr߹Q ;1Ogm=k x6=nG`bls%˧ڋEs %fL1hn>f6 ]ޠ6r ')<@3ؕـGHXU1"`m $7bgVbp}m!~aqFyuGG2SRN+X;'{uEi ̯T;}x1qILc76G\k.UH(ti19Nr 0~<}5:NSoS'}1h#1(U"#-A$0MgG[Do2CD7?z/ V`=B57~-p2y4L)$^!y_Rtbz /q3wx2jd,HX7Q+6QuE@@\Gyr]A' GqgnYTSW@} Re|sZla=_e$8D!w8m% g|=Q=Eɸ1n߰K]{3b1\ũ'WUOfQ.(`^?|>宮.pA#֙hȱ4fTN jK= wch^V⅒8Nx"荎R*:vКI w0H8>`3|22-\*{ujAMZ#paf1^GuYr #[闛f{cKj7fX/aoRJp"7HG{vHku־(^ӹ}蝩Y]w3!gϯd`6mK/وPI;[g>XtT0qCL/K y9VId~R|_\hت ^T XaY=((FhBzՄ nHh|q8ܡ 5[Okn=p;iLZE߇2Dk(7YBg=XܧK$K ' ֧[s{Vchd$ ^ZD85IO;bfD&73k*w?  /PuS|ݛ){EnjlԽ`mz7sbXaaQjtD3cUW2|!8Uj+եkr6*ug}4|z~xSncx&5.ϯk%m RݿJx xfJeMUVnlw0I. l+GJ6M$#9}?lKԘ\pf14F]d]qNeЎ _${9.I)Z%~")8^gmt}5z7K]0v9h.tӾ%s8t恋mv8=΁49PB(Ys+ڣ-G:e3Mw&:TܜV8kISvЭE8^>ejuͦ%efa>仳&U4:Ұ??0/ܳܝҐ9ݖ°EǶo+Єp0& ;h&:Բ"4?tu=rjk$^N& ~ NY=X1{-KuG3rC)[=~w""~~ j4BU_ uK)gvpU_-J_(<"*``ddғe`A*qo`(.,Ji"9lR;~#W>6\$ -1`wG f9t"  uܠ\ډt\ݰMuQknmk!͝cBzE NҬDjyq!G$jTNͧY Ռu[a A)BǴ^G |Y<=W[6ģ XǯNS8LeZ%%/7Ԧ.ֈPJuB;aEU5_僻njux@xD&fA DZχ;3#N1O;n$${w[KqZ^0 W\*izĽ㽍f*X?ſc-[de#@VJ[+4p1PDff.ոUis dlȳ,xmyuăS|5gswu} b :E3ز?3Vp=OôZxAbWx?l +KOx$OQٶhإMo&Ǽ2]*8v~߇|*f-m Q~,FHBj}.c~[Q e z,G4HR[ =$%ۜ}' w,cTX&k a4HLe X56ӕHidq}!ѾC1JC[=SX_V;Б> endobj 155 0 obj [156 0 R] endobj 156 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 610 0 0 840 0 0 cm /ImagePart_2051 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 360.699 720.25 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.2 Indistinguishable States ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 120.7 677.299 Tm 92 Tz (This function is called ) Tj 1 0 0 1 235.699 677.299 Tm 80 Tz /OPExtFont6 12 Tf (q ) Tj 1 0 0 1 246.25 677.299 Tm 83 Tz /OPExtFont4 11 Tf (density. ) Tj 1 0 0 1 289.199 677.299 Tm 92 Tz /OPExtFont3 11 Tf (The normalisation implies the constraint that ) Tj 1 0 0 1 120.5 654.5 Tm 93 Tz (when x) Tj 1 0 0 1 156.949 654.5 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 159.599 654.5 Tm 121 Tz /OPExtFont3 11 Tf ( = y) Tj 1 0 0 1 183.349 654.5 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 187.699 654.5 Tm 93 Tz /OPExtFont3 11 Tf (, the density function reaches its maximum value of 1: in no case ) Tj 1 0 0 1 120.7 631.45 Tm 95 Tz (that x) Tj 1 0 0 1 151.449 631.45 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 154.099 631.45 Tm 94 Tz /OPExtFont3 11 Tf ( is distinguishable from itself. If ) Tj 1 0 0 1 318.5 631.2 Tm 101 Tz /OPExtFont6 12 Tf (q\(x) Tj 1 0 0 1 334.3 631.2 Tm 88 Tz /OPExtFont8 12 Tf (t ) Tj 1 0 0 1 336.949 631.2 Tm 296 Tz /OPExtFont4 3 Tf ( ) Tj 1 0 0 1 352.3 631.2 Tm 99 Tz /OPExtFont6 12 Tf (y) Tj 1 0 0 1 357.6 631.2 Tm 79 Tz /OPExtFont8 12 Tf (t) Tj 1 0 0 1 361.699 631.2 Tm 101 Tz /OPExtFont6 12 Tf (\) = ) Tj 1 0 0 1 381.6 631.45 Tm 90 Tz /OPExtFont3 11 Tf (0, then the states ) Tj 1 0 0 1 471.6 631.2 Tm 96 Tz /OPExtFont4 11 Tf (x) Tj 1 0 0 1 477.85 630.95 Tm /OPExtFont8 11 Tf (t ) Tj 1 0 0 1 480.5 630.5 Tm /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 512.899 631.45 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 515.299 608.399 Tm 1 Tz /OPExtFont3 11 Tf ( are distinguishable with probability one, any particular realization of observation ) Tj 1 0 0 1 120.5 585.35 Tm 93 Tz (will only be consistent with either ) Tj 1 0 0 1 293.3 585.35 Tm 92 Tz /OPExtFont4 11 Tf (x) Tj 1 0 0 1 299.3 585.35 Tm 103 Tz /OPExtFont8 11 Tf (t ) Tj 1 0 0 1 302.149 585.35 Tm 101 Tz /OPExtFont3 11 Tf ( or y) Tj 1 0 0 1 326.149 585.35 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 328.8 585.35 Tm 97 Tz /OPExtFont3 11 Tf ( but not both. A value ) Tj 1 0 0 1 448.1 585.35 Tm 98 Tz /OPExtFont6 12 Tf (q\(x) Tj 1 0 0 1 463.899 585.35 Tm 88 Tz /OPExtFont8 12 Tf (t ) Tj 1 0 0 1 466.55 585.35 Tm 289 Tz /OPExtFont4 3 Tf ( ) Tj 1 0 0 1 481.899 585.35 Tm 99 Tz /OPExtFont6 12 Tf (y) Tj 1 0 0 1 486.949 585.35 Tm 88 Tz /OPExtFont8 12 Tf (t) Tj 1 0 0 1 491.05 585.35 Tm 100 Tz /OPExtFont6 12 Tf (\) > ) Tj 1 0 0 1 510.949 585.35 Tm 66 Tz /OPExtFont3 11 Tf (0 ) Tj 1 0 0 1 120.5 562.299 Tm 92 Tz (indicates that x) Tj 1 0 0 1 198.25 562.299 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 200.9 562.299 Tm 97 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 233.5 562.299 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 235.9 562.299 Tm 91 Tz /OPExtFont3 11 Tf ( are indistinguishable given the noise model. One should ) Tj 1 0 0 1 120.5 539.299 Tm 93 Tz (notice that there might be some particular observations that can distinguish x) Tj 1 0 0 1 512.649 539.299 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 515.299 516.25 Tm 2 Tz /OPExtFont3 11 Tf ( from y) Tj 1 0 0 1 153.349 516.25 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 156 516.25 Tm 95 Tz /OPExtFont3 11 Tf ( for example, in the bounded noise case, if \)3 in Figure 3.1 is observed ) Tj 1 0 0 1 120.25 493.199 Tm 104 Tz (x) Tj 1 0 0 1 126.7 493.199 Tm 90 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 129.599 493.199 Tm 106 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 165.099 493.199 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 167.5 493.199 Tm 96 Tz /OPExtFont3 11 Tf ( are distinguishable. Therefore particular realizations will give extra ) Tj 1 0 0 1 120 470.149 Tm 92 Tz (information to distinguish x) Tj 1 0 0 1 258.949 470.149 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 261.35 470.149 Tm 96 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 293.5 470.149 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 296.149 470.149 Tm 91 Tz /OPExtFont3 11 Tf ( besides the ) Tj 1 0 0 1 359.05 470.149 Tm 80 Tz /OPExtFont6 12 Tf (q ) Tj 1 0 0 1 368.399 470.149 Tm 84 Tz /OPExtFont3 11 Tf (density. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 84 Tz 3 Tr 1 0 0 1 137.5 446.649 Tm 82 Tz (Such ) Tj 1 0 0 1 164.9 446.899 Tm 75 Tz /OPExtFont6 12 Tf (q ) Tj 1 0 0 1 174 446.899 Tm 91 Tz /OPExtFont3 11 Tf (density can be generalised to a sequence of observations. Any system ) Tj 1 0 0 1 120.25 423.6 Tm 93 Tz (state x) Tj 1 0 0 1 154.3 423.85 Tm 60 Tz /OPExtFont5 11 Tf (o ) Tj 1 0 0 1 157.699 423.85 Tm 93 Tz /OPExtFont3 11 Tf ( defines a trajectory \(we will often drop the subscript for x) Tj 1 0 0 1 449.75 423.85 Tm 65 Tz /OPExtFont5 11 Tf (0 ) Tj 1 0 0 1 453.1 424.1 Tm 92 Tz /OPExtFont3 11 Tf ( afterwards\), ) Tj 1 0 0 1 120 401.05 Tm 93 Tz (that goes infinite past and terminates at ) Tj 1 0 0 1 327.1 401.05 Tm 88 Tz /OPExtFont4 11 Tf (x. ) Tj 1 0 0 1 343.449 401.05 Tm 92 Tz /OPExtFont3 11 Tf (Given a time series of observations ) Tj 1 0 0 1 120.25 378 Tm 75 Tz (s) Tj 1 0 0 1 125.299 378 Tm 81 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 129.349 378 Tm 41 Tz /OPExtFont3 11 Tf (, ) Tj 1 0 0 1 134.15 378 Tm 110 Tz /OPExtFont4 12 Tf (t = ) Tj 1 0 0 1 155.75 378 Tm 90 Tz /OPExtFont3 11 Tf (0, 1, 2, ..., it follows from the independence of the measurement error ) Tj 1 0 0 1 120 354.699 Tm (that by considering all the states on the trajectory, the indistinguishability of two ) Tj 1 0 0 1 120 331.449 Tm (state ) Tj 1 0 0 1 148.099 331.449 Tm 92 Tz /OPExtFont4 11 Tf (x ) Tj 1 0 0 1 158.15 331.449 Tm 93 Tz /OPExtFont3 11 Tf (and y is then given by the product ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 250.55 289.2 Tm 103 Tz /OPExtFont4 11 Tf (Q\(x, ) Tj 1 0 0 1 275.3 288.5 Tm 131 Tz /OPExtFont3 11 Tf (y\) = fl) Tj 1 0 0 1 317.5 286.299 Tm 121 Tz /OPExtFont8 10.5 Tf (q\(xt ) Tj 1 0 0 1 340.1 287.049 Tm 237 Tz /OPExtFont5 10 Tf (- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 10 Tf 237 Tz 3 Tr 1 0 0 1 301.199 276 Tm 90 Tz (t<0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 10 Tf 90 Tz 3 Tr 1 0 0 1 494.399 289.2 Tm 88 Tz /OPExtFont3 11 Tf (\(3.4\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 120 244.549 Tm 92 Tz (Similar to the single observation case, If ) Tj 1 0 0 1 323.05 244.549 Tm 103 Tz /OPExtFont4 11 Tf (Q\(x, ) Tj 1 0 0 1 347.5 244.549 Tm 95 Tz /OPExtFont3 11 Tf (y\) > 0, then the trajectory ending ) Tj 1 0 0 1 120 221.299 Tm 88 Tz (at ) Tj 1 0 0 1 132.699 221.299 Tm 97 Tz /OPExtFont4 11 Tf (x ) Tj 1 0 0 1 142.55 221.299 Tm 90 Tz /OPExtFont3 11 Tf (and the trajectory ending at y are not distinguishable, given the noise model. ) Tj 1 0 0 1 120 198 Tm 92 Tz (Therefore the set of indistinguishable states of x is defined as ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 234.699 155.75 Tm 91 Tz (111\(x\) = {y ) Tj 1 0 0 1 289.899 155.75 Tm 95 Tz /OPExtFont2 10 Tf (E ) Tj 1 0 0 1 295.699 155.75 Tm 662 Tz (\t) Tj 1 0 0 1 312.25 155.5 Tm 34 Tz /OPExtFont3 11 Tf (: ) Tj 1 0 0 1 318 155.5 Tm 107 Tz /OPExtFont6 12 Tf (Q\(x,y\) > 01. ) Tj 1 0 0 1 381.6 155.5 Tm 2000 Tz (\t) Tj 1 0 0 1 494.399 155.75 Tm 89 Tz /OPExtFont3 11 Tf (\(3.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 312.949 53.5 Tm 79 Tz (24 ) Tj ET EMC endstream endobj 157 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 158 0 obj <> stream 0 ,,#b7 >``d=t -n?cR%+k~)Ux[H`003ڰԚ-<b&|,:>cBIh?x %)Ê^`v?xT?lnm8 QSŪV.]YM^hBYJ44ѣ-;M]W/զjj.XYR k1Úr4f+0H8@oyV^!>l11䳻Zpwkt~~|}lip;A%#L|"לnXµ JY`2@UƟKaL\.ީQgZ2X0arPz+ 6,@{VLn HE!}ܫO\C~(>yB <|_Gic b^bH U|{CgQ$286uw :5wµO=sxoS,sl~oC0_?IC8@z&W h35rZ/H=uϿ9])aRQ+x%Y<&s[ $NpKbrZpY; A8X(gE D0K/U8-Aׁp 99TYUH[ˆ+3/?Zx}s۵(fc 〯Z DϲʒndIU9ʶꍳk@ 9wDgY!%<~^ &IO $ D#;>@t*v%6:Sb`FZ B9KCcyM?+;Ù?*6Ƥ-NO|RXJ T_G(HEBYƍ ԣ.Br LR(n.@{;,:awuI1 +mGtJ#a{-=.[ѤBҾ* n!E4!*O=MM/ZŖU䇠TBԲ_nJ;G/t~Ԭ  mLRwK;O.J?ܧEwr-Ƴ)k 9*zHRVM 1f2>`l[=ZdP>/M D{;8nQӛM=B: {;A:ҙ(~ǔ%! ҇ǎ5<핵N'[I;5%v%Gu"58&!U.p]~Wo*Lxkp_>-ڔD'g=i2tƝ Y;b;Z4^ 5V?$.o;k~#@m`^$,sưgbGZE]‘6ag>6W?NUhXd݀Ned 0<{ŁmʽVEɺ)}w%+Mԝ;I0AYڧ=3J1SS7];]Fm^ZSjtvf\0qRCȬGqW:aP?xDyi|IAXN[66h_]dzi;c0]wi!zRa6OF3#l+i3d'*m&1h5|NdÿY ?U2M7Vbv>|?l1$Xp:(Fz9U [K)? ufӎ~̘zq cI`Q=8>"*wp;7?k|"?sţV~K$ 0 jeL6E)~,S^ȡ1ŪWZ6s5x_T V˿<T ]9=lh&g)R"A42K$co{ ?[1ˍ(xȞe(qxWWNllECŃlBg`NX5iER w-c2 ]c:+0䩠90NFYA" TWj.J½0Y!~'c s}^SWss ԡEX,[*^x4x.т)۝nAcCgʐ_v=w8 d{r-29e{`C铖޵~`t*Jj[JԤ%?ہxF\'Y?^vID)_գdMKpB 8 <\NO>FRhk48bZ:X4ʒuZ,VT MG?lDž1Se~DP:`]v{3f{JX -  >Ϫ*5|!TYC{&^ Z>D_#Ļ8 ye_EQm?Uiךsmܩ@::Iү'JŠrIJ AՄC qMz2DROʀ7v!F.SKc\x!˪eq==_QgYm>Ѱ_$A;My ^n84{c@dɯ& `ooUɖYb, j.H=IBR(~7t h,Vj8t)TQ$ubuj"jV_IVƁC9ʄ3 -cU>afL9ս%T$Wa%!1[;X(1'@kZve%ϾD'K&NSD&v(\s=!4-M49o)Q˳g: sr8 ϋy @n̪P (v~t+ē|u Q/=D@ 7sm:7"h*r?@Øa] sNЩ̳en:E]}3v^"'f&:! c=P}z`q??;@:,#0%JXZFcӋM?45(=40W.$y=/ˢVZK.ˮ\չl7#J%ɀdCWcC`,)RCad Xyz3\ V@Krݘ9t /c$ߙ2Fڥ:Au/\69֍^Mg<5=G/&&$[ Y6f teҥ4)f[죃0'.'č+(Nje'3'Yq;,HF/9 $#}O)p:oo%[ )K{ T$tS}u}Qt?5lQ'f|h]Pd^EG ./}cL!h̩]@o!z24yj]ploŪ!9%>^xY)s18J+췰d0#w} z x&h Qv3Fcv+գZ#UWL%6OeHj5Ӹ&€bȨ'#IU܎("xs\ɜr3(pc\~Pk֢<)WgHmw{/W&nfTIRfUև;Z!^"aNJ ,sUKtT[_z aoWFw Jj<[~Gx-p A&Ԙ}}R_lkAh&#GjpR :}c&xIy=G'd9Z6Xo+Tx^ߨ|^!'$̇8NaT~%\nAƾUڃ{L#GZ S8{UoOwżWa*}fՅ 0d:?ʮ:yb\n0:{|p 8i/TWf4|@̌8` mwKnv7X؍f{?#gE,K(:70w. OΞ.g DPzkxJ8,,ŹAwH#R+Rmfs7ʭ%)hzi2h-j);}ͩա/Bd?$,j"XPVblAj[sWsh%3ZQ|m8b7CϿYl|HYănbP^%ʏ XB/<Ղ\i'5Eg.:ܱu!;Wom ҩJ,J*y3gݤ=`~K} XldQ;c m4zOTQ޲H怶:vtˡuW?v7'@N0U0ELUfYWMnX M ]B澍r:,+~L: r̩R0{47:xtC錖l6k O9)H[Bnӧ۟g?m!`蠪sE%0ZmG)_x" %z`pn0 uSI.%qhAi5sդg2# z`2:vϲJ! Пky֙7Td":Q[310NV ThI屯B.5{\f|2j"R⸻<& E'9qsO&`PEt%bԨDDJ~pX>Y#73$tǓ>TḿܳH4)-w1qf;'/7y)ίY{T0# <+W41Fi9坊PIҊȸ|HjG^bT1=o38_eE~WhAq7]Jn030L `r  -yei/͵]]R@ 0885G?xT+tg?VP7B>P2L͠C ;MpP/*,q `4v„w*MokO߸@M;p0ْAz1ӃfĨ>Vor^i vyg*7EVٓ%چ r^YlUִb+RdHȵwO^'.]{.zhg#ɻ,VlŰe9l]\?&9iG_bF 6Ά3 ?L79*ᚁe&7<(9 I_hj^ YJv݀X޶]`O/iG%noG2fns`4G7{|c/ebRU\irkʧ ڂS<ا\e߳sW[h<'u}oLy . .Ey>NzqUYZѬc lŸ'l;'ӛ=$!4g AgLC~%mnstyb@\CM)d0!欓'ծ.3Mm^FKI{4ٍthO1 .@Hh2`؞JV]ĘKRf9rڬJ{vvGle3\bG5c5UNDч7s#)^ ZhF;cE[k:tjh^ɼbJLFF 4; lI<Ȝۈ~Bojɺi>r"0N:xv z0qR{I ͸49oPsF:i|X0ջmꥱ="cT@gU,w$/9}|PlX xK_B\/̏6~]Mf#A֨4BLvuj"پ Gވ_XI{21hMun۾kO6S+`K挍o7ްK㣨#nW^5Q2aHp52[F5ad8xܛ YyY CrmҜk1ǃ ?3/D}r<Og1ܓZVW{ϬNmpDʇ @V84)2%;L[uڢ:r9:IC~1Q<ViZ:~@>v hBakS (Ǘ 8Q˯́DSH "wJobIql,n\-mr[Z r¯bK:6rV ܗĺ(ʨAzqɬf;'L6*0(m,7I -:.㫿c/ƈp$ _9ӹto50>ïCۇIj}fɛ,bɏC,ɋɲjd1NvAj>$[D]sDG7&j uV">e8+P_b endstream endobj 159 0 obj <> endobj 160 0 obj [161 0 R] endobj 161 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 609 0 0 839 0 0 cm /ImagePart_2052 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 263.3 719 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 122.65 676.299 Tm 92 Tz (As showed in \(48\), for three typical measurement error densities ) Tj 1 0 0 1 447.1 676.299 Tm 145 Tz /OPExtFont8 9.5 Tf (p\(.\) ) Tj 1 0 0 1 469.449 676.299 Tm 87 Tz /OPExtFont3 11 Tf (\(Gaussian ) Tj 1 0 0 1 122.9 653.5 Tm 90 Tz (error density, Uniform error and non-uniform bounded error\), IHI\(x\) is non-trivial ) Tj 1 0 0 1 122.9 630.45 Tm 92 Tz (and is a subset of the unstable set of ) Tj 1 0 0 1 309.35 630.45 Tm 95 Tz /OPExtFont4 10.5 Tf (x. ) Tj 1 0 0 1 324.699 630.45 Tm 91 Tz /OPExtFont3 11 Tf (In practice, only finite observations are ) Tj 1 0 0 1 122.9 607.399 Tm 93 Tz (available. The ) Tj 1 0 0 1 196.099 607.399 Tm /OPExtFont4 10.5 Tf (Q ) Tj 1 0 0 1 207.849 607.399 Tm 90 Tz /OPExtFont3 11 Tf (density used in the later application is calculated within a finite ) Tj 1 0 0 1 122.4 584.35 Tm 91 Tz (time interval. This requires a reference trajectory as discussed in Section 3.3.1. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 122.9 532.049 Tm 108 Tz /OPExtFont3 15.5 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 108 Tz 3 Tr 1 0 0 1 122.4 497.699 Tm 92 Tz /OPExtFont3 11 Tf (In this section we introduce a new methodology to address the problem of now-) Tj 1 0 0 1 122.4 474.449 Tm 89 Tz (casting in the perfect model scenario by applying the Indistinguishable States \(IS\) ) Tj 1 0 0 1 122.15 451.399 Tm 90 Tz (theory. An illustration of this methodology is depicted in the schematic flowchart ) Tj 1 0 0 1 122.15 428.35 Tm (of Figure 3.2. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 139.449 405.1 Tm (Given a sequence of observations, we firstly identify a trajectory of the model, ) Tj 1 0 0 1 122.15 382.3 Tm 94 Tz (here termed a ) Tj 1 0 0 1 197.75 382.05 Tm 98 Tz /OPExtFont4 10.5 Tf (reference trajectory' ) Tj 1 0 0 1 301.449 382.3 Tm 97 Tz /OPExtFont3 11 Tf (in order to apply the IS theory to form an ) Tj 1 0 0 1 122.15 359.25 Tm 93 Tz (ensemble of initial conditions: The reference trajectory is discussed in detail in ) Tj 1 0 0 1 122.15 335.949 Tm 90 Tz (Section 3.3.1. The Indistinguishable States Gradient Descent \(ISGD\) \(48\) method ) Tj 1 0 0 1 121.9 312.7 Tm 94 Tz (is suggested to find the reference trajectory. Based on the reference trajectory, ) Tj 1 0 0 1 121.9 289.649 Tm 90 Tz (we introduce a method called Indistinguishable States Importance Sampler \(ISIS\) ) Tj 1 0 0 1 121.9 266.6 Tm 94 Tz (to form an ) Tj 1 0 0 1 179.5 266.6 Tm 89 Tz /OPExtFont4 10.5 Tf (Nees ) Tj 1 0 0 1 206.65 266.6 Tm 91 Tz /OPExtFont3 11 Tf (member ensemble of initial conditions \(details are discussed in ) Tj 1 0 0 1 122.15 243.549 Tm (Section 3.3.3\). The ISIS method includes two procedures, i\) draw ) Tj 1 0 0 1 444.25 243.549 Tm 89 Tz /OPExtFont4 10.5 Tf (Nees ) Tj 1 0 0 1 470.649 243.549 Tm /OPExtFont3 11 Tf (candidate ) Tj 1 0 0 1 121.7 220.299 Tm 95 Tz (trajectories from the set of indistinguishable states of the reference trajectory ) Tj 1 0 0 1 121.9 197 Tm 90 Tz (according to ) Tj 1 0 0 1 185.75 197 Tm 99 Tz /OPExtFont4 10.5 Tf (Q ) Tj 1 0 0 1 198 197 Tm 91 Tz /OPExtFont3 11 Tf (density; ii\) use the end point of each candidate trajectories as the ) Tj 1 0 0 1 121.9 173.7 Tm 92 Tz (ensemble member of the estimation of current state and weight them according ) Tj 1 0 0 1 121.45 150.7 Tm (to the likelihood of the observations. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 138 131.95 Tm 93 Tz /OPExtFont3 9.5 Tf ('In practice particular model trajectory chosen to be the reference trajectory will depend ) Tj 1 0 0 1 121.45 120.7 Tm 90 Tz (on the details of algorithm. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 90 Tz 3 Tr 1 0 0 1 314.399 52.299 Tm 75 Tz /OPExtFont3 11 Tf (25 ) Tj ET EMC endstream endobj 162 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 163 0 obj <> stream 0 ,,8b7 3 e0YٍzQ>Ce?o蒒FMqx1GP|9PP [D*0? #waq&7! #ˆȏ[jׁt8eRݷ#[3zX'ѱU7ZI%6?Ǜ,`ՑVvNY`IN#-БN;$OEt!J cמNR׭XJQUӓ[k=НnN⼛9[܍ 0jO]C|-r[^hKӵ;4չ1!̔k^/6fXt<|gv#h/d@PG/>afolACwiW׼8s & 0xmUAy|wԢ7js\:[UuGnFhu$gHv%`( ^aRJS3 PRdD(gBwES3$dы*l;ܰEys33ϡ ALZyDHHr:t~h: pIBaȾPܥ+t]uee eqANJ$@Cl]|.ylPFX<\C}4w:8NwȦkN:ayNhwTa{&e\xfm{v`^!J|*]=)eG%5+z& [`I-KÒk@{ިn/ m9/[& 3 '1V* OYA}"tf Ubw5 ,N >_!iv`\J @BLƇRaZn:!^xkhudih&)_:}gEd5;:b9|pERe!Ifܹvh$;roQ[#xܟpD$tҐ +PQngo(SO^ 'ui4Gb;m%_J@fC[P ;MpU%~zB$pCX _zډrA?ɵ_:8I˵Oir\EģW}DbF];/f!&WH Dc%BHLia={e>6ġ%ś=8;ڹe,ܱԯ:ȉ=<mR$z @M1?+2?%5=+>֗={>^ }+ XW3wjJkU~ { .ٲt0҇u3rPI0h'cμs.mq#Ysq0zzp&Iۖ ,uO9_eGpR٣,~2;|u?yG NZZ7UçaMS֤ZAURwc41ԛD1_ j4LB*K,3E?ri'9G뤰ض,R"LN7Iԇ,QeW>} \궹 eS !/5o-I"l/ 6">gU*QsbnJO{mLnm 4`-ǝ fZ[JC4"9)z-01;j8Vx<{s"؁;gO(x듚*Jl?2e4Q,E$dG}z(gj=,=()G#ǩI/wChq[s߈yL) GIϔM~e JlӰIk0IP |Nֿ8*RJ.I|~6zSZUalkFa;27`OIFW:a ^|ᒺAYj%ԕ0J~_Q}SǙCqo ԁϡË Aud-C?^aO{\S+ꪎ]ɕ$.71!a̕9V(d|RldY`u{]Gq]eLx:ʓk)ШٲT4Koܘi% bUD($|M[BMF4_힦[:*)K,2?)42G.Q`jvbkP/FI{xe!.+¹C=5c|$%Ni*}4SJIpsz! N/A%wr=e;}^5bQsQn»* WFGӸ=Sb M߲E 7pa^()tr"_{OdJ mUy}A# NhϪ "Gqx X MQ#S}ڝ">X@ԾTН04JǴ5_d9@#?7OA &pb|AjOB}磣Oq{1SM܀ߢM$Z ] -G =~]s` F @m&V b&Ϡ%MR9oAHkvFE*HR#~GofOVZg@smۨ|Ϯ]'E3ƴ6J-w}PXsF'NxE\҅'&WKFnӭ[ KoN3׈ ?(u.KjK6}kv+Rӊ)mR&ӻN //^ d8UL,s&~F:6d4Z5K{%[$W\oHjpT|@%zN ns ]/~ [O{aՉV{02: ?tQM`;;vFz|/mZ(ے5g#;]~?PP/0.zh Ua;h|wȑ!,=ӊ5Y>N$C{#ȱWǼv $Wem|RIvJ;8tdvQd,-kj&3Lq 95/ڼA샹KkI&(6VKШ3c 6v%kwX(>qoϠ-4$+3hp\lR*+Bkbgٶ?Rv@zG&AoGXABX`ڟsZHgc!6 m,17I2n> ZW"A4!KvpWË tSb`sWĂòR@wVp {AynT'b\wlǧvG2 >Bt`W| nG]cY"MжbkG}kMw}xi;?lez#6Ӧh$[UBcL/5&"Rx%WT&gQD?m& ?5ѐ -2DgcEbuZKN~8.Sucoz ]'tWac@)5{&?6> qo*il+|4yߤ۞:C-~!+":+{"0DF 59*qD 2q?˱XPCQ~,ts)N}5zlH:[x8Ұp_+(93P*I,n@RIf84w!39)~Kinr0)I/:X*'0G שf\ @|,]C?r$֦QmRkM˯v\255D>^EL9i(o=N, k m?g ,*cAH`h* p[}w&n=_UGV6*/e_ X4ۀ$ǓM>M̈~>akK;:G٩8ZpR>%yAΞ輀4+{ϑL - P @'}uC:Ze͵~Oﺲ+-\!+kqCvbo4??|]?Kb &ʶgԌMTTwcBJ C=[qM'"B2PT1u(v3bdl9ESosgs?Ɖę -E oLCR~A [%;*~eINlg)jpw b c;y;i-:㹖R}F1$m2{:Ύ[F:X/nN%% gEC+${ nq@?jI5E{b̍ȬrVؔz]U+Ph[B m^pDJI :3k9ba7,O$ ]?Vũ._tDs(N"q;׋ O$1bq u}/DU Y\2ֈ|ę⬵%ڳĕr {4y٪)ݖp7J!)Phz<=.ƛ5'&m9Vfif:7htJad ."y6z.GPÑw_T#o9bag!#8 Dң+ X9!S *h+ɫ4LEKzrQٹZgtcz~ n]Lo14[ ɋd~J+|^. Zy6 t,pgqD69? 2Xԉyh<+T]V*˩kPau5=^h$aIH/ƥ7jkYns!A]Gb?g@-bbAAY»Q 87{wl=l5Vŋ~9@k:ѿ6ؾ7(]\ rEg.yXfE|;ashp2-S;P'%&hPf֙lPlp .J:nzZֳ~ZOz1LPRZN Zuatʓh7&bnC[ToUXgxy.2#ky沖B:N,pk:[)~0~/8-=$eӥGbl!3Nԛv*ɴ78#qgwOUm~X$ա*ആBf5xoz {J'_h DL0Q Vomb4գI)̕"KvEuoG|B4aextVۊpm/Eps~Z\Y3)nɃ/ 5;i̺$Q ~fS$ICMWE+,&l/n䵐9vN;O1gjM%FjZmƛ) ̓džnu`FI,W]tj$^ӉүFdڇ+s~0ʅm޻9}RA︶H*e1!M%M)JKԕh®ErpHX pZJ wn= ?؝pZoeܧhC5mx4{{t P8 <`lmHx%.%9Z"H0}VB +b;c^ M8cc2l٥5:ߗ1U#ui(lY#n3=^ʱ(gvy_<C3Ihil?7K53dRoR:O `bEtٔeG]2O 2@OpMl& ]f1+yP-8BxZM%&z#:+b mBts: e=Yٞwsń$Ѡq U<Z=[B[15M@ f0\ԹߖÿdQ،ێ(ytC&j Ѽ2I y݂rBX׭{6FB݆[p(Bx- ሠG M"#=)6̪OD9ΞMEy 9Zjs7%2̈́ݬ;\f[pU]u?D㵺J qUCS}AqXH0*>as6"_+YUl3S%,H#[82Hy "3yw[{]k{ )cW'N~=eϜ{)ZnN:06+? _|V aPܛ#h{06LuyE3؈qf)zsdP>oYpn!q* 7W8SAY:,JDV=q0Pݏy/iٟYJ(t`c[ǘxG,p@^|Ѳ?#?S>7 4+#ҌN5ll՘./fLo4fG<BV =Y40KZtBK h$ܞ(|?4)zLϖ+8SnmEMpЗy3D*ݩ~xhsNͧ?dQ)طUM}:b":5Ob|"z^-ɤ6r8٣>V?mD S.npjI eL^ ;&^8sWqBG˭/nAr'a`תiۃ65k|܏,hd/KqX9l7)f1)֒??+4ܥe2k#:{F q6Hawyzv]K e`Z/=b_/҂$Ƴ4) ?X>&q &P$D=U|\M8k\rt]) ҝPg*m;f._zQ]>O`b7&`9F| e[)lDvC $£^z|#m-gmQ2ϋIz#홅n7A7yɆMo47eE\+Q3aa{u> ߑmG3P-Xr m៑p@%GЅ\p 1du:*vf" {&&%(nԀpo_^*K)u edGrx8<3w hD\j.Bf=&)D1#reRN"5ۈ?.<ޜWdpxS%UZiCm]?^kvњ!IʜFMpE=z2f'\d笔o̍%8_ٱOQGY|zTQ9A_EO^{EW%ruDERc]BsLͫ+lDZYdCIIa  s-/< E8>#g\yI>0^4Zw KAS}gn8'Cgq&'A" ycoP76FxM`~[볃BSl-zl_ӨQW9`%> endobj 165 0 obj [166 0 R] endobj 166 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 609 0 0 839 0 0 cm /ImagePart_2053 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 216.25 502.5 Tm 97 Tz 3 Tr /OPExtFont2 21 Tf (A reference trajectory ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 97 Tz 3 Tr 1 0 0 1 237.099 478.3 Tm (where ) Tj 1 0 0 1 294.699 478.3 Tm 62 Tz /OPExtFont8 21.5 Tf (I ) Tj 1 0 0 1 304.1 478.3 Tm 84 Tz /OPExtFont2 21 Tf (= NI 2,...,0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 84 Tz 3 Tr 1 0 0 1 302.649 426.199 Tm 98 Tz /OPExtFont2 22 Tf (Q\(z\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 22 Tf 98 Tz 3 Tr 1 0 0 1 216.25 378.699 Tm 138 Tz /OPExtFont2 21 Tf (N') Tj 1 0 0 1 243.349 378.699 Tm 50 Tz /OPExtFont5 21 Tf (s ) Tj 1 0 0 1 247.199 378.699 Tm 96 Tz /OPExtFont2 21 Tf ( candidate trajectories ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 96 Tz 3 Tr 1 0 0 1 237.849 345.55 Tm 60 Tz /OPExtFont2 4.5 Tf ( ) Tj 1 0 0 1 259.449 345.3 Tm 104 Tz /OPExtFont2 21 Tf (where j = ) Tj 1 0 0 1 342.699 345.3 Tm 745 Tz (\t) Tj 1 0 0 1 381.85 345.1 Tm 97 Tz (Ar" ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 97 Tz 3 Tr 1 0 0 1 263.05 719.95 Tm 102 Tz /OPExtFont3 11 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 207.349 639.549 Tm 96 Tz /OPExtFont2 21 Tf (A sequence of observations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 96 Tz 3 Tr 1 0 0 1 202.8 611.95 Tm 98 Tz (between ) Tj 1 0 0 1 279.1 612.2 Tm /OPExtFont8 21.5 Tf (t ) Tj 1 0 0 1 288.699 611.95 Tm 90 Tz /OPExtFont2 21 Tf (= N+1 and ) Tj 1 0 0 1 397.199 613.399 Tm 120 Tz /OPExtFont8 21.5 Tf (t ) Tj 1 0 0 1 407.75 613.899 Tm 94 Tz /OPExtFont2 21 Tf (= 0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 94 Tz 3 Tr 1 0 0 1 299.75 560.6 Tm 99 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 99 Tz 3 Tr 1 0 0 1 219.849 248.1 Tm 95 Tz /OPExtFont11 19 Tf (A) Tj 1 0 0 1 231.599 248.1 Tm 71 Tz /OPExtFont9 19 Tf (re) Tj 1 0 0 1 244.099 248.1 Tm 50 Tz /OPExtFont2 21 Tf ('''') Tj 1 0 0 1 251.75 248.1 Tm 31 Tz /OPExtFont5 21 Tf (s ) Tj 1 0 0 1 254.15 248.35 Tm 97 Tz /OPExtFont2 21 Tf ( member ensemble of ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 97 Tz 3 Tr 1 0 0 1 233.5 214.75 Tm 96 Tz (initial conditions -) Tj 1 0 0 1 381.85 215 Tm 46 Tz /OPExtFont5 21 Tf (1) Tj 1 0 0 1 390.5 215 Tm 16 Tz /OPExtFont2 21 Tf (1= ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 21 Tf 16 Tz 3 Tr 1 0 0 1 164.15 154.049 Tm 106 Tz /OPExtFont2 11.5 Tf (Figure 3.2: Schematic flowchart of the IS nowcasting algorithm ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 106 Tz 3 Tr 1 0 0 1 315.1 52.75 Tm 77 Tz /OPExtFont3 11 Tf (26 ) Tj ET EMC endstream endobj 167 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 168 0 obj <> stream 0 ,,(j]J<Šs$P\Ui-R$H8J%m|b<1`qy HRv(3FWH Y1B j. &R=ò8Wn(cw|0|ƱfHy(pzoJqS CH%Ńhx. . *G6‚:̐k>w𼮰Y<`OKOV(qZl@٢E"|gq`fbꖑFvH]A:fL}&7ú$-TG\RMff!Jd%߽!‘dQ+^lZR Un{R2ƌNVԖb"*Ց%?FbTu+K߲@c.Yk^?`>йya<4;ԆؗJ6i@0=._+pjmi;nD4o,Ɂ{@H1b "yܥeSv)3=² ~3}pWgB4_`O\BgҍFsaFHCV*4Z-y*[pg9?'llAرy/vhRcotvZM<^șH\bETQ=iG8‡C5/v2 dIe?&zfHe.!\jyR6a5#4Շ{B&nJh\諺p\n::@) (#`*FB*nTvȹW)N8rӅ*%ĪV ;fg$2c#AM[4bx8wG^.W-4w["A;);|p%sU%Uѕj8K&MoSltՋT-J_n\_Z詏=VJّ£i] Vaò\fJw0cSR4JEJsjF- PewsEU˰;|uB?b:KugB?S_mĨWv,c]y)B}1p8'6O/ QpQїWjOsAIni+Ky:GL!_9jQ.YGʟEASbmU0@bHSo1/6|@2EЌѳR))>.>ԭ&af[ ?db@+_+>+^xcs ⏳D b]Ӱ0C6!VT8XM 4CHv5$k!,("~ϼ=`"$ׇ +N0 tQc>T"Q,,1xc|40Cqr%%]H?Oz7]*Ueɲp.sYmFDZ914FJ4Q:G[m[zONq.oıAYTF'uB5E;cs G{*}wȑ{XI*Ov:[Am~bP: u(I徑%cseLd^vQ-ڪ'hAa,é}&ziJQw&玫_yPKL܅UOSփ͊x>ˊQgыKlq"5زPad-+P\\(cQ h(sT"3e32=#z@?Qnq=*FL/[?t'B DNH$2s 49+Q }i]mUݪD|~7⭳ G{O;0nM_ȍB4Ot ?SOV.pM/Wx〞grbv?_ vM\6+Q@1sD r) ,L_ %|Dk~M9[7D7Mt2Y^i-@@=gKq7!&Py6-hUԓV qyAR,#%nҭLK ^mXJ]o&آIJ38N1km%wn)w5Jо4ʼnЯ@}BdF)<@ 4O 2愸}Rnê`fzKGCk83cGtMUJbQPl9c&[Q=aDfOz*z)V=yP&͕lݚ t&Q\v$F$-7ۤ3cΆlNS^?X&,!Q\C*a`ⴍ{ x́ekMZWrYhs ;v\?`U&.8 Q9W` \l#*tl҈3@-X[_ݖ3(]a/kgT-@'Mܡt=ʺ&jN'DZ)3]ɾ>j"z,r*DHb("<;ڲN RyV]}R?![|Ynyd.VąyxpqXVa f' O =TivK\ؕw=8YIAsu6%uA|/B޼p]1z$.Y46%bDF5jpXVHsAL&OA;8Ρ<+Nn IpQ|$*o#h!ar4RR&\Ji `q$\Ý^L:4' \`y۫GI/Ld}_hl8%ɞ &c9`漜L-/ba\?Jt+43dIiY`ŴQ4\Qτvdڲ!XWLsi0ͦ6ľYA6ȑ:Qy**5U8MÚA]1<ҝ˷0@ oW7MEd6ȳL%+ŹF潉m:MvtǜOvUp.ݻY ȦiBw"D=L-r!܂Z8;G<Bì|3/7|NbePmß!Jx], 1#?7b4_AIT;pVD%!fU<4qI?^"aW+,J^/ӫA~Ii'#)_{g8#@+ӵU)Y,=Y1hfP\QIT`#JEjr BTlO]<;+~@bCw;n5IrYTapN]Kssv["q,P)`~c0ak)+Cvs=- }h;8g/K> Aw$PJSSΡ+<&dwte!>?&)]ByXrryH|)xϟG2Ş7ڶ\U%:}!0rR~ӎˆء̹j1zۊ6x&A?\Gx8$hr)P%3 h8)a}k!X"gDiOb\DEJTSn B.J+qPJ:"b2]('o)I8]y3]["P:S C' i-}xk4) \ƖCg'YBBMNF($% ,I,a o*kQyeQ58s!]0ea\J 4VOagg}"EjK 5F<& 8WOٿ kGHt\#!{"a$.{ϹZH@\ʑQ{ԹA|]fsΝO/Pfk9p2j}l mX^ޕRꆀ{VÜIq&ii OM;SO(@S(S*ALabiML t&rGJ_x0V1' h|}BBbe^+q>G?jhS&.%j7CX,TCEu&W6-QNBjMRRJ6 x'ܼeaר14+?Zs'x2yxqW+kL\~Fd5\}j>wi)uİu <ʤ$:ڲ;ӕQ7gOcbn2Ϭy&wAymL2w K=r̭ҞB_dh7lw4 !0y )<; i[]ݕ:m΋ÿ(. ia\8'b2inw%"A|7bO.nL0UxtMs ]TBғӒH91+)t*ڥB?Rga7i$k"VqiмmØ19Rv'+:о/KʗKM],7@[WQ )u D׾AA)1pi{36X;oFmb-K*ZgKԥq"E:?AH'Pz-mY(+K$d _P iָ$+ZE]#nk}^",T81hޫ03:7B)"2}aiE-,'8"B$ӌ.Fڿ oNS)).<m+0q?}Y 7{tB !~d9_Hr V|<Щ N}2;&̎6y<Vol˃ʋnh3UopygSm]g% OZѦXO0$iAmvx(1}6~SJhԂjAs732X8&R8_t8o6#r` JWI=BS+ L+J 'Lh:yªŇe2g{nNeLȑ(;ya kqs1?14|Lp"%vPtry;߂biH |! . \p?IwкpY| ~: KPˎp'BÍtǟ38%+ˎ6CHK(K `*J0ːi5ʂKHS(S *`XUv߸`7*([D( xyc-LS* s2$ڛbi&ۥK|Xzm6fZ"6{Վoi+UH9S*^'32urOz va`^.}F2/μ$\WY*Sn(\@^[-c(etT=;q6T`ʮŒg%b] kK ,$S04 MI"rYi^@] 0Fˋ*-i1 YUX^)pSbКlJC3&@o=/YAAne~HR1RV0$zWsgw H &d <@ѓDNu.,Y]]D&4܄πD2 /8unrCEn`G'yPJ>o7ƽC^4牐eG/w/fyqww.7꼦Q~FE;-tS M MI4.Í:NzP2+~evr!x(PPYy,B|-s?,?m훮&OEKD jIGm`?.ee$uqIajTv6?ӄBcm82tHQ?T? BlP)KXS8ܻeF?Ff? FnIP'LADPĉ:P؄䊇َFI<SxEڪ&Mz 2niTz~"ڈ*0!6j=bwTAl~5at(]#úaG:`/~<,V|Qx #Q5w.K ]E\c@ ,xq갋T-C(;0dMXZvyY5QֹNOx1p}+Sze /.s#Dvh;stxTɗIy% hmR9I (@='[U]5{n814mQ=U>ݼ<lhW_f%D%NG@v(>"9"\4pVrSݴhO유C Hi#U9d-Ҁj2,.]t-C>Ӊ؋O2UE=ž 3`Ib nh:T;qT]u۷HS#7Tv mNm"vX1&|?I1lRTW"<.;j7.JWDpFAغ{4mky|h懤sZJ6%q"\o[H;.D}rZ9&Π]c~W*8L;+KqrҐ F[iU !n_M2 ZX$`?]]L6 *GrD!$̴sOۇA;"nJb@-O-ź1.m+az^l[o~2Lj \yPY7+Z;k*?]`dɜ5Z}*ƝwTIBЇצveqee@tǩd'  r ًh13YYm"-D[;?cF*|?㔫=Tn}Qs /]˂g/uxDҌ" B:>s;c{Å##51&)ZiR=R&|sSk$?5DGRp1I@I/7: ֞lu[@Vyj9^x *,9#W{SspI}ϔd E]kӣ)~NZYWl#c˙ťd`F6/4 3&\Ϟ6M@L 2P73ZKwr2>eCĂ/ endstream endobj 169 0 obj <> endobj 170 0 obj [171 0 R] endobj 171 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 608 0 0 838 0 0 cm /ImagePart_2054 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 263.05 718.25 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 123.099 675.5 Tm 114 Tz /OPExtFont3 13 Tf (3.3.1 Reference trajectory ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 114 Tz 3 Tr 1 0 0 1 122.4 645.049 Tm 94 Tz /OPExtFont3 11 Tf (In our nowcasting methods, we define a ) Tj 1 0 0 1 329.05 644.549 Tm 97 Tz /OPExtFont4 10.5 Tf (reference trajectory ) Tj 1 0 0 1 427.899 644.799 Tm 98 Tz /OPExtFont3 11 Tf (to be the ) Tj 1 0 0 1 479.75 644.799 Tm 88 Tz /OPExtFont4 10.5 Tf (analysis ) Tj 1 0 0 1 122.65 622 Tm 92 Tz /OPExtFont3 11 Tf (about which an ensemble can be formed. Generally, any model trajectory might ) Tj 1 0 0 1 122.4 598.95 Tm 95 Tz (be a reference trajectory. The quality of the ensemble depends largely on how ) Tj 1 0 0 1 123.599 576.149 Tm 94 Tz ("good" the reference trajectory is ) Tj 1 0 0 1 292.8 576.149 Tm 35 Tz (1) Tj 1 0 0 1 297.1 576.149 Tm 34 Tz (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 34 Tz 3 Tr 1 0 0 1 139.449 552.899 Tm 90 Tz (In the PMS, as we discussed in Section 3.2, there is a set of indistinguishable ) Tj 1 0 0 1 122.15 530.1 Tm 99 Tz (states of the true state, i.e. H\(ii\). Let the reference trajectory end at x. One ) Tj 1 0 0 1 122.15 506.8 Tm 94 Tz (can form an ensemble of initial condition by drawing members from the set of ) Tj 1 0 0 1 122.15 483.75 Tm 89 Tz (indistinguishable states of the model state x, i.e. II-1[\(x\). It is desired that such set ) Tj 1 0 0 1 122.15 460.5 Tm (of indistinguishable states IHI\(x\) contains the true state x) Tj 1 0 0 1 398.899 460.5 Tm 120 Tz /OPExtFont3 3 Tf (, ) Tj 1 0 0 1 404.399 460.25 Tm 88 Tz /OPExtFont3 11 Tf (which means Q\(51, x\) > ) Tj 1 0 0 1 122.4 437.699 Tm 93 Tz (0. And symmetrically the model state x is in the set of indistinguishable states ) Tj 1 0 0 1 122.15 414.899 Tm 92 Tz (of true state Elf\(*\) ) Tj 1 0 0 1 215.3 414.899 Tm 49 Tz (2) Tj 1 0 0 1 220.3 414.649 Tm 93 Tz (. Therefore the desirable reference trajectory we are looking ) Tj 1 0 0 1 121.9 391.35 Tm 92 Tz (for acts as a proxy of the true state. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 138.699 368.3 Tm 90 Tz (We suggest using the Indistinguishable States Gradient Descent\(ISGD\) method \(48\) ) Tj 1 0 0 1 121.7 345.3 Tm 96 Tz (to find a reference trajectory which use the information both from model dy-) Tj 1 0 0 1 121.45 322.25 Tm 93 Tz (namics and the observations \(details are discussed in the following section\). In ) Tj 1 0 0 1 121.45 299.2 Tm 92 Tz (practice, the set of indistinguishable states of the reference trajectory we obtain ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 121.7 275.899 Tm 93 Tz (by ISGD method, almost surely, does not contain the true state, nor would any ) Tj 1 0 0 1 121.45 252.649 Tm (other methods due to the fact that only finite sample is available. We are, how-) Tj 1 0 0 1 121.45 229.35 Tm 94 Tz (ever, interested in whether the reference trajectory we obtain provides a better ) Tj 1 0 0 1 121.45 206.299 Tm 90 Tz (ensemble of estimates of current states. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 137.3 187.6 Tm 93 Tz /OPExtFont3 9.5 Tf ('or "are". We might take more than one reference trajectory in future work ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 93 Tz 3 Tr 1 0 0 1 137.3 176.1 Tm 88 Tz /OPExtFont5 7.5 Tf (2) Tj 1 0 0 1 141.599 176.1 Tm 91 Tz /OPExtFont3 9.5 Tf (1t does not mean that the set of indistinguishable states of the true state and that of the ) Tj 1 0 0 1 121.45 164.549 Tm (reference trajectory are identical but overlapped ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 91 Tz 3 Tr 1 0 0 1 313.899 51.5 Tm (27 ) Tj ET EMC endstream endobj 172 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 173 0 obj <> stream 0 ,,ڔjQr#x$듮~TWoNec6GáS*LP"ln%H A4)E',='c?6*x;H0R3wr\"]ƫ.S=UFiefl"Z[/WQy$k_8PTT'}|jY>S8@ r# TP DO6ϫ? xLUA#<|Y2K?|@pꦔL@/ە.WmD#nS>޵[/) g]l?PԎR+mܘ}<*[yoTm(ibt7x'C~B~UlX#?9h辱QIS]in``cZ1!3@ӿ } ^H'SO}: \p,•[iunOvX]ø,9:H7~s4; SF`Q@nؑsġquDlAE !JNO3z&_]}*iHPFl]{4#vPi 2P. 崔lv f`RW ~hK|ABO`a ᇊXl`_~긠:Wȇȣ-;)W :ԯnpsYkC3XC@=g?KLX'RCKH t ( H_-VX4i[pFR߾ʁtxղԷ]e~~|8[_pwvh&H8:T])%(#+IpMoh1s4e uIBF; E#D;N1rʶ<~OW7C)N&]Q|zwݺrn=+Ow,KIAc0KGvaAƑ#\)~5ÃT4FA~8CyF3md7ܧ{<ΧGm[G7;#fIEEF3>*oO >`acP35;4sc= bh_C_bBȘ%M>q:ԕϚ4kǚˍHN/=~Z}`=۵ћҾH o>+M7ӷ+9ˁD6lcm=YXy4$\e^=d 8e~{ zo''}ُ SRl3a`I{r1]7ձ_ %1sRl4(cZI`XcɁ. 2gno_ꡣ(.QL@|P4dY_e>-&AyCCH$$6_Wj>T =l͎U.vu‚oT?U0xpb\g=j?/l8Z}2ASrDKRhU-BcqTO5ɜvTޣ9v pIԻ@ )3:MOȊ}ӕbmo 4%Rd2@16EJ;5u pV{}[NbXoij2d;,\wk&ﬗ`f&"b6^īd |eD~p R}.: 9ۤlF36!I%$rN%vndݰm@ݞlf N0G[/.+c<@s :,T !'O|a5p:8[M HAYji3(Ϩ,M%ahLFds&īhrMjaAT \9&6};1~) 2SploUma*vGLhg]fbA@@īzy;Qt &LR0; 6[ FXx9.HM?R{ W]9Ztp jz䲆 N# ×:O.ӶK]¬x`Y&{ ?w_~۹D ӔȦ"ewSi;ρ(qod1oRh':ϕ9nHjP}a2N!|5 Ui~B_<,= ѸN 7RPAz bO^gi{3ucS8/H' 7vص6܌R?9X Z,#]D5q%g@FźAEŢ\=br7?f5bhGG@̃1N 0{YR DMۨ:P$u QSKW^Y !O 5EnmI}Q +nAwhN7K1,;5Dzb!GyӇh6H6B,!}a>+́ H Q&BN,-:G7\`bR]+)K@s_uY+w1 P`L:r@$a?0m{4!3⛣(e*KtbhQDDwDY6xYEŬQ;x_JPC^T^*ۦO&=8.\{C%VewÏ 49 32"dzsbY_Qw! @'=ࡨCݑ kx!3il7@:7,'[y2 zxW);)I "x M% _4ڟJn/pY~$N;BX;VqMN+&!uj9#q"#Ĵi f'Ij{ozOIAq,s'4(WV!yN,gBw Мƴ+V"KeadLBάkAX<ށ$ܱ\Eq0LIɷ X١2uZ)ǝ%2k#p`9M.冀+$] -ȭp> a;%(Y,Yw{i. n%(؛)=^ ݍyI \AJkDoHRMNd ]ѥ1m %\\zv 42Ҳ문[%E +Jp@9URU;eKf5R}; YtF_@8휸(sѿClfte+V)rR lQ*cy$1{ѿ|zq{'XZAC90 B)ˊK3y|mt~ E=)l{8ý޺ZIZ9Ķ1rMYmpV);Eùs]ǡ’+X?*clď=ٗ`#ey 0hm'/C'肾hdġ`'E ܣ1V01%V]eOoq`G7hru-xe&#;AŋtEu&I64G XTPj8ڏ>v6b.x `/h@+sZ,qRV-'oUbBTn  pCaf8yĞ}zk%hrJJDv44PqS?/0Q'! Y ąos-yt^h.U[WK>Կқ0Hǎ5!{ޔT=j϶(ďe܆>F$R<?ng癟W*B`DaB*je O,mi<M߉;=ۈo,hwӄ[ HpIbU,CHƞ&ʁtIaKW ܰo0ZmgZ/;@GM u}2FM[x:> ձ˵2|'=9峾_Ԟ':ғ̶Ĵҡ3ǎb;eᾣ4<ةH\n/\ɾ#}̂hi^{_y㕙x-UӮr$kZDe"0|qxiWUE)=eDORV$Z :4ʦ˗"W7)\4Lhf_HMғWSq{IhVoP>K* Jq g;N_ xOu=L!T )k"LM@m0|O-)ԦX!y  -Yhmf'{aN Gv9;XV7u,ꝮuUiiQVbS+ i;4標5긊aUߪJm<ʸ.0}T%t\!ڲ\1Y9L-Glh!ƢV،E մcх*fvFacC9`*vOō |L~HHcX4 hfu3d[2k“ xd^3``:!=WrE~V_m靃IޱZ܋t:o4ZSu~h$6E9sU DzN6" o8;[STgmqa_: ]Ȇt[7O]_b/R?u*U7YbgNnV`ifжFg$^NmBodX\4fg7#.oWMySj䮇Ђ7j /xpuAO4+v4rs;x sEߞrz)f_-Je7}_1ŽNdv_V+hmG8uAq T1/]F(YS|V]Qʗ c82 \+Ih9J ^l>2vҸCksl_טyΓ;ؙXǜ,/}}*F6]oԵ-t}P0hPL:5&ps@H6>eIJ%k1#YB=(}js`4aH 3$`#`,aۈ: U,X韂pR*>ԥtB8ZȋeLvmh:ujf4Rx;n12X&3W؇ԉ{[%Cwg `!<ϦJ &y=фC v>BGydW6H1 xbP1w'HǓ$lwo}l,X&ܶ1#tT%Н $$MաT ޙ MҘ; ];&\U"@4-ČA8srܑ[k<7K0}i/1ߩvWgAC}. B! Sg#~\WjW@735t~%fGe

2i5H~KB"ƮvQSPcѡOLuB9ƓM+MgZ\x Pa"H I`P"Hb:r $(bŏBFS^RP!{$tiԾzxń2{L›0&xJ@+R_*owj8kHF[t?4bɽTMf3@%m!nj}A$(+ =L ҠgGV?RqX7?}'˾ʛ7R\7?Ά R}dD,%N7+9}SNUǕ޽@jXf:p,,%\K(@q\?Ϯ.;z/{U?v0.YM}tji Pk(/Hւw2BR,1t|U>z 8[|Oj.3B3S{5cȃBrĴiZ"ܳLW<(+pzf~$g[8y">BGZw E/+UrLls2toʶW dq7b~?{yN}Zz1j8aLS吽3kzgɘ5KTv[z/#NQym8\OW? # ^$=@ޡ<ˡ Gm؂ٮ:4-Y ?3)9J&ǝK Q^ĭS=z>"Dw}V^}I,ŒL@`O_ッՠퟷ,nΜFWrK]^ʉ͘y&ǽVsZ^jTEK6Cyt*KxeOe "x `jF4IemA+^4tMx $X)5lߨU pSlx msЯԱZ mU:WXxO'R_XJop,K0-Tb_F#rSmZ] ;3%%r9jl@wT?G%9-`u3 .}'dPKHLv"5qS K <؇r#\( AJHO(`KNq9C fe ؀>QCȞwCiL7X&>g$J2(1No3 eOp| 2NuޓhxQ̲>ne Tgֹ%uB TF7KBSnHr_P{w}A'?eD.p,ڤMK\6AT|Bl#5ھ'! G+ϫ=RE|o*>O*ظ:o2GF*zCcÉ:HgR|6A Sh(%NQ) o/ (-|99Ƹ`*'ħ27p4W 6D>P 3BZ-cgY.v ZnlsȂ1T]G<~&r|uUACHn&1OjdRֽ?(pZ)cR$uL>[&/lާ{a44NL c;\? Ig;[90j'̀hA;DrEQ.U;,}\q@ uh|LG,dAZc`2#TA[*-b'[DJKd$d@X`R/ᰅ1y$,~+gGǿo&OX1;R{YQM_]ꕷU!A 33&3 ux7K/y'-eVF/ 8, =Az+k82co)Mj9}msRǎYVY8ا> i)m3l endstream endobj 174 0 obj <> endobj 175 0 obj [176 0 R] endobj 176 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 609 0 0 839 0 0 cm /ImagePart_2055 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 263.3 719.5 Tm 126 Tz 3 Tr /OPExtFont2 11 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 126 Tz 3 Tr 1 0 0 1 123.099 676.75 Tm 108 Tz /OPExtFont3 13.5 Tf (3.3.2 Finding a reference trajectory via ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13.5 Tf 108 Tz 3 Tr 1 0 0 1 122.9 646.299 Tm 89 Tz /OPExtFont3 11 Tf (Given a sequence of observations and a perfect model, we apply Indistinguishable ) Tj 1 0 0 1 122.9 623 Tm 93 Tz (States Gradient Descent algorithm \(48\) to find a reference trajectory. Judd and ) Tj 1 0 0 1 122.65 600.2 Tm 92 Tz (Smith \(2001\) demonstrate that the states produced by the ISGD method reflect ) Tj 1 0 0 1 122.15 577.399 Tm 90 Tz (the set of indistinguishable states of the true state. Here we give a brief introduc-) Tj 1 0 0 1 122.4 554.1 Tm 93 Tz (tion of how to apply such method \(see \(18\) for more details\). Let the dimension ) Tj 1 0 0 1 122.15 531.1 Tm 89 Tz (of our model state space be m and the number of observations be n; the sequence ) Tj 1 0 0 1 122.15 508.05 Tm 88 Tz (space is an m x n dimensional space in which a single point can be thought of as a ) Tj 1 0 0 1 121.9 485 Tm 89 Tz (particular series of n states u) Tj 1 0 0 1 263.3 485 Tm 95 Tz /OPExtFont5 11 Tf (i) Tj 1 0 0 1 267.6 485 Tm 52 Tz /OPExtFont2 11 Tf (, ) Tj 1 0 0 1 271.449 485 Tm 96 Tz /OPExtFont3 11 Tf (i = n+ 1, ) Tj 1 0 0 1 328.8 485 Tm 94 Tz /OPExtFont2 11 Tf (.., 0. ) Tj 1 0 0 1 353.05 484.75 Tm 87 Tz /OPExtFont3 11 Tf (Some points in sequence space are ) Tj 1 0 0 1 121.7 461.949 Tm 91 Tz (trajectories of the model, some are not. We define a ) Tj 1 0 0 1 375.6 461.699 Tm 103 Tz /OPExtFont6 11.5 Tf (pseudo-orbit ) Tj 1 0 0 1 439.199 461.699 Tm 87 Tz /OPExtFont3 11 Tf (to be a sequence ) Tj 1 0 0 1 121.9 438.899 Tm 95 Tz (of model states that at each step differ from trajectories of the model, that is, ) Tj 1 0 0 1 121.7 415.899 Tm 86 Tz (u) Tj 1 0 0 1 128.65 415.899 Tm 83 Tz /OPExtFont5 11 Tf (i+1 ) Tj 1 0 0 1 141.099 415.899 Tm 171 Tz /OPExtFont3 11 Tf ( F\(u) Tj 1 0 0 1 178.3 415.899 Tm 87 Tz /OPExtFont5 11 Tf (i) Tj 1 0 0 1 181.9 415.649 Tm 92 Tz /OPExtFont3 11 Tf (\)\). Particularly the observations being points of interest which, with ) Tj 1 0 0 1 121.7 392.6 Tm 91 Tz (probability one, are not a trajectory but a pseudo-orbit. We define the mismatch ) Tj 1 0 0 1 121.45 369.55 Tm 92 Tz (to be: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 0 839 Tm 28 Tz (\t) Tj 1 0 0 1 289.199 301.399 Tm 109 Tz (F\(ui\) ) Tj 1 0 0 1 315.85 312.899 Tm 2000 Tz (\t) Tj 1 0 0 1 495.6 303.799 Tm 88 Tz (\(3.6\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 138.25 261.799 Tm 98 Tz (Model trajectories with probability 1 have e) Tj 1 0 0 1 368.149 261.799 Tm 95 Tz /OPExtFont5 11 Tf (i ) Tj 1 0 0 1 370.55 261.549 Tm 109 Tz /OPExtFont3 11 Tf ( = 0. We apply a gradient ) Tj 1 0 0 1 121.2 238.5 Tm 94 Tz (descent \(GD\) algorithm \(details of GD can be found in appendix\), initialised at ) Tj 1 0 0 1 120.95 215.25 Tm 93 Tz (the observations, i.e. u) Tj 1 0 0 1 236.65 215.25 Tm 85 Tz /OPExtFont5 11 Tf (i ) Tj 1 0 0 1 238.8 215.25 Tm 128 Tz /OPExtFont3 11 Tf ( = ) Tj 1 0 0 1 256.1 215.25 Tm 100 Tz /OPExtFont2 11 Tf (s) Tj 1 0 0 1 261.1 215.25 Tm 52 Tz /OPExtFont3 11 Tf (t) Tj 1 0 0 1 265.199 215.25 Tm 61 Tz /OPExtFont2 11 Tf (, ) Tj 1 0 0 1 271.899 215.25 Tm 93 Tz /OPExtFont3 11 Tf (and evolving the GD algorithm so as to minimise ) Tj 1 0 0 1 120.7 191.95 Tm 94 Tz (the sum of the squared mismatch errors. It has been proven \(18\) that the cost ) Tj 1 0 0 1 120.7 169.149 Tm 89 Tz (function ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 0 839 Tm 28 Tz (\t) Tj 1 0 0 1 275.75 126.45 Tm 110 Tz (C\(u\) = ) Tj 1 0 0 1 311.5 126.45 Tm 2000 Tz (\t) Tj 1 0 0 1 495.6 126.2 Tm 88 Tz (\(3.7\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 313.899 52.299 Tm 75 Tz (28 ) Tj ET EMC endstream endobj 177 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 178 0 obj <> stream 0 ,,!.j;~>1.D84z.[ Ay+|V&^Nce!%.Xe[3ZbL_Y\R|5%O9:h|Sr5 G>3k A<3U xb _dewiVFa`1[³.&ƉfuXy#`"J/QJ:XG= P`te7soTq;G$حf*:O|l}WcͅEBWW,Hg9P?Pl܈IYMP{!4J/x\gqM8*]kWrZs{磧o\S܅&OOÖ#8u5B;bwnA쒀3o)V9"̓xw@]T+A2Rp?+3v9y;\zRSKc@y'FV477$HJ4Q͸ @Uj)vw7%t|+U'D.3zǡ…p`%a:-/ʺCaFo vshVuHXGϾ 7_2{3iڏmqqAɀQ2z UB-P)??Ol\ve\+U%,95-1N1kH3WK.8C_6yrS Qi"زoMxgj'|vm (w%>g$[] *$,k%l|F3?8\] C(^vzWXcħ-b|¬3B,t>W%+]qٓ}- lr@wiy;c~AlwbaJ"/,\63#^V y'(3Sx"7ڽQ9B FdZ%!e,Qv} heru:eݝmw}=EX\H״ꏓ}|ߍ=d&X"~~@J yA_Hz_`RL؆n l`rnJ ~]k>8R5hr9e+Ar{s7V2pfܭȋ#ct\4U\9B'7[BffMN <_z1 JM$+dSo%dǜ)&Q=yз ;)suURU.ӎ@&lw4ۢkE|Oڳ"fHFn̽M=y!¡+F_g#T 6"<]tKzBm"L jRٙ *˚~8chrִ+`V3梄'uCzVOOfy FOziADu\h!w.^ ? ͬ3 eґu!4 ءqfo**!K$Qο\}<ü:?=Z9@@3DL$ߚTnRg- C_¾p轌rRNVT9=S7z:_2͙fYc]6yh2%+O# >h? u?eב?C{"p_O~B>?k[cXő ׹o39em#n0Au T*'h_ͅmu!lR%A;>[xvz+yZEsx禍cYcrA^"j*QAá0T4} Y}ѲMQ%N;X@{ĵIDK%ڎKԯބ쓃U\0y}grjH\Tത1zqc[>p!'=~]|MP'5MGmicG΁}`'TD! |I,Qr<‚M߯ u'e7_AR>MIE}ܾҼZpy"?sB0{ |HP~&TFb(Rflk9ls ^t>Jt&1ó$RLr{-ԱƵܪ=1®ϡ2ڃʫ004;<¨lѠ$'t9Z%6K%ZhWLE=:nO=~[Ywo6,'pcK d)uE/&pxP4C8i(d*Z kR(}[daː;E T$Ek3}-&XjbӀJ|D!7{@kX@-N-8T\}V9&N=El=;XKޔ $!kY:!q PP"(7 =.S<~wӝkhI*ٰ('7sX' 1a2m'Cp3)GjR :N}`ղr}7sM/Cp(>'R>ī"1 12_D}Ec$&cIl&m%㢍(|޺xP)[5Qܩ8&5@#ub/طň̀g7.WzjgÙȯ+֑~;a h_kSVUdZQSmȚQw Y=Ք.'vS%u_+ut&ߡze4D(G2=ትƓimh;Dghľ u1E7ǹ)WMH|Īv"܌@To~Hhͼv{DB$܈}w2Pכ;|D)&߿LJ3LM} ڣ-ո`p5ZL!"HYiY(󠔈w5H <'e7bDW 46JA5ӵ'WkI"M`*>eXю-]N?vGZɫWCiƣ @mfg.P*W܇~1JY%tk'w}B /#J>ayAH3ĔvT <2-{{҈CUs%cJEHFg珠P]LN;)Юtk5l8b#gۃ[D~a{ŤK ~8bғ`"O1ʄ8#uO b ~uxt.Fy(͉R*~ F[osuqg?}qXA_!f] BCyY~lqwMU9Cs#(u*l3Mu: k'J[sCԜjx:7~{d?:?^tː@yKL+wgg110]HD6̭\>1\){Ӏ8e뒛IS:ȡ /l~[}dIV,wF.]@cƮ-!N ygzSƙݔ&_Z M@#<HEM#YKaߺ w6Z҈pMSߍݶmާm h7\Dԋ5dbm[HM78'Ypr##4E9+:+20uk=.s^Y8[ M⪏OnaAmvXi|#@z)^=7/΄S{jtrdh<_Ҹ:pAIgQVX7őcCB4Wu3 pbcp5S@D`$ |7h6&2.L|dźryae_V)糁/q⌹A֡4Qx#}M#9w򩿨Ymy-Cd^>nB_)B7: r3s`|z1 a?@n!m'%e2_(yn>f&Ԛ-=y 79*t3ElFKT,pNp+|s O+Ti0ZyGDO|eeE3缱u"/%Z՗}8ox?@;WV~c8Ѩr5cNϱnεcXkz3c3-*?HX1+ Ą%oշ?tjy CζO"4g8vOT%3${7 gŬQ>= F^גz>֎V/ZYj/]q^Xu d?ܥ | h]n%R`У*B}nE漫mj"V HBĔՉ|\V+»`3$Xn_ߵfu.53s>?6ؤ$ѳ+=Җ;%6P强(Ӷȳՙy+<[I?0H4SErt%;HQ2~'9/q݆ElTao}P\ rݯZiOщd籞DYHЁ&@+UܙUkBj 4X2 |dvH" dy}HŻJ(4b -zyb{~Bba>N77QZ~A ky5?ăg⢴\|28u%ꆽdWT̙6_ÙTCܗU 8F~$UV;a ㍝ oT1 00f<lj>9.YA P{F \P S??sXGŢ׻x2(V"Cp\Dvrt-- U,Yg)BIi޾Nxy9ӧĴ. ϋ` 0dµM cgp08d=Xӧ3AWN%_ w 8_e8(+8;Ͻ4d6Փa }ښQݪbX (*%FĴ V6-,ԋp|,^u%-]چ+$TAaEVr.b26вĶ3kn͟:넉13oji;I1?ͱxh۠Zޕږ lgIr%1-%  9 K(٥.ZUļSkԍ12YLs)D.} \=FA"&p{>88C#,E2G*C ; ,c|;COH4&>YÑ lCxY%)?  ; q7IARj]ar XC ѣan[ě <1t^ ZURRcwUE@rUGs(<]4tI3#u!܊I:,0Kɑ5XF=ЋOM]% x'Q鯡^"0DAe6Q8E"A"ȒT}o]8!#NsF+%'~F0nsӚQĠS xHYhGKQetuqӧB͵ΧX[:]-N |h£yTwUKq5s(gpdi2yiuwq#`igPPD%-Y./% B "sC[~lbBtigH@ 9E'uӸ5|O!4#7>8l造tKE ? KC)k0-1P[Z77'aO`F.$`7C_R%ZezԄS  Fk<3G"[2wjnY9 _YjPS #mCdSPKÏعbk2[0Q%)Z`9,s$0 TцnOEN0q9d8GhϤeg85ҋRwBˉ-d]W`CFwz :2uh^{<`V ^EI7UD < >J DA]֡Q GcJV;e* w Y$^M{SXNDY/Mn6( DnLi\ThVGBݿV ۀU*}I*A\2\WЃy*4ʖ֛/qbl$܇qQzzUq614<ݸLUX|hCZ ѫz,k|i 9NOkPոUj=&8nd^HhÕGN\-:skG[>SKh,1.s%}fnȇKTUZaP"cUCBWb,~2SG 2VE>eV힅V ,P4Y8o3d?`Be:H)Ik]uS)W yK+ kq}녡 [kS~́jtDژYe{v1VqHrl,y%_;¥2W!*w׌ojRs{*7C+ 襈 E߶j]r]3 Y +Ï͹uȃ.1d0r!tcjdT* [1JdUr;5,bLLL^{"Ga&ҏ_&ҥGN9m)ÄÐxI3'5BFRaJa=䌦V )#7q (U}$2j8 e';Gd`je?nRKZAg!K59+&߳@\D̕bɓ /wW=H iz_/>i&c%ʡ@<,؄+X1ͳ1U7 GrVPJK6{fLwo7 z^Gt5a`_z2<oU9][z݄'% l ӕR{l _Opa3KQscxgrYЇHxlXo.sm?ˠVOJ˩@Y[r-e sȨQ$R)#DIKvTBg LGb]%.ڿ)H{;r/Z:rOmPu8wEdyx!q||vNu5&)"R=bSt endstream endobj 179 0 obj <> endobj 180 0 obj [181 0 R] endobj 181 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 837 0 0 cm /ImagePart_2056 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 262.3 717.5 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 121.9 674.75 Tm 93 Tz (has no local minima, while at points along every segment of trajectory the cost ) Tj 1 0 0 1 121.9 651.5 Tm 96 Tz (function has the value of zero. As the minimisation runs deeper and deeper, ) Tj 1 0 0 1 121.7 629.149 Tm 92 Tz (the pseudo-orbit u_) Tj 1 0 0 1 220.099 627.95 Tm 66 Tz (n) Tj 1 0 0 1 225.349 628.45 Tm 91 Tz (+1, -, uo is closer to be a trajectory of the model. In other ) Tj 1 0 0 1 121.7 605.649 Tm 94 Tz (words, the GD algorithm takes us from the observations towards a model tra-) Tj 1 0 0 1 120.95 582.85 Tm 97 Tz (jectory. In practice, the GD algorithm is run for a finite time and thus not a ) Tj 1 0 0 1 121.45 560.049 Tm 93 Tz (trajectory but a pseudo-orbit is obtained. We denote the pseudo-orbit obtained ) Tj 1 0 0 1 121.45 537 Tm (from finite GD runs as y) Tj 1 0 0 1 243.099 537 Tm 72 Tz (i) Tj 1 0 0 1 246.949 536.75 Tm 91 Tz (, i = n + 1, ..., 0. In order to find our reference trajec-) Tj 1 0 0 1 121.2 513.7 Tm (tory close to the pseudo-orbit obtained from GD algorithm, we iterate the middle ) Tj 1 0 0 1 121.2 490.899 Tm 100 Tz (point y-) Tj 1 0 0 1 163.449 490.899 Tm 38 Tz (7) Tj 1 0 0 1 166.099 490.899 Tm 39 Tz (,) Tj 1 0 0 1 167.05 490.899 Tm 66 Tz (12 ) Tj 1 0 0 1 176.15 488.05 Tm 83 Tz ( 1) Tj 1 0 0 1 189.849 490.699 Tm 94 Tz (forward to create a segment of model trajectory z) Tj 1 0 0 1 436.8 490.449 Tm 72 Tz (i) Tj 1 0 0 1 441.1 490.199 Tm 87 Tz (, i = n/2, ..., ) Tj 1 0 0 1 121.9 467.899 Tm 116 Tz (\(yn/2 z_) Tj 1 0 0 1 186.699 467.899 Tm 63 Tz (n) Tj 1 0 0 1 192 467.899 Tm 46 Tz (/) Tj 1 0 0 1 195.849 467.899 Tm 49 Tz (2) Tj 1 0 0 1 200.65 467.649 Tm 93 Tz (\). We treat such model trajectory to be the reference trajectory, ) Tj 1 0 0 1 121.2 444.6 Tm 94 Tz (in Meteorology this trajectory might be called "the analysis". It is important to ) Tj 1 0 0 1 121.2 421.55 Tm 95 Tz (notice that although the GD algorithm can be applied to any length of obser-) Tj 1 0 0 1 120.7 398.5 Tm 92 Tz (vation window, the reference trajectory will likely diverge from the pseudo-orbit ) Tj 1 0 0 1 120.7 375.25 Tm 91 Tz (when n is large due to the consequence of sensitivity to initial conditions. In the ) Tj 1 0 0 1 120.7 352.449 Tm 90 Tz (results shown in section 3.7, n is adjusted to provide the reference trajectory that ) Tj 1 0 0 1 120.7 329.399 Tm 92 Tz (is close to the pseudo-orbit y) Tj 1 0 0 1 264 329.399 Tm 80 Tz (i) Tj 1 0 0 1 268.3 329.399 Tm 21 Tz (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 21 Tz 3 Tr 1 0 0 1 120.7 284.75 Tm 111 Tz /OPExtFont3 13 Tf (3.3.3 Form the ensemble via ISIS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 111 Tz 3 Tr 1 0 0 1 120.5 254.049 Tm 92 Tz /OPExtFont3 11 Tf (In a fully Bayesian treatment one could use the natural measure as a prior and ) Tj 1 0 0 1 120.25 230.75 Tm 94 Tz (then update given the observations and the inverse noise model. Inasmuch as ) Tj 1 0 0 1 120 207.7 Tm 89 Tz (natural measure cannot be phrased analytically, in general, this approach is com-) Tj 1 0 0 1 120 184.7 Tm 93 Tz (putationally intractable due to the cost of estimating the prior. The idea of ISIS ) Tj 1 0 0 1 120 161.649 Tm 90 Tz (is to select the ensemble members using the set of Indistinguishable States of the ) Tj 1 0 0 1 120 138.35 Tm 91 Tz (reference trajectory as an importance sampler \(53\). In order to do this, we firstly ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 136.3 117 Tm 87 Tz /OPExtFont3 10 Tf (lif n is odd, we take 3) Tj 1 0 0 1 227.5 117 Tm 68 Tz (,) Tj 1 0 0 1 230.65 117 Tm 55 Tz (\() Tj 1 0 0 1 233.5 117 Tm 115 Tz (-) Tj 1 0 0 1 239.05 117 Tm 34 Tz (7) Tj 1 0 0 1 241.199 117 Tm 29 Tz (.) Tj 1 0 0 1 241.699 117 Tm 84 Tz (0) Tj 1 0 0 1 246.949 117 Tm 43 Tz (_) Tj 1 0 0 1 250.099 117 Tm 62 Tz (1\)/2 ) Tj 1 0 0 1 263.5 117 Tm 31 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 31 Tz 3 Tr 1 0 0 1 312.5 51.95 Tm 77 Tz /OPExtFont3 11 Tf (29 ) Tj ET EMC endstream endobj 182 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 183 0 obj <> stream 0 ,,(b7!{hqMsOCnmYܐ :~Tf;p׵vm~S״N'M=N 4 6'QMt|9$I,+Idfm.wcr)::4LrT 8FNklZ+R]k< 9c`> Bq"[ЊmxNwϳ :'`#q TymYe 4yEÓvI[Ec_`\QY>ʷy?^Y wEgWmOd;Chkab16[g%C(!vuyY\{Axc8g"yNEC;dc,1a[uj5%K5X$ Jz gѨ}Y|_D`Tm=Ae{mc*vrUv0]m #Kzٓ`Hf]cvop xK y||k3,Zxq0XnKnL4CGϟdh"R6]ܰC6=Xyt?1a]aѺU>5Z-gz #q?7R1^>wzD+oBΦ!̠zu9&G~5?'J% EzHp+_KXDr3[gNh\:棹.\$F!~-q@_)_F]َ[29*aqTu)1euugs#tkd0:|~8%VJjNx4496БqS7\3B0qwj~ҋT{J1[ϩ5q019ȳvg|K-c[Qo\p#^OYw +HwtƎ^ 8r=OqIŤȝHmW?b r*&@Zk&@>TRr{Yp-KW~!X;ӆCS~ŪۂvŒQυnvbg£aHhk 6Ps"=K~7-2V3=n vxL5$ma6s6[糂G}< Nx%bZޕ1Uahvr5BȜ8t3!vJY:+vB~M~澅*=V[T-|;<~;G lL~M w \}"` R}Kֲ_JBwTZghژ%/bӝ1stRW\)z, ]h}j}O;9>whb[ B [g$wyF:fj0 HQj#>R6d;#3!xjW7,?ۥ#'dQ=CTT;R1)u -(x6cn?.2m(4}1QaE4CFbS& A֙rWCAs C̕gwSOf-޸E;xY@훖!"כGR0$8V~/O8(C/*JhCRӼ< fSÝPGMZ Xzɥm*3Ve՞oPKBD!ʎĽZr&;aU %0!ӱa"K ˫6PgOƟ̃1J>49p17yI *}%h.0LM K^vQ wf:)+YS#>̪ `:H"IdF:dx1T{iAt~~)Z|Ri"!)^3UvMT, D콦3pjC%@nyL/vn*E[Ƈf@kZ8™N`ǛMmʕv#yiwG>7 +du4j}_@̬l(>ڙ:&l>1'##ZsXˈKafP;0_C[q`q7$I8w/(H̳8 1_NG$Oofs}%zpv4L N gݾ,V)$:uKr+ۋ_ )+RluTiy遑~r/6||V 'oGeSdc2p2RiA۾&3~9m,= 9Cl}S=MWlk<&fY}8eM{IEq_S?Н.e4>M+0۰б԰ݾj/T?<K͋-)O&r0J)5P$˘Tl(,kY~M^'|+V%,4v JA@;,OQ(\#z;`h a:E:4)_BϼvaK,kvaUPAߦ|H7 'eWLxIL!C]tdN`/VuoD/a؝WV>Wd]6nS}&AiVjf3//7OO@`wI(ȉ2%gsih^P=r;W/пm#cN-~QgKuHz#7{'ATbdVejJ~$ ls M`}CtˠY!HPq BG Z4!p,Xrm̳|/' "ӉIo.R` oNVo3-5LH=*#xpOO}4[JъWXIqBł,?yi;x1vb'@Mw %,%b6u #jyV!AhTsϹW*x`g|/e2Ov8c{ !: U 7͵'Y Ji|"`8~넀s]T# I0QGsX@+eJEu $t7շW?;#ґ[IQMH¯lg 6~Y܏&E'|lq:+wR$EB^YeF]mIxnsF%f6#o'؛-s|9^%> F ڒ  Nze !_-D hòxUvQ\䲪j/jb]7\b0![)ϟpW{wsY"`b'q'k+>ozFIujɰՍ8{q~(-ȓ. Sа:?k{. ą6AWsM湣ۙ;NQ{i2bmI&WW3J'C9 ?3h!]Cz\]5P t8EQrЅpkŏ% Z" U~y^-1/AWЋ_}'25Hsš2%-c[yN?jLY>s(b*H)ig Tn)t KxoVpnp"2Y7Ġ٨ q L/$6{˻o`_AﴨZ%eV8Q":)BA9=|R"T>'e=&޸nC&( jIt/}s7r̠2kA7hAy6dV yIAF*Q[-h1bRgݏdV*oYaʆ,lt| KB+h1EgDiq#{KInƽ띳E1bJKAT3`u =f}QMl~غoLrT-2btP#{R8bHP¶p7ùp?'A4਌0!4TLs |&i_007!'$rNL_؀hӔ\ 1y࣯gF 1V=d@Wml~ZDe:)+K{Rx"m4ݪ=Y$}gyRC0DAK戶 vhNۣwRNT`8<(5_BÓ[Ι4vW CHBKw8NdV?ǺTPM|Y> ;:bcGyx?Z0lkǭeFd1l"kzF,.sǥxq~Z`|Qq]JS1g<8h؞)W~nU.hS =uH?-mnuhnW'X^ɎU25UMl!/<5Xm^xAKyqxLH~r*3sBXшA>_ 9r);Erd6~b|GI7a qFgX.)}ʶ)҇Q s{Ŧ89 Y~'qIOJ1_^+bI%sl`v NG!*ZJf!@0Mcj$UP( @cq#A4y;$ av;h S:!ʬ*bBŜ)p?SyD{nˣ⨜Y6:N8 ZMs YNs]q,_ ZiAySHtv8&iGdf^x{S ,^er$:OR0risKTlnB_Ryw0sT+v̖-'ꖆ =. waL]ŲU¹NM@<E"y Y7:-"RlTSY&y)(Iwl bi7%. 4efP4Xʭ`{ [1!`@TsCT9"j잹>wiRL]_ ?vF_Fl5wyTZ'{&{`ޟ @Pኔ'B:P#,oxiNz_{?$wIw|Gb*iEwPj@7LzρvDtmhr߭> X)zuoBިy -h/ K3*. * xY΀TgA#) j +z-_u5r' z WZJTkd-C,| 6Vd%_ømIB$pxNG)29k׸ռH$V#VV@M4 L|铭w%zf {\1MCUIi5QEA'6vq_(lq /JbTQT_Jl]1r+_& xހ,*>"#6 D3KX81E_ME o Vq##Ivhó?z׫=r Ss&T>IÖ:ق.ԏ*~\G8NmB.įV̉G(wvټ"07Ć^?r5 ս&` YY{b:z+D:&N )"J?1]۟Ԕ|gJTƄ$R@g4E=ʱJkHk$ز//v^7pV3Sz;vOv NsBmjqq|8|ظCb$?UͿyA(d؁h-I74$bVT*̗ۂ:1:WVmuThCNj~*xAy|2LK&+leo I`{E+&y>JS{i~=p8 GSme^u:{|lv]Fw[X%r z튓OO7/9~g49L/o[eJsҨJK6i dr(Lj%ANråC(DRDxKa4e"3u:#l ^R/[NjϫHa05 ȩP"_sPkJJ4E#,^Y/9(k{i]h^(bWFz~ˍWc ['Ir/KwB"x8m` XZ66rS7mҐrh3u*[$[3,zX Wb#p=:({riR$RiLl?j+cBeSn;!Oҏ-8B״bq]ca+@h3?y r;)J4R_=NUZᰢEIh@噺%NUgr=MN4u(_M, h#.۳uUhLP+&D{ē5\auF wjN;? y"o{Y|Dwzp1[k޶GBc˫o VgP&{1ANV6oPg4m!n҇)G@Y|@E_h{QDa\>+*V8OJ Tn;QWЭI1h`jJEP5^PV BXACh䅃,lQ ƿ& ԓψZgEfq/8)t'*]ndϥ.j~Y+}!s{L[HA*]6#%y[eB LtdXGa9d*_Re1A8GC29|\4{qJ[a6UDW4tÅ'ވ :joɓ;! ~h|Ow;?S X>{?(jk:ЬYbRO"'MM΢- s:̊]QRr*UcOmj!x]+ M'BTps@HW}'妈\J,?rJz #\IL+Z5S&[38+g`ȓy7ӓ1lެpbQDRt@Yf SsbG[Т\E4PSJ܇{/OnAƇ8Y@4\'&9 <A9,7zr\ x$ olF`ÆBy 8T6y䨤I=F`vq5wS{b? 2SU1(585|M$eP>"Z/$<9y>p8)ǡʄ\Ų?$«,b4ǹYG͖DYw߲Ѱ(㒲.油춝³ᰫ;ճ2g8S+Qy!9ȽrňFĔunB mMA#KLw+7ynMey/J٣d.C :ޱW_7E[f~TQp~$&h<,e6Qd`0⏁, 8v;?֥=ߑJn3GNhSvMNW2W#@դ#榣FJU'Mw@'5>{ʻ`txݝ윾 1Ėu>7'l.@aW 5q0TU)rvG.@\} IB'f&]yi&y-i$`_,iZrRAy;Hth⌫~W@Q-8H4n~;.n1n6^uCll r;*H*q Ϊ*CNfg%mRU$Yl8wX+ $Adn (N}V5S(.k3T\[1,›R:" +n.YUP7I8GOy-/W3)1t;>3r3=8(,!2䒃D:ʻ66ұ뱿~PC8?~D,$4݅9;:´րu<'syJa2XYܔ,Zz6s_:<`hsӇoR0Ov m䋫1ܥM:\9srpl'"jU \+,{'Rm4I"ZPȂyxb5ŵXJͱ,]1ɂg;XCrM;ڊ .5=vJvd=|K!w]?J endstream endobj 184 0 obj <> endobj 185 0 obj [186 0 R] endobj 186 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 838 0 0 cm /ImagePart_2057 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 262.8 718.95 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 122.4 676 Tm 97 Tz /OPExtFont5 13 Tf (generate a large number of model trajectories, called candidate trajectories, from ) Tj 1 0 0 1 122.15 652.95 Tm 98 Tz (Which ensemble members can be selected. Ensemble members are drawn from ) Tj 1 0 0 1 122.4 629.899 Tm 100 Tz (the candidate trajectories according to their Q density relative to the reference ) Tj 1 0 0 1 122.15 607.1 Tm 105 Tz (trajectory. There are many ways to produce candidate trajectories. Here we ) Tj 1 0 0 1 122.4 584.1 Tm 103 Tz (suggest two methods of producing candidate trajectories. i\) Sample the local ) Tj 1 0 0 1 122.15 561.299 Tm 99 Tz (space around the reference trajectory. One can perturb the starting point of the ) Tj 1 0 0 1 122.15 538.25 Tm (reference trajectory and iterate the perturbed point forward to create candidate ) Tj 1 0 0 1 122.15 514.95 Tm 96 Tz (trajectories. ii\) Perturb the whole segment of observations s) Tj 1 0 0 1 412.55 514.95 Tm 55 Tz /OPExtFont3 13 Tf (i) Tj 1 0 0 1 416.649 514.95 Tm 90 Tz /OPExtFont5 13 Tf (, i = n+ 1, ..., 0 and ) Tj 1 0 0 1 122.15 491.899 Tm 99 Tz (apply the ISGD onto the perturbed orbit to produce the candidate trajectories, ) Tj 1 0 0 1 121.9 468.899 Tm (i.e. the same way that we produce the reference trajectory. Although method ii\) ) Tj 1 0 0 1 122.15 445.85 Tm 98 Tz (may produce more informative candidates, it is obviously much more expensive ) Tj 1 0 0 1 121.9 422.8 Tm 99 Tz (than method i\) since the ISGD involves a large number of model runs. The re-) Tj 1 0 0 1 121.9 399.75 Tm 97 Tz (sults shown in section 3.7 are produced by using method i\) to generate candidate ) Tj 1 0 0 1 121.7 376.699 Tm 99 Tz (trajectories. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 138.949 353.449 Tm 91 Tz (Given ) Tj 1 0 0 1 171.849 353.699 Tm 118 Tz /OPExtFont4 11.5 Tf (N) Tj 1 0 0 1 181.9 353.699 Tm 75 Tz /OPExtFont6 11.5 Tf (cand ) Tj 1 0 0 1 198.699 353.449 Tm 100 Tz /OPExtFont5 13 Tf ( number of candidate trajectories, the Q density is then used to ) Tj 1 0 0 1 121.7 330.649 Tm 98 Tz (measure the indistinguishability between the candidate trajectories and reference ) Tj 1 0 0 1 121.7 307.6 Tm 97 Tz (trajectory. Since only a segment of reference trajectory is obtained, the Q density ) Tj 1 0 0 1 121.7 284.549 Tm 102 Tz (is calculated over the time interval \(-) Tj 1 0 0 1 310.8 284.549 Tm 26 Tz /OPExtFont3 13 Tf (7) Tj 1 0 0 1 311.3 284.549 Tm 41 Tz (2) Tj 1 0 0 1 310.55 284.549 Tm 53 Tz (2) Tj 1 0 0 1 314.649 284.549 Tm 75 Tz /OPExtFont5 13 Tf (:, ) Tj 1 0 0 1 322.1 284.549 Tm 86 Tz /OPExtFont3 11 Tf (0\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 138.699 261.299 Tm 97 Tz /OPExtFont5 13 Tf (To form an ) Tj 1 0 0 1 200.65 261.299 Tm 121 Tz /OPExtFont4 7.5 Tf (Nens ) Tj 1 0 0 1 228.5 261.299 Tm 100 Tz /OPExtFont5 13 Tf (member ensemble estimate of current state, we randomly ) Tj 1 0 0 1 121.45 238 Tm 96 Tz (draw ) Tj 1 0 0 1 150.949 238 Tm 98 Tz /OPExtFont4 7.5 Tf (IV ens ) Tj 1 0 0 1 179.05 238 Tm 99 Tz /OPExtFont5 13 Tf (trajectories from ) Tj 1 0 0 1 267.85 242.1 Tm 60 Tz /OPExtFont3 13 Tf (Neared ) Tj 1 0 0 1 294.949 238 Tm 103 Tz /OPExtFont5 13 Tf ( candidate trajectories according to their Q ) Tj 1 0 0 1 121.45 214.95 Tm 102 Tz (density, i.e. the larger its Q density is, the more likely the candidate trajectory ) Tj 1 0 0 1 121.45 191.899 Tm 100 Tz (is chosen. And the end point of each selected candidate trajectory is treated as ) Tj 1 0 0 1 121.45 168.899 Tm 101 Tz (the ensemble member. As the Q density depends not on the observations but ) Tj 1 0 0 1 121.45 145.6 Tm 97 Tz (on the noise model, in order to take account of the information ) Tj 1 0 0 1 437.05 145.85 Tm 83 Tz /OPExtFont3 11 Tf (in ) Tj 1 0 0 1 450 145.85 Tm 100 Tz /OPExtFont5 13 Tf (the particular ) Tj 1 0 0 1 121.2 122.549 Tm 99 Tz (observations we have, we weight the ensemble members using the likelihood of ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 313.899 52.7 Tm 87 Tz (30 ) Tj ET EMC endstream endobj 187 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 188 0 obj <> stream 0 ,,b6cJtt] 3 z Y/ |E buZEa҃S\# <a _Uq,a4\roQ#2pg]rs^`U_x7ox_G#6T2na2ϫ>n5ؕL]`&(mA`kAX 9ULnuכr$FK];&<y42kXͥŜ)W=rh<{%ߣ:!рZJUрۅmvӉe@ PMsНNZ &yL!pOvg9oC7NU@9Rkb{$ëk*PrKs Z}~VQ|B=F*rLbh0wlۡѨZVp49J7~1J(ȅ:X^lK2:h5_?+:-˼Tx>j2k-08J+= J!| -|s̲,8A- taJEi9 %kL a]Dh7fwǮ2tmm%ǬBax.޺ N4Mo~<ܦqxhBسz¸=ΓZ`v/F) 'ˍKÝuUvF5DRi&HoC7k06SYқ5򾙗G|cpPX:>jPĎ%=3r$ݱ! -#Lvs\B Yg.>< h9(;PZ&j~fhU&|8I^{V2 hQayhzE*s;C$2~%F9! ?uA9t|0h(3!{ P >ѱ:)s(V$"۱`NR.ĝH]ao ^'Ҽnxx{˫Z|rK磌'O#V&jJz}$Vl]&P4׫I6rņh qY箿;5M!h!/(+"RSZ:|[ q\rQ㋲-dr(~Jѱ/e y 7j a2L@ƚ-:[ ߨYvˀ)~5p,$9/N}g"uzY*K]lT~eyCSanP`Ճ0>~ \FtOFʾo%dQbfE9x9o #:ф-Tλ<Qǖ:k5ÒC:K|nƼ†0-D0Hi;ns?d:ֹ҃"D FaT M_^*:?:Tlh7X$AAzQyO\ʼnOI2+5oty3)k80޿Зktx H=qkCHG/_$S2En3ExTR@1jI ) ~71VH݁5/1(ɪ Cj`ƥ_cN'z+ӭHOF?Dh$*B' }?gܫ(kb$7)- x߹E1 /! ! }7{T:sȿT#."8^xI` !-ܐƢ| y8xQ& mM!b*\[z\vRl19}X{3 ~b ~4ԧ)Bi\4l6nSb FaK Enw+TSI״y \%C[ ,TO#f,>h#=ʳհP2:%9cľ5L7$)<)w ۟ \[ n>+>G8xH\~+E̔,cEXy>1Bmh=YLwzN EQ(]qkj \-ι4}ؘ5Z%:/!.PϑQZ.3:?,?{#p뤍JG2P;@zl#8O?OƼkj}Imb<%z$E@>7-iMk* #CڭyODO9ʹEw ?{pmesOPP 3&IYzn/gY*D*)@6+j#8GF)GWE˷H5&.cKU: %:)mT*t]TA!ϊ?OU]:n6w%3yoMJeHەTmP,3A^Wj x<$⾹h&Wo1ȵd#좫>gCYl] d~۰5&s᎝ڲʷͰѣ$<=B&"%H \zE좻I5u k\[1Ux8}=(gd1kzmQ4f2Kſ{9{+ @B5|Chrz8~|ui5*GyF"sn5 :Lg%:Sh@Q:`2f >ltqE%l^qĎGG%]XM`_"co5L}(į P7Ո1m{yL?C{h :WiM#?CelBRDMgFwBXhР8ϪXI%}\ Z)vgY%E1.ttpmB'(RqlM34HCY 75m4AB4gm<͑݁bJϸ%e#>8.{#+Os&A Qj[#OVa~K "C-&+/a i0Tbv9eH.<.*k#M5t3S;EDL]8BN56{~ 0uC@ (o6k<"_R4Ck:(LBVٮpz^ǾH )҇@+FtkbQq׮ޟ!A{n/ptYAIkל70:U K@Z`Z}x2/f TC*v^K:[Fp xUXpƭu/kB=(Y:8oxs3xԆbr*yjr\Ѭ )F#EFz߀v@u#vb/$Gëvv_0}f*.//'Sdm ڟX'wxC>e^jͦasPfGus׮ 8HŌY8W0-gG0>wx;FW|\W >RZ 1 b@F% Ov5Ð}JNJ TCSET8~s|H<6w37dn=ng?vvN">kJ3p р9 ?^y]͟]"@10Y{51S.U-*s>`Uwس-@e p* |-bC)49ǹCLM| ڨq2A#0,'hƵ%^ #To?w*+hA1;KF=CTh`6DOCJYĻjI(dmzGm`"RL 1E><;DZm5f=?6۴-^QD^& ߟ> ̪7UԈP]3gQJɒf'yJ"VɮqbSA zdNV@||*yrx[iXl.V,(541I(}o8*{ d~+92|Q ${])R̻&(C'$6[b$~N7}v$؍!6Dn; ְadKGNEoOԻLo0<{x;c+|@'X%Aj(UQO bWV_ء6;>赓qq沅Ñs4'<5='nJi >'4q%#alZl®9il'n?$ӽ{j+mz13AaacA2֊Z(xi_CkOqrHDp#UQ~#r\:+ODcڣ6.μ8Ԕ\yiA,,a@ $цaf t+6HKO.*Knk׳[ oZYV 7{*8YcR$MDD""\ Fnm,*>mv8]4\p Efj!>ݍ1ʡϳƳ<ϸoVu&P Ҧjj#RVv^} bHj>?_᱾3?\T[&^M֎0Nf>f``pBo-0ү6eM7T̷_sF5:3 I&\;py0> rG'y_Xa裣τ* v. 8ε] 4@qF 6F6_=w_{)o0h|]ص(O i.Z sJow#-BQy}wab`O VAS!FW5(T૏:]4\ǯ{kVU*9RޟqUܧl- " 1Yk3'ӧ{+dFtkI\&pB32YzPe^j/ ~W~G\(]Vɜ,#p,"~ msݝSzb/fE~I')^kW x}%zMcqHbw)v?z<'.*̽%f#fWV%3.Au jsr9@7 &KaPǃ +Sy=%˄f\@N$䭏$ -.VSdcK*iV Sʽt)T@WfaʅʎkA@'WYIJ*`PGNRυ*$&:W%6 bh=>EOhaSь9ѐn@y9ei;њO R!@ڭ)>^<\6HOSU$,¹3_$gp լ?e_lZXuidV{a:TV.:Vz.o5Iv]~HLEaL EԃdL1IqNh,xj%E?ˋG1\c' bI?CQ`YxrR&`܅m=5Ɇo'Tq=h6pz7vB>bϪA X%B h{ %=wco#)ϢJuFv8;U8VT,7-z-Vi7 ]#4p94n`cm6tM0׮9"4M tn?6/8h* ,Gm G%Qt ~NE S/YY3-y'##* vCƅ-6v `TFݣU#wf' tz?UllŘ/etic~w]BHI ћeONt06 xPvm&I =rKsN_ؠ+]UEG\7I&KՅ8D]t4MkC@yYO4!4e'52Nv<-19H xUl/5nIj lLG?Hƍom?V?54ٜ֮FX7C>_ UήF΍JrpTdkaJ\p!'X؞qCzUu4c5V7m]3bly+ <,WaJ0sK2m-%@kL{)[beńp$,ɝMM4@N< sP@lqꏡM:V1B"խ@ \gZ۫s|kS8+UL>$%lox|fR ր̶KeRʐz.%baV%Q]~usekxe-SGL`*2۪AͣV?.ko^+ gGDCx^?Q/ K٩DKQ9P'b*;|aR7JԆ&dU a>98F0^B;Q?& :aݘ+{V}޻n|3c3fDA_K;‚v4Jf$].lWBȡ*CF@KeF=u!bPl=x]!Ċ},WZW~RKh&3dJ7 BghבB)Mn5̔X8gk69+M[r'K#Un!|ISb|qxwS#>ǢS-=ޛ幍)񷧳?77x'A,;Դ'88掶E3ᱫ/(#<>ղ3ذ`/@Ė<5@'~ endstream endobj 189 0 obj <> endobj 190 0 obj [191 0 R] endobj 191 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 614 0 0 838 0 0 cm /ImagePart_2058 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 262.3 718.25 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (3.3 Nowcasting using indistinguishable states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 121.9 675.5 Tm 94 Tz (the observations over the time interval \(-) Tj 1 0 0 1 330.5 675.299 Tm 38 Tz (1) Tj 1 0 0 1 331.199 675.299 Tm 60 Tz /OPExtFont2 11 Tf (2) Tj 1 0 0 1 332.899 675.299 Tm 64 Tz /OPExtFont3 11 Tf (-) Tj 1 0 0 1 333.1 675.299 Tm 32 Tz (1) Tj 1 0 0 1 337.899 675.299 Tm 92 Tz (, 0\). The likelihood function is ) Tj 1 0 0 1 491.05 675.5 Tm 102 Tz /OPExtFont2 11 Tf (given ) Tj 1 0 0 1 122.15 652.25 Tm 95 Tz (by: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 95 Tz 3 Tr 1 0 0 1 261.1 618.399 Tm 60 Tz /OPExtFont3 11 Tf (1 ) Tj 1 0 0 1 278.399 624.649 Tm 75 Tz /OPExtFont11 7 Tf (0 ) Tj 1 0 0 1 285.1 624.649 Tm 100 Tz /OPExtFont9 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr 1 0 0 1 265.199 618.399 Tm ( ) Tj 1 0 0 1 217.699 610.5 Tm 112 Tz /OPExtFont3 11 Tf (L\(z) Tj 1 0 0 1 234.949 610.5 Tm 51 Tz /OPExtFont9 11 Tf (3) Tj 1 0 0 1 240 610.5 Tm 112 Tz /OPExtFont3 12 Tf (\) = -) Tj 1 0 0 1 260.649 604.25 Tm 61 Tz (9 ) Tj 1 0 0 1 265.199 604.25 Tm 702 Tz (\t) Tj 1 0 0 1 292.1 610.5 Tm 94 Tz (\(z) Tj 1 0 0 1 301.449 610.5 Tm 28 Tz /OPExtFont9 12 Tf (.7 ) Tj 1 0 0 1 304.3 610.5 Tm 136 Tz /OPExtFont3 12 Tf ( - ) Tj 1 0 0 1 319.899 610.5 Tm 71 Tz /OPExtFont3 11 Tf (s ) Tj 1 0 0 1 328.55 610.5 Tm 170 Tz /OPExtFont3 10.5 Tf (yr) Tj 1 0 0 1 347.05 610.5 Tm 92 Tz /OPExtFont12 10.5 Tf (-1) Tj 1 0 0 1 355.899 610.5 Tm 98 Tz /OPExtFont3 10.5 Tf (.\(zi) Tj 1 0 0 1 367.899 610.5 Tm 53 Tz /OPExtFont11 10.5 Tf (t ) Tj 1 0 0 1 370.1 610.5 Tm 196 Tz /OPExtFont3 10.5 Tf ( S) Tj 1 0 0 1 390.949 610.5 Tm 58 Tz /OPExtFont11 10.5 Tf (t) Tj 1 0 0 1 394.8 610.5 Tm 96 Tz /OPExtFont3 10.5 Tf (\), ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 96 Tz 3 Tr 1 0 0 1 301.699 608.299 Tm 60 Tz (t ) Tj 1 0 0 1 304.1 608.299 Tm 609 Tz (\t) Tj 1 0 0 1 324.5 608.1 Tm 65 Tz (t ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 65 Tz 3 Tr 1 0 0 1 494.149 610.25 Tm 88 Tz /OPExtFont3 11 Tf (\(3.8\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 272.149 596.549 Tm 63 Tz /OPExtFont2 10.5 Tf (= ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 10.5 Tf 63 Tz 3 Tr 1 0 0 1 286.3 593.7 Tm 85 Tz /OPExtFont3 5.5 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 5.5 Tf 85 Tz 3 Tr 1 0 0 1 121.7 562.7 Tm 88 Tz /OPExtFont3 11 Tf (where ) Tj 1 0 0 1 153.849 562.7 Tm 172 Tz /OPExtFont4 10 Tf (j ) Tj 1 0 0 1 163.699 562.5 Tm 90 Tz /OPExtFont3 11 Tf (E {1, ..., ) Tj 1 0 0 1 205.449 566.799 Tm 152 Tz /OPExtFont6 7.5 Tf (Nens} ) Tj 1 0 0 1 240.949 566.799 Tm 57 Tz (1) Tj 1 0 0 1 243.099 566.799 Tm 94 Tz /OPExtFont6 6.5 Tf (r) Tj 1 0 0 1 245.5 566.799 Tm 73 Tz (1) Tj 1 0 0 1 249.349 566.799 Tm 83 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 6.5 Tf 83 Tz 3 Tr 1 0 0 1 240.949 562.7 Tm 77 Tz /OPExtFont6 7.5 Tf (1. ) Tj 1 0 0 1 255.349 562.7 Tm 67 Tz /OPExtFont4 7.5 Tf (1 ) Tj 1 0 0 1 258.5 562.7 Tm 92 Tz /OPExtFont3 11 Tf ( is the inverse of the covariance matrix of the obser- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 121.7 539.7 Tm 93 Tz (vational noise, zi denotes the chosen candidate trajectory and ) Tj 1 0 0 1 437.5 539.7 Tm 114 Tz /OPExtFont5 11.5 Tf (zi) Tj 1 0 0 1 443.05 539.7 Tm 55 Tz /OPExtFont3 11.5 Tf (o ) Tj 1 0 0 1 446.649 539.7 Tm 94 Tz /OPExtFont3 11 Tf ( is then taken ) Tj 1 0 0 1 121.45 516.649 Tm (to be the ) Tj 1 0 0 1 169.699 516.899 Tm 155 Tz /OPExtFont4 10.5 Tf (j) Tj 1 0 0 1 175.199 516.899 Tm 110 Tz /OPExtFont8 10.5 Tf (ih ) Tj 1 0 0 1 182.65 516.649 Tm 91 Tz /OPExtFont3 11 Tf ( member of the ensemble estimates of the current state. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 122.15 472 Tm 135 Tz /OPExtFont2 13.5 Tf (3.3.4 Summary ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13.5 Tf 135 Tz 3 Tr 1 0 0 1 121.7 441.5 Tm 91 Tz /OPExtFont3 11 Tf (In this section, a new state estimation method based on applying IS theory is in-) Tj 1 0 0 1 121.7 418.5 Tm (troduced in the perfect model scenario. A reference trajectory, which is expected ) Tj 1 0 0 1 121.45 395.449 Tm 89 Tz (to reflect the set of indistinguishable states of the true state, is identified by ISGD ) Tj 1 0 0 1 121.7 372.149 Tm 93 Tz (algorithm. Based on the reference trajectory \(analysis\), the ISIS method is then ) Tj 1 0 0 1 121.45 349.1 Tm 91 Tz (introduced to form ensemble members from model trajectories, therefore the en-) Tj 1 0 0 1 121.45 326.1 Tm 94 Tz (semble members reflect the nonlinearity of the dynamics. Our methodology is ) Tj 1 0 0 1 121.45 303.049 Tm 90 Tz (aiming to enhance balance between the extracting information from the dynamic ) Tj 1 0 0 1 121.45 280 Tm 94 Tz (equations and information in the observations. Two state-of-the-art methods, ) Tj 1 0 0 1 121.45 256.95 Tm 91 Tz (Four-dimensional Variational Assimilation and Ensemble Kalman Filter, are dis-) Tj 1 0 0 1 121.2 233.45 Tm (cussed in the following sections. Results shown in Section :3.7 demonstrate that ) Tj 1 0 0 1 121.45 210.399 Tm 93 Tz (our method outperforms those two methods. The Perfect Ensemble as the opti-) Tj 1 0 0 1 121.2 187.35 Tm 88 Tz (mal ensemble states is defined and discussed in Section ) Tj 1 0 0 1 392.899 187.35 Tm 98 Tz /OPExtFont2 11 Tf (3.6. ) Tj 1 0 0 1 415.699 187.35 Tm 89 Tz /OPExtFont3 11 Tf (Comparison between ) Tj 1 0 0 1 121.2 164.299 Tm 91 Tz (the Perfect Ensemble and our method is provide in Section 3.7. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 313.699 52.25 Tm 73 Tz (31 ) Tj ET EMC endstream endobj 192 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 193 0 obj <> stream 0 ,,b6"Bl>IrFfXso !h`$.lUeגUb2 o^D?nsO!Aa(tJ)t Bؽg&9?lj|D z%CifҟwqT*TR$/\֦;Ў66- ߜUsG'Jڪ /LZ!Q.yBẇXBf޿+ b,8] ($R&7*E`.;-q)6|P|`[v[G{QO[&,MM%D v]];\?|؃8SQۙ&͗NsD[Bc̤E-(Ʋ(K#p*ijⰭʢ+W4i{P{ 3Z~D61+tߨӠ#yjH&[P]:U'gM=1 ]=r&{e 4W'`MlVKk x969K*^`xj(\f+ ?ԧzDKO Ǧ{%C:e],N܇&+#SW4#( `ktُ5hUjPn?CQhqO*ӫm(0@ n%G,l1b <1OjrFYXBH_%}`u3E  w> TA;!ԬKFc&KO^LwS$$†bA$P[:'pCncz y+}Zo}s`9;>K!# wdY g),%Mc.:=3"z߶{iAɩrtv {LdeN'0G@^[c \߮KWP㹫%nd+EcA 6OsABT8to:TiƢ(Q&YxR"̘0]GQFht?G>^9mJ6 BʧHL2a visbll8-:] ?Qh`ZpUwee}j3dB‹:I+YAtڱ,=#!n_-h1GVFZ؇(8蘍kY!-a3S^1x尦,7C]PX;f,U[ʈ =zRߣ(E<`}B& 2^\f%"lLkۢ?9{<[- EjQ-wr3WQѢ{P<GE%S( vP+ ߚGI !p/ 48 Zoy zf.]ʰN/.=$,n)%ł(;,=n#?8Ul}:;58U}g 'z44P_:~c0ȇiJ>5ֳݶı՜3ձVF*$Sɿx#-4E!)?'O46%.#R)Yʱ9eʱԮ9,'>cIڳaY&a}ֳ,Ӏ1'*`<&moY~\w&ʇo3jVMm[xIyUef6uo@o~܋*tҭ@4< 3g[Ҭ-:G%=虋NZ:B|V)2kQΩ<ݞ<'E%Q(,xmU@D_$!-u*8.ULKV ڇ8;b7ܼq} F{|w cp*/Mrj콦C 9Ѩa[#LvFF7Mx\ι7GtYԶsE"sEN>@-UMql7u9+Qn",ȟ:sUoΤe׻HfMH?I5f`Bǔ8 ;Km6H%ZZ94o%#&%Tf`m'צ֜L{JwAօ<*59L_LKF5N's'_;D$xPak=u A|I9v]Kc o.-~. 6@Pי-$yAf||Ou?jto#σ: c7B5eG&qe>mO$+EuA5 cc\o(Dh}h]j!4;g oJjU-mB7ĒȂ7Х .4T"@qY/"/݈6?2#W=N7m^_J_n^"j>+Ahés[?Q0mTNofqBJuqN3YS_ D!O93W_z^AOsձi4{F4"|ɓ b(C&=b6NjPd%Հhbq KZ># x:>a7PPF8_*NiL5 EIknT)[So,z1﨩҇3)tnl%#¦>۬ӊ_vb(v Q(#FKQ{C~U-D(.h J7u}P&j{|NG6} \Sntu[k\2 L'=2yAg7?ڑC4l$q3?^OFm\~. g;^Kٮ$*۲oh[i" =u6G] =M9r.\A$.*5]=QhYߵ d{:-BM_Gϝqo*eǔTFPzH+se#ҳ&샓g/0n@AUވY mr } oE8N c8E9`S݄ UN-I5MtgS|SwyDU(_q٨de摻mQQœ)B3/}"7OZ$`#'!ua*'s83{f)>Cw\܍)ECYJl^ٽ:m\c6?dgk8Sb~)kXKooBy4Q]?cAR LԠ(O,vT~ k{4ZqDz;8:WiFJH9% w˕o?Ӱ8v6\Q^WNR-Ylc'RYx f&);E9xbȇs|2+t{)*A$=?Zō|Z wS'S5|zM  ? <|?`09Xp 0Q=XH׹z)_'#ʰ*ЉVd c n4(#@{^{89Z>ewߦ1oA5 XB B6XpSw J JT滏v''s%I7?;BCa.>ԝ4Wե؊CcoziB3v>+X }ϥv~@'9wۛpIm$5|;^h ~g#N̦5YpE_Pل5bRGЦ KĦހ:^Rj ֪ oݶ~#(^% H(x+.~0;Y?]D%Q3wR3 ]#yә _”)K<vz iZ6fɽHz2'%LAi`pTmtzV-p2w`w,HAOx7M?DelK((S /:黳噃2􋰭5oܴS;!v0'±n#ꊑ !isɲSge)p.@2 '=`,Qp4z-B0g EIU Ďr8i lKPw;@BCC]gcRRH AYt~S䨓Vi򛼲Fɖw \H7Q1R@[ۉt0#Wd%m -q7"ݺ-'?{YB 2*0h!J7/}\Jc&}R *єy-Z͖ߢEcy_T~heB Vw>: | &dC$-/Vpp~((9Z_OuZuԱͳMk(.Z) a-j? MUL66u=F2 r풬 ZA̴d. 3d. їU2O 峾tFDړwĎ尿˰Ӹ?ްz\EJ@47.Ŷ7C}ܟžˎEǦK+[L2z{,'7 {GOk m@wAz"c(\j[9Tz،zgʇ[$%P™53MbjDz_g8N i!v&}EЏiZ-2KkԆӽ"wt@+[߉l"SXK+̅V=mRbu57AR+}XFbG5W\pd)MY+ ;<Q=iSoc}=J3iRe =uknѾ!)̉("ECpjՔˉő[RkF,$ٗCڐfH s4}Bz$^N/F}|BDxڲ't0y0kkebN!P+ 0$7+xP\eɆ^pvmb_sϽ07Leg[ Zߴ@ahOc(Gڔ@QFIt%Q}"z,T!{<ٗji !e,#bop endstream endobj 194 0 obj <> endobj 195 0 obj [196 0 R] endobj 196 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 837 0 0 cm /ImagePart_2059 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 453.85 717.95 Tm 125 Tz 3 Tr /OPExtFont2 10.5 Tf (3.4 4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 10.5 Tf 125 Tz 3 Tr 1 0 0 1 123.849 675.25 Tm 121 Tz /OPExtFont3 16 Tf (3.4 4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 16 Tf 121 Tz 3 Tr 1 0 0 1 123.349 640.899 Tm 93 Tz /OPExtFont3 11 Tf (Four-dimensional Variational Assimilation \(4DVAR\) is a widely used method of ) Tj 1 0 0 1 123.099 618.1 Tm 95 Tz (noise reduction in data assimilation \(18; 19; 90\). The method provides an es-) Tj 1 0 0 1 123.099 594.85 Tm 93 Tz (timate of a system state by using the information in both model dynamics and ) Tj 1 0 0 1 123.349 571.799 Tm 90 Tz (observations. 4DVAR looks for initial conditions that are consistent with the sys-) Tj 1 0 0 1 123.099 549 Tm 93 Tz (tem trajectory by taking account the observational uncertainty of the sequence ) Tj 1 0 0 1 122.9 525.95 Tm 94 Tz (of system observations. It aims to select the initial condition which minimises ) Tj 1 0 0 1 123.099 502.899 Tm 92 Tz (a cost function which measures the misfit between the model states and obser-) Tj 1 0 0 1 122.9 480.1 Tm 93 Tz (vations. During the application of 4DVAR, the minimisation is carried out over ) Tj 1 0 0 1 122.9 456.85 Tm 92 Tz (short assimilation windows rather than across all available data \(Increasing the ) Tj 1 0 0 1 122.9 433.55 Tm 93 Tz (window length will not only increase the CPU cost but also introduce problems ) Tj 1 0 0 1 122.9 410.5 Tm 92 Tz (due to local minima \(65; 71\)\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 123.099 366.1 Tm 116 Tz /OPExtFont3 13 Tf (3.4.1 Methodology ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 116 Tz 3 Tr 1 0 0 1 122.65 335.399 Tm 90 Tz /OPExtFont3 11 Tf (Assume the observations recorded within a time interval ) Tj 1 0 0 1 400.8 335.399 Tm 121 Tz /OPExtFont8 13.5 Tf (t ) Tj 1 0 0 1 408.699 335.399 Tm /OPExtFont5 12 Tf (E \(-n, ) Tj 1 0 0 1 444.5 335.399 Tm 89 Tz /OPExtFont3 11 Tf (0\) will be used. ) Tj 1 0 0 1 122.9 312.1 Tm 101 Tz (Let x) Tj 1 0 0 1 149.5 312.1 Tm 63 Tz (t ) Tj 1 0 0 1 152.15 312.1 Tm 120 Tz ( = F\(x) Tj 1 0 0 1 188.4 312.1 Tm 63 Tz (t) Tj 1 0 0 1 192 312.1 Tm 91 Tz (_) Tj 1 0 0 1 198.25 312.1 Tm 80 Tz (i) Tj 1 0 0 1 202.8 312.1 Tm 93 Tz (\), the 4DVAR cost function is: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 211.449 245.149 Tm 118 Tz /OPExtFont6 8.5 Tf (Cldvar ) Tj 1 0 0 1 256.1 245.649 Tm 70 Tz /OPExtFont4 8.5 Tf () Tj 1 0 0 1 257.05 238.899 Tm 112 Tz /OPExtFont6 8.5 Tf (2) Tj 1 0 0 1 264.25 245.899 Tm 244 Tz (\(x, ) Tj 1 0 0 1 289.899 246.1 Tm 65 Tz /OPExtFont3 11 Tf ( ) Tj 1 0 0 1 300.699 246.35 Tm 93 Tz /OPExtFont2 10.5 Tf (xb ) Tj 1 0 0 1 313.699 244.2 Tm 65 Tz /OPExtFont3 10.5 Tf (n ) Tj 1 0 0 1 319.449 246.35 Tm 136 Tz /OPExtFont2 10.5 Tf (\)TB1\( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 10.5 Tf 136 Tz 3 Tr 1 0 0 1 339.6 244.45 Tm 88 Tz /OPExtFont3 7 Tf (n) Tj 1 0 0 1 355.199 244.2 Tm 123 Tz /OPExtFont2 10.5 Tf (x ) Tj 1 0 0 1 368.399 244.2 Tm 65 Tz /OPExtFont3 10.5 Tf (n ) Tj 1 0 0 1 377.05 246.85 Tm 95 Tz /OPExtFont2 10.5 Tf ( x) Tj 1 0 0 1 395.05 246.85 Tm 49 Tz /OPExtFont12 10.5 Tf (b) Tj 1 0 0 1 395.3 244.2 Tm 166 Tz /OPExtFont9 3 Tf () Tj 1 0 0 1 401.05 244.2 Tm 242 Tz /OPExtFont3 3 Tf (n ) Tj 1 0 0 1 405.85 247.1 Tm 210 Tz /OPExtFont9 3 Tf ( \) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 210 Tz 3 Tr 1 0 0 1 495.85 246.85 Tm 87 Tz /OPExtFont3 11 Tf (\(3.9\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 233.05 222.35 Tm 56 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 56 Tz 3 Tr 1 0 0 1 232.3 206.75 Tm 95 Tz /OPExtFont3 8.5 Tf (2 ) Tj 1 0 0 1 237.349 206.75 Tm 920 Tz (\t) Tj 1 0 0 1 262.3 213.95 Tm 111 Tz /OPExtFont2 10.5 Tf (\(H\(xt\) st\)) Tj 1 0 0 1 321.85 213.7 Tm 92 Tz /OPExtFont3 10.5 Tf (T) Tj 1 0 0 1 328.3 213.7 Tm 200 Tz /OPExtFont2 10.5 Tf (r) Tj 1 0 0 1 336.699 213.7 Tm 85 Tz /OPExtFont3 10.5 Tf (-1) Tj 1 0 0 1 347.75 213.5 Tm 108 Tz /OPExtFont2 10.5 Tf (\(1/\(xt\) St\), ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 10.5 Tf 108 Tz 3 Tr 1 0 0 1 240.949 201.25 Tm 101 Tz /OPExtFont3 7.5 Tf (t=n ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 101 Tz 3 Tr 1 0 0 1 122.65 169.549 Tm 89 Tz /OPExtFont3 11 Tf (where x_ is the model initial condition, xb , is the first guess, or background state ) Tj 1 0 0 1 122.9 146.299 Tm 88 Tz (of the model and 13.7) Tj 1 0 0 1 226.3 146.5 Tm 42 Tz (1 ) Tj 1 0 0 1 229.199 146.5 Tm 92 Tz ( is a weighting matrix that is the inverse of the covariance ) Tj 1 0 0 1 122.4 123.25 Tm 91 Tz (matrix of xb. The first term in the cost function is usually called the background ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 315.1 52.2 Tm 77 Tz (32 ) Tj ET EMC endstream endobj 197 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 198 0 obj <> stream 0 ,,Qb6 ;dnl' ƶ&USA=o^d฼=z1>oE3ؠg7׺Ť6BM,*<mD 5g[ݚLG&3tr _F%_-2BJ zW92n^5Vg~%A=rGzԺL2):f?;TvlΉCq9"|NI}\x S_?g 7ґY#A<}SesK W"5X 댢<+xijvz#HO h6xŒ˨LW"qFz[`niWjƺ)TTy3^. !aBQ&XLWu_ yn"Q}bbD~ceoilˬg"RHڴZ&u#˟vuBds/ 2UPqbu ʅdMXnm̐3#Tsũj!渢fI DK1tD$v%.ܢd1g$ݽB| 4zr3?^w~:ɻ0M ז 6OdBy[xqh?E{?ȺzkEo^g:Ӏki%hQ#s% !:=mID/ېtR>-w k/ s3v5Z JЮN5L PqQ`_,$hX:^p*6H&6HF>Ӵi!-?㘬3#B; ӹytGPf܋{49c0mfʔ/bL-q;%'+5f;,-Ch{8.9iQ $\YAZp*&:͈~^Q>X}># oM-Z-bn|&`cf/ F IN_D̊Ri+}c;w#}͉uQ3vR//}ZTHߧ\ icb8&;gKH$8n6C!g<7_؇ػT=V99Mlm4Aνۤ!|}eq_T4߲}ff]b")$cՖcd i "׆t/?O vD/Dy Spg}޻qxHh\xS;vXJ{d)ڞc$pku|u09Wp?|xʷLgev K0S`o{  $86fRϫ5tD_qpYOi 8 @;.n] $S)wa#s zN܇G'3ex,3ߠ*P˙6QYŶ ӧÎt;baIQF^4$UمwQ8kr=+tr'i+Ho][|]Mu 9'WHz$$P.݌T ^<!f%f$^8= 9!'Gtm`3k=kaDž[wl(s7`7*oUZmX]2,s'-Ly;X`fJ@"THDV'fS'4("tIZeKܕ,hzNy?i^26p6PŸJ-GkqN:ۣ͙Ǯ$b℟Lę[\tYaiqr9ч$KӺ+Ķxee(ZS5z38 .`Fޢ{:^ m<IS8p6Ճףv9yٵ4/%FGAL={ Q!QBm3U^1eYK +%ėz(T -1? %dbtO.Z2. NOh~ߍvwFTbǚO$Ll0M1^دe T|d.#̴)wLvt7mث쨖=MN=5ÃRx!+l=,YHe ZL|)Vx娸aez_S+!k9/a 8~6.aZfn4T{`#ڑD&mcx3J4 y>'zH(;T/QAs01V0'*˷1{=xt>oڞ0mhxf]ϐ~EhR9iX-4ZbA@!i@I~&[AR9YB!zAdDnQTL'XTLO3d>b  {X2]l1 W'r}9Z|<ׄ;aQqd~i:^Vp?q %%dlKo=kKEo䜣 t.Sw/*G,1`?qЇXxO:Mh!Dh@yc}݈b2[̌{߾GxRie}-9VH Vhή΃PacnM+ uk Aцo\ ҳ4K;NW{*KI}W6Ψ>җv5cGԠewaNm3wWKr&Vv59[ Ӆە/|ǡ#A c::.TB QՖyEd3RFm0-Dv Jgiw>URň핤ġۯS}'Y&kGzGciɱ;"]K򫶌g|d|XxߏH5\ &k, y N|Grֈ7wK^~TNB рwaBOyh0+~'9 @3O¢xZi?u*P ,['`>rlet>l-LڿB|v҆еuߔ'T П9/;Qx K UzAdjB#ѭB= ɽrmQ|.@b$wyTe-0 S-l@͊.9eN^-b:ȑ6,ޚOoάexl} H7UdԷ+ыh]M3uU-=Y>\HD١sTc(OϷ֏-IbSLD(AyPS`%a$ɐDdx63-}?hǻ( /Z!7giyTQJlaP.!gK(;Ώ}BȞ^7Ne4z~qYBN] uŋ2?tpvt@"<zTNAH? vF+喋fPJlK݉S}F'7P9n7Z(=u?EvSt.cc&{k^ij,30^zMʞt .XEmű6(%<Ys)6~n~ B)j Œ'CvZ怬 35DVDCBg=.c e,Pj[{9HmKXK9wHyZr\˯C ߠ fR4lSEHfբ&F1MzOrT2lR-H+8Bi=Ш>ٛ]k#q/IJy$q.v\O5 }=[&#'5{Ѥ>.d;кoxbf_ =AS}e'%FGL׼Y PPa-J4l{u@ө72¨^ qkuR{ïHZ*wF2Mh3UR`"0J?4} V ^ wt|&Afy%X1dk`y\$H vtNʒ'"YnorŪ.ݫNYp)+ʬˀy(.r߇N7*CiL<ڍ^(RR+zqJMPZٛl"I} 2YP%R]uV"<[\2XKWA#'7E,ޖ%~/fXH 'Edh3Ŵ-qe$ mtIGcϗW-@ĺc­K085p2]~/Z_xEK[KuJ?u"B88R_^ԩ~asT慨ّӓ$Lk6C< Iut9crX]#"/eQ>+5{̍tUOpAҐdh_P)8!rT4|-cG~)w 8^A\j5ʁ*_rsTUuO*R?ɵj OYKQfKDs%n9+~ϔTq G]c_B{;1E@"h4  3>O?[4'󡨍/,ʵa *pWU6ٝ[ "dm]>(}4bc:a祀s aw/`8viiw(8e?`9\>LFΊTMYUV> A2>x0 B^Q*t Ӆ5:_%ە2 J$+3(*Rg! q٭0ݠ!;;d<tz3`=6F0b]0=B:UGEX87>s454W G!4oI_17?Qi,uT  #3\]?QToIKݚUwL0K ވ9P)} I0a?ן);3f_1 ?R1l8 }jci1ǁLs&*4 3WP&&~}4~9g3u5L!=>ka ܲ8v0G ل2#p0T!T恋:@E.<>6(i གྷjS/υ'r~ +(*5xD( p^foH$H;DVbFa) {ğogc_Zt1 k ' x1Tw<sH>;79b-2$&[ I z#¹㠬ILov3͋zZ٪ 9j̅ht>v=0u,9_㗑 ;n= J)02|lLx7pdf7V %XvEGa."p7h%.|faek,ep5{f>^> I&fb`3lp`Egn.Y% iklik.9GSBXݥ ݫ(&yF\^/NRcI܉)]ϽQ_;lUlV"փwC6ރ&I{qc^jB9jMѐ ΡX ORI]=:0}߈3QfokjgnzKf-t{, 1_d>i:Ê| |Ԙ] t# gxV$Ulwxs2!QTn6]]Q@>Qh̡GЧN\fˋ `9̒!K'ShSb䆃7@Z>"}Dفl3.\sКfrS䅗h-lYƒNL `7zH7KTѢd`=A՝ȯ%뚡6e\R+ _W>*"W9O*X³FF6!d}7~f ŠzE,#6sr*>(vK5I.8Hpm4tXO{[4Ӧi3XkZc;sBӈjm.6TroW;*= p?`} j 8/r Ȱ:H"Oi k`-o]“m{?t ȃNqfݤwA*Ї9`0a9+P]*h}Zy>GlሩQ޵yQ)7i~Xn܃?·p=K/*Wus\PP̼a | ݍVrp%>3 /Uދ,()WI9~fY U7AOpcxRn+c撰R8^pl$X[pl 'LM^g֝|ʝϱ+KBDpJԓm͘t/a;PUfV w>rF`>NWs]`qsxlrbtbIL?v=t#gJ.f}>d{ uBٞ` a]Z+ iޜx't ^BtLsdgB"'Sda}lrc GLit\/ަO.'YGj !>]݈|QLx֮l!5b: Ѧf1Mz;[xKsW?rɠl LmF/ڢ!tvشfy[wp̲G:c endstream endobj 199 0 obj <> endobj 200 0 obj [201 0 R] endobj 201 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 837 0 0 cm /ImagePart_2060 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 453.1 718.45 Tm 115 Tz 3 Tr /OPExtFont5 12 Tf (3.4 4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 115 Tz 3 Tr 1 0 0 1 122.15 675 Tm 125 Tz /OPExtFont2 11.5 Tf (term. s) Tj 1 0 0 1 162.25 675 Tm 55 Tz /OPExtFont3 11.5 Tf (t ) Tj 1 0 0 1 164.65 675 Tm 117 Tz /OPExtFont2 11.5 Tf ( is the observation at time t and P) Tj 1 0 0 1 345.85 675.25 Tm 75 Tz /OPExtFont3 11.5 Tf (-1 ) Tj 1 0 0 1 354.699 675.25 Tm 111 Tz /OPExtFont2 11.5 Tf ( is the inverse of the covariance ) Tj 1 0 0 1 122.4 652.2 Tm (matrix of the observational noise. Hence the second term in the cost function ) Tj 1 0 0 1 122.4 629.399 Tm 107 Tz (minimises the distance between the model trajectory and the observations. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 107 Tz 3 Tr 1 0 0 1 139.449 606.6 Tm 104 Tz (By locating a minimum of the cost function, one finds initial conditions which ) Tj 1 0 0 1 122.9 583.299 Tm 106 Tz (defines a model trajectory that has the minimum distance from the observations. ) Tj 1 0 0 1 122.9 560.299 Tm 113 Tz (Such model trajectory is expected to be found in the perfect model case and ) Tj 1 0 0 1 122.4 537.25 Tm (the longer window is looked at, the better the global minima is expected to. ) Tj 1 0 0 1 122.65 514.2 Tm 108 Tz (In practice, increasing the window length will also increase the density of local ) Tj 1 0 0 1 122.65 491.399 Tm 106 Tz (minima which makes it much harder to locate the global minima \(65; 71\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 106 Tz 3 Tr 1 0 0 1 122.9 446.5 Tm 107 Tz /OPExtFont3 13.5 Tf (3.4.2 Differences between ISGD and 4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13.5 Tf 107 Tz 3 Tr 1 0 0 1 122.4 415.8 Tm 108 Tz /OPExtFont2 11.5 Tf (The 4DVAR method aims to produce a model trajectory consistent with obser-) Tj 1 0 0 1 122.15 392.75 Tm (vations. The 4DVAR analysis, whatever it may be in practice, can also be used ) Tj 1 0 0 1 122.4 369.699 Tm 106 Tz (as a reference trajectory to form an initial condition ensemble by ISIS. Although ) Tj 1 0 0 1 122.4 346.899 Tm 108 Tz (both ISGD method and 4DVAR method use the information of both model dy-) Tj 1 0 0 1 122.4 323.649 Tm 105 Tz (namics and observations to produce the model trajectories, there are fundamental ) Tj 1 0 0 1 122.65 300.1 Tm 103 Tz (differences between them. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 103 Tz 3 Tr 1 0 0 1 139.449 264.85 Tm 111 Tz ( Both methods produce the model trajectories "close" to the observations ) Tj 1 0 0 1 150.699 242.049 Tm 110 Tz (but in a different way. The 4DVAR method tends to find a model trajec-) Tj 1 0 0 1 150.5 218.75 Tm 109 Tz (tory close to the observations as the cost function minimises the distance ) Tj 1 0 0 1 150.699 195.5 Tm 111 Tz (between the model trajectory and the observations. If one initialises the ) Tj 1 0 0 1 150.699 172.45 Tm 108 Tz (cost function with the true state of the system, the minimisation algorithm ) Tj 1 0 0 1 150.5 149.399 Tm 106 Tz (will with probability 1 move away from the trajectory in order to minimise ) Tj 1 0 0 1 150.5 126.1 Tm 112 Tz (the distance between observations and the model trajectory. Only if the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 112 Tz 3 Tr 1 0 0 1 314.649 52.2 Tm 91 Tz /OPExtFont5 12 Tf (33 ) Tj ET EMC endstream endobj 202 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 203 0 obj <> stream 0 ,,wwb6)RprMeKOAsJY],KNRfk+nf1h<.vSWR^X u\vCNv G&Fŗ$v9j<"6 )XSYt[?Ovr*\Y˫I<@SFqaڳ t5k(vQ-2>%HWf&3~Ǣ!”Òqwgn|Z0Q)u|GaʪO^u |D~O]RPԿ8v (ʼ?pa0b-<&. Eg\+ڙC4!9;}Y@#$~|G$?ރpMB]:} Լ6bI]/Hp(^6iJ2ҍCu!pSqpH9b'gÉ]2@c4CUq'rޙ^ۀ޼":{j]V)hK @xS^ޒҔN'ͩ|NͿ2;5 Gڶ[唔H-v3 u`ZN1=B8NHY6]kR#0vg^E ;>0=f\¤UT=>6l4x8+*0YzSV|j N5{`¹mڢKJ"4G8Xtߝ$)7siC:r|y+l}+FYt,/y+TLM#}\s8n"ܮȯRa^`gTڽ&`8_ Z"}}f9CZ+:*vC /KVuO4YE3i^xjf/1v#Ժư 6 I'A,PBѱiry J9!8"Hu;i(}b͕p:" a E$C[)-F߻+TԇbGYv-m ?>)sNFA\$kE).䫬\;ÿ%k4efng]4$5ۅP6ʡ}.ͺMdb2ٴ[(u|]pfí{݌AvÕ'$AG,bʂcqa33{\v5ICrOɺ:TC"IjA(D m>}eϬf\̔-DuoeUR}}DISO% }(vZD̫фWƭHm|4h$=UR-!U2O;t{I)v"G4.E~2R:F똯3PyU$T. =]p.@2*JSmË DwmW]Xs?Z^W7y*ז%, @4Gʱ\||БcW WAl@Hz{V\h[\+Z_<Ēwa qyrW`dStpJ4AheBRқ ʾ?d;MR]Y&" t eKr3$VMcuylq1#!cJ4"O"#,d)lX0AT^%4eޡH7UiIC />~3(%՟l]:'t׃^&7-<0r̤guу/{I?@Hb,?퟽HՋux>+6ܱظ鹆#*ZD䳢2cرאΨ".q?kȱ&'<3k4r]B#{Ux}*:Ĺ;;,d> U; IBꨑX~lT̆LHYjs&͸݊]4z?l-(L[j7 KŃǑ9T8wY+z!iqzSԛu:g wB0hI f X[Eo맗406Ok.SykH^eSB 9Ck;XEKaX7f{fm+|NX(_=fla7i:=Oqr[ίTTo֏9ʔm P;% h~#(ipin l+O ISh"c߃ۺ y0@}?!11`a¢?NX%3|*0+"/wW3U9jȷrMxK {ڡ$`IJzyr)EtƭӃ~Mjɫ!+U^m7H2KouitJCXg(6BЊmH㭇 Ac[d D̂۞[+0cq86A磺0<95KGl䄟(Ր;Q{kpuRt դ2m#D~ZLlYtg'g7'-m}]ŧtѼ5=VRCmpyZrd[ε>Y(0a@scܓKB-$PŬf~Uy$yyTcxylG/$(HyAaӢ`(N.ݥ]2 4tX?{Iaw{lXCCLdŐmRcYT`n± (&#F4LxH@2@r:[eu^E2J4C5kSBWxdor|s6I]l#?q  *F9fH,; $遅*lfqV׽LzVq#|a)hY컍t /f2}e159|g$ 19`>Аᾱ^[,{<8ouPX2oA\ЇgO1`nFW٠qwI͖یE6Ҷ帣bS1opnj=VK^UA M)]6`:ZILz Jz~2ϼfq Fsq>kIa, A:N=L$8zrC.2+ry`|`7q4n3ٍ%tP&]>Kl NP)\F3"ډ7CF])KcTo.VG^W ggQ74 uO4  ^2Ds:' |3[GPۊ, F HU,4VG㏊K&N8N#N5EC&S9Qb5W[^Յ  %~${cAJ`ZoRLЍgw@r@风e@9#yW]iJ%Qn:5Ny.l+)J&u{dtil&:6.7NnGpYyڴ "Р1TtR$vܦ.+:rr_qٷ^KV5;S eE9ңEeʆ-A4x 8 sn7ֳ*׏%(whV9azw6:AQ[..SR3P/҂kuaUc! $M L/GvB5yn{K+l~&ԚPHgF}6ͿU+gqtcZnMyUs[ l!fv>eD~ԅ !" hJT7īp`*09 WA0> zsb8H}ݵ租;sJ ,1IUQdLoKH<& {6{U}D]aA}c]`bx0C)|8s OJE~=@ cB>`D)|.vk;'9oª&6w^EQ%|nǶN5=>C)tX^ ÊfFf_; %n% \M=h7-eM Z5(_EWȰz?K5i5i-eὁel_|3ʃM|ڰ`Isu+B=nOAMRy-?سW12.ܕ\rYєYXz*,̡B(_tK#q%[vt%ݜ NG /*׵:WOo^^(ciF -mM h1F,E0YЄΚBxqiߢ3S?WKՠŕT'bUFS9&\f:Cn<$t xb{P;.ȲIX-g2ύW xFc} 5E#B"@srgI3Alp* f2v9sPRȐwQi颕@vD%a۬MyǥW4gY|R`՞9$%J$41j*5x*7vmA=WL[z{33hOqxk KMٿfUGtOK0>8`/`$ʫ͉Aa e_MFv?HU^ZNJ,o꺘R!Z9D#A  i( Dn(ǼED.suxŗ{ ÷`Ӻ> ;ψxP8>=?z›;0|0{ h7T0сs`B(Ac3C;EҁPi,P@f8pv5BcI4wU܎Qc%ҿكH_=<[%,N8q[z8v%L5 >;VZ'&4h }3!1)G&Qj16O91lst/.hi aGZ+/ @yb,_ͅ>{!L3d߲LS5bh=o%q[eu6OSRRQKG\ 6OخB%.Q {*\=VyK=YL~6Ɠ3B$iQJqeՄdOiZm8ˍN~n -z'"HΜ\ vA_0}ix"lS*yg 6?J췠!2ηcMT\זDkz1RI?]EWrA<;// Vr\F ij;2{K~/lwVy7rͣ0FD. TK+|{M羽s a fcX@>bQҲwK옽 AQS|.dOd9ٗ_aXSY`Pe<((rK{]/Xq;aČ?xkۀ% ϠZ%%58 D[ bOř{.C{p`p7b~ܢp:Q@p ٜ0MHqؽrh4=J4w0o #nҕ3k!a*),kgH`<Z $όrNS gF矺2 O [AA(}6]ߏXAgQs{] <պHhو.yXޛ>Ll|7D#$> z[P-CE>@"u[.}P"wk#f.,v6 1ER^ ٰЃ׎ms A-5D 2e< >Za 1\WjR~JwK~.,ڇ8.y2bV=.9+!1bRPv\B~/@S!/Lۺ1V0;STΤc1s}PL؜D[Jk Q' o][ 4?ܚm#9VvѯY(:.yWJ;9s8,=<=S1rA1pcM$mRP@0}_u`/5[2܆z䙋6fqJqt=; (QOzMeuO Ǫϗ!2G1KAE$Z:]PАJ7rK#5Ax Nh2|-YGvCu N\~o0` Kd'rX;3 xeOzInF>S|Lm҂/rDT.$}9 8$r̩iwg]m|d+͎JgU\0hA.:/j/j,%G@/'4=WKFO(x8 cr^ G淏 ;=i[BZ.XY;QH,7xTcDmtݺEV.iIM?x>~Ac;̘f]X:bY-;qB?S9_ ,ʳg WX [62qƻBzسkQ)B3\ƹ\ׅYwsS9!(p\XNJ[7UC৵Z ĮqE7 9/"s¯g]AxaS<*mF\Amd_x2DK.C*+UN ;1¯^ذiTǶ)}DZ}cT :V4oU-ᰶ稊A~敊Sqݚecęd]D IIdx?uDe `Kms5v}*6 -T_4s8(5lqdu7N֜=´\6ǣ֠s̙$RLgGȍcw)P$CE߅8]qt!1prc饮fүuQUziQ>ҝuY9jpr(R&~}뉔 endstream endobj 204 0 obj <> endobj 205 0 obj [206 0 R] endobj 206 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 613 0 0 838 0 0 cm /ImagePart_2061 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 452.899 718.7 Tm 102 Tz 3 Tr /OPExtFont3 11.5 Tf (3.4 4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 102 Tz 3 Tr 1 0 0 1 150.5 675.5 Tm 94 Tz /OPExtFont3 11 Tf (window is infinite then this does not have to happen. In practice 4DVAR ) Tj 1 0 0 1 150.25 652.7 Tm (is applied to an assimilation window with finite length, the cost function ) Tj 1 0 0 1 150.25 629.7 Tm 91 Tz (forces the resulting model trajectory to be close to the observations, which ) Tj 1 0 0 1 150.5 606.649 Tm (may cause the estimate stay further away from the true state. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 150.25 578.799 Tm 94 Tz (In the ISGD algorithm, the cost function itself does not contain any con-) Tj 1 0 0 1 150.25 555.75 Tm 92 Tz (straints to force the result staying close to the observations. The GD min-) Tj 1 0 0 1 150.25 532.95 Tm 93 Tz (imisation is, however, initialised with the observations in practice ) Tj 1 0 0 1 484.1 532.95 Tm 41 Tz /OPExtFont5 11 Tf (1) Tj 1 0 0 1 488.149 532.95 Tm 105 Tz /OPExtFont3 11 Tf (. The ) Tj 1 0 0 1 150.25 509.899 Tm 88 Tz (states one achieves is on the attracting manifold that is close to the observa-) Tj 1 0 0 1 150.25 486.899 Tm 93 Tz (tions \(48; 52\). Unlike 4DVAR method, ISGD method does not require the ) Tj 1 0 0 1 150.25 463.6 Tm (pseudo-orbit to stay close to the observations and actually ISGD method ) Tj 1 0 0 1 150.25 440.55 Tm 90 Tz (forces the pseudo-orbit, on average, to move away from the observations as ) Tj 1 0 0 1 150 417.5 Tm (the minimisation goes further and further. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 150.25 389.699 Tm 93 Tz (The results shown in section 3.7.1, indicate that 4DVAR method tends to ) Tj 1 0 0 1 150.25 366.649 Tm 90 Tz (produce the model trajectory closer to the observations than ) Tj 1 0 0 1 446.649 366.899 Tm 88 Tz /OPExtFont3 11.5 Tf (ISGD ) Tj 1 0 0 1 477.1 366.899 Tm /OPExtFont3 11 Tf (method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 139.199 334 Tm 97 Tz ( The behaviour of the 4DVAR cost function strongly depends on the as-) Tj 1 0 0 1 150 310.7 Tm 95 Tz (similation window while ISGD does not. In practice, the number of local ) Tj 1 0 0 1 150 287.7 Tm 93 Tz (minima in the 4DVAR cost function increases with the length of the data ) Tj 1 0 0 1 150.25 264.649 Tm 94 Tz (assimilation window \(71\). The model trajectory defined by the local min-) Tj 1 0 0 1 150.25 241.85 Tm (ima stays father away from the observations than the one defined by the ) Tj 1 0 0 1 150 218.299 Tm 91 Tz (global minima of the cost function. The results trapped in the local minima ) Tj 1 0 0 1 150.25 195.299 Tm 89 Tz (are very likely inconsistent with the observations. Gauthier\(1992\), Stensrud ) Tj 1 0 0 1 150.25 172 Tm 97 Tz (and Bao \(1992\) and Miller et al. \(1994\) have performed the 4DVAR ex-) Tj 1 0 0 1 149.75 148.95 Tm 94 Tz (periments with Lorenz63 system \(61\). They all found that performance of ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 137.75 127.6 Tm 136 Tz /OPExtFont3 6.5 Tf (l) Tj 1 0 0 1 142.3 127.6 Tm 91 Tz /OPExtFont3 9.5 Tf (One may initialise the GD minimisation with better analysis if it is available ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 91 Tz 3 Tr 1 0 0 1 313.899 52.25 Tm 81 Tz /OPExtFont3 11 Tf (34 ) Tj ET EMC endstream endobj 207 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 208 0 obj <> stream 0 ,, jh]oҹrcLsDg4f ɵ9eq<d*/LѦك/]M'@_5ZUBTd.[lMGM \L.5t˛ }r_NHn$hjU y:@Q!lbZR).ZtN)L tI^ y(%M*h긾a"1|.nɕJem4(%f,\ ;]et[g!cÎ5qVsp~6ScjC"|N[,41E~D@~$@RZxYZ5Sw9޼ٺPQ;Y\ aB FitSVD b"Yx,*6G8Xv~޺Pf(PBҁŌPV]\TT]6oy Tɫ6}΢89`I!NԌ$ߍϭJ3 H?UrҐwV!1*JlW/=:M[oDw$ rmp1wi݅L+{+'wlhӉ7AY;Xݝ׈I95;GzJ1MgT?e)zl7:+Um$sd;7A/xᣎ>3]!Ck fM *8z!H& #lJpb-ߤ>mMG2y;@#]dGO32{g7Chl$q ĪAi89'7dֺ|ѷ 2 (&ꩼdz K q-V5[y9=b (;MvX@\~ny[[ES2OFI|,$AOD1 V"!1'G{ReDT㌿7*a#V){2M.BIOC!W vbo~,k3Fy9Q@;-XČW&,pE~$^6q7u5=K+s< WôUop?B>L# Z-?Dzo1ȿю-(gT_\TC&}L֔"[X\hyLw1A(H'h5*93+Rç:-8ʨψLr.p[#liP@e7 :a*/W )A歺3}Dxƥf|>о̶>[Eks< ntQuNE`Rz%:Pď:@qC*+yƹI:B<;mda%{|}(&5rg} YZ] ԀdXW`䆣mB gvoL_-&TB}y\%xSTC=A@ӕzQJ4zPmc-ٹyti; E&QS}|*M^ۿ= 6{RNb@+L:gV#mO4!8g 5RC <{Do1 bň 8Yx/o+m~qW>lWx;}d)%ιȓAuy磆w$B}Ζ/ A kS8V=H=5A["@HTބQpw`k) 'w*mijGDN *bk=+`d*" 86]‰ ?IV<}zݧF/'p;0e %?!6ߩw֥#<(ϼdͅv5٥%=FauWAhҤ0يӤ A8}/@)];_8rxeN ? I͎7>h & TaбTJضg4Ap MO*NV5,(eYkc4-).O;3h,>gfrxvjC4/mY (;fݶ<d]jljʛT^y[;eAٵr~Zd-)Ĺx1n${020ߟM%U9G/?"'^p'#E[3A];~ԻDnWc+%yeLNԭ7n`KR\hh .>a "Vw9+&C Ep\y>uhh7IMat=uh9a'l[}!eZgߠ!3.ޗP`jD9}e+gN:/հZ ʺDp=[' .}yP*]b",OPz[cbL&rcϥ+}iD|gbO g#C3HQ@FWknH$re N Z6xD/D$ Ux׿)ދl[yp7vgw,T\lцS3OE{t ,#( GpgSrjt }`vIPQ|◭|5MeMo=!W[FLv> l}`LaҩrsGe>o؄eXNa viRL t_aaE:D27}on2v,izB{*=aS? dPؗT0jsr8:ݿ@#UFz219BWlP^cdŗrE/ZiD*~~Rpqqu D6Y7O!R5npl(ȯMr{w5P2H(d*qU;Q^v`m}B-(w5D~}´%ߍsIGx\;QodGr 22@Y)༴PmG}nvIO`B.:_pȥt.bD*MQ=ؖȝ[ si:1qP%ޅDo@,))[b!baoIy.!=O!̓NOnXd )'v"Sf6#jd.D@f6N xI 3T":vZ_iZ(ecqO/)Sq9wE.sg 3%gÛ-8 }-(aMÌxm, fL߆c41k&ׅ `()R5&Vg1j[dʝ@#*GT-ѡ5XPAdn+o nTBm?nāk;WeޗC1Jp=_?>Cm@aM6_i 9b@B7IZo6@\EjZ) 4zr/=f楨[cw~r D[ b .yXbZ'^tJs"Y<'t8 0Fk<1 =zL-UE[Byeb2/S,bb |d Ý&I0Gz`u7_8y&L Z+X0{Yk'&x]0λ"Rg:S#ѫQp3cTRm@'7=L'0kg08 zmB-gh^<6,Œaa>'0E:޲Y)Ϗ*ރ-ӽ={4ɱђͫsxPȳ&ݳٱշU)r83Xy_w6 øGe_SY$ND肗H։W>WiIY6p@"1-΀+醬* ;]28^ѹW%*CPhnI툗m]&咸p[7}MrRܖpL3>CEWY,RI>MA_EMz]1z'_pˆ"Uxq}NEo@t+2J ZlNJt?i ҙ{3:Su~澍NX6>!@껜P)HBۈ㤿AEFiI#ۋPḄFdRFlf3b PX9>[%$2;(a/ڈɏʌٳyѴ/緡Dщ G($f®^! 9B*xŽ'qPe}iCO+ . ~ ,1Ϩ׼!Au.ԢK1kT b}% N ɼ^av[sL>`3[Qbf]UL\1}xvͦǜKպ`1Y~ P0OcK~MapWjͳQΖw[G[ssemm|`eW~u*#ϭ[θ"Nnb;T}dKޙkAߦr"8-hW5),J5ʍGFNIYՎ\MB˼;N嫚)G";0@0~xtwɎIm/\j 8Ffݗ˛7<mz8`-FM\΍ g^:|9$Z>'#ԚnmȇEDju\o~EqaNGv0:p0A͏BSwGV Ck%󥼅#:?:FA0 <0DHWS4-+uK;;he|5L+3MH]G* Yd! HzrUvSTa*`n_vG)E(GwlP"lN&r%t6wbUJ֓ZROIܦ|dB5ǀ b]U6SXr{7 Ex= RH'W hB$ B)8eWD*D1 ~ì2о7Xm: ԣEJ^AIF `|lvkEcNSl):rFKoLq3uT"`78gH[ʐNʾX-:aK{[bRί2?MHwqo0[ab 6al= |,AZ^͔6lf c7ncatR7~J%3XtkhM,W]b Tt S_8/H%1[ N+0ʀ0 }o\i 1W'^Ly-XNzE8uιyX S-,Ut!\K7U|A>M6V2^s2MT" 8qy2ї E]O!~,Z>4$-)m3]ޕ+* Y,RzYW1> endobj 210 0 obj [211 0 R] endobj 211 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 838 0 0 cm /ImagePart_2062 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 452.899 718.7 Tm 102 Tz 3 Tr /OPExtFont3 11.5 Tf (3.4 4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 102 Tz 3 Tr 1 0 0 1 150.5 675.75 Tm 90 Tz /OPExtFont3 11 Tf (assimilation varies significantly depending on the length of the assimilation ) Tj 1 0 0 1 150.25 652.95 Tm 88 Tz (window and difficulties arises with the extension of assimilation window due ) Tj 1 0 0 1 150.25 630.149 Tm 95 Tz (to the occurrence of multiple minima in the cost function. Applying the ) Tj 1 0 0 1 150.25 607.1 Tm 93 Tz (4DVAR algorithm, one faces the dilemma of either from the difficulties of ) Tj 1 0 0 1 150.25 583.85 Tm 94 Tz (locating the global minima with long assimilation window or from losing ) Tj 1 0 0 1 150.25 561.049 Tm 90 Tz (information of model dynamics and observations by using short window. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 150.25 533.2 Tm 89 Tz (The mismatch cost function in ISGD does not introduce such shortcomings. ) Tj 1 0 0 1 150.25 510.399 Tm 92 Tz (Although the cost function itself has more than one minima, each minima ) Tj 1 0 0 1 150.25 487.1 Tm 89 Tz (represents model trajectories where the mismatch cost function equals zero. ) Tj 1 0 0 1 150.25 463.85 Tm 91 Tz (Longer assimilation windows do not bring any trouble to the minimisation ) Tj 1 0 0 1 150.25 441.05 Tm 89 Tz (algorithm using GD. On the other hand, as longer assimilation window con-) Tj 1 0 0 1 150 418 Tm (tains more information of the model dynamics and observations, the results ) Tj 1 0 0 1 150 394.949 Tm 90 Tz (in Section 3.7 show that the states obtained by ISGD method stay closer to ) Tj 1 0 0 1 150.25 371.699 Tm 93 Tz (the true state when the window length increases. The minima of the cost ) Tj 1 0 0 1 150.25 348.649 Tm (function are only model trajectories. And by initialising the minimisation ) Tj 1 0 0 1 150.25 325.6 Tm 91 Tz (algorithm with the observations, a pseudo-orbit on the attracting manifold ) Tj 1 0 0 1 150 302.299 Tm 90 Tz (which close to the observations can be found. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 138.949 269.7 Tm 97 Tz ( The aim of 4DVAR is to locate a model trajectory through the available ) Tj 1 0 0 1 150 246.899 Tm 91 Tz (observations which minimises the distances between model states and ob-) Tj 1 0 0 1 149.75 223.85 Tm 92 Tz (servations, which is the second term of the cost function. The first term of ) Tj 1 0 0 1 150 200.549 Tm (the cost function, i.e. the background term, contains xb, the estimation of ) Tj 1 0 0 1 150 177.049 Tm 94 Tz (the state at the initial time of the assimilation window. In practice x) Tj 1 0 0 1 492.699 177.299 Tm 42 Tz (b ) Tj 1 0 0 1 495.6 177.299 Tm 93 Tz ( can ) Tj 1 0 0 1 149.75 154 Tm 94 Tz (be obtained from the previous assimilation window. By having the back-) Tj 1 0 0 1 150 131.2 Tm 90 Tz (ground term in the cost function, it not only makes the minimisation faster ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 314.149 52.5 Tm 75 Tz (35 ) Tj ET EMC endstream endobj 212 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 213 0 obj <> stream 0 ,,AAb6TqG6 +apb)yoY}H :\A%R&$ȋHTp R^vϕ[YzzZ#m?/VȄ8v(4.sOrDJD2P1(A;f&w2Jsn5>ӳХ'>ž&#h,5.1z1?Kǁ⫧8dͭPj"kܱ'/96Y$ɷ*oٌN3+/&=vⲳ]b6J*.F]&+OrNEd {j3}O8iHİ֓VBywE C0?Իt c~ݤ+L Ԙ #bE\Ԃ`+L<4k7`{Cjyʰ`@װ_zfr=no'thrj͏*Vr>x1wBR%jK@ ֒P$'mJj~,73209r#9ELQK? CXNp9N!>5`Se ':I٪"í*]6E-J1'AM5sֿvXO_j0j\n9] $L`&3!w,O4*S5J41- Naa 0ѷ)o{k>.k78oޒn@F$^GN;G~;5 ϙ9pQ1W*s0Grc<冡=/ 4$ =UWoN]yėjE) \0yWo8'|1 ;o{xC5&qRgݜkvu7afD?[pHi]]zt:˂ l*OyI 9E0TQ$n-NerC/ XVߝ.^Os!1ߝ,Z^"Ǒ)b[򯒪Tq-VE.jQ `zd䌩U oݓ5(_r#O90 bI6h/k8  t&3=-8BwA0JQC*T,`; f,"0Np#':JyBDW\~Ǥ9B`g^;H?FZ,|۰) _E"y KdAO:" XZ:{^xdZ0t*DU;(E -v-LmNJV>ņ)T޼<H\)#jAi^ؠ+޹HG.е3|[Q=A&z=ȧ:SӽpLEʑЄBN{߀Rh p;+ Ab]L@W"N:v3R,RDx]<#Jy(@HGk:dسJS)+6IzX;wq%#m ._O{@T^U|3r4[죻bxKݳt5L1}=̰5 @ye6خen1 P)Zoh9U+ waW᭾0&S <KKu@ \kLt\`V.\-;F]Ng3M{#g^"Zc_{u!*0T#{QKDYB%3jFK,+!lӾ`'BbI<=}LHIE{:?T(HRsX{JS׶)ҌbtQğG`9p[ S9N>"t n9Yk8\G꯳f<  A+d0DE@}[n@0|tfOWxck|5 qS vZxtBgin-˓fw-"DkЋXƸvJ~wRMخ@t 1pk s=#0!GVD)**z.+*͢]Bj'DN~j W)4`0xG!j_.,4T/WK0VdLuY }tzP!~ Ҥd@nHQ2eê;9?v9G-v}:2hz<U UQWb!5m[Q+_B:* o0Hf##r!BLDU|5 >kV Dh7Үm4Pn4,f%6d!VE \3`WZ#kT$tPWĭ}Š mD i=E"'mk'Y-J!*ŵjKIf힛PM3^ v @v͓4)*C"4䒚8osA9ǸQp]Qe v{<=,.>^TSn XZUda{>Q+sx5'1zcl17uHY fs(EZ##8e‹DX[S|2/@bR2m2h|y!:lں 80RrH@ GfzlXKi|̄f\2)u3pG*=FuHtFwI^nd#Exv)SC ?UCu4ry':NT*oEAqŻ، Jy!ypO:Z9 Ƶ׻]yDjM7SGIŸЌt+/q+Xfs0ySi_ts.Kkd Jי:9L})5~kwPYJqa!|žG-4Wr#3^.}3eP"y8LaГYpCYګ꣐/IzI4G`F^36%l{|3[f 5 ePA=tdkn-S d[Og>jpH(]}?  'ÃfM}bnm?ҋW| "# MD賮#g]oMmL,6\;uL;$Y #Bvu.L h `Rβ"vnvݿ]@!_2bzKi5>GJbm1pL}voa#wsQNM`"Onq tBm n=LWOv˦iϾf!HO.'L|G-RI|I!uʕm^=|_}C%OÂxs:c3!7vH_SV#).fSOXmu#<񀷣{+5+y9wba\ B.\2/G|:PK%VӹZ$%D3wK' ^$ѹLOm>fG.X _Ȅ}q8X:cq ]#PT^,CCR$!]T\yBGA{!Ū  /bf\.g nK o~[ !RzW yN 5!3#0̊<1w?]R@#d (M(+̈Sg3N,Eq!R7.-iȎdXd/;&V:DWnp)S1Nw|m~m.};e|oU) m2Q%mԳa7[$ 3nȑ-EМ ¼ѤBJ.x8𣆪r9GBdhH==B`:*fuJ0km\> 8-՝6tH̆;8u3<3W wyp,6& u">k o?ГZсZԦÅ,$ʊ[靵rS˂-tG𢅝bn9_ VnzB|;l$r6k}@6Hy d쥑|8~d>|w2GNEW\ky8 ,M?\3&$YcU&PD|(+yi/ָcavMbj縮}Q*&D:;ú\[['@\h(vuP͔a蓠,S.n#ʥ5e&`m @ލ|P.Rm Ȓm*Ûۮ++i ;»yV<ʑn.80Y>a0qMf&Yio%B 2}K.l^HO{DK1' -q&OEz(1HE[8?_ =WfnhaR`Pfv&\h䀨4 |>jscyVӺŨ*c]BPEj(J: 36. ԍglChLx;_4:)Bzd‰ࡪƽ^+^}H?iOd=".TZm=Ԥ",/~VtV 柑xn0-I05,Y׭]zӚmOeo3KBlRY؝ brfG=!K*[U᫃\o+joKӲV6-w3fX JGLްc"CkU_Mz8q9ꝺWm+ yP^Sex^ eM+IJ7VXJ%J}'y K\ȟ` J2uf@zn[7Q#@Y e:ETH,(]HT)D.6ik%Ҭ -[ ; NVm&v %S*ug yVqߌ/FЬL/|rrn] $aVJ!O*cA۳ e,~'u WpEC"M|&Z0)'hYW1:s|Qհ 0dvt4[AO1U}cP^MWJzi}W!Tu!rfպJ7نw%q8@Y.͗DZi3$XVabڞ=Yemva͞gbn-L4EGJ Vhyc` ?/Kv8%@ŋFKq26>w)s H\ʕt;gv)+R% 9B:h\#ai`Ȭ%\s%*_{V!ڿ?! ET*O;Z-"Gw\Zp)?Wa=),ǻiUn]y[4kNS:+4*Q49;s7E|1;.ܒh1Ȣ;+AN=KGRL˦ XFsOǂϟ>w텨\0UztݶhqV5Ƙ9 =;{-Gaʹ)" lt"mK瑾g?*PQS,H?2Ъlsb+`8C ؑwwwҷW袁ρPB RO؅T)'8u_gW5w_;d%%%c/,HH;ltaʃGb[4>N ˛48 endstream endobj 214 0 obj <> endobj 215 0 obj [216 0 R] endobj 216 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 838 0 0 cm /ImagePart_2063 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 359.05 718.5 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 150.5 675.299 Tm 92 Tz (but most importantly tries to help the minimisation algorithm avoid being ) Tj 1 0 0 1 150.699 652.5 Tm 95 Tz (trapped from the local minima. In the presence of multiple minima, the ) Tj 1 0 0 1 150.5 629.45 Tm 92 Tz (result of the minimisation will depend on the starting point of the minimi-) Tj 1 0 0 1 150.5 606.399 Tm 94 Tz (sation \(71\). When the window length is very long, the second term of the ) Tj 1 0 0 1 150.699 583.35 Tm 91 Tz (cost function dominates the cost function. But when- the window length is ) Tj 1 0 0 1 150.699 560.299 Tm 90 Tz (short, the background term forces the final estimate to stay close to the ini-) Tj 1 0 0 1 150.5 537.5 Tm (tial estimate, which means the quality of the assimilation depends critically ) Tj 1 0 0 1 150.699 514.25 Tm 94 Tz (on the initial estimate. While the ISGD method does not have to use any ) Tj 1 0 0 1 150.699 491.449 Tm 92 Tz (other initial estimates except the observation itself as the minimisation is ) Tj 1 0 0 1 150.699 468.399 Tm 91 Tz (initialised with the entire window of observations. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 139.449 434.8 Tm 92 Tz (In the sense of forming the ensemble, we can also treat the model trajectory ) Tj 1 0 0 1 122.15 411.75 Tm 90 Tz (produced by 4DVAR as a reference trajectory and form the ensemble in the same ) Tj 1 0 0 1 122.15 388.699 Tm 92 Tz (way as ISIS method. Obviously the quality of the ensemble depends strongly on ) Tj 1 0 0 1 122.4 365.449 Tm 93 Tz (the quality of the reference trajectory. In section 3.7.1, we compare the quality ) Tj 1 0 0 1 122.65 342.399 Tm 94 Tz (of the model trajectory produced by 4DVAR and the one generated by ISGD in ) Tj 1 0 0 1 122.15 319.35 Tm (both low dimensional and higher dimensional case. The results show that the ) Tj 1 0 0 1 122.4 296.299 Tm 92 Tz (reference trajectory produced by ISGD is more consistent with the observations ) Tj 1 0 0 1 122.65 273.299 Tm (and closer to the true system trajectory than the 4DVAR results. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 122.9 220.95 Tm 129 Tz /OPExtFont2 16.5 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 16.5 Tf 129 Tz 3 Tr 1 0 0 1 122.4 186.399 Tm 90 Tz /OPExtFont3 11 Tf (Second well established class of algorithms has been defined for state estimation ) Tj 1 0 0 1 122.15 163.35 Tm 95 Tz (are sequential algorithms. In sequential algorithms, one integrates the model ) Tj 1 0 0 1 122.15 140.299 Tm 97 Tz (forward until the time that observations are available, the state at that time ) Tj 1 0 0 1 122.4 117.049 Tm 92 Tz (estimated by the model is usually called the first-guess, which is then corrected ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 314.899 51.75 Tm 77 Tz (36 ) Tj ET EMC endstream endobj 217 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 218 0 obj <> stream 0 ,,y}}eب[cͦ&xF.˻Λ[~ ^=y5r5;Uxg=u]J2]lTUpAQ_U_9[64!phLr9_ESb1Oy+=WZꌤ&EHĵĠڜ#i^7˷Z# ͠ki(F `3R'N:͇sliEQ3!}'-%1=-GEʿ!;yUqkܲk췡ǻ+谨ǹ!^/"Ϝ#-P͆,쳾3۷7"O)73U/>(D(fѾ`GK\8FNêՇ*|B&RmqyBF'Z CŹi)K=CIY4XUH ޜQ q{6~R;ȍQ# pT֬ӝKw wOq^ mD P˓jKGifvPq8t*bZC+Y,+gg(`?;,;6g<=bHIĉdZ9i"MykS腇>R ?n;Bc`T`BM[y8YV&išjaB\wiU^ ϖqʶ$~1d ˴mlt#Ss7?H<0)wcG-zLX$52$"0S1Ew)¬rST|*+\#~=FqpjZ"kXorStO0?" `H>AgPfT-GBPkE5 {0orP(Yi,9z&E:t/W} r'\NJ [A*%lYW&!zhrkwWXpʧA QZ0jSD:Nߠy4~TJ$KJhgvU[gma}Z'iw.`'/Ҟ%G4cCDn [HԐ \x/Dߺ㸇zC}xiI0BN:+Mw&:' "+;#I ZzUոGaf0L3/l>ľ( JlsIL6Ʊvp2u9eK21{?ezZ B_&OP":6GlFL66v0V1n'Knj @S vDv◢E%Z$`hZp (AٷiXf*%u^bҬhj4{_P[kbj*{?aOgfȉ]QL+)VF&DՅk KP2ʇR#~5Php\lDE TMئr6ٟ~Y-!lHV5^Ֆ k*:DZl||BW5FZ;`u wLMZs]/Qr> 辳<[H5"/=<1 &<ٴ}h{#otM.krF Z'W ssSf?],.;U|؝LUvMuWPyej8l aJ4a3"E&cSʭC:ebŜ-[{7 4/^5^ѵɯz*- ?{V=^JES<.3#4Gw5c"?s~%._4{H2 X\C3 ڻFYqC+/-i`W1?+yX&OHWmqHCg`=4o'E. H20Zzt*>בa\ XɡR)}=䘎(ϒ~V-戄*LŲ¢>^ц3܌^J8-/ JST&iIx@?gzNӾArv?PyBhi<'fpHglǽ85"x쒫ۍ(%pF,bBKP9Ռ@Qʏ [kfbvp;.B[iiPlNM tmiN _X7$E~h\K;#\^\*tx,pp7V* pfPYbj4 ksd93kqG 鲓qCƾMv^B≿ɔ +*s!Geu-iVzR̸}ȲIik n]f[]۠_r۹GL@ h$alNg_i^9 M1ibnd,{u]HYȘM&T4!rF}h~c=VkcÈ" '߄ϓ0#ÿcn^SCpp λzKҟ`*dp@ʜ?fBę^qC*/ y_M Zwܛx;qDoWBHjp6B؊mYoYe~ ̏3XC4tLykV aa(X}ٺ2a&`+ºur.|!bJ$#un9!Jڴr?r;W0||"4bfaH=iL( 3aJ}Md"fv"HQ+|D|\,nbamg7_n5{M)q]Jzm-ұGhuLAخiE+KłY}DĆ'?SLxC3r>Ҵeߴ6hЖ. d}Ǵ3aƥ?g!k!_NJ|J5/QV8`,'fG6I Ob1;vjBR &iI%==ms Кx5Wj ԛO8Y:\g!zdU@,>PS|*WU)::82YHc ̪#2z1@ IOΖ>ܔT}R؜aX;gxfkCVL2)It%وkr21տPK4mxnl L59(iӇ.ڬD_f |;qt9l pު=0a0T@,I(c9Z>.8Znd+vfZmU8j_mT9? dݻD*JmwpWJq~~ fx! מb`8PgpS3K]SĒ %ɺƯ6ީ[^{ Wd>JϽy5bt0sݹCҰ;45w{O?~+lT%?N͆ua+^ş@1 X9^@cr;IR8"q>x;6NZ ?I #ȳ=D?mV X/biĊ9Pů <:/,aYu&DbՉq#_1 8SWRg{Nܑ>x7]9S禷BZV pHF&t7W k}p&$LJSݥu+w=|z8zGU؛P B9;ZsSٟ$t".*2t,'n_5)e"F"4sx 2ǹ\z{ `fxF%@4Jי]U+ %]ܘf!Ov6s@l5IV(}#Svr6P&bUo3q FkRm͋P6(e|D>_5K<;SREF(8[ʠÀXHZ%؟f"TTAWt3$Q{yssZ (—|FS aS bJMw4z^䮕_Jʈ#3>q٘?2ٱW%l.'<񀆖ՠM'QE y5wuGCPWOL[ Q\c%Sor sۉ 0iݳ.&)EE*{x|m|S-7B\8p?SA b 9I`ݤey[Lu ih0#&j^Uԯ}r[N`EF}G`Vrn!}fk'iNc"0qŃUEo3ݕ4!xPobXz+ *#"f᪎<~r4ķ j82Sz s8ҧY\TSK$6ωoDShfE{Ths=9Z-A|ãLp+!SN.em6 nf7 pY!PYsF5-<:b j)YQ2 v/!(]D.xs]< h6X*SOXnEo{}9t#Wrm &I9[^0,S!ST=1 cAmvyu%{c6_f;Ǯ|0yZPn{,[R!0oa+heE=+|n aaRvgR-aeels\AJnZP]U1*]1}KjhH(>2d)K;y,;jT V.vf!a`tq1fY!Qk/!fJ$w;wn^XȷYl(XK' ~c[/ii9atCHcw@3u=SDpwڍ +2qmnӰ4z)a5`(բ +Gnn'nNe+(*~?"2LREӒ]<@av1CZ0O9䋯M{+}}S?bdI2|lO ׃Ю>1ŽϓǴ8]K$Kǁ+MIɯjyY"Ǵ012ٷ+p ˧0Qn,5'1r1pیꎹ&%P,AP}2Q=>)M0P, kKD+R]gIu{ȼNY?QֹېrT豴oʥbwF72bڝmM V oBa:_8!4xͼt!^+˪(CXEF^iK*M;r=([JER2,/EH#ĸ_<}A[֋xң|?v.^+W_ʁ'('ePB%Y٨7ÈL 5!I^]I 3ӨG튚t ڒ:1D,wݚ#ߛ*"l'nOi*:9>ubd LvAG?Pl)UiLX3"tiEՂ,dd-J^qmJ!)xpD$\DRO]*tpSAeR{ڋ7`g6J$lRڀ 8 HNMWM=/jflwuFũB3m;Ō-LDR gW1U$K@vzꕄ,, ʠG##\a4':{=ܸ+n`u} Yn/ɗzp&Llq`dJs:8BԏnZPyuI mp:0$dgL*@/hTpYKUWac4&? endstream endobj 219 0 obj <> endobj 220 0 obj [221 0 R] endobj 221 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 837 0 0 cm /ImagePart_2064 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 360.949 718.45 Tm 120 Tz 3 Tr /OPExtFont5 12 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 120 Tz 3 Tr 1 0 0 1 124.299 675.25 Tm 113 Tz /OPExtFont2 11.5 Tf (with the new observations. The sequential algorithm, used in this chapter to ) Tj 1 0 0 1 124.299 652.2 Tm 105 Tz (compare with our methods, is based on the forms of Kalman filter \(54\). Although ) Tj 1 0 0 1 124.099 629.149 Tm 114 Tz (we only provide the comparison between ISIS method and a state of the art ) Tj 1 0 0 1 124.299 606.35 Tm 106 Tz (ensemble Kalman filter scheme \(1; 2\) later in the chapter, we first provide a brief ) Tj 1 0 0 1 124.299 583.299 Tm 110 Tz (overview of other versions of Kalman Filter methods including Kalman filter, ) Tj 1 0 0 1 124.299 560.299 Tm 104 Tz (Extended Kalman filter as background information on the ensemble Kalman filter ) Tj 1 0 0 1 124.299 537.25 Tm 105 Tz (being discussed later. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 105 Tz 3 Tr 1 0 0 1 124.549 492.6 Tm 135 Tz /OPExtFont2 13.5 Tf (3.5.1 Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13.5 Tf 135 Tz 3 Tr 1 0 0 1 124.099 462.1 Tm 108 Tz /OPExtFont2 11.5 Tf (The Kalman filter ) Tj 1 0 0 1 218.65 462.1 Tm 98 Tz /OPExtFont5 12 Tf (\(54\) ) Tj 1 0 0 1 242.4 462.1 Tm 110 Tz /OPExtFont2 11.5 Tf (is a commonly used method of state estimation \(86\). It ) Tj 1 0 0 1 124.099 439.1 Tm (provides a sequential method to estimate the state of a system, with the aim of ) Tj 1 0 0 1 123.849 415.8 Tm 104 Tz (minimising the mean of the squared error of one step forecast. It gives the optimal ) Tj 1 0 0 1 124.099 392.75 Tm 107 Tz (estimate when the system dynamics are linear and the model is perfect \(86\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 107 Tz 3 Tr 1 0 0 1 140.9 369.699 Tm 112 Tz (The Kalman filter addresses the general problem of trying to estimate the ) Tj 1 0 0 1 123.599 346.449 Tm 109 Tz (state of the system ) Tj 1 0 0 1 221.3 346.449 Tm 121 Tz /OPExtFont2 10 Tf (xt E ) Tj 1 0 0 1 245.3 346.699 Tm 106 Tz /OPExtFont2 11.5 Tf (Rin, where the dynamics of the system is ) Tj 1 0 0 1 451.449 346.699 Tm 104 Tz /OPExtFont8 12.5 Tf (F: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 12.5 Tf 104 Tz 3 Tr 1 0 0 1 280.3 281.149 Tm 117 Tz /OPExtFont3 10 Tf (xt = ) Tj 1 0 0 1 306 280.45 Tm 75 Tz /OPExtFont5 16 Tf (fr) Tj 1 0 0 1 315.35 280.2 Tm 96 Tz /OPExtFont3 10 Tf (\() Tj 1 0 0 1 318.949 279.95 Tm 60 Tz /OPExtFont5 16 Tf (X) Tj 1 0 0 1 325.899 279.7 Tm 100 Tz /OPExtFont3 10 Tf (t-1\) ) Tj 1 0 0 1 342.949 290.399 Tm 2000 Tz (\t) Tj 1 0 0 1 491.75 281.399 Tm 95 Tz /OPExtFont2 11.5 Tf (\(3.10\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 140.9 238.899 Tm 109 Tz ( Given a linear model ) Tj 1 0 0 1 259.199 238.7 Tm 111 Tz /OPExtFont8 12 Tf (F: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 12 Tf 111 Tz 3 Tr 1 0 0 1 294.25 168.6 Tm 120 Tz (F\(x) Tj 1 0 0 1 313.899 168.35 Tm 88 Tz (t) Tj 1 0 0 1 318 167.149 Tm 104 Tz (\) = Axt, ) Tj 1 0 0 1 357.85 166.7 Tm 2000 Tz (\t) Tj 1 0 0 1 491.75 168.85 Tm 100 Tz /OPExtFont5 12 Tf (\(3.11\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 3 Tr 1 0 0 1 151.699 126.35 Tm 109 Tz /OPExtFont2 11.5 Tf (where the model ) Tj 1 0 0 1 240.949 126.35 Tm 118 Tz /OPExtFont8 12 Tf (F ) Tj 1 0 0 1 254.65 126.35 Tm 112 Tz /OPExtFont2 11.5 Tf (need not be a perfect representation of the system's ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 112 Tz 3 Tr 1 0 0 1 316.1 51.5 Tm 95 Tz (37 ) Tj ET EMC endstream endobj 222 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 223 0 obj <> stream 0 ,, b7 \Hmr o™Ӹ ;D`̠d}9Uק $*QVIs)j<0oMUkMi(.5EMmLZ ȕPfuT KT%SG˫!QQ!؄M9h FW]Yc-_O }DY 9 wxp@N[4?{x9(xX}'ubV%U&au3tQEkԯq[YAZ8|?` | naLU4p?+rՅö3


X|5r[dle]PgΆy1嗿@5} z=o0[zռm6'l9NܭqCn^: p ţT( VH vMSIAL\ ~&;LuT,bͦr#3aɛZ`>:>MQA H"`]&CAx|7a&ipF|[Og[5`o ԵY¥q(t#gI@_f aȴI,j΋#.=Jm1i.2]> [a/#Z xDHh>˒ˋgx"E:ڭ])?-?+,i +X# ﳭ2dh\$8?&ڲ[՗qUt? "?QIu{b} ELZEpї3ұ` ;HGt 2*m p&;(x^m4"?8Wy+atY5REL}>v'NγU3 +_]!ė>Y|)r>ML('473,Yo ^l'ާp#}_ћ:|8S[jń.xqmФqYC,[#!@$OtUC0.oy?+(q0GR3ѭ>[9};F \Qj8ϊ8AV!щ$ʖ/L[!:YS/֏52"}4< 0=R>}3!# H`PpA" [c<u.<1Tja[f$a1,npEe\r0T5,;$"qhw˪ Ki= %܆7䖋ߔ Q-)00?:l rh%ٸC}eYzYXXdu~ϵPX"~dF6.Wq&1=Wy(N-| 9#hk5z_H5Y gm&&V99XY1 >pʴܷ9;-DžXܚ"cbsҲ39~:SÅtYId:'#YR 7YàiY{HbøѻĊ^AN=@a%O; X#(.'N+i7h^Hn+7n}=I]STkt>bi/ OփRTB ZCB +\ˢ#E=TA_Gc҃6ߣ6l20C+.}K#IدYĚsXb_nKMYԖկ~YpLqGC"@ߑ[\Żk =X~ ҶqJ6xחNBݑ*QwD>T}8IRjxc@vX0a5`O dS s{fCrjţXBg+EcJܺc,2v -V6"b"rLSniURe jpA`7ZmfIi$t}:KG%R sϥJ1HOBbYG CzuYJM!w#˲Mpʳច+ ?\'xZ1؜r`5*Э~n]&<#R%kRP`0[u3\McoYF7!e).Iٓ,R57o[jy/ ”\ ?35ojtiFF]9*1E?ey\(hOH۳U2!?=S6ED֦n5wLQiℂFc س3a w.M# ?VL?M3.ap#~_>92t[/{%q7 Wp0$lܔ2zo=eh P֏kB&)G56j\u!q*_zɃޔƓ5~IJfI7Kw+iJJ󠆎JwހI%>`STG\۱ tY<2V~ `V{0{iYm_mp. K:MmGO^S< [D}31Cќ QdCgG̀|Q,7]tv#[o=MN{8om,ђq4$-n?ʆB:\; 9Lj]ABct7雉*ܪA5@]4n*C6eYh_`cE%\rjM)MB~bt;Vq`='Bu(꿯i#xXˌ!R/>}ɔ)mܛ}ȽX%#HkEA8K{ջe_4h36Kj}3~sRN`% >!7|q$1Li8/G=O +aihpj_J&dO1/}1vq¤Ok8Xv"/?`jCw~vn 0ljZ.z6C€m<-s'q@("!?zp%-OHr({z2FL5Vy4d 7bVIiN>V3\(P0Nniif5EiXp.l7Lb63Hj {ZITȀ]ţm f 22nZ"z (&d$LՄZaPP޵x6fP,nEE'tkcITƂ(?sTrQ'TeFneWb @FL9*&+I} ~rakF*/P_V,-ƞph XBf+kF4۵|~+!V)뎁Λy^q4Y] 0.b_RZz.9a۲҂>/Ft YՃ,]2#WCֽGc?nTQr,Knh! LRe~v 9!8bw+%ȬTBɧ[$ޏڴsщ h\uf@SDۃmR#l+ z5O 7v;Ҹ^Gѭf-xV:=l[yWUKC(>F`ֶ=yMt-Ȕ%_\SxBfiGXH5±X0aPL ӆ9/L_ѡ3Z!06#L.; TްX )ĕ<*wN `Y'AĊAQ;=-q%[cvcYGiT1L;ݯqEY!D9j\Āk|E܃.-p@Z/}ܮ8Lɉ3x+2|m|Š0I43C_S'cH_ ZF I@aAhE-1G  & ~'Ã|wedhw5Z&xDoG὎ \gXa4h4'O9p#zh#q/ߟ“Yo,|u~/aƂ b\A~AoFTܖ&TWB-8TH~]QW(J #FPE|3`K ^(~l\^ZJʼ߂$R@hOt9WdrD&O!JGb6Яi]d$3o Skl56' g4] Qse+P{>r:Q8ơ3ڏm RY̼F]{<J +OEI|{G.˕&uR a?BtQ#a2_ZJk!6{3pu rpPj@Y 1bt6 bsbg%ܬ 7^QypL2)P=Zv8 FNV2&k߾kV) ¹tpO`[0~ P; I˃ty9Ty/e_mi4rXFpCEe>G$aؖvn._^?PRm"ɺaI+[U5-89md%2GU?Ǡ~ mC3txaG^1)ZKu'h^k zڳ@}t) F;#K4>eb=Vg2Ĩ `pB񮢈J;HA׃%S5d,Sv RT|ʾܟ^axODgiݫQF) 'A} iWYף׭@j{Mc[9>}Rif7ګ-o ihp>QȰ7 mg4T uR )tܯ7M|D vLpic|czƨ*% rwZv)%cIa]坓Lr:"lJd7ώD-RW?A2(U_p}ع![ =0Ɉ-<@>O;x;_)_pz6WX6ǩcҋes0F6G=̰qzASbwuF2^@*cZp*k}k՜%jE7]&\ q@^[]VwVU-=C FɐQpY.8B!9xuq( dg/95]ՒJFola^eÏjHv[O fO/7pLhƥճ=FU$_-j 1~)\0ZzNܷWQBXL!U -+b,P..%0%~Þf3B+ |}ڡ##˨y }U/)gdݡPhGwRɦp!uֲK&mӴH3rcq>ޟMEF-m| vq}VmCawo endstream endobj 224 0 obj <> endobj 225 0 obj [226 0 R] endobj 226 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 838 0 0 cm /ImagePart_2065 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 359.05 718.7 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 150.949 675.5 Tm 106 Tz /OPExtFont2 11.5 Tf (dynamics F. It is assumed that model space and system space are identical. ) Tj 1 0 0 1 150.699 652.7 Tm 107 Tz (Any discrepancy between the model and the system can be written as: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 107 Tz 3 Tr 1 0 0 1 273.35 582.649 Tm 99 Tz /OPExtFont3 13.5 Tf (P\(x) Tj 1 0 0 1 293.3 582.649 Tm 66 Tz /OPExtFont5 13.5 Tf (t) Tj 1 0 0 1 297.1 582.149 Tm 92 Tz /OPExtFont3 13.5 Tf (\) = ) Tj 1 0 0 1 316.55 582.899 Tm 111 Tz /OPExtFont3 11.5 Tf (F\() Tj 1 0 0 1 329.3 583.1 Tm 127 Tz /OPExtFont5 11.5 Tf (x) Tj 1 0 0 1 336.25 583.1 Tm 55 Tz /OPExtFont3 11.5 Tf (t) Tj 1 0 0 1 340.1 581.45 Tm 104 Tz (\) + ) Tj 1 0 0 1 358.1 581.45 Tm 91 Tz /OPExtFont5 11.5 Tf (wr) Tj 1 0 0 1 369.35 581.2 Tm 60 Tz /OPExtFont3 11.5 Tf (t ) Tj 1 0 0 1 372 581.2 Tm 2000 Tz (\t) Tj 1 0 0 1 489.85 582.899 Tm 95 Tz /OPExtFont2 11.5 Tf (\(3.12\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 150.5 540.899 Tm 101 Tz (where ) Tj 1 0 0 1 185.3 540.899 Tm 99 Tz /OPExtFont4 6.5 Tf (7XI ) Tj 1 0 0 1 202.55 540.899 Tm 116 Tz /OPExtFont2 11.5 Tf (is understood to reflect the model error. When defining the ) Tj 1 0 0 1 150.699 517.85 Tm 108 Tz (Kalman Filter it is also assumed that Tx; is ) Tj 1 0 0 1 369.35 517.85 Tm 99 Tz /OPExtFont3 11 Tf (IID ) Tj 1 0 0 1 390.5 517.85 Tm 108 Tz /OPExtFont2 11.5 Tf (normally distributed with ) Tj 1 0 0 1 150.5 494.8 Tm 106 Tz (zero mean and variance ) Tj 1 0 0 1 270.949 498.899 Tm 93 Tz /OPExtFont8 12 Tf (Q ) Tj 1 0 0 1 279.6 498.899 Tm 129 Tz /OPExtFont2 7.5 Tf (err ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 7.5 Tf 129 Tz 3 Tr 1 0 0 1 139.449 461.899 Tm 107 Tz /OPExtFont2 11.5 Tf ( given observations ) Tj 1 0 0 1 244.3 462.149 Tm 89 Tz /OPExtFont3 10.5 Tf (s E ) Tj 1 0 0 1 263.3 462.149 Tm 100 Tz /OPExtFont8 12 Tf (Rm) Tj 1 0 0 1 279.1 468.899 Tm 46 Tz /OPExtFont4 12 Tf (obs ) Tj 1 0 0 1 293.75 462.149 Tm 101 Tz /OPExtFont2 11.5 Tf (we have ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 101 Tz 3 Tr 1 0 0 1 288.5 392.1 Tm 116 Tz /OPExtFont3 9 Tf (St = h\(xt\) + Et ) Tj 1 0 0 1 359.75 390.399 Tm 2000 Tz (\t) Tj 1 0 0 1 489.85 392.1 Tm 106 Tz (\(3.13\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9 Tf 106 Tz 3 Tr 1 0 0 1 150.25 349.85 Tm 103 Tz /OPExtFont2 11.5 Tf (where c) Tj 1 0 0 1 187.699 349.85 Tm 77 Tz /OPExtFont5 11.5 Tf (t ) Tj 1 0 0 1 190.3 349.85 Tm 106 Tz /OPExtFont2 11.5 Tf ( is the observational noise, assumed to be ) Tj 1 0 0 1 397.199 350.1 Tm 99 Tz /OPExtFont3 11 Tf (IID ) Tj 1 0 0 1 417.35 350.1 Tm 106 Tz /OPExtFont2 11.5 Tf (normally distributed ) Tj 1 0 0 1 150.25 326.8 Tm 105 Tz (with zero mean and variance ) Tj 1 0 0 1 293.5 326.8 Tm 83 Tz /OPExtFont3 12 Tf (F. ) Tj 1 0 0 1 309.1 326.8 Tm 106 Tz /OPExtFont2 11.5 Tf (The function ) Tj 1 0 0 1 375.85 326.8 Tm 91 Tz /OPExtFont6 12 Tf (h ) Tj 1 0 0 1 385.199 327.05 Tm 105 Tz /OPExtFont2 11.5 Tf (is the observation function, ) Tj 1 0 0 1 150.25 303.75 Tm 118 Tz (here assumed to be linear: h\(x) Tj 1 0 0 1 313.449 303.75 Tm 79 Tz /OPExtFont5 11.5 Tf (t) Tj 1 0 0 1 317.75 303.75 Tm 139 Tz /OPExtFont2 11.5 Tf (\) = Hx) Tj 1 0 0 1 360 303.75 Tm 79 Tz /OPExtFont5 11.5 Tf (t) Tj 1 0 0 1 364.3 303.75 Tm 135 Tz /OPExtFont2 11.5 Tf (. The ) Tj 1 0 0 1 402.5 303.75 Tm 87 Tz /OPExtFont8 12 Tf (in,) Tj 1 0 0 1 416.399 303.75 Tm 44 Tz /OPExtFont4 12 Tf (b5 ) Tj 1 0 0 1 422.899 303.75 Tm 122 Tz /OPExtFont2 11.5 Tf ( x m matrix ) Tj 1 0 0 1 494.899 303.75 Tm 110 Tz /OPExtFont6 12 Tf (H ) Tj 1 0 0 1 510.5 303.75 Tm 87 Tz /OPExtFont2 11.5 Tf (is ) Tj 1 0 0 1 150.25 280.5 Tm 112 Tz (a projection operator that gives the transformation from model space to ) Tj 1 0 0 1 150.25 257.45 Tm 103 Tz (observation space. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 103 Tz 3 Tr 1 0 0 1 138.5 224.299 Tm 98 Tz (We define xb ) Tj 1 0 0 1 204.5 224.549 Tm 79 Tz /OPExtFont3 10.5 Tf (E ) Tj 1 0 0 1 210.5 224.549 Tm 694 Tz (\t) Tj 1 0 0 1 233.75 224.549 Tm 107 Tz /OPExtFont2 11.5 Tf (to be the background or prior estimate of the system state ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 107 Tz 3 Tr 1 0 0 1 122.15 201.299 Tm 113 Tz (at time t, and ) Tj 1 0 0 1 194.4 201.5 Tm 114 Tz /OPExtFont3 15.5 Tf (4 ) Tj 1 0 0 1 210.25 201.5 Tm 99 Tz /OPExtFont3 10.5 Tf (E R) Tj 1 0 0 1 228.949 201.5 Tm 70 Tz (m ) Tj 1 0 0 1 235.9 201.5 Tm 112 Tz /OPExtFont2 11.5 Tf ( to be the analysis or a ) Tj 1 0 0 1 355.199 201.5 Tm 120 Tz /OPExtFont8 13 Tf (posteriori ) Tj 1 0 0 1 407.05 201.5 Tm 108 Tz /OPExtFont2 11.5 Tf (estimate of the system ) Tj 1 0 0 1 121.7 178.25 Tm 115 Tz (state x) Tj 1 0 0 1 156 178.25 Tm 86 Tz /OPExtFont5 11.5 Tf (t) Tj 1 0 0 1 160.3 178.25 Tm 109 Tz /OPExtFont2 11.5 Tf (. The estimation error is then defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 109 Tz 3 Tr 1 0 0 1 314.399 52 Tm 91 Tz (38 ) Tj ET EMC endstream endobj 227 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 228 0 obj <> stream 0 ,,;;#yrl!zDћ/ ,b*‘Υk(](XĤYT5;tlo>S1SDQ`NiߡGFH$#$0elN6{L&B=+ej|]QCpzs(ItSjn-,T-ֺɱ &zÂUY!(Ro3}R+h^ k4^lζRLZa67Y%Si9޴zw[= ut$aM\%zh.Bʪ{ރ{5v(4}/uh%C::^G%o ~wT}~(fwD uu\hy`vR&!@Ve뺳pJ4PNNh>2X%ۘw;Y/1;e* ~N/t3nlq:MvqK!zCCqnxtXlOfdߥ N𾍠 /.>9AlT.CAzX.ُlaT# "Ѽ׾Η9( [ cU)&Hedpʗr| MBt6Q -toK %*|t?WG {I+wZ>W$u*@X(w?a܇u֬g9-\0EJm'a>{{eȇ:8!lׇ2rr4\Awq`ާcDdB6\2MK/v/2D(͛Do )uFpern7,#$/{N< Ql"'XيFa)R;ڰ]a#Ed2M^K)͹HWȜӿp$ol VuDu%MJz}:\T1lI[\c^=dZT-Y';ҳWGyc,!QbYrK~VB9@Lj  տZ-s3(sz"F9At\xQ*R]jj`@)D]9~L؝ ڈ 8aGy+BfVҾLy .g}Akn[0x3ZQm?6t$!'5 \V҈hLlLz$txj3r@mj?2.$ۍC|< ÎK0i'902: p`ĸŽ]3=0CqxןmS,cZ?dա@|cq #$(gCXZGG~#b3RW@xzNst55!l$vN8QO &ǺVirg#^v(P :ajI5 qH65BzkE2U+<^fڻ:9 S;w%[S 0˻,49e^!VZD3n@kʲ/3b,fgAjz3#IlaД%xqS-|[m =4TRe.Bs|*$#:dQj *KݖUQ0bV< LyJtG{v;DI< ѾmK}:\8WVBqWݭ2-dzmO򻎜M!9aw[x ncUfqg<8]:KS S߽ۈ3pH 52vwʜn a6vڧ`_:ɘt C_}em¼y~-0\2etؒ#S7tFR#3V$=Tti#\X6\O1~-8\AY:019PR^%aϧSA՗[[̾ k ߋDžhKB=nU 3pJڢ=O]aD-H @ kl)' CF񶁀[`: ~9pr7~~%hyRmӚ,$8ם[/QЌw 3H-S +jfAe8&$DٛeTJkKɠӟC9YZ]ҬobFuDE*=[LSe7oٷmoFսZ6ctL[Gfo^ZƽPt q`hf[ Z$*fU7~zeV @|?kP9:ɍL'r}ҋX:\FUT\iU|66[ Yvס|̌ɦsn,LC|ͅ'YR\m_d @ԲN}414; _.> K^9:zD0->*QM$^'`%jiP әAopAgr\U+RNWϳy=7Xˡ9R09~0g)@taj+M0.YcF㒥6D>{mȇoFLCnpIE^ɞY+ȿ \jC_FDFp+*vso/|0n#b^eӝS{0SLN+_b[ Dubiաh'Dv3(23]7Z+ , GZmCBȑ 6yH+kH?ip= zC"OC(Wߔ'lfFKV]ڹ?g4o]+ Y>mZ·bZQsq H=JB 0<9Z^+*!r9=Fnd|M;͉(>u@U ΜPWKRtķn,o'UF k2VuUFpè UI(w[))v{d[`uElQ-֕3,(]=R;Н_j1ǻy+R65 D\AӜ1We R3K:JYMV7EiԂ}rB@'o > .>gk:=,ȡC!-մ6wot8 [+~")w$DAd SVɁkD&ɉБTYz]:p~{dow˂b¿|6Kiĸa* kQ[.o?a@PZ=b?OI)2( !q#=Mg6?OOJ!]mΪEQ9 ^Y.T-W0 Xn3# Ś[C[}Dnav%W-qZǨEXU_\[ =9ۦ*g ެsmPA?$ɓyӾzHVE@ihLq;U-F~>7lA}\rbxqݓx}H[揳&CptǏ] fp#̅u VǢNjW‘+3O_>P|ƿH,mJ" S|*lK@ 6uzM]itu]Zd.6e΀6 Pb6% T >Y"pw($?>22) pe7ۢ ru@V=) WL(mEI{zodQ&_`aBk6gL LE,N7{<h<@^.:ӣGb5AGqUɧH|$9=6@_r'15'o^` ,T϶$wObBٯrme*^YR9<;Ռ$O`PN)Ws?ή73Tqz?LLma5#DyWyx!{|^xs:" Ĭ4WA9⌖DXD&S|3TT#!=fOcx}jL*IG O^ot3 b4g0;xl"t9M1O dn)<6 p@LzcĩZŦ_s> E3>(^'r{٪=xsԵd֓;BuNlE-H*L~HLDK=ͤ[P/Qjqku*̳a2[(0?v@w0Xv;2pu9%B~i m)VeIqrúOurp辀KNMJށzd1e_|$#8F(Eچt׺2N]hHv,,#C qKkU-hN+r̷y_}\oP[5~w^-k-jθ%2f)9qi0߅i2:oÄd-Oi^E=9NPgp( ܰ8Q xwQ_y*߱6/R_Pȓ"aI]KҔ̏4T2*K29wެE%5)YE0ƥϖif _C02]jE,VdKC~~7{MpHORcerX`| Vq4/$ŅU m8s8SFW6a[@wә2}cvq(jSk [?t"ȆV1!j|EDZ ,~8:逽S˵}T{#ĥ?8 Rlox6+sxབྷgp}+հ _٘be/Edcmڟ9} < Q@6}sJ-Sm^oU%kbmۖ?= n'8_ԃ><.<?-${G@Bw`mOvf`G\b3gF QxA}&u~UyNbL:*B#8q@^ޛ>O!t >Ff%ԧ"ڙ>.]o _Y`i@ze^W^y}'P؄?R7*'AmHTê&;ٓ1j1f7vl&gc2:>#j*v2ڱ.*`<ݍs~=sxÇQ]Bdc-8օ4T-16y6+L-zkW'?c9,+l}[|kXaXئp@r#]>.? E[I endstream endobj 229 0 obj <> endobj 230 0 obj [231 0 R] endobj 231 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 838 0 0 cm /ImagePart_2066 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 359.75 718.95 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 278.899 633.75 Tm 87 Tz (e) Tj 1 0 0 1 284.399 633.75 Tm 63 Tz (t ) Tj 1 0 0 1 287.05 633.75 Tm 115 Tz ( = x) Tj 1 0 0 1 310.1 633.75 Tm 57 Tz (t ) Tj 1 0 0 1 312.5 633.75 Tm 93 Tz ( x) Tj 1 0 0 1 334.8 633.75 Tm 51 Tz (t) Tj 1 0 0 1 334.55 633.75 Tm 46 Tz (b) Tj 1 0 0 1 339.35 633.75 Tm 34 Tz (, ) Tj 1 0 0 1 279.1 608.1 Tm 71 Tz (ec) Tj 1 0 0 1 284.899 608.1 Tm 57 Tz (t) Tj 1 0 0 1 287.3 608.1 Tm 106 Tz (' = x) Tj 1 0 0 1 311.3 608.299 Tm 57 Tz (t ) Tj 1 0 0 1 313.699 608.299 Tm 79 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 79 Tz 3 Tr 1 0 0 1 123.099 566.1 Tm 91 Tz (and the error covariances are given by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 490.1 634 Tm 86 Tz (\(3.14\) ) Tj 1 0 0 1 490.1 608.1 Tm 97 Tz /OPExtFont5 12.5 Tf (\(3.15\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 273.35 500.8 Tm 120 Tz /OPExtFont4 8.5 Tf (Pt ) Tj 1 0 0 1 282 505.6 Tm 65 Tz (b ) Tj 1 0 0 1 285.35 505.6 Tm 633 Tz (\t) Tj 1 0 0 1 301.449 505.6 Tm 141 Tz (E) Tj 1 0 0 1 310.8 505.6 Tm 119 Tz /OPExtFont8 9 Tf (\() Tj 1 0 0 1 314.899 505.6 Tm 99 Tz /OPExtFont4 9 Tf (et) Tj 1 0 0 1 320.649 505.6 Tm 84 Tz /OPExtFont8 9 Tf (b) Tj 1 0 0 1 324.5 505.6 Tm 103 Tz /OPExtFont4 9 Tf (et) Tj 1 0 0 1 330.25 505.6 Tm 116 Tz /OPExtFont8 9 Tf (bT\)) Tj 1 0 0 1 345.6 505.6 Tm 44 Tz /OPExtFont4 9 Tf (, ) Tj 1 0 0 1 346.8 505.6 Tm /OPExtFont8 9 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 9 Tf 44 Tz 3 Tr 1 0 0 1 490.1 501.05 Tm 87 Tz /OPExtFont3 11 Tf (\(3.16\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 272.899 474.899 Tm 122 Tz /OPExtFont4 8.5 Tf (Pa ) Tj 1 0 0 1 285.6 479.699 Tm 633 Tz (\t) Tj 1 0 0 1 301.699 479.699 Tm 114 Tz (E\(eaetaT\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 8.5 Tf 114 Tz 3 Tr 1 0 0 1 490.3 475.1 Tm 86 Tz /OPExtFont3 11 Tf (\(3.17\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 122.9 432.899 Tm 88 Tz (Pb and ) Tj 1 0 0 1 160.099 432.899 Tm 150 Tz /OPExtFont8 9 Tf (Pa ) Tj 1 0 0 1 177.099 433.1 Tm 88 Tz /OPExtFont3 11 Tf (are often called background-error covariance and analysis-error covari-) Tj 1 0 0 1 122.9 409.85 Tm 92 Tz (ance. The Kalman filter provides an estimate of the updated state ) Tj 1 0 0 1 452.899 410.1 Tm 114 Tz /OPExtFont3 15.5 Tf (4 ) Tj 1 0 0 1 468.5 410.1 Tm 87 Tz /OPExtFont3 11 Tf (as a linear ) Tj 1 0 0 1 122.9 386.55 Tm 91 Tz (combination of the first guess estimate xt and a weighted difference between the ) Tj 1 0 0 1 122.9 363.3 Tm 94 Tz (actual observation and the prediction H4, i.e. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 251.05 298.5 Tm 98 Tz /OPExtFont5 13 Tf (xa ) Tj 1 0 0 1 262.1 298.5 Tm 915 Tz (\t) Tj 1 0 0 1 291.85 298.5 Tm 96 Tz (+ K) Tj 1 0 0 1 312.25 298.5 Tm 63 Tz (t) Tj 1 0 0 1 316.55 298.5 Tm 94 Tz (\(s, rixt) Tj 1 0 0 1 359.75 298.5 Tm 70 Tz (t) Tj 1 0 0 1 361.699 298.5 Tm 99 Tz ('\), ) Tj 1 0 0 1 370.55 303.649 Tm 2000 Tz (\t) Tj 1 0 0 1 490.8 298.7 Tm 87 Tz /OPExtFont3 11 Tf (\(3.18\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 122.4 255.5 Tm 92 Tz (where the m x mb) Tj 1 0 0 1 216.5 255.75 Tm 41 Tz (5 ) Tj 1 0 0 1 219.349 255.75 Tm 102 Tz ( matrix K) Tj 1 0 0 1 270.5 255.75 Tm 62 Tz (t) Tj 1 0 0 1 275.05 256 Tm 92 Tz (, often called the Kalman gain, can be derived by ) Tj 1 0 0 1 122.65 232.7 Tm 94 Tz (minimising the posterior error covariance P. The Kalman gain is given by: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 240.5 167.45 Tm 100 Tz /OPExtFont3 13.5 Tf (K) Tj 1 0 0 1 249.849 167.45 Tm 67 Tz /OPExtFont5 13.5 Tf (t ) Tj 1 0 0 1 252.5 167.45 Tm 98 Tz /OPExtFont3 13.5 Tf ( = ) Tj 1 0 0 1 269.05 167.45 Tm 120 Tz /OPExtFont4 10.5 Tf (ppliT\(Hp:HT ) Tj 1 0 0 1 345.1 167.45 Tm 75 Tz /OPExtFont3 13.5 Tf (+11\)) Tj 1 0 0 1 368.649 167.45 Tm 66 Tz (-1) Tj 1 0 0 1 379.899 167.45 Tm 27 Tz (. ) Tj 1 0 0 1 381.1 172.6 Tm 2000 Tz (\t) Tj 1 0 0 1 491.05 167.7 Tm 87 Tz /OPExtFont3 11 Tf (\(3.19\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 122.4 124.95 Tm 93 Tz (The application of the Kalman filter is as follows ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 315.35 52 Tm 77 Tz (39 ) Tj ET EMC endstream endobj 232 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 233 0 obj <> stream 0 ,,BBb6|Y|5D%D4$Hi:abMIOe |&aoF\; =FJol/C3jCUr&8d?Sh[]1} _ *V0_4&_jBt+=6-/ϝ+cb *Õ|沊VuEG4YޯIBQo6&@Q*KvӻΩד5Z74DC\}5թvIИG W+o `$OE11i$Z91Gk~z?\P<0W( H%h9CP`G%!p3bct4ڌ .R^8-ϖ ɇ'ۅTΰ7#GjfNj?%؂ yBOx%sly:YIޫBDYcuT_йmoo@yCbЫyxO9ف,tFˡTHNB7^&9on゙;Rb@Y)Dz5dRK,1Ɉgbm@TjO{V#وd)C\ =GMUٻ4]dGH}1lKoknpqͽfz:[+x7?'8 \D-KS$ۉ}*v$A둔T!*~*-_yG=9:dTWEʪ9Em6G "aD7E.}qNzn ƹ"Z} NmoT`3v*4g|LHQa;0%` [Ex(垅oO=$q2Wq-x/5||vNb{X O+/͓93`ΕfN onRg?A/ Q_Xݻ$%-X>nk฻1T@NU^Kdzfzԋrfrp_Vl#UX DtH qP]\dٌIi%Z7{ t3"^b͗ ~@Rې-8>Brk!ͣC_GiG/LOr;$muY&}yVI̒=2يU# h 0;FsE&\ + 9(+H$''Du>Uwx k39Bis}r޴g?F~ڴir.U JA6;KGKwiV#^6cwdB/:Ay-Z-Kԡs놆.*O n+kC\yмG'5m565 vk`'a ?_ҹa:SZ2UQv+ g\DMwwvФݟf9GbDHhSFxD4M;^u/v^䚃7J3_g\+=tJvp /1m8Bh)N|CEu7;2aJtcJ򧗜6y)]Z>HU W A9z4NNW^ B9_Cザ89H:(>wm+Gdd332y SJWWG?[M]UbaHrR['i=c q~Ŷ [$:p=|{* 5=>\_ H=?)*KpA p3,31 `UH!#FcAlB ?m2H^.0uɞG{BI_ hzrIU~yRTH& 4̨?^-f:-8rj݈F zܐ"f8* sle4G} i(_Ȯ1C@g$̏Sonb>UӮ|m hy (;.;ۻ 9ZlBd1KsjÑ[_X5QIW9nI˔ٹutzjaE{]XD `ΈC'k2Rbn>{0 '!v^+ Mh 489=ͫ΍fgqЖ %U`Nݠ6L t޸"4e礕,uVrV$D1C10ܱB 5@)&o[c]r lpⷁۚD{k <*M̆ݫ/^j7΄ʴzUYU5|kkrax`kiFհ{GZ nv,/=']AEskF;]P9Aٯ̕#E)UPNJY.y ^ؕ#Frį=FrykpKAv~m! Guphm(>e͏?~t*%/!(PV'8*r FyŰH&/w'߀pzE1P4_:JGO9 !B"p>vZ})cg} .juYy{F#sJhޕ=(}(˺z}"9ٗByjbyk|M ?b$5;D./WίRWu@lĺ\.8g\b IahÍ(ȭhn8׾nز#]M6tWDԎ PD:aKh"bUg7<``2Bү#N|h/AL|ȇusW/wy}$q> -T%o`Of%dFoƗC[oA^{?.TP\['D3xI )]crESfMb\($jU0J5N8"&G*ŏXhZLtC"OsaĮ]ǭzk_8f(eVL'4m>fG|r^ \RK" ?5)nogLGqT'zd'|; l5nzݝG`P1+<8fF }j/ p.f+{9t0l 66-xXrg wc#!^ݧdݝw[x ʐP5zSȍ,;FUw+ 7ۡčuq[R:ktZ_l!d%!JM4WCSv%VL3l,Z,g- UepD_-޵h4_tau]MK,;Pί3-E 31/=\4ӻӇ[ڵY*&Ǹ3OyƆH/;JELm+)GB{A;Dm ){rb<6M~,xotS]& P1u9~&&5]dOޓ sW=o0*;7v9.HhR:3cΤO6~zƷ@{iZna—ce:@Gh?F? ܊|Ϩk0c3t/r+5G4rqĈ=F~>*y)% ZTFh# Q}.h<`6?Ɓ'a9ݦ-/B=(Iֻ呰.xyF b?r}k}.Q% QYݿL+_nC wAv+B/LEmQ:ky]n呸2aNz׽/ľ0=]E߀F`{P)Ѣh3Vyny㟗W> endobj 235 0 obj [236 0 R] endobj 236 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 838 0 0 cm /ImagePart_2067 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 359.5 718.7 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 315.85 630.649 Tm 85 Tz /OPExtFont14 9 Tf (xe) Tj 1 0 0 1 322.8 630.649 Tm 67 Tz /OPExtFont12 9 Tf (b) Tj 1 0 0 1 330.25 630.649 Tm 94 Tz /OPExtFont6 12 Tf (= ) Tj 1 0 0 1 342 630.649 Tm 105 Tz /OPExtFont4 11.5 Tf (F \(4-1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 105 Tz 3 Tr 1 0 0 1 489.85 633.75 Tm 95 Tz /OPExtFont2 11.5 Tf (\(3.20\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 273.35 607.85 Tm 90 Tz /OPExtFont6 12 Tf (Pb ) Tj 1 0 0 1 285.35 612.149 Tm 536 Tz (\t) Tj 1 0 0 1 301.449 612.399 Tm 104 Tz (A) Tj 1 0 0 1 309.6 612.399 Tm 131 Tz (p) Tj 1 0 0 1 316.55 612.399 Tm 88 Tz /OPExtFont8 12 Tf (t) Tj 1 0 0 1 318.5 612.399 Tm 42 Tz /OPExtFont6 12 Tf (a, ) Tj 1 0 0 1 326.399 612.399 Tm 34 Tz /OPExtFont14 12 Tf (1 ) Tj 1 0 0 1 329.05 612.399 Tm 117 Tz /OPExtFont6 9.5 Tf ( AT ) Tj 1 0 0 1 355.899 607.1 Tm 515 Tz (\t) Tj 1 0 0 1 368.149 612.649 Tm 73 Tz /OPExtFont6 12 Tf (err ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12 Tf 73 Tz 3 Tr 1 0 0 1 489.6 608.1 Tm 95 Tz /OPExtFont2 11.5 Tf (\(3.21\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 242.15 555.049 Tm 96 Tz /OPExtFont4 11.5 Tf (Kt ) Tj 1 0 0 1 258.5 555.049 Tm 94 Tz /OPExtFont6 12 Tf (= ) Tj 1 0 0 1 270.25 555.75 Tm 139 Tz /OPExtFont4 11.5 Tf (P) Tj 1 0 0 1 279.1 555.75 Tm 62 Tz /OPExtFont8 11.5 Tf (b ) Tj 1 0 0 1 282 555.75 Tm 85 Tz /OPExtFont4 11.5 Tf ( H) Tj 1 0 0 1 293.05 555.75 Tm /OPExtFont8 11.5 Tf (T ) Tj 1 0 0 1 298.8 555.75 Tm 89 Tz /OPExtFont4 11.5 Tf ( \(H P) Tj 1 0 0 1 321.1 555.75 Tm 92 Tz /OPExtFont8 11.5 Tf (t) Tj 1 0 0 1 322.8 555.75 Tm 71 Tz (b ) Tj 1 0 0 1 326.149 555.75 Tm 83 Tz /OPExtFont4 11.5 Tf ( H) Tj 1 0 0 1 336.949 555.75 Tm 85 Tz /OPExtFont8 11.5 Tf (T ) Tj 1 0 0 1 342.699 555.75 Tm 101 Tz /OPExtFont6 12 Tf ( + ) Tj 1 0 0 1 357.1 555.75 Tm 138 Tz /OPExtFont9 12 Tf (r\)) Tj 1 0 0 1 369.85 555.75 Tm 67 Tz /OPExtFont11 12 Tf (-1 ) Tj 1 0 0 1 378.699 555.75 Tm 30 Tz /OPExtFont9 12 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 12 Tf 30 Tz 3 Tr 1 0 0 1 490.1 556.25 Tm 94 Tz /OPExtFont2 11.5 Tf (\(3.22\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 94 Tz 3 Tr 1 0 0 1 273.6 529.35 Tm 110 Tz /OPExtFont9 12 Tf (= ) Tj 1 0 0 1 285.35 529.6 Tm 138 Tz /OPExtFont2 12 Tf (x:+K) Tj 1 0 0 1 319.199 529.85 Tm 75 Tz /OPExtFont5 12 Tf (t) Tj 1 0 0 1 323.5 529.85 Tm 94 Tz /OPExtFont2 12 Tf (\(s) Tj 1 0 0 1 332.399 529.85 Tm 68 Tz /OPExtFont5 12 Tf (t ) Tj 1 0 0 1 334.8 530.1 Tm 75 Tz /OPExtFont9 12 Tf ( ) Tj 1 0 0 1 350.149 530.1 Tm 119 Tz /OPExtFont6 12 Tf (h\(4\)\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12 Tf 119 Tz 3 Tr 1 0 0 1 490.1 530.299 Tm 95 Tz /OPExtFont2 11.5 Tf (\(3.23\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 287.05 504.149 Tm 119 Tz /OPExtFont4 11.5 Tf (Pt ) Tj 1 0 0 1 303.85 504.149 Tm 94 Tz /OPExtFont6 12 Tf (= ) Tj 1 0 0 1 316.55 504.149 Tm 86 Tz /OPExtFont4 11.5 Tf (\(1 ) Tj 1 0 0 1 325.449 504.149 Tm 426 Tz (\t) Tj 1 0 0 1 340.1 504.149 Tm 115 Tz (K) Tj 1 0 0 1 349.699 504.149 Tm 52 Tz /OPExtFont14 11.5 Tf (t) Tj 1 0 0 1 353.3 504.149 Tm 116 Tz /OPExtFont4 11.5 Tf (H\)p) Tj 1 0 0 1 374.899 504.149 Tm 52 Tz /OPExtFont14 11.5 Tf (t) Tj 1 0 0 1 376.3 504.149 Tm 81 Tz /OPExtFont12 7 Tf (b ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 7 Tf 81 Tz 3 Tr 1 0 0 1 490.1 504.399 Tm 95 Tz /OPExtFont2 11.5 Tf (\(3.24\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 139.699 461.899 Tm 107 Tz (The equations above describe two phases, the first two equations are respon-) Tj 1 0 0 1 122.9 438.899 Tm 110 Tz (sible for projecting the current state and error covariance estimates forward in ) Tj 1 0 0 1 122.9 415.85 Tm 109 Tz (time to obtain the first guess estimates for the next time step. Equations \(3.22-) Tj 1 0 0 1 122.9 393.05 Tm 107 Tz (3.24\) are responsible for updating the estimates using the new observation. This ) Tj 1 0 0 1 122.9 369.5 Tm 112 Tz (results in the recursive nature of the Kalman filter. By doing so, the Kalman ) Tj 1 0 0 1 122.65 346.699 Tm 111 Tz (filter estimates the current state using the information of all past observations ) Tj 1 0 0 1 122.9 323.45 Tm 108 Tz (although not the same time. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 108 Tz 3 Tr 1 0 0 1 123.099 278.549 Tm 109 Tz /OPExtFont3 13.5 Tf (3.5.2 Extended Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13.5 Tf 109 Tz 3 Tr 1 0 0 1 122.9 248.1 Tm 112 Tz /OPExtFont2 11.5 Tf (The Kalman filter addresses the state estimation problem of a process that is ) Tj 1 0 0 1 122.9 224.799 Tm 113 Tz (governed by a linear dynamics. But it is often the case that the process to be ) Tj 1 0 0 1 122.9 202 Tm 108 Tz (assimilated and \(or\) the observation operator is non-linear. A Kalman filter that ) Tj 1 0 0 1 122.9 178.7 Tm 110 Tz (linearises about the current mean and covariance is referred to as an extended ) Tj 1 0 0 1 122.9 155.45 Tm 106 Tz (Kalman filter \(EKF\) \(29; 30; 47\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 106 Tz 3 Tr 1 0 0 1 139.199 132.399 Tm 110 Tz (In the extended Kalman filter, the state transition model ) Tj 1 0 0 1 427.899 132.649 Tm 111 Tz /OPExtFont4 11.5 Tf (F ) Tj 1 0 0 1 440.899 132.649 Tm 105 Tz /OPExtFont2 11.5 Tf (and observation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 105 Tz 3 Tr 1 0 0 1 314.649 52.5 Tm 93 Tz (40 ) Tj ET EMC endstream endobj 237 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 238 0 obj <> stream 0 ,,#b7 #xˊj> !Pwf˯iEW<'`8- z~c/A[R  Erņ%v9 71SįxLkE4;Fh jNf/|Ti ,* n}s $: &YG35  Gƛe EbJ'6hJ!+VeTNʘ/Qpu+mmdyv+Ł?ZKߏttzcfkkB|y ){;~W#:cM`C06o7F't #w ,Iĸ,uu`= OZZe"`Ofi$\-r8V1h%g)^dle^R_ ɦu>֪ _T%*L+gS:9"⻰o¢=?b]Pc[OK90#NIr퀚LM_)Cyt%ID%"0ŧ,PV)w.Y6 0)F]]o!EQrgW>RY[(Odn6S}R{ wQWj} 2CmD)j*1ߣpvlv2}bͫ5@Y5.ʯ 민|E [ gqY͌D^wf>g EV~x6 .aнpm~yR;0giA\]:fd4!CS}ÄGR/5sŘI +|2Nab>l?óPDKt-t.4\{P`UBgܸMbfx^m~ѥRw)]xA.K mҬ3<IL:iY%3 e_m U[2{,hC ~oйˮS2!^]%q{#!yZ.4fɗ Ne ?'w3,H< zmx/ʫm&yę;ch<'7r!5q1hOK~YŸۘ:G%Fk IXdI2̎ <|qKD]v˦aSZi1|G<̰d)=8#ǀ_â! 1@6/JXS&2IM $0VzƯ(AN4*v}[s-FdbӘR&<&5UIKbN=ԙRg w*F*niӮ"ҚN~5Tr\hoaÍe↻Tx'?`r2˖҃ &° @;ʂ9|>K])O q5otΞ!@5WW]Oi5lȶ;} >FbUhe6+|Q4qНhD.)] h2;U(wɪ?qhnIո+RMĻpc9𾃲t NG %Я 2'7{Ci ˀ)e-폏>MOo[+>ς Z93 5!V?KMtg?qX;t ECO [~bJ $lCG$ l]]  ʫz g9 )ZTq*<@i. !b9[zi@ |ǞpB'!)%+D4kS풃ċp|wrJ".Tˍ*T5+;[yy! w0|[V괖MT?VI yͷ(#d[tX7-oyP̳0yNT#|N~)Px (zY|=+3I޽c$8PzNrfjD-g}=cQˏYvhhxX!8FH!WQ&R *5`/Ei 4=nCLl<͜O1fheFx AF$j} ,z7o/MI{ʟ6lڵ(k+%[{QhN_o#;l}ǂ𫽀Џt(x =TGϋβA7b-6d";;BQl *tRcE7RkCx\"/R[Y.@v yP=}qV۟Wd{C0ICxCquR=kXDeCFj6&H:k֭LOΠzm^]Y⡁ȣ W3564[C%v<ͩ!c5q@\DDþe^2O޺:Z)XTV#<;2˵E6z\]5/"pztyp' ~PpdVQo<ϯH"1oErtmвEkeI5k5 0^k1䦆ux5t={Muf kΟp'u@mN GYr Q=RA3,zӦ^`&gȯ紊3x&K )Km7$k4< ]öc)7yN%^\l@ׄIˠF$($+J[}9]wRtC`<sȕ%DN3ܔ J./q@m_p(:}b{StPIcl d^Zm<3dTz(9]3`\Z, .0^1+:'E@RJG?'86 Ʌot2EP_a,_#Ke2̰r5%~ <N D,S>KFog( ztrǜ 6a}.2Ɗ~"D\ :G卟1nH"wqP{*m4Ue~:xUR=ntJ?Z)LJ WzO yu"Lў] 8Cv؆cW eS ?Ě>Ѻ.ú<˓IkF0H=V޼Ǒ ih(.rj\8f>mG+I?fd?+ Y\Nu'0 cیO5&M[f6ϔ$+ X1 DWHI犟x)kTz ۘ4u+r<= 6$*ϤΈiy,=j4&Q}o(*B VćÈa%f,6JQ0 ITh6̗-=CK+ _ #{-ڦ)@ WF٬AERr`~&f?dJ6š^ ̓:f^V:ȋ#v|B쨑uq޴HeZjsd][w= 5`*|lOFRVu;vS }9D2$Rd'd"Δ|߿0i6p V1Hڄ1tKŠ`,kG* lU*L7kXHpӁ?+ň*U3%%-juSK6UzX(0%"U.$ca 8؍pݑ~#yC_{6Xu\t|ٶ\d7B׳Uq!uB /MYt?-fgiȨ#VGU'_{ 풢cyOeQFgr2*˞&U Z:&yDO\Zl˃S3JŢ`ؿdrt_d4:FъdU&`SL/cš@ ?tCWAKr?J @_Ub2fgZexV]DUJ7 }T~#QJY /fzSFmE+[j Pw\`9fj^&]#fH J6 UA͊Nt%O%WG9̣΀o3B@yI* |Vt9Ċ@to%D&K a5f)/J[u#'WB'M 1hv>-c{r@>uKrm op 8+RrXƣ>&F)ua b*ڿcmqz]K2Ee `5'8`n%FM ;4K5ٝ:A(tLE0 -ro6֙s="1wƨJ*эQײk-31|AF~T0pS^Eѿ*/2HYkצ쪐;tw  7 p'g[HYqY{9~ŷA- R4qUŁOpWQQ]`;]kSެeA.Y*!X}Y.?(Q 2vg!yVr'ï4ι\#⿰"k9yµdJwkÿ \ЍQ.M׍?a)#b;z).(,*TĔSjN^|,cca6cT>19-4Pn3YuȒ45p&[u_-I$g vL,b2T5YnӹWѩpUBp6?%,x\d>NQ/5g0#MA1訴ʛ@#vxwV8pםpqaT@jV'/ ِ GáydŁ@Ml?{FN)lq^ܐ. /zkn :#j:=U(/Fil\GTOhĊ?sL"}rRa[6:cŕjMn_"Ȋ3 )SS(݇f@qOhoR7S֖h.!yx?ﹶwʖ@DO]8\C[d-MLEk< :(Ѡ瑔X#JM8yqr)}ρ> '- ^h7!6MݠQQ@df!s*<Dy'|կUVϬy4v] hI2=I@C#S#|"$YĤ@ 2{+)BOM:kSZvfEOv O*}#Zag篎H,lsp7;޻_9G-vuލx1!רx a]PyJn毓@;.`%g()b/ai߂P+!P@f fx_y. HTG Rl3ac۬1Sx&9NhЖ)s /Ic)tBe>cy@5 J'/T PoWt`M9A{ClQx_t5L m&b٧o}}dKA|]" bݑWmer(f^ՌG>68x,+&#)@.~3Čz?׷^pKB`yXwNڵsL ws>d\ckxPjU_`|I&= ퟆS׻|B]/>hz7-,ߐ jxۻWc8hk y>=͔;FR{Jwq?2U# i.>4i>^ 9Ŏ w#3ak̓V]v %TCvgy"=d@_&"cY:Q9C1=u'11:,x=X)gQۭB7OJ,;9w/},515>KDn5#Foy HWD1%\-Qtp)iAkZVa.p8n18[&8e/\jp$&lϿ֐O@$M Y\qL4 ]^jSF^T^bD endstream endobj 239 0 obj <> endobj 240 0 obj [241 0 R] endobj 241 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 839 0 0 cm /ImagePart_2068 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 359.3 719.95 Tm 105 Tz 3 Tr /OPExtFont3 11 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 122.65 676.75 Tm 90 Tz (model ) Tj 1 0 0 1 156.949 676.75 Tm 88 Tz /OPExtFont4 10.5 Tf (h ) Tj 1 0 0 1 167.3 676.75 Tm 93 Tz /OPExtFont3 11 Tf (need not be linear functions of the state. It is, however, assumed that ) Tj 1 0 0 1 122.9 653.95 Tm 89 Tz (these functions are differentiable. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 139.699 631.149 Tm 98 Tz (The equations of EKF differs from KF in that ) Tj 1 0 0 1 381.85 631.149 Tm 114 Tz /OPExtFont4 10.5 Tf (H ) Tj 1 0 0 1 396.5 631.149 Tm 89 Tz /OPExtFont3 11 Tf (represents the ) Tj 1 0 0 1 470.899 631.149 Tm 76 Tz /OPExtFont4 10.5 Tf (mobs ) Tj 1 0 0 1 497.05 631.149 Tm 102 Tz /OPExtFont3 11 Tf (x m ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 122.9 608.1 Tm 94 Tz (Jacobian matrix of ) Tj 1 0 0 1 221.75 608.1 Tm 118 Tz /OPExtFont4 11 Tf (h: H = ---) Tj 1 0 0 1 266.649 608.1 Tm 81 Tz (h ) Tj 1 0 0 1 275.75 608.1 Tm 96 Tz /OPExtFont3 11 Tf ( instead of the linear projection operator and A ) Tj 1 0 0 1 266.899 604.049 Tm 75 Tz /OPExtFont4 10.5 Tf (ox ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 10.5 Tf 75 Tz 3 Tr 1 0 0 1 122.65 585.1 Tm 98 Tz /OPExtFont3 11 Tf (is the m x m Jacobian matrix of model ) Tj 1 0 0 1 331.449 585.1 Tm 137 Tz /OPExtFont4 10.5 Tf (F: A =) Tj 1 0 0 1 380.399 581 Tm 69 Tz (a ) Tj 1 0 0 1 384.949 585.1 Tm 105 Tz /OPExtFont3 11 Tf ( often referred to as the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 384.949 581 Tm 102 Tz /OPExtFont8 8.5 Tf (x ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 8.5 Tf 102 Tz 3 Tr 1 0 0 1 122.4 562.049 Tm 91 Tz /OPExtFont3 11 Tf (transition matrix. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 139.699 539 Tm 96 Tz (Similar to the Kalman filter, model errors are required to be uncorrelated ) Tj 1 0 0 1 122.4 515.7 Tm 94 Tz (with the growth of analysis errors through the model dynamics. This becomes ) Tj 1 0 0 1 122.9 492.899 Tm 93 Tz (a fundamental flaw of EKF as the distributions of the initial uncertainty are no ) Tj 1 0 0 1 122.4 469.899 Tm (longer normal after going through the nonlinear model. The linear assumption ) Tj 1 0 0 1 122.4 446.85 Tm 92 Tz (of error growth in EKF results in an overestimate of background error variance. ) Tj 1 0 0 1 122.4 423.55 Tm 94 Tz (Furthermore, estimating the model error covariance ) Tj 1 0 0 1 391.899 427.899 Tm 97 Tz /OPExtFont4 10.5 Tf (Q ) Tj 1 0 0 1 400.8 427.899 Tm 110 Tz /OPExtFont5 9 Tf (err ) Tj 1 0 0 1 418.1 423.55 Tm 95 Tz /OPExtFont3 11 Tf (may be particularly ) Tj 1 0 0 1 122.15 400.5 Tm 91 Tz (difficult while the accuracy of the assimilation strongly depends on ) Tj 1 0 0 1 456.949 400.5 Tm 119 Tz /OPExtFont4 11.5 Tf (Q") Tj 1 0 0 1 473.05 400.5 Tm 53 Tz /OPExtFont8 11.5 Tf (T ) Tj 1 0 0 1 476.649 400.5 Tm 97 Tz /OPExtFont3 11 Tf ( \(37\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 97 Tz 3 Tr 1 0 0 1 122.65 355.899 Tm 111 Tz /OPExtFont3 13 Tf (3.5.3 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 111 Tz 3 Tr 1 0 0 1 122.15 325.399 Tm 95 Tz /OPExtFont3 11 Tf (The ensemble Kalman filter \(EnKF\) was first introduced by Evensen \(23\) as a ) Tj 1 0 0 1 122.15 302.1 Tm (method for avoiding the expensive calculation of the forecast error covariance ) Tj 1 0 0 1 122.15 278.85 Tm 96 Tz (matrix necessary for both KF and EKF in Numerical Weather Prediction. The ) Tj 1 0 0 1 121.9 255.549 Tm 92 Tz (mechanism of the EnKF's production of an analysis follows from the methods of ) Tj 1 0 0 1 121.9 232.5 Tm 94 Tz (the KF and EKF. It differs only in its method of using an ensemble to estimate ) Tj 1 0 0 1 121.9 209.5 Tm 96 Tz (the forecast error covariance matrix. No assumptions about linearity of error ) Tj 1 0 0 1 122.15 186.2 Tm 90 Tz (growth are made. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 138.949 163.149 Tm 93 Tz (There are two general classes of ensemble Kalman filter, stochastic \(37; 41; ) Tj 1 0 0 1 121.9 140.1 Tm 91 Tz /OPExtFont3 10.5 Tf (42; 43\) ) Tj 1 0 0 1 159.599 139.649 Tm 92 Tz /OPExtFont3 11 Tf (and deterministic \(1; 7\). Both filters propagate the ensemble of analyses ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 314.649 53.25 Tm 77 Tz (41 ) Tj ET EMC endstream endobj 242 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 243 0 obj <> stream 0 ,,b7 ¢:$8D4?dhV/9wPIF[۬B~y9-ERk".|m!ڍ6^:s ؈ta{iUj&9b"]Gv٩ T a\ 8&95O Z d7P&]Vdh%VE AmK fU`H#agXҊoYRQT'ܝ'q?.kHF;Z{n<}r֖  3^] BE7ʠ Y1N 9 # aSc3 )[meuV|uz+U!ڰ껒F?λ1Mn.΂RDu8P)Y]CJ ar+#}(:j\h3vh^hyT[gW֐l@֞iI[}rZs64-+I2l-,p驑G:m4a9F|.8eMXtphq!2e>N"f K`9F;]Hفv{!l:U=]?1 ݏODZTE2ns4_^~$a,v,S,]3?*W%G̙sN:Dy38F]Ŀ [j{9PXЂ3'΢`[~^{XmT:#RfMslg{ic@e' *g?>X+ q"@tY7M]Nan"^hV>0ʇ88ҺY!v$vʳoD`ˠ6u$5t.#[jA9S^%pt\ӡgsva9u}#[`j4f4/֖# 愍46BEkfPI|} G/;LLk.cC{c|[_ xYm*{6,>Wnl-|hh,'N`5 lbZ'KDB+@G9kWybtL+,O}:ԩI^AOdO< ptj?Zt鉣05gws$BۭTSLH:_}#4ΰd B廩yTKց,&5@3ND(JJatEVaؕuPjZ"4L }ǵUz| Gj(1E?O)SYu;䀛x?2b36Ѻg*dc/!3ȭ} .6dfܾR\PT-79@ ۋ"SОigI;rڕ6'ˏB&M2OWEelR_<} 3DJ؁b[_x7:2^#NBZ0BLs@LP3Ye粡3x=쀜۶;DQ!ߋaE)K3gwL!S %/3 $wwɩg:HaD)Ov P$]p"]K.*a(չ`S]Syoe> "ǐdJ¹*ޜ˦P%9ꗷrfiPgs6m3s R)fƀ_\&&;Uj}BCl[qf"[aL|1%Ϧp p֖.*+Wibg0/(on" =m`$ƦG%QHy>VLe2@WD˥i 4<N}`@yr8tS/U*d<9ѹ*' |nZ-]444UrcZ?hQw,b(xSZy]hq"Ty+Q( @Ҋqտm@ipDX};޺jr,+ W X `?~29ܢ֕yl }n!}q2gL5hjMAKqd6+7m+YvGRƐ6<jS1W)Ī *߇!I"ZP^gybIDw'aÙO\z q@Yw?l~ 挛[J;{r0D<ʱD4,gM4Jm (f`yGs0Qw 1-alF[ `=f:&fЮ$_^PR؟nm%m[h]G.fx4,!Ǹ25DW`f*s}=ۊ+y61:F-oר.ߘ%Ɯ+%5z<7kl88Ko(8VX H 41,~0&:eNg.?+9Խ?)4,%QFٕ53/4hnكP(o^T*ʀ }KH{ + [wEM-+g'4&VT(­?}u\ W'v#Em*M'lCy=O!ߦ]t2PKh吻wӷgBK0遒m@"a\p$n҄y{K Y1ΥQ-_{=ŠkX y/c v_[u_XpO!=US%vsnj_::mcM~mCB#Jz(TUR|tg!ܑFX_֘-`VѰ< (bluD3U.B|p@<*bj?/FsVm^Ju1L7lfRv=Ceb̆):m/!>xA[=T{*M: U2j>⿿Ѱ斃k(U>5bbtrxue!Ú!LǃÙt_m7z"_ԭ2?!% 9FirzUbŭ }lD1}m[ R E -'?djn& MJ# >X b)m 7nZԕci砍)GgBՊ+_?/F_,EIKYǣ%/{'Ô v3؞ڛֲ:C`Гq|29+ܧSm,æ(CCź@RΖƋMg>԰ȯ䇰%U<.:?i>w)*oy&tt+ovkFh3gqxn}.g~5LsֿѿL$dL@!3 k65Y RU*-Zzgd3W{!"sa6zRʣK6PneM!T90ί:U8\UQál۴ctog.EG_Sg Km^;kMNm쀲DG)$4nܽ31V?@Ô?IBx望%ԙ% ;^yMù \ϳd޵KA ~JIGuc$RM!/M'/Q#ƂmjSClz}S|\/n;Kd8\E.sĽ owOB9/?#g#u阆IAk n{Xߔ'>SmqQ?ftLڟ 08mP3hiDr bnFl.}H;aRx=Xb9{0jhXBmqBzZ7oTΊeA~E"6QACPק>s]N $3,!'\puaJf KmcnRQpuHЈvJ4dr T*0-Z\8`KJ:uF`7H8S%, h'5J}A0D|Lg8)I#q*!0:ٍ"'d'wR6s/"ՓQGTckT>8ZmFì!FSwKߙ?yƴ$Fb7V`$y29t˒ڲ!iiǘP6pBKE"7J0z#3^|h1 DWWW}`0Jff]**Vm-  b />=b)e?s2h>ymV%ȴ&0)q6U{y}Ka^KhF#4k˞,b[1]gaPb'r, d\+zvm""]:?.CS:wAŃH_yICQIL. Vf[LIؿ2#M̵J=M,O\و줊ߥ UHe:+FxμМ9j,kkUoN Jy/ߣi-W =){{ܛ̛}:!gd <4^'$ۺYt (:b _ބ9jYRiiGV,^VM{Mi#ĒT%RIn`E7V%:C@-5)ӌ'D @8l' SamM1 kx;P IW$+9Zo֨K ʶkTQGQ=ʆ-yZIGBu`p zx9ݑ5WûPi\'.&db9\v9{ ,$Qp}WX CJgXMuУI wU{U̪\e/p̈́X&a}C}D.bbx /ate]l`sE% 89V^*"؈?]&s sWnlj^v;igh4{ nqY&=b.;WSx^hݦvFjBTyé^ƈYP/T 'VRњygWm!o5`.u(dQkDw-Hkܣ =)Y/Nn؝ӳUߙ ;B5}^bH J[_|: N -Ecdl_)IO+"RAkm_V2K:ƥ5jƵ*Ȃ;0jRf.9_P.7r)yiŇ6;W:刑ps522EFyhIX.8_쾱>㾔4_[ (ʁL">[lKbEٸCe7y_bGpN 낁qAG"bѮ{VM ȳ9.lg+L{VW~Yȅs#R߈]pXgP Ӧ^]IMSP[_AG /.};JV&zZs RЗG ?:oNHQOaN<iypa( ZdxڈpEJN_KùӍn J&Yls9\ oQ{Xo>> Vmpp>F]':{:ujn+=IUrj%Y('ȉJ|\ۂۅOpW)^^;YM6 |V&uc!w+~Yc91Jz,BB>!Lsgag'i_BƔQnE͟sFq#D@"y")`UT9Ta´,o3=!5,. 86p;s}E36؆sT}v{"N6kVI]HCLFMiJ*30ҋT*I'I_ r-Lx̣^iHUh>&Z^ɦs&]R`9M3U xqk#I8_g:آtTA\QI75 eRO]"]űf hqa@Pxb@E I?È-''ƋGnp%6m&,̭ή̈́Yxj ;^cl='d}̒L4w/?W'0 4"cJ]4&R(pӫvoˏEH&y'M`vA\HY#F)4QàgH11)A4 WXu^JOŜҘ.W4@,|*ʼlwaێ4-RuC">H{$j[0ᦲ/A4G-+vY)=nW%vjcבߝ{xg Y:Rl%g>7* ~K}:p{ }$,x!.5& V_Z y3]gjez=R#xk\?-4 8],ȺV6GNy[ϡlTֈ-4jzkىKwp a' ~! A;`P;(D~'| I0L^si$o7/kCSoR{"jі=]9xC-XG1MU7w;W&= \}t&OLypH?ErXiOrMu ˵q7HXښP, #{܀ޢgcݾ: ;ɨ#EDrF6D5e݁?Ĩ|]y䇨4km3\zN|mcS:BM//c4cʜb`xe mv/@g(T;tbMr/G[YuGhYBUT5$кwӋraez!SʼnzPPDIQ 0Nix endstream endobj 244 0 obj <> endobj 245 0 obj [246 0 R] endobj 246 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 610 0 0 838 0 0 cm /ImagePart_2069 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 264.699 439.35 Tm 66 Tz 3 Tr /OPExtFont2 11.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 66 Tz 3 Tr 1 0 0 1 220.3 431.199 Tm 95 Tz /OPExtFont12 13 Tf (P = ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 13 Tf 95 Tz 3 Tr 1 0 0 1 245.5 423.3 Tm 113 Tz /OPExtFont4 11.5 Tf (N) Tj 1 0 0 1 255.349 423.3 Tm 69 Tz /OPExtFont12 11.5 Tf (ens ) Tj 1 0 0 1 267.6 423.3 Tm 100 Tz /OPExtFont7 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont7 3 Tf 3 Tr 1 0 0 1 489.6 431.449 Tm 87 Tz /OPExtFont3 11 Tf (\(3.26\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 359.05 718.95 Tm 121 Tz /OPExtFont2 11.5 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 121 Tz 3 Tr 1 0 0 1 122.4 675.75 Tm 90 Tz /OPExtFont3 11 Tf (with non-linear models, the primary difference is whether or not random noise is ) Tj 1 0 0 1 122.4 652.95 Tm 91 Tz (applied during the update step to simulate observational uncertainty \(37\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 139.199 630.149 Tm 94 Tz (Let ) Tj 1 0 0 1 158.9 630.149 Tm 145 Tz /OPExtFont6 10.5 Tf (X ) Tj 1 0 0 1 172.55 630.149 Tm 120 Tz /OPExtFont3 11 Tf (= ) Tj 1 0 0 1 180.5 630.149 Tm 718 Tz (\t) Tj 1 0 0 1 205.699 630.149 Tm 96 Tz (..., xr) Tj 1 0 0 1 234 630.149 Tm 46 Tz (e) Tj 1 0 0 1 237.349 630.149 Tm 109 Tz ('\) be an ) Tj 1 0 0 1 284.149 630.149 Tm 96 Tz /OPExtFont6 10.5 Tf (/Yens ) Tj 1 0 0 1 310.3 630.149 Tm 90 Tz /OPExtFont3 11 Tf (member ensemble state estimation at time ) Tj 1 0 0 1 122.4 607.1 Tm 103 Tz /OPExtFont6 10.5 Tf (t. ) Tj 1 0 0 1 134.4 607.1 Tm 90 Tz /OPExtFont3 11 Tf (The ensemble mean ) Tj 1 0 0 1 235.699 607.1 Tm 88 Tz /OPExtFont4 15.5 Tf (X ) Tj 1 0 0 1 249.599 607.1 Tm /OPExtFont3 11 Tf (is defined as ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 282.5 541.85 Tm 82 Tz /OPExtFont3 15.5 Tf (= ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 82 Tz 3 Tr 1 0 0 1 321.35 556.5 Tm 131 Tz /OPExtFont4 6.5 Tf (N'ns ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 6.5 Tf 131 Tz 3 Tr 1 0 0 1 304.55 549.75 Tm 53 Tz /OPExtFont13 12 Tf (1 ) Tj 1 0 0 1 323.05 549.5 Tm 193 Tz /OPExtFont13 6.5 Tf (r1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 6.5 Tf 193 Tz 3 Tr 1 0 0 1 489.6 541.85 Tm 87 Tz /OPExtFont3 11 Tf (\(3.25\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 295.449 534.149 Tm 113 Tz /OPExtFont3 7 Tf (IVens ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7 Tf 113 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 6364 5856 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 113 Tz 3 Tr 1 0 0 1 2409 6082 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 113 Tz 3 Tr 1 0 0 1 5899 6082 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 113 Tz 3 Tr 1 0 0 1 324 528.399 Tm 112 Tz /OPExtFont5 8 Tf (i=1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 8 Tf 112 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 8289 6082 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 112 Tz 3 Tr 1 0 0 1 122.15 496.25 Tm 90 Tz /OPExtFont3 11 Tf (and the variance ) Tj 1 0 0 1 207.599 496.5 Tm 87 Tz /OPExtFont4 15.5 Tf (P ) Tj 1 0 0 1 220.3 496.5 Tm 90 Tz /OPExtFont3 11 Tf (of a finite ensemble is given: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 122.15 388.949 Tm 94 Tz (The EnKF uses the variance of nonlinear ensemble forecast ) Tj 1 0 0 1 427.899 389.199 Tm 82 Tz /OPExtFont4 15.5 Tf (P ) Tj 1 0 0 1 441.1 389.199 Tm 94 Tz /OPExtFont3 11 Tf (to estimate the ) Tj 1 0 0 1 122.15 365.899 Tm 88 Tz (background-error covariance ) Tj 1 0 0 1 265.199 365.899 Tm 105 Tz /OPExtFont6 12 Tf (P) Tj 1 0 0 1 273.85 365.899 Tm 46 Tz /OPExtFont12 12 Tf (b ) Tj 1 0 0 1 276.949 365.899 Tm 100 Tz /OPExtFont7 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont7 3 Tf 3 Tr 1 0 0 1 139.199 330.399 Tm 93 Tz /OPExtFont3 11 Tf ( Stochastic update methodology ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 150.5 302.299 Tm 90 Tz (The traditional ensemble Kalman filter \(37; 41; ) Tj 1 0 0 1 382.8 302.549 Tm 96 Tz /OPExtFont2 11.5 Tf (42; 43\) ) Tj 1 0 0 1 419.3 302.549 Tm 88 Tz /OPExtFont3 11 Tf (involves a stochastic ) Tj 1 0 0 1 150.25 279.299 Tm 93 Tz (update method. This algorithm updates each member according to differ-) Tj 1 0 0 1 150.25 256.25 Tm 92 Tz (ent perturbed observations. As the perturbation involves randomness, the ) Tj 1 0 0 1 150.25 233.2 Tm 90 Tz (update is considered stochastic method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 150 205.1 Tm 89 Tz (We define the perturbed observations "S) Tj 1 0 0 1 343.699 205.1 Tm 65 Tz (i ) Tj 1 0 0 1 345.85 205.1 Tm 121 Tz ( = ) Tj 1 0 0 1 362.399 205.1 Tm 111 Tz /OPExtFont2 11.5 Tf (s + m ) Tj 1 0 0 1 395.5 205.1 Tm 85 Tz /OPExtFont3 11 Tf (where 7j) Tj 1 0 0 1 435.1 205.1 Tm 80 Tz (i ) Tj 1 0 0 1 437.75 205.1 Tm 105 Tz ( N ) Tj 1 0 0 1 454.3 205.35 Tm 107 Tz /OPExtFont2 11.5 Tf (N\(0, ) Tj 1 0 0 1 479.5 205.35 Tm 77 Tz /OPExtFont3 17 Tf (r\). ) Tj 1 0 0 1 150.25 177.049 Tm 90 Tz /OPExtFont3 11 Tf (For each ensemble member x) Tj 1 0 0 1 293.75 177.049 Tm 80 Tz (i) Tj 1 0 0 1 293.75 177.049 Tm 63 Tz (t ) Tj 1 0 0 1 296.399 177.049 Tm 91 Tz ( the update equations are: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 314.399 52.7 Tm /OPExtFont2 11.5 Tf (42 ) Tj ET EMC endstream endobj 247 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 248 0 obj <> stream 0 ,,b7(/R}oìQO z_CQ^y+DzBf ;79L灟$ة2 QؼB#(1ӄ+|;)+׃x9׻u\l3<9۲䊯;{~יQDEX ۜƖwsgsf vѐcǎs6-)U bƽWCH:K-WdZ -Gp0:df~&&н:HJzCcuFe1m)4p6V~KPb-p   ĉp,<%p+ \`ՍZ%gMGx4l&Lqn[Y+:(! %Mf[]/ ߳BN'swDPm0"#( ͌;4 O͇Ff[Κgc*vR8G5xgaЮ G F_8Ipv-G솷+]@VGVEQb #!4Yw(4m(c qLuJqpeøqt$l1'*-PSy3Ɩ [ :֍D{vݤFP0sp{B+_m 9fTa.p-GSAVp᧼hqĭZl֟p9ѹg 1e2AJ* HƄSKz\ rK̩/"MFPi*AELakPؓ*q;p'y:n\X r޽@@3H[޽ -;6?BI֧q5Œmme{-'"?*9:JQ]vuE߉0g Ԣ!w_g)?EV >,ʜ\kjy-T5!S#SQg D-3 eyP\H 1@mAUdm"e`7>Yk;8^ppO?^' +R9 V"1QWągaSo˥~fqhP Lѳx'i9IyxƺZd zr|8&[%t[Ny&eK:}#,$% 7 [Fk{~I:K &w>j0^WNX{-̜yW ߵ g v&S^NNw]%dHԤ3NS1ϚbX;sDJmX3*`)} $uqɪ^qWN2uR:7, F,E]od^ /Gj ><]&.sC=D̖=-&s\{ .X bvE i3F  !j$TyaeUPI#|pQѴU̘0Y/ц a?o!Xxȴ)}YlnC s u!~*Е޵ax>[!˔&ʪ}6h9+6?lj񲹱ʰڃXCOʼǚ8*59&/-d9³ힵ<#I'O#y_Fh0.ig4FUEU\iW-߳Tn 1X`ƸF`ik~=vtn|=TdKE,Ya2N{"hIKPյ0Z3+O ֏K'GOϋ}tPBohr4ZQɅy|h.#U%aK+N߶G&u֋Q48G 뎫ijDwDGob${V8PL+ %FFCqz@M)z(*=)aP)C[zCB)#48ؑ0 hA[Q(d sQPн+D8Ao?k32nn#mVMJx'bɐËf%q#j| u14;FI8 VIRϜ5Menqй#YOBxAg\א4 щ5|Gsqv,+M@L 7'䱙\^^bQɠW$m"ÎC?[֫HUޟk%ɛ+A04q0)Ma~>/Cf-RH_.iYRrMlV7llΌ+:kdI|~=f# 8]~ƺYE|a/PfzV[<j.j&yngG$.~))aY46ˍxJ;!NꆑБT΄XTecPXp(-zzP+GZ!>ԤP/# $>{T\]^ irNwlE._Q' c1c7?Yä2s3#wQC+(\,;xm/6Nåd_̂3ѩ.):1&,=;kS.Xjg\3_o 485BU d_-(?T~[}m|AVqE~b3[p.`rlw ;JT$Kڵ倲 T7.^Y:c PqoxVʏڕ^9͐~n؂z-PqL@r2ʆ0IWaEAYhP^D+X٭DyK h`[dTԎ5p@n6kz{Q eŠ0SR(s}D?Ie xKY| Bbh5ݔ.Cfvsq?r줻V`_7.6&JBӛcG.2aM.'!bӽ€´|Ğw8Gss$p ^I00n+ 9, 32:E koq:1O8Ow /^!jxQ6jo沠]5.7<ܔ|_@v-%?.kQ />900G>pdB,qQ^w b~VC Vu=@MbuEi&Qf&gWV((ScoT8C~y;JQsCy*h h|QOqX%/'yT}HT}0\eO*{ܓ-4/õmxYȾ'VIqLV_]? tC5d/X&Q&_%SǣǚC J6vLX #5^CQ>I`%<=ɉvq*~mqw;EeLBX\CqժfJEa]Vo եd`d,Fj; ߊꑢv֒)Pկn|kX,9z!6,5E>0TQ[k\ak+C|*Ԓ12a2 _2S5S;`x_*7"œȆM˨@>ҏ4-2vD?LPmEʿ90g.-aoLQ(ʫ.d)8 D EAUs! O^|ZN@V.B6M|K`f(@zE]ֽ x)s(¥-Y͘a%+yN٧q,%5XGJK\&;/ag`ĔRT@)<˹EnQ(4H c/X "#I^'ߒ @Ј` MB%fWLF{uVQ>l3_'E" BZ?٩~t)*t^Gt4Vf)l^CQsa*,#Z~* aͶݤsU ~ݤTo [9PK3. a_KU(qrli-?xΘͲU^U\ԣMlĭJ BWB:FPjNy endstream endobj 249 0 obj <> endobj 250 0 obj [251 0 R] endobj 251 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 610 0 0 838 0 0 cm /ImagePart_2070 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 358.8 718.7 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (3.5 Ensemble Kalman Filter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 0 838 Tm 28 Tz (\t) Tj 1 0 0 1 313.449 633.75 Tm 117 Tz (+ k\(s) Tj 1 0 0 1 344.399 634 Tm 72 Tz (i ) Tj 1 0 0 1 346.8 634 Tm 105 Tz ( h\(4\)\) ) Tj 1 0 0 1 390.949 642.899 Tm 2000 Tz (\t) Tj 1 0 0 1 489.35 634 Tm 85 Tz (\(3.27\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 0 838 Tm 25 Tz /OPExtFont4 13 Tf (\t) Tj 1 0 0 1 256.8 607.85 Tm 96 Tz (k = Pb ) Tj 1 0 0 1 295.199 608.1 Tm 93 Tz /OPExtFont6 12.5 Tf (HT \(H ) Tj 1 0 0 1 326.149 608.1 Tm 75 Tz /OPExtFont4 13 Tf (Pb ) Tj 1 0 0 1 339.1 608.1 Tm 97 Tz /OPExtFont6 12.5 Tf (HT + ) Tj 1 0 0 1 369.35 608.1 Tm 104 Tz /OPExtFont3 11 Tf (F\)) Tj 1 0 0 1 381.85 608.299 Tm 81 Tz (-1 ) Tj 1 0 0 1 390.949 617.7 Tm 2000 Tz (\t) Tj 1 0 0 1 489.6 608.1 Tm 85 Tz (\(3.28\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 150.25 561.049 Tm 94 Tz (As we can see from the equation, the perturbed observations are used to ) Tj 1 0 0 1 150.5 538 Tm 89 Tz (update the ensemble states, similar to the Kalman gain ) Tj 1 0 0 1 421.899 538.25 Tm 131 Tz /OPExtFont6 11 Tf (K ) Tj 1 0 0 1 435.35 538.5 Tm 94 Tz /OPExtFont3 11 Tf (in EKF \(10\), but ) Tj 1 0 0 1 150.5 515.2 Tm 90 Tz (using the ensemble to estimate the background-error covariance matrix. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 150.699 487.1 Tm 93 Tz (If unperturbed observations are used in \(15\) without other modifications ) Tj 1 0 0 1 150.5 463.85 Tm 95 Tz (to the algorithm, the analysis error variance ) Tj 1 0 0 1 381.35 464.1 Tm 102 Tz /OPExtFont6 11 Tf (Pa ) Tj 1 0 0 1 399.6 464.3 Tm 92 Tz /OPExtFont3 11 Tf (will be underestimated, ) Tj 1 0 0 1 150.699 441.05 Tm 94 Tz (and observations will not be adequately weighted by the Kalman gain in ) Tj 1 0 0 1 150.25 418 Tm (subsequent assimilation cycles \(37\). Adding noise to the observations in ) Tj 1 0 0 1 150.5 394.949 Tm 92 Tz (the EnKF can, however, introduce spurious observation background error ) Tj 1 0 0 1 150.699 371.899 Tm (correlations that can bias the analysis-error covariances, especially when ) Tj 1 0 0 1 150.5 348.899 Tm 90 Tz (the ensemble size is small \(92\). Such shortage is overcome by deterministic ) Tj 1 0 0 1 150.5 325.35 Tm (update methodology. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 139.199 292.5 Tm 94 Tz ( Deterministic update methodology ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 150.699 265.1 Tm 91 Tz (Deterministic algorithm like \(1; 7\) update in a way that generates the same ) Tj 1 0 0 1 150.949 242.1 Tm 89 Tz (analysis error covariance without adding stochastic noise. There are a num-) Tj 1 0 0 1 150.5 218.799 Tm 90 Tz (ber of different approaches, here in the case we are only going to talk about ) Tj 1 0 0 1 150.699 195.5 Tm 88 Tz (one. Here we briefly describe one of the methods called the ensemble square-) Tj 1 0 0 1 150.699 172.25 Tm 91 Tz (root filter\(EnSRF\) \(92\) which is mathematically equivalent to the Ensemble ) Tj 1 0 0 1 150.5 149.2 Tm 96 Tz (Adjustment Kalman filter \(1\). We use this method to produce ensemble ) Tj 1 0 0 1 150.5 126.149 Tm 90 Tz (results comparing with the results obtained from IS method in Section 3.7. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 314.649 52.25 Tm 79 Tz (43 ) Tj ET EMC endstream endobj 252 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 253 0 obj <> stream 0 ,,b6F 0`QA%!97KHj b *o0?쥍esm*AШ!DV/G-B⟨8뜧ҀCpтw:O6M҃tC|݋7w.}̄;%Sk!.; BPB,x_A}aR_ 70z?pNPN.4*}| ;nV V_q3mFں8K4ʔӣvo ^iҲMgy[H\f()!ˤ!AMT3)ۿ |S{ʴxTDT:YQ H:2ʨ[J 9Czg;wV/9rW/[ RgI &~0HP*m;]mfgdlTSvftnuʼn3FW9UhOC'x/ѥ12i#x6ġLHa>E wOK27dpWqWtn.d\ Ä)&|E(]aSZ7̒5S*\r#C^FQB~?9 ,Pٗe W@y*K Wq/=8u"ě+R˘@c}8T%"# Lw>)%Bg1BKqPJmvk~ƴwVjڞ| Ez(,V Hрʔ}?ŭXa0ScmFeBxkA#uЦPtpwG^YM8WHj>RY64V.&]:Ef _o畑YMW.qzz$m2'7Tӑ )S8N%=\eZ]P :a/w X|Xxte>٭A`ݚ LBD8e;j-;Z͋o= gP]ǥb4bbX p|Z~y0*.ԛz7;$F#+#0vYñjZU#=?[%v=wL08o$ F' BCuσWL'=[gQ8iVh"V-| WC kٴSAiP.f==n:!meR-._K!ɶJ͖Mjo3`frL mQט>uc{ʨqEm-)*`!zPՔB%HKtn1oj4`8&yLH|x::w7[CNVF*G*K+'OY#j,—LT?N&4%U h%-xک\+7:ӥ0VBfI /MF"e2Յ݌a!=:W HD{OB)>4@"KԶ&0l$00< 7u1n›{ng˸ b)=cs\+@R|bt}SsKAc50 x@m|75[u;GS3~@}t"ibGGcn? #ĩ֚X6iߵ^F()y.<j"Z5\iL֤Ώ9H&iYkKuT 7##={4ieM;#h[("PojXt#G:*B>VQJ%m~{ =_߼el$C"2Jΐq̈́1#0U0&&T?z{b5)V`䦻WBblr!OQoeHT(~bJȬ4 In[y莼B~$H^">H2S1e@ؤ_cBf h1 9Tj>9ޜ+َ۪KaH+Bq*7VOq.Q-񚩦mUf9q7]`d%i -~ӁC/1,,sr&8gPK B{CvO }z1G7kii|mn>xڲ< d0X#>*;0ܚ,شcǴ՝Œ॰5=Ӥ3ɪ#3<3ᙃ_QLE뻓Uc !2aiK,؎ӏiP-%ÿW6ޅ'řHP(+)br+rs.ndz/mPt©cY썽jάEj4lD'쭓{ZS=iVRweOP7Xw&t *r\(9Mwp=axg?tK1UX{iLKDVA9y ɨdĽrg74lq-!!kFpúr_Ux4֭gG &N#I䶹lxvv>|88]_.d\r9\UݯZ>~ۜ93F5V][P& (;ZUcJ bd;4 -M!{ezfYx0 s}ܪOG4GqiƉ&{h&p^)̀8qr*LmGJE;D~%Adgh-$/xIv#f Ffq.!2ImbL//mHYc6 qi<&eǾ)TTѸ \^Vچ s-(\^yS꼝csrj[yo/ Zuahlz:!FAD?g0 ǭ@D`!)\|o1g=$0z_{ 9Q ^ފ|UZLdDw5'./N؎bx+!')d,:$"Fo8i2D'l\j ѹte^#z  ~ʝ|f1VS=ʗs|2($;2V`Q5-#mi 6t|ߦ6&A*$Z Ŭk9;z/.(pcvKsIzM2,DVK٪1r_cvGlvR-` ' mLht 3` &0m8Wbx~j LuzW9ci?5*H4 Hk,!]+;lE 7ܛs!dÂL nEtG|1yڬ־fDi}ޭ~s\ٶ[}hm8B̊z/f"ש+5^wហSi͞NR'tQr32<5 kXKdm/SӘ3dmIybƈף1ޫlmKP\)3b=s"_E:bY͕`vNGOZ0Ӭ6VF>3?aXb: `[Ys})F@2wrq!x\[QզC}2 M*lŬ,*:φlPv5ƽ6 ϏFZ]$Fc{_|m铛VLB^}>q6iЗ8_mNEWq SmČ3Fhlf,QH>3XdWLApz! Px7OwZuM#SRxH7F2 ,Օ5k FOFnl2 M )= vIY!^ԣ5QՏbGG 2wfڊ';vS^±AwC#Ip]9Me |Y}@ojG|=L_ <+b3aL:)q~e=׬œi$ȧ(W"tcvehY:'؈n7pp(Rl&<%QU@asGT x7OކJ6~pSit7ROj&Bi]=;KOV2!s%PY@Do_)R:mqno bӆʪuoq/ASs.?'WYIa.jj_yZH!@r ǵXIO>ݽ!/\u" N7hYK*K9k9QS1g_   '-}*iw6#{Ƞ(~]GtaLI;z)!Rǔ^3οKzW_OTixb"bNNo{čZ/!&q?0f+gOBon<1nWUԪ?9 jNV΋%<b֦rӎֵ :z$jXJ zKz- A A7ڣ+;/IE13""u4E*H!ǥ"I ¨sIkS_526"sc"21{B>~ʱճڲ'/ű(ʢ7ɸ i5ğdTer?+gjϓ_WxK*sÞ&v2MQs2:$r'虐QlfW$xY'yCV`q{!la^)DVdzdDa#ոT ?EdCRaAu LJY9h1& KG9^֣ j'!;~m'fz1ӦOw7R~}p#'FK_dGnz' %!)ȼHVC>gĢM֜IC3;uǾ\gBmbVtp-%U7E# :TIW0 t$MeS ،:|+~qid%:kz0Vqq+n?n֑oҿL_m!"ԛV}[7:/ʶ6Mx8=] aNoAS!fĒvm%O\qWwJkt<_vP@?]F8zqʓ,b͆"MoV9mZ#L횻sl]]!wKڥ/_9l bk7$CF*:AZwŪ}?%9Hte8j~S:Xf 6.{$%IzxXq#QNЍ T"%d ǚ0tM,' j4#ΚSs_|WK_/I $)Wu%{3Am6BR<5wD m!#kk0ho G\_i&HJLʫ1uh`&}>OY;dV+t"jAJν>+eo=u`XiqZkBYMrjDIn]~"l,7"s̨dIIW/4Aֿx aÄO*>G/;W E;{̼ؔ\5NtPUh/M^&R,ԛFSx^6°q~JZ=7 k]lо`0Y¸21{_"lD͐,qS(ɰ%f41gز\?겝nZ$Ap7'݄*hPK:xO qv: 6Xu;8L6v/"gn7I)XeH7/Te p=1XeaO{Mx$5<04%[|7|7#=dV~p~щɍAb; ~T&qQwf&UTS|!x>{MCXQ1CHPNSiEcFFB[4/%1Ƶs!4B ġv++NKyO0 _/0Ѣ<=v4`??Rl/ NL ¢mS = + @V3{ov4{${P )m! \}тjX.6pzG'I^m34sKoJ] R9= &Rb<CE MB%Hl^4堟 h 2DlZ9¶cE]-HJg1;Eve ,LhPI]t 9ÊD'Щ+Z11Wd . zlR}}[Px%H/(<,xgPx0G=J\0sVWG6s83J-ۭt@e訷 ;>, aƅ<~tכInHSy]K{idޢh&&҅$DŽINF#_G2ې祳B^*!/G'a@ѷNÉ%G(%ETԜVYj2g#*_goAcrz*~o pċv`#Hl9"/h._{!̓x'hٔ0DcշE0?6ǯ1IoX:c9nsZ3O vD&/S-2DzBDƙ?* ٽ6:r-A 5G_%t&D3Z7<Y.1EMU,Ha2VgX_h7$M>ޑG8@0jh֪E0|hMAX*+/& :]"ݜn -dDJyg e-Svx._Q@{HS endstream endobj 254 0 obj <> endobj 255 0 obj [256 0 R] endobj 256 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 614 0 0 833 0 0 cm /ImagePart_2071 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 400.1 714.899 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (3.6 Perfect Ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 152.4 671.95 Tm 89 Tz (Generally the EnSRF updates the ensemble mean and the deviation of each ) Tj 1 0 0 1 152.4 649.149 Tm 90 Tz (ensemble member from the the mean separately: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 290.149 579.299 Tm 77 Tz (Ra ) Tj 1 0 0 1 305.3 579.299 Tm 161 Tz /OPExtFont9 9 Tf (=X) Tj 1 0 0 1 324 579.299 Tm 62 Tz /OPExtFont12 9 Tf (b) Tj 1 0 0 1 341.75 579.299 Tm 112 Tz /OPExtFont4 11 Tf (k\(S ) Tj 1 0 0 1 364.55 579.299 Tm 78 Tz /OPExtFont2 11 Tf ( h\(5C) Tj 1 0 0 1 393.1 579.299 Tm 51 Tz /OPExtFont12 11 Tf (b) Tj 1 0 0 1 397.449 579.299 Tm 120 Tz /OPExtFont9 9 Tf (\)\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 9 Tf 120 Tz 3 Tr 1 0 0 1 282.5 553.399 Tm 172 Tz /OPExtFont6 12.5 Tf (- ) Tj 1 0 0 1 289.699 553.399 Tm 590 Tz (\t) Tj 1 0 0 1 308.149 553.399 Tm 91 Tz (= ) Tj 1 0 0 1 319.699 553.399 Tm 79 Tz /OPExtFont8 13.5 Tf (\)4, ) Tj 1 0 0 1 333.85 553.399 Tm 166 Tz /OPExtFont6 12.5 Tf (- ) Tj 1 0 0 1 344.399 553.149 Tm 79 Tz /OPExtFont8 13.5 Tf (\)cb ) Tj 1 0 0 1 358.55 553.149 Tm 139 Tz /OPExtFont6 12.5 Tf (- kh\(x\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12.5 Tf 139 Tz 3 Tr 1 0 0 1 489.85 579.1 Tm 87 Tz /OPExtFont3 11 Tf (\(3.29\) ) Tj 1 0 0 1 489.6 553.149 Tm (\(3.30\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 489.6 523.399 Tm (\(3.31\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 244.8 523.649 Tm 110 Tz /OPExtFont5 17 Tf (k= ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 17 Tf 110 Tz 3 Tr 1 0 0 1 311.5 514.299 Tm 104 Tz /OPExtFont8 13.5 Tf (HPb.riT +r ) Tj 1 0 0 1 373.449 541.649 Tm 144 Tz /OPExtFont6 12.5 Tf (\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12.5 Tf 144 Tz 3 Tr 1 0 0 1 272.649 523.649 Tm 94 Tz /OPExtFont5 17 Tf (\(1+ ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 17 Tf 94 Tz 3 Tr 1 0 0 1 151.699 473.949 Tm 86 Tz /OPExtFont3 11 Tf (Here ) Tj 1 0 0 1 178.3 473.949 Tm 136 Tz /OPExtFont8 13.5 Tf (k ) Tj 1 0 0 1 192.5 473.699 Tm 94 Tz /OPExtFont3 11 Tf (is the Kalman gain as in Eq.\(16\) and k is called the ) Tj 1 0 0 1 457.899 473.25 Tm /OPExtFont6 11.5 Tf (reduced ) Tj 1 0 0 1 497.05 473.5 Tm 89 Tz /OPExtFont3 11 Tf (gain ) Tj 1 0 0 1 151.699 450.699 Tm 90 Tz (and is used to update deviations from the ensemble mean. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 151.449 422.85 Tm 95 Tz (We can see that in order to obtain the correct analysis-error covariance ) Tj 1 0 0 1 150.949 400.05 Tm 91 Tz (with unperturbed observations, a modified Kalman gain, which is reduced ) Tj 1 0 0 1 151.199 377.25 Tm 92 Tz (relative to the traditional Kalman gain, has to be used to update the error ) Tj 1 0 0 1 151.199 354.199 Tm 94 Tz (covariance. Consequently, deviations from the mean are reduced less in ) Tj 1 0 0 1 150.949 331.399 Tm 91 Tz (the analysis using ) Tj 1 0 0 1 245.5 331.149 Tm 123 Tz /OPExtFont8 13.5 Tf (K ) Tj 1 0 0 1 260.899 331.149 Tm 97 Tz /OPExtFont3 11 Tf (than using K. In the stochastic EnKF, the excess ) Tj 1 0 0 1 150.699 308.1 Tm 89 Tz (variance reduction caused by using ) Tj 1 0 0 1 326.649 307.899 Tm 116 Tz /OPExtFont8 13.5 Tf (K ) Tj 1 0 0 1 340.55 307.899 Tm 91 Tz /OPExtFont3 11 Tf (to update deviations from the mean ) Tj 1 0 0 1 150.949 284.85 Tm (is compensated for by the introduction of noise to the observations \(37\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 123.099 233 Tm 129 Tz /OPExtFont5 17 Tf (3.6 Perfect Ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 17 Tf 129 Tz 3 Tr 1 0 0 1 122.9 198.7 Tm 92 Tz /OPExtFont3 11 Tf (Given a model ) Tj 1 0 0 1 197.5 198.7 Tm 109 Tz /OPExtFont6 11.5 Tf (F, ) Tj 1 0 0 1 212.9 198.45 Tm 91 Tz /OPExtFont3 11 Tf (there is a set of states consistent with the long term dynamics ) Tj 1 0 0 1 122.65 175.149 Tm 94 Tz (of the model, in the system with an attractor, this set will reflect the invariant ) Tj 1 0 0 1 122.4 152.35 Tm 97 Tz (measure on the attractor. The probability distribution of states in the set of ) Tj 1 0 0 1 122.4 129.549 Tm 93 Tz (invariant measure is called unconditional probability distribution. Generally a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 313.699 51.299 Tm 80 Tz (44 ) Tj ET EMC endstream endobj 257 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 258 0 obj <> stream 0  ,,b6 {Mf c"BJi!%:Ɋ0VHW-ac3\`moX|u@nqk:b9)IZv=bmzR1l YQ.T[n["ub̔m- ȳP"C+^PcBKdǐnew˪8g$[c%vܩuܰiAp4+x1W8`+|JGLU{ۄo_ ^wI&H[SY26%k}v.sҴ9gHBv'  $C)쾀^r}F vkvea5BZy evkUa(ջQ8vhZFIf_@'f"1BN,2رTW|5zݯu/#xFK-cX8VLwIr*84 Ys13 ĝjJ믯=鯅%0cp.dш!HxYP*`MjWs]IQ\'Cd!Q?Mb ]dK,$'l$I[|OH ,3qW>JZ7@C=v[yTFZ:#Ça(HUwC/3:oDZ8rn2Ӫ;Dw ǘcce?N ~_Q .F +Ր>8Z/w̜E9 nˈu|eZ@@YOi[#@apuN 쭡 C r5Hh/u+K qu;@9?3kwzL|e!F*"X2o.Ș\Set[z37pA3NF)2(ʪr447Ų kg)s"hPN#flU1٧hʽĹ/w^Ҳ>cW6L4|#6kG%&7Zѷ>K}!ϗ!4"ܻ0曽2\Ⱥe6dz(<[ dWl60z][r@t%Էja+coD_j`X:B-ͦ'w/GI6Yi|A0%1MAom+mߋ`KyQeakNF A/Naݠ]#ķ \5o Z m#t/doh~+Mx 8Y-uWhBpٕ=qSc כ0ک-|kj5(X*)ÖpB/n0[gh~yr4%Dr&T֪-)&yD髥}L{oh X_LQG*a 3P{veVڅLnSXo! ͹-u(ĄmfB'"Lasm& U!n8zhN`'n?֨7[Z~>Bo]U@4N-b|toMy\k+Ӌ;['S 46bP#,isOν[a'J78߿Ա{-:wgw|3)Se2f۔] ?#&T%qf5Up&C)9Oy]3"rt$.Pc㊇ &m5(" C (E1 aV2-k錃ꪴ,:8e.,gN!O ˅&ȗ~:^LȂ7X$:JC2/@|A(.U] tH{}6rlJ}ϼuY:Љ*ٽϾ:G^=*. ֙n EAJRq <8GC/7mE4\J,!~ Kv8jau;KDmQrP͛|*gg d.+J۱ C%mS U1A^PkN7]DH\j 苙aVw%cV@+uQRK߮pD T꿰 ίwtGƎY)%M8_3RXTomǟ-KR>5x i -TRv|3r`֧kR{: E&Ej$ ].U$TX?E!2j*^UĥsAuz$iуB ia6i7ڣD6F֙+ע_ ٻoqI;:LꉀVjO@ 13b$&h;-뮺*!T|ZdG)Xt<eF CtPsrP >OB3sB8r X Y*~g𼸄@7^we{ZnX]P3Ay+@sĻzWb cN<Mzj'CFľ? _39 DAbkS0fyS-ND^{@ܭ:BSͰwv2wEn=P._pQڪ{oz&xtjwUbʠ@>G !~zl<_"Pz.$xLSˣ-X li/\ I4Npk,'!ibrKd?WlB¹CA)oeIoӲ>λ:ML:Z/d_>zg8~-*`q;} .\q*N e/~b*<8zGkXo Љf7&X{Oywrm0Jٵnz<{_~pX1o7V!\p҄ <%#f _׮ Rxб Njy>u=+`#2j 5a/(G6'aASJb 31WYΩ" ~K%uEa5Ή2#?+0*i>dxMv"ssś1jӾ?L\'9SH,u4fa]I}i@ 7&qXUSa./(`9+IS0%qlVId1gw~kp(:{s N#ZGP+Y2zh`vmgahzx:[#(ysj<4Sf"8:~c4 @El~ &F$h(G]n;(=7%C^B3ZL9m2ܙ"걎g G}^J/m:==\rFhar3:Ŏ.EVP!FhMhzMcQ,"\zjVWnX@a~_@1%枱_-&̸w@B?+2dxxrC@9]*w c+>N&֌X"yܔb+2!-1KnCˊ[ =2?HZ{䖘\X "NOxZ rS倲4Kb+ݠ˜FEΐ9Yq8PP |'|O|!M(-V x$N}V)s7`/ 5%:vnk|wWt(Jcfy;`m(seaUSEf5<_hv[ xWG.s&~0>QN`@P6.dڭNm/xe(ɿ)be+SSwqg AŃA=0#c) zֺK 'z6@N /D뙳h'ϐ0_ި|eMA\W1} 0ohUz*>zs̥. P -8~}&-{߶?HچO{uP)s[RU’=4htb:8}+)7}B+޲d7NvÿJ1wT[oBSqݎ_b^3L.AbC~1VBP):U]vȂHc/݈D(hP[L ZvO9OL.K*_%[y Mk,  cnlbAC8壂>)F fɅgvG1{OS9ҡmCxU#Is!WX:A5-dܖ0|pZ+Hdt`wiY:/>"yK)oXksEյ>" Y%%E(r?pj+5W/q~IlE!8š!dݤ&x3Ր1+&)Kf;CU7 ' 7 -L,y5:7X&\H?3(*m…F 6izB7q7,BV,FK #f!yZ.󟸼n[d\ۥp%>P. Q[J^ބA.03NhC/'$Ƈ k57RS47v(! dpLJ\[0{OS,`r6O郉 \?/#?gIl&DŽ瀜29)w1m _TSpim)1)7ͷ՜i RW>}\| }&gm]P V޿}NdDQnoQfؑ m !pZ*2,5/K2uyGŅ' WC Cܔ9? y7Pae=,TQ#Qzu}8MNL勴@&.qZyġ*~1YxC{ 3s!I e8M $H؀$ K $r=fP!%~\Fdk1dt;lAD7n>p^ ቭeNW-C!g~$Oh ]W?ՊGEO5 t~ށ 15\q} *i)h$I)v8+bG#C8>^d* -L'Z8s7޽, !%{ik "c6u(!&kԥ1kM8C^?mV5?t]O mP}0nY$Y7௱Jk' Ќ=zh qc\l@ŗS>nXnG΍?lW nn鋭tm]t+[|ۏe.$)I^6A0BƖ`-ç/Z*(%)W^rnWa%B͋e-Ri>PNhdʂ۪ 77!Z*Gd!+`3H7eK@&B"<~s8j2ŀői҂dzLvd*MA@⃿oHTaS_ mdpKc>=etY$a֬)7֩(oOr|D}5ٌDh XXO¯$rid԰ό[_0oӓ/*w}a P_ao-3mV;Kh^N v<@OxOaLڵlWԠpS8^e9%c"\N m{8)!v47v`DgQ䬟XiK/` Zk?s~FM_" PiFVބƅfulɁMLzVd( ~ȠeSLU&QGbta*=6 B&8VpWMXe@ZWfOdD7XEl΃mXAob+ȩhGϘZ>4U,<*{poNg7ſL/=vh;ǽ'5Mypy~& ZXrڳg[yUQB03 ݍ1 ewC "qLMHkM:`|M:=RЧoF+x q1j{l|=25ʊ=a.\d-% }wb޳%@W㳼epiCMQFY_Ajfȶ1M^ra?.AO 5%cd5X`F!d\$!1K\-]% ,asj|'!%@t{m\&E]AO~3{E-I"5z]N5( 1U,yx> endobj 260 0 obj [261 0 R] endobj 261 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 614 0 0 835 0 0 cm /ImagePart_2072 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 396.5 716.45 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (3.6 Perfect Ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 120.5 673.25 Tm 104 Tz /OPExtFont6 11.5 Tf (perfect ensemble ) Tj 1 0 0 1 207.849 673.5 Tm 95 Tz /OPExtFont3 11 Tf (\(SO\), is an ensemble of initial conditions which are not only ) Tj 1 0 0 1 120.7 650.45 Tm 93 Tz (consistent with the observational noise, but also consistent with the long term ) Tj 1 0 0 1 120.7 627.649 Tm 97 Tz (dynamics \(as in "on the attractor"\). The ensemble members are drawn from ) Tj 1 0 0 1 120.7 604.85 Tm 91 Tz (the posterior probability distribution of the model states given the observations. ) Tj 1 0 0 1 120.7 581.799 Tm 92 Tz (If only one observation so is considered the posterior distribution of the current ) Tj 1 0 0 1 120.5 558.75 Tm 95 Tz (state x) Tj 1 0 0 1 154.8 558.75 Tm 68 Tz /OPExtFont5 11 Tf (o ) Tj 1 0 0 1 158.65 558.75 Tm 92 Tz /OPExtFont3 11 Tf ( given the observation can be derived from ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 239.5 515.1 Tm 101 Tz (p\(xo I so\) a p\(so xo\)) Tj 1 0 0 1 347.05 515.1 Tm 56 Tz (1) Tj 1 0 0 1 354.25 515.1 Tm 94 Tz (\(xo\), ) Tj 1 0 0 1 375.35 514.85 Tm 2000 Tz (\t) Tj 1 0 0 1 486.949 517 Tm 86 Tz (\(3.32\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 120.5 474.5 Tm 88 Tz (where ) Tj 1 0 0 1 153.099 474.5 Tm 104 Tz /OPExtFont6 11.5 Tf (p\(s ) Tj 1 0 0 1 179.05 474.5 Tm 93 Tz /OPExtFont3 11 Tf (x\) is the probability density function of the observational noise and ) Tj 1 0 0 1 120.7 451.5 Tm 94 Tz (41\)\(x\) is the unconditional probability density function of x. Figure 3.3 shows ) Tj 1 0 0 1 120.7 428.699 Tm 99 Tz (an example using Ikeda Map. In Figure 3.3, states \(black\) on the attractor ) Tj 1 0 0 1 120.7 405.899 Tm 94 Tz (are consistent with the long term dynamics of the Ikeda Map and those black ) Tj 1 0 0 1 120.25 382.85 Tm 89 Tz (states that inside the bounded noise region are members of the perfect ensemble. ) Tj 1 0 0 1 120.25 359.55 Tm 97 Tz (If a segment of n observations s_) Tj 1 0 0 1 292.55 359.55 Tm 93 Tz /OPExtFont5 11 Tf (n+i) Tj 1 0 0 1 309.1 359.8 Tm 162 Tz /OPExtFont3 11 Tf (, s_) Tj 1 0 0 1 339.6 359.8 Tm 51 Tz /OPExtFont5 11 Tf (1) Tj 1 0 0 1 344.649 359.8 Tm 67 Tz /OPExtFont3 11 Tf (, s) Tj 1 0 0 1 354 359.8 Tm 59 Tz /OPExtFont5 11 Tf (o ) Tj 1 0 0 1 357.35 359.8 Tm 96 Tz /OPExtFont3 11 Tf ( is given, the perfect ensemble ) Tj 1 0 0 1 120.25 336.5 Tm 95 Tz (of current states are those states at ) Tj 1 0 0 1 309.85 336.75 Tm 106 Tz /OPExtFont8 13.5 Tf (t ) Tj 1 0 0 1 319.899 336.75 Tm 99 Tz /OPExtFont3 11 Tf (= 0 that are consistent with the long ) Tj 1 0 0 1 120.25 313.7 Tm 92 Tz (term dynamics and their trajectories backwards in time are consistent with the ) Tj 1 0 0 1 120 290.7 Tm 91 Tz (sequence of the observations. That is, the posterior distribution is then given by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 225.099 248.45 Tm 150 Tz /OPExtFont8 9.5 Tf (p ) Tj 1 0 0 1 232.3 248.45 Tm 95 Tz /OPExtFont3 12 Tf (\(x) Tj 1 0 0 1 242.65 248.45 Tm 49 Tz (o ) Tj 1 0 0 1 246 248.45 Tm 114 Tz /OPExtFont3 11 Tf ( S\) oc ) Tj 1 0 0 1 279.6 248.7 Tm 356 Tz (\t) Tj 1 0 0 1 316.3 248.7 Tm 143 Tz /OPExtFont8 9.5 Tf (p ) Tj 1 0 0 1 322.8 248.7 Tm 80 Tz /OPExtFont3 12 Tf (\(s) Tj 1 0 0 1 331.449 248.7 Tm 59 Tz (i ) Tj 1 0 0 1 333.6 248.7 Tm 93 Tz ( I x) Tj 1 0 0 1 351.6 248.7 Tm 52 Tz (i ) Tj 1 0 0 1 353.5 248.7 Tm 60 Tz ( \) \(I\) \(x0 \) , ) Tj 1 0 0 1 389.05 248.899 Tm 2000 Tz (\t) Tj 1 0 0 1 486.699 248.7 Tm 101 Tz /OPExtFont5 12 Tf (\(3.33\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 101 Tz 3 Tr 1 0 0 1 120 205 Tm 90 Tz /OPExtFont3 11 Tf (Figure 3.4 shows examples of a segment observations are considered in the Ikeda ) Tj 1 0 0 1 120 182.2 Tm 97 Tz (Map case. As more observations are considered, the set of perfect ensemble ) Tj 1 0 0 1 120 159.149 Tm 94 Tz (becomes more concentrated to the true state of the system and stay the same ) Tj 1 0 0 1 120 136.35 Tm 93 Tz (attracting manifold as the true sate. When n approaches to infinity, the perfect ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 311.5 52.1 Tm 77 Tz (45 ) Tj ET EMC endstream endobj 262 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 263 0 obj <> stream 0 ,,b7(A3k,2Qw{gvoLT>[iQGD@*rЋrnH:K4WA5Ci%)`?_d9U.{EcRjǔۅ̂7 ko5_! N#1)yTˋ?ٻ,pTоsC`Ya%U M)]Hx$Z*q3pgHL>y$Y&$0pLg7uĥU&z-Xea;vݢakusrmZaeFW,!F8{ z t%$(⌅Jw$G绔ƭ 1]2)#85Hb1>MWd5hiA& tG'W_'_KoJ,L{O+INrcHzQ?+# bo~?K'2w\kOI/"0?ro%98g#S8"J톳d'LWc i:%4]ir‚z錫o1nFZs/,>?X=b*/LZSQCYֱ?SJtsx.'QRN^SgHJQ@١9!D:7.uTH h"YYqj@1HMMAI}aoe0LH$CӃl}:>ճ/' px5#uT;[f s#RIJ9]7-Dҟ2=TDj:S!"QchUfm .F˳200JjbҢLű&U_z<\`0G6M2Ә@q+uMA?kN^ԏJR~e\%% D^nGik7Q 6ٿiLԛ-QhJUzwMF<+,:41VGKŕkLmR&61o* 2sr3ϊ)x%Y;{rScf9z#兕j-ɰOZmTƱV댔1S싊@9DR+`xptLTAJ-Ӹ VqrZ䭠@,S)M!;0C*U |Z}uTM(KiW25yWvZɢ~l4?~[2i7Cs+ kݍ#G\0v`::w3OW*[9N FJu "Ά 5t~@&Too8ao⤗E>j`fgˆ>A CT7lDMKU'z*8?)D$P|?4&O5}nѦHظ6?;OŖ9 ]ܢM]sG2P׎K+2=R4 Zkq d:,E =a} %0/ ~罻.HٖODzW mf!C7=9˗GB e(PT~s$]*؅%,LЗ@Ts!C5R쬟7:ybh EHV@hj@)>&Upbm2De1HQD(˛&Pbz>VTMq56Qc4 U1Qs'wwFv[w=z,{%;I:GFբq#j5>7*ikx;Je GBD g*ܼQYī_R;&[VƘ4zᦇf(F˱Za9p;lȶHZy)mչ Be djew\kZ}=CFlA~\UW,-? W՞oikDUZ"%C*}qQ^nϞtL<ԛV)>Xh n/{\1dMiho} 䫪dB^472x$R~{0lqN,Fؔ3 C^^9:p_CX@>44ܕ%ы848?)xi3^]^:z @dvɣ#pP F)Ylj*49EQ"Uh<ɴE2Z@c(Kzv϶92xVЧ}?3(/ q85C 0oe.:3ZgNF!blrs@ZNs_5$(pֲ[P% I!0G0# S7}}@qtۥ)x1'Aݏk1r=c?$uف)MiHc4OM"gW zhd{[d@|3'wS?:E>'4ٱ+㲫aɷ*ƻ6t7ΩЊD۱2HذQD"l[Y%VP뉞PXf0=Y"h\BΰHҵ~bfI%|Xs߅_ fZ?r1 Avմ,BA'4X.CuV[5rѬ?YJm2Gփxȃ6mZSyR2rfx{xA8z-1Tl@it{KCQA;j*) ΝI~^'\pra,r"JMI/jص3ѵMry]8[!(?J+lsg1~e@Ƶʏni f<slϧvq HKEDWP^gk1 !OlAhx[ ΌA0ac] ޜ_ϓc ~M1̽,{ph]lYi;-eP"δPs.G7ҔН^c 1f+ R$s#.32 >Ba߽|R?rSzMhfbmszrcdN@]&:#Loε0pÝڶ {7J ͡Vx,msX"`ɓzR%9^QGmM?jd,t6+Voңn(:&&r㥱62|l=JA̵Idmc඘UQz8ɸ' hR7>vUmHߒ({OG! Ak?Vwf%9kOĨs+) oɑ;[.\+"]AKN,XP:9%v<FGܫ;vL=χ? KHW::ܘJv4_-zn)~x`}yquL+ c|LSW5{Ve M2jYv*'OE$ -*i@;(qnIj-HKꀢv$4!0:=Y7?!1 *!q<ٺ~{8r փ$T_L6$# 1rl^C*@xEO'홾u64feTj`X4(IR|5h)"0(͸;(-Y0(LV_{ki(o0$h81PB*XIYpW%p3AZQs+Yy-:xr)/dnq_KzdA)JdUv,k QVn\[>Y)Ar$6.gvBfk^C:ߨnaXuݡnm@thQYgJеOMuCVJ, if@X REvqo&E/z5/k ҁyͪ%p@]x$&&,#Ipp'"R5B(fTŸ|OӜwَ>Vb?Wb+C\;r '4)Dkp+q F [)e:MmbǞMJa3-`nTZ1ջ%sOh%V^2avMFqaefUV%/'f/9!YԚfa( , mdƣ f oz޹L 6:%?|x65;`vqF:  2'Ã|#LaPd3fpcNdٴķ+S)wnuRĂd՟s7z/رK:/m5kB>ɭN@~22GոlTAsߜ]6 դP^RU-Ǘ0ezi;6.(]#&G|BQ:QekuOAV0N: !U:nԐ.1Jʣ!&6 X~U~9 YLo`XK>:ΏA꫹b>ލ-Gii]р]C en . (b4?C v]͂gրxa&$sCPYaFy a-_%K3{62Ēho͒?ꉴA᯸(BJ^.u 1yҋ{?Ϫ|T{)| T\ D>!<\ᔐo)h-w7Y&ՉQVǩ*X0}0Pʲag;QT[l6x>UD6W!L{t]{50 G:SZ8|R H{fnq L{9o{zES Ћ{}uΣ+z`5 eb0UC$+ 2#@@J.6l3Me,)(ZmsJ=-,gsswPm^K=6PBPV=2V7!qeWacXu[2|}"z:⫗`tIxeSx(;F/+i ^*Ka,/~ˁ Jծl^9cd1"Ң <Ţ}qt񵧲rԼ/MrBɝ^eI0Y09!gU`y3Qy}ia'^3拪Q"53[1rx8g+~nbΣx#C`_[𞄃,IÂҴBN`5$xv1tWG^BHȳvپl:^ J`gg`@I3X@ {6u<ԈF:_澉rcݥ0^xA( ~HC<ܖfLտpp5HNMy2z>HwA a?37~*?vAQ mZ3vuE4׭*l@G?$0>n ØB*|.I[ÂL%<:/"x fB;.ĹQ-N'}8+rx!LkD\p1THw$sA]e1 G1вo2mM̨%q<:btzɦ9 1rs"L\LI DѿTZpZ*Jr/50m엎YXbv!?+<'~>H) 咻0$1HFp.dӴzUBSAHEjUw R٬mh4>y,Jr@&D,ر3.\ rӳ%kzYWʋb;0QJmPAoxdkjF: Et*d퀹,R~s",.n8:3 i&/! /1rhf Õ?[]S0߾8#T4PQ( &Ѧ6᧊ÂOx L!㇜nD+֕TzQ\W, \3gS[{ dݖe!EAcsK]XSplOy#[0NĎo.e0Ƴ(9G\%hu Y磛8Qy1%DbD*UF J{J#C@Di2 3ߦd}G>n࡫KtM#.+b֝? qe;,L\-`P:.2܅I%d(g,sl.?~νx {1b8 %>1JÌ5?+"j"[@Qd%t8'1pI俍cz,W~~WCn[oAn~xnj%p+ \#1c i=9Wumf S'K.dZbꢤէE8;vr=/;&ͣX_F)m0ƾh9K%#HtC; {@ckѓj%H=n:W@P&x9hժ>;#1]Tն)h}…CEcM,\P*,(z~ْ_ 9LN)%#x47NC>қo5d\8I$V]\[x5h̆=8[cҽicȡUss/|)jBJ*VGoO4Rտ` &EW,ZyYzpweog~@xNbe"RB~/ΧJcx<,ccX\zgT*pi jѭq/(.]-}i,:O1vbH5GK -@'"IVv==NbO>2+9vj>V ~6#&J]2;#X} endstream endobj 264 0 obj <> endobj 265 0 obj [266 0 R] endobj 266 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2073 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 192.5 495.399 Tm 86 Tz 3 Tr /OPExtFont17 5.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont17 5.5 Tf 86 Tz 3 Tr 1 0 0 1 227.3 494.899 Tm 85 Tz /OPExtFont11 6 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 85 Tz 3 Tr 1 0 0 1 302.899 495.399 Tm 80 Tz (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 80 Tz 3 Tr 1 0 0 1 154.8 605.1 Tm 81 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 81 Tz 3 Tr 1 0 0 1 146.15 590.2 Tm 95 Tz (-0.2 ) Tj 1 0 0 1 145.9 575.1 Tm 97 Tz (-0.4 ) Tj 1 0 0 1 145.9 560.2 Tm 94 Tz (-0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 94 Tz 3 Tr 1 0 0 1 145.9 545.1 Tm 95 Tz (-0.8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 95 Tz 3 Tr 1 0 0 1 145.9 515.549 Tm 94 Tz (-1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 94 Tz 3 Tr 1 0 0 1 360 660.299 Tm 99 Tz (-) Tj 1 0 0 1 364.1 660.299 Tm 84 Tz (1.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 84 Tz 3 Tr 1 0 0 1 360.25 627.899 Tm 93 Tz (-1.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 93 Tz 3 Tr 1 0 0 1 360 595.5 Tm 95 Tz (-1.16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 95 Tz 3 Tr 1 0 0 1 360.25 563.1 Tm 99 Tz (-) Tj 1 0 0 1 364.3 563.1 Tm 84 Tz (1.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 84 Tz 3 Tr 1 0 0 1 363.85 530.7 Tm 93 Tz (-1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 93 Tz 3 Tr 1 0 0 1 399.85 712.1 Tm 123 Tz /OPExtFont2 11 Tf (3.6 Perfect Ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 123 Tz 3 Tr 1 0 0 1 128.65 457.699 Tm 111 Tz (Figure 3.3: Example of perfect ensemble for the Ikeda Map when only one ob-) Tj 1 0 0 1 128.65 444.3 Tm 110 Tz (servation is considered. The observational noise is uniformly bounded. In panel ) Tj 1 0 0 1 128.65 430.6 Tm 112 Tz (a, the black dots indicate samples from the Ikeda Map attractor, the blue circle ) Tj 1 0 0 1 128.65 416.899 Tm (denotes the bounded noise region where the single observation is the centre of ) Tj 1 0 0 1 128.65 403.5 Tm 109 Tz (the circle. Panel b is the zoom-in plot of the bounded) Tj 1 0 0 1 385.199 403.5 Tm 11 Tz /OPExtFont3 11 Tf (-) Tj 1 0 0 1 387.6 403.5 Tm 107 Tz /OPExtFont2 11 Tf (noise region. The red cross ) Tj 1 0 0 1 128.65 389.8 Tm 112 Tz (denotes the true state of the system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 112 Tz 3 Tr 1 0 0 1 128.4 357.399 Tm 106 Tz (ensemble becomes actually "perfect" , that is the ensemble members are consistent ) Tj 1 0 0 1 128.15 334.85 Tm 112 Tz (with infinite past observations which is the best ensemble one can obtain from ) Tj 1 0 0 1 128.15 312.049 Tm 110 Tz (the past observations. One might conjecture that this perfect ensemble is the set ) Tj 1 0 0 1 128.4 289.7 Tm 113 Tz (of indistinguishable states of the true state. In order to avoid confusion, in our ) Tj 1 0 0 1 128.4 267.149 Tm 110 Tz (thesis we call the perfect ensemble that based on finite number of observations, ) Tj 1 0 0 1 129.099 244.6 Tm 92 Tz /OPExtFont4 10.5 Tf (dynamically consistent ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 10.5 Tf 92 Tz 3 Tr 1 0 0 1 145.199 222.049 Tm 104 Tz (\(I\)\(x\) ) Tj 1 0 0 1 172.099 222.299 Tm 111 Tz /OPExtFont2 11 Tf (can be known to be very complicated fractal without being known ex-) Tj 1 0 0 1 128.15 199.7 Tm 115 Tz (plicitly. In practice, to form the dynamically consistent ensemble, we simply ) Tj 1 0 0 1 128.15 176.899 Tm 110 Tz (integrate the system of interest and collect the states that are consistent with the ) Tj 1 0 0 1 127.9 154.35 Tm 109 Tz (observations considered \(80\). For bounded noise model, consistent means within ) Tj 1 0 0 1 128.15 131.549 Tm 113 Tz (the bounded region about the observations. For unbounded noise, one can, for ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 113 Tz 3 Tr 1 0 0 1 316.8 61.5 Tm 93 Tz (46 ) Tj ET EMC endstream endobj 267 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 268 0 obj <> stream 0 ,,2jJ7->($7K+2^ m^7Ԃ-`@5YFVMw4njXNn_8]9Ё-+7zF^wYahϓ-efߞGegVx85kPkL$0JB , x-ja[ʔ-vPX<6;v!0WR19;ʲ& Nڢb&?ڹgVڍ<[1mlh(_%^Og3v:U,@6`>ҹpaKU+pa_rEuTCO;fq9wOlGYE'XQ嚬;'˵rm23 : ((pUvK5EGA'޼b v௖yO㓮PvA5ӺrĢ. 5h_4zI*1V:Izf)} ȅg7x ?T8h@1y (3r[֕\ +Zl`45Mzhݼ'ڨ~H9 # `OAʢ+e?G¥WOSD?Ȕ[w (8QI>8-pĈx:佀m"ܱRg+< 726Da?^"AJw+bwf!A/?Z(R0`l^iZ e @+ 6e5 _ | Bpmyid=]j#~  yCه}0y]mAѧ=U(|TYCgUN= H&"LTϜP" 0LxW_hcȣ%8P7q1:jlhBc!Q/8lb7)]=o3lIXD Y5CՁ(T/"0kу:HQw"qJ^-Cx,itCV].8R N1xcUAɽYKiY?ڣLL;U*D7nk{jX尶x\uX}C.o]FJǺP gt QM5sr=L`f职7d7T $.&H1j~">; DK(<O 6?srDy˜=i&m[? U=gA!sr uQ%zYQRT@:kFp6)JPz\fZ=YAyxI2YE/dj4n׵XrJq9xN9BeB.5[ssݷY */zv<9yǏ>3ٳ09ί;:špHñו>ʦ=܏ų< jZ!؂񊲤TC@efb5&O0TM6s~!9}Y^VRyLE2 {͕(.p9);FMmQp0  =}Bjb>lk3)4 dk]=їs$,ZT׾B~:w4"@T#C ;".,b1s8uXDe8l}8E_gD<5)z-}ӈ4ಆ>(( ePR:E-k]⃩VmWB9F$Vriuz^kGo)2|B>K`3Kq*1E\:\?E1\)זi ZzyT\]Q`$-ۆ@'ʳU ,Iۊ."c0,D<2мQuM?w0!F`nV;ZҔ-3%ڌ UŶA$74dMl7%oAԆ?*=v";bkN'- hy|YFSJ#v[{&V 3 r Us#erəc,S(x*NX\){(mvlWFM % R[[48/Ac'o=)d V TL(UU@bև5ǔSNthܨH^cm`a]x^?nvˈvB@eG5H ^:uCSOXmN%4<Ѿ{̗%b1Fh? q7:f~n㩀kDm7F5(XB-#~-{P2:?#{3{?rz0.!0WDK|F Ey6϶~7ֺ2%n+*<ǵAVj+r"3IXdMl;~|&%c5Nt mFہq]Иʲ ~PT5-z:KD1jHD5[٭ pT:D:Mue>IkNޞf 8f`s.)wQ,bVd(v=vDwP1X>t IY*KPՃ3_8'7=7LΊAft/.ɭǼ)P\F[>y0Q 5!vsna"^睰 A HɊA%/5gAP 7MppV;yUgޓCKyݡ}S 3a=c`#eM><&#zy/{HwNVqtяq:@v|7QC[jA`W@Q%Ͻa)+ybfS\f/HɌy&2 ]@M(+ 'F0 P5rL%E/ڴh~eCg_9?]*O0q}"Wռ! `cn4J(,·TKz꺴S3&׀uOL0 j%@2JQcx#oԫLLB]^ [8OrkO;Km:s鋋`i^ެ[>0ΓªW9s]">3˓^ zln zhy̛mnjzո<Ȗ]ߥWzuFHf$ߐD6 9ACkN8'AzxgX ʽBNT"{KUT-_aeGK$si"Ψ 8h]SvLIw19;wxdž-& (uL|f}C<۶ٴܲѢJU<9q{&CW..zzkހgeͧ08:\ D&3‰'ϭrhZ_G~% U@(=v+ij*$%R9gEgvhĩK̦+9ܱ^3Z%3LGKW^Np=pMuC1(Idƫ4?ͺ 0쪭+1'ex-, _<+`psɄd7m).|Rqqs Yo)9p``ϯ JFXBbFF_@"]6db[vNBN{Mlá:mFG_R3,l5%kHYWyBnI{hg~jܾ3cq4q&XݙrM}xʼn'r*ɌQSX)ị&{BTj5_1ցڮ D)*]+g _gw|ǰS}//)>(֒< Tp.o8-N(<0\zTdfC(ۮMoA|E pxr˱Fw*RYYr\q'yɂt  Yil΋œn0q*4="^UcQm rD=_v/?4]XD@if!\z:هޱ{u_*k^aQjH%Bf^`Iuf2L u89`x3М!hr86[gu eILqr  PsYf^eAp \T'XEM|in_~BwJ}<&tO&:;`ᯘ׬"fҠ6ʣփRIii"g6ʐ6[FOWՉjJyk˴DZy/Mg'!pMK,[С3+EŘ#7'?$f˱ $bF넪n'tSK܉<{1zjA ?_q&˵{p1sYP,gq` nE!Y <2CF0OB +Xᔐ a-e `k"[h|pe kT{;hiua[,'3aY#:"G~P4Q~e6R;SlU,sC‘Y7VuRuڀYYOM8g)38su_s3:ȱ\SQWtqGkO 1qSQyNJ&bgxj?,;Y۴k{ObUZK0přZ 䗈_x'[>ğ=5i-pEKqͷ Rn ʍ`KSQ j*V^jhOɓF8s7,dˢc/ #`L4e*0GzeP8q,#`LT9}gxjKOwACtP][Hy9vhn}Qe.qNj3%(vN|IFZӎߨ2VU5DӪ-?7JղPWLx2 ~eny'LAnL g0ؘzFY="{; :~h?6a a_ѡM*OX-1U4& xJ'@^z!m-p͍)e#h"c[x:>ʙ}ݫ=<`_șhqzd%K3kQDC~º2t,';V:U|LdTv>%ʗOʎ*蘛U㋆g!CbM9qK u/LxC# w2dT7Tsc JV HɍKȭiR&{8հI@+ɺսsjnE4t9 hW<:DfBw&.2ad_xvI4RF6еypXִ"2>Tr? odpR6({PɩvyO+P34,FuCc+Xcצƣa_{`6]Kԁ{Š} [.,+'+(]d$:IQձUB?Y6 ܡ's1uk36@{>wͻh=-ɾ1Y;)\ ""oQ7Rچ>ߘ԰ nbgA|Sh@pw=@]coo 'hksNbߚd||ӴJ=('xqD%Q3w"#d3]E<H%]), QΤ --{a4b/߭ B"Jɾ=хB=v ~)XphpRe u #\a 9ΦHWV|f}zBeN݂ATʐ]Y>ǤsTR0U'OY#eGݦj9Df\_ X ?Ɛ"}gl!gˢy}7{ȪJ 3DR/"(ъa ϧYjnUa (ʣ=/?NQPybcX Sz\߲ԖPhPv^sO<&=1|38[D;Wc6=M&\WŖq# K0g"`MnDa,y|$dڡ-F062& ȝ\BaN @g6wW4s M ];!sziSGTW֕µY^X8=:Que$Hޕ0k!,~g|/-m+s|g%\ >xZSW ]0rqu azNgHDW]xZ`_70-apg"ﶉ|.^9OS{_PU $۲΀ ՞ =KQSIL B Q*YLIz?GR[#yԔAZ`vUzK!L}Lp:&_a]pcl N!ϴX/Qa`a'IkKws$DK*Օaɨ۰$'m`ąU YAL۳MC }K@+G71WḺ.(7`Tq&*rGidK#%<]>Du1ӭ F *jN9ةmg2ܫYSrG M8#t<M 09ҏ{VR,Eu|sΔAwɮع\=T-Q,V͡ `qe@+p0pzZ?cfoNI:hˆtȱm.ERQސe,ƞ!6 uRfɕھj1z9h7z}?k0"f :C lRҍiL^(94"b VKF9%l㫅,:͎כ`>q}}*Ξc09bJ-Kbh̘E0W r]Yu,-}HsWZkRf|\!~?nƞ:yCg^%+|E>1ފŎmsaqPٴSa8^>PXL]^e@j`)]P'Rdʫ[g$D=o|eFM!Wmawj`hɑ MA6p$# p!JYknxQ~ hЈx\4mb6ott'!r҉{c]c8Q/:bl{1Jnj Q'ǍVr}>Qh YP*ժ[uP]zkw޷F[µ(1o1:U-i̍? ]wr9,@oI)Vkw@m v x +#p>%+,PD:1Kӎݿ>-K!jhju2Qy|r "&7/&ӞÃ`E.t$"g0@6Ӎ1=lJdT˟] NݡHUkqxf17kƑf4FP8G[`3QztFI`1 >Po]W}`[ QT|=.ו[26@=0,AM᪃jUѢ2"P,QL*ʡVHŲj%O9?   (o&`pGp1/Qo6l1 uar|ip7#Tٲÿ;z^fF:QhNdp&5CZ+Sؓy*ޯȭa!phjf3^..S!_Lyc~k Lՙnϊ 1B(UĶbtB}Tf+b  2z/Nߞ}{9*sv'6sHs+ ;Q8aM\;SD CUKK?f f1q-6m\[u qHչoYhMjm//xQ5A&C_X+4ˮxwd.&MIw4Z*nQ8 PyI꤆fָĎ > x) gg jdKpU( A 7# j)t㧆{3-NSMkgO %ҝoP-O1pk>-9y_b4x!xr)3Vs(a A923꬯h"H[s~E,& (>LWH ^59I`)& wcRa5@bTbzx*+'}wYs/ʿ(I]fKxrq"h6MӚwuBPF9ҾT̮j2gлݏo{l%n$w^$D7&x^it-#@73/f% +d| @+|k"Q )<!)}I<&Su0RpbU:d3r<`׏re͵N=G"'D.H3XvVu ԥ o9$u'c1WSU ~W*p:Y/7Ez ?44”/^lMx~1L_'ͥ/>ȁl[Ӛf -3Q 7YƨT9m+{Z F[*Or|[+>k/@[\a/]l{zH[iä-.J \%r7U=69%[CK&RAtW_mx8 0 E.0&_O mHɳkݳ˸w<=6¦϶\UP܂Ț:ug$RZWV_e UcX i&#"N#GFю{m,*_/|l|t2xK!<;whlr̭S-/ dlys-iZt/qKʝtG1 _B,+)EEe u7R6MFY,i\x_9h$N=%"b!M;M]dH`R14 g( 93SR6Iz)UC r`,mC24HviWV)z LvkVTq~]QmDފ"od_0B;igC"dM0߉&W"KrBH!'*(Rk %bJONw.ݽlS A#y't-!9x`jj<2 NV/fc^"@97j~~'>/T6'!Y4pC##]`Rz08F/>J W6z/]lbTXLe l ^ZꭢZ_'o-P@*V\ ))?$(JzִAx:$ .5IYЖ'uU}#)qjxh*V4ӣU9үgE]獺Gyl~H?pQf-N=32k3>"8tT. X9:nP=)҄cƱ2{ݲNHrwK8:@cẙ(Ȑ{ 'z;6 O־@lϼL4|p%ϏC61w$&wRxCQR@pf[*jI*!c ?˴!IUY‡پf J-ӳ}r= x'7GY k*T"{zWx#71)eLBo;\5XSk]{_8o wVzU.Tvȍ~}*v=&|)Y5c9?5LC!/ӈ* x ai.y- NS)rz|zYClw5=o3Tv2GTҍE[wH;yN{b!{nbksg׋m]lߧR}\+n׭;c+(4= ^D#9) { q9 ?gyavrsb/G.6(HVJANH4S]F0} K#WrAA g🣅κ De nVIrD^'O!7'B!–5`Kд?`,;ڕZʱʅ"<4CEǾ- kmOHMzT7aib:]6F~ yQP"ȼz:'a$HvzΡjBƻVnI՛g>oH~ 5%>@dPk"p,A~ު ڼ[ X3 EjN^WүJq=qu Dپ9N<֫@z[hnIMR[2ypQ3YV+gjaA(<!Yhi }:;lN n%sS&b a1a 5 zqp3QjM14([oV gТC|ۮKn?-uxFCC*T*r`KSԡ3skbg;z<xj[~t l:Rhq>Ǚp >5.^zkVexmIxÛr:"HM˾杙X{q)ehIw(^Ű=w^tǛ 7GL,|hm nvvݒ,HWN5F=i-s6"£~Pk)? pImޏ9(KzA)YiбD4Ɩ_({JX̎P)b#ίY@]5$Izɽ5w2RSe[erq[Nv67tu3,KmU7;ڢKl2#[#b"V.cX[v_(ȏ7,t5AQ̖"=3@XQs;@\ɨXC~}:s!.yvX^ J`!"PYsV1=IfN%C'<'@\M Q6\mA,G[$6&KA endstream endobj 269 0 obj <> endobj 270 0 obj [271 0 R] endobj 271 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2074 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 140.9 644.2 Tm 114 Tz 3 Tr /OPExtFont9 6 Tf (-1.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 114 Tz 3 Tr 1 0 0 1 141.099 611.549 Tm 97 Tz (-) Tj 1 0 0 1 145.199 611.549 Tm 98 Tz (1.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 141.099 578.899 Tm 112 Tz (-1.16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 112 Tz 3 Tr 1 0 0 1 141.099 546.5 Tm 114 Tz (-1.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 114 Tz 3 Tr 1 0 0 1 144.699 513.399 Tm 97 Tz (-) Tj 1 0 0 1 148.8 513.399 Tm 94 Tz (1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 94 Tz 3 Tr 1 0 0 1 205.699 479.1 Tm 100 Tz (1.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 3 Tr 1 0 0 1 239.3 478.85 Tm 98 Tz (1.04 ) Tj 1 0 0 1 240.25 471.399 Tm 71 Tz (X ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 71 Tz 3 Tr 1 0 0 1 272.649 478.6 Tm 94 Tz (1,06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 94 Tz 3 Tr 1 0 0 1 305.5 478.85 Tm 98 Tz (1.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 141.099 441.649 Tm 99 Tz /OPExtFont9 6.5 Tf (-) Tj 1 0 0 1 145.199 441.399 Tm 90 Tz (1.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr 1 0 0 1 141.349 409 Tm 97 Tz /OPExtFont9 6 Tf (-) Tj 1 0 0 1 145.449 409 Tm 98 Tz (1.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 141.099 344.199 Tm 97 Tz (-) Tj 1 0 0 1 145.199 344.199 Tm 98 Tz (1.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 144.949 311.799 Tm 97 Tz (-) Tj 1 0 0 1 149.05 311.799 Tm 94 Tz (1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 94 Tz 3 Tr 1 0 0 1 424.55 276.75 Tm 96 Tz (1.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 96 Tz 3 Tr 1 0 0 1 457.699 277.25 Tm (1.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 96 Tz 3 Tr 1 0 0 1 490.3 277 Tm 98 Tz (1.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 522.95 277 Tm 96 Tz (1.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 96 Tz 3 Tr 1 0 0 1 358.8 643.7 Tm 97 Tz (-) Tj 1 0 0 1 362.649 643.7 Tm 98 Tz (1.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 359.05 611.299 Tm 114 Tz (-1.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 114 Tz 3 Tr 1 0 0 1 359.05 547 Tm 97 Tz (-) Tj 1 0 0 1 363.1 547 Tm 98 Tz (1.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 362.649 514.6 Tm 116 Tz (-1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 116 Tz 3 Tr 1 0 0 1 359.3 441.899 Tm 112 Tz (-1.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 112 Tz 3 Tr 1 0 0 1 359.5 409.5 Tm 97 Tz (-) Tj 1 0 0 1 363.6 409.5 Tm 98 Tz (1.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 359.5 344.699 Tm 97 Tz (-) Tj 1 0 0 1 363.35 344.699 Tm 96 Tz (1.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 96 Tz 3 Tr 1 0 0 1 363.1 312.5 Tm 114 Tz (-1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 114 Tz 3 Tr 1 0 0 1 398.399 696.049 Tm 111 Tz /OPExtFont5 12.5 Tf (3.6 Perfect Ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 111 Tz 3 Tr 1 0 0 1 127.7 238.85 Tm 98 Tz (Figure 3.4: Following Figure 3.3, examples of perfect ensemble are shown for the ) Tj 1 0 0 1 127.45 225.149 Tm 101 Tz (Ikeda Map when more than one observation is considered. The perfect ensem-) Tj 1 0 0 1 127.7 211.5 Tm 100 Tz (ble of different number observations are considered are plotted separately. Two ) Tj 1 0 0 1 127.7 197.799 Tm 104 Tz (observations are considered in panel \(a\), 4 in panel \(b\), 6 in panel \(c\) and 8 in ) Tj 1 0 0 1 127.45 184.1 Tm 102 Tz (panel \(d\). In all the panels, the green dots are indicates the members of perfect ) Tj 1 0 0 1 127.45 169.95 Tm 94 Tz (ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 94 Tz 3 Tr 1 0 0 1 127.7 140.45 Tm 100 Tz (example, define consistent to be within the sphere centered on the observation. ) Tj 1 0 0 1 127.7 117.899 Tm 101 Tz (The radius of the sphere should be chosen depending on the number of obser- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 316.8 44.45 Tm 88 Tz (47 ) Tj ET EMC endstream endobj 272 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 273 0 obj <> stream 0 ,,3kkj]'NE`;2HO5}a$a i817^(T dJRIBp><]QBM#o= ި#oIH:ʰn7/N(XYA]֑Ò2!):1-T\µ}:V%4l-@\1TY4E !]o8CJ}zZebfLJGuo'dxݪu:ohL0V}&r-eS*o(i2>.(5>j;Gx16;ϳݬ-/ϱi<-C]9tj G[؀@{mko Ju4ϺSn{.MP([_[ >SC*^ GzZ̺ e\bx1KL`ϱ/h~SS#**.] :|W-NH?D2byN%QK)zecBͰP-]zdzA#Vs Z6ؘsڴo2fPty7wvxf+yfrZo#86>hl `m%S'>cӚ\QG\G'9rL&:\V2'͆U,obj7'Y6 D$\ lAf W#*T]q)-&ހ]#b(9Rax61U%39jpV;wLp:5?)~->;9۽캌ϔ?KQyrʁSU.wXRfp"п+qͼ;ݤ D~$"rl8z/i JWY*Y5A+0'|z޸cځhW GX[LuF8u[o4?NaύY㲏U9 _t,M$9{444ƅeƦD9)ʼ1=+ʉq<95;!@g*^:܈SxLK8LZ.6.u:mg=we)ڿ7* \ bj/={+Ik#b1)*7n{!h,2P6,Xm/yuT8WGoW;4W@)xLZ`̞k DjmP O0xO #Qvr'N0äN]&oW>v2}1HZ*/R*TMC:J `RP`KXe9J1K*Edum-t4tHUC$U>Us>Nw`gu9?v`vr}֬oƹ^6R RN)BtQ-cķ`'FL5;x8fOpZ׬_z&]eVLui3.Rf֜ `UL<,Ee+!>8H#=zfu3Kb, r.94V#ݎ% mw%Ś8ﳚ2Mc2Y;; YkCazO_ۚߝCK:?ܽTԵBOXj 621ԋ7$2WoeGbOYcaPK \΢rD @AQ\s41nۓdEp(v/5}(Md4ʿy 2ܤ[j(魤$wuV"Z9a;7Y*}{ h){ η5AUvE:bo+0p޽U j 9!U>ׂa: L݈>̡ ߓA-|n.}/L_q3(v/| `r+̥STA];#H"!E_m~G_L`.)ָ~ۂ3MtLڜRI@Ƭ̨V/D-ά8uF!\ #{g0띈(NA45< C`z&>1m?%awJʊFWq֖ZDu:U)ٙzTZ_spZ7gX8^+BY 0hW I*T0%V0j;n-5WT%wk4mjJ*# J.*ǡŜVR_(0kM~O{Eta򿙪×Ρr)]Dv@qSzdI 1hQ0Mpiv >0A9WVČc24U_Y@>?V-5 YS N)}s[-/qrJ pky= orR9vD[ #O av"xeb37 1[=1+9Y׶LÎI~}퍜Jg):8 Ā1EgwΪU4wW߷ 4,ЌC:[ M64 uĻ6>1g?,.B:f@#KXo" I|i-VF nIpI۵Q$ۛ|[dQt Pmƨn_pd^H- &֯`,tPHP7V L.SzLJE[c7"twb7.hO˯v|deӊ] m6Ʒf /c~)R+PÓ 3v 3ډV%Ճ o&}~-ňJ,33յ/2TB+W#8(s! O]')5Ƨ50 z~8Yl+@-&)pgcBzĝ^l9+^\;srx1^ k`B{Cnt`[ogEdQFyR&bLn'+?RRt2 QhRȳ@9ZD@TV% H"~^C Οx<>ȧ{W JO0}WOW{eFJq+b0|/4T!6pj~s Hb p:BrZײ+[Tڕigؒoy[ 1{BeX7NuƄ؜! v+ݮt>#i+9ܳ2#ͳ~ڵ8D(hB<h N2dvEZi~"TȚh?o*%-;B/dԛ-VKbH!^*pgOmL bJοazxbR0vcpP.a~_ FA쪧MEgu-phW|ţG'e()0 ֔Źho:1 0v )Z}0n4l}KR O"_t c;פhTX'~a2LIyntuk=Nm3KRG]/ۃZKAݍiֶ\vzGh+,.ܤysn%A{#?yJE V4]Tm>]wKNς(FagTm_sV ΑMhy $k8J+!n@"NX'=6yW"5(zvȘVT2=/"Embce Ywt4?O"@,nʋ!@DB{R5Cx܃kH>6:~p.=ԡJ"-$/5ǭ7ڸ</K/MMEu3}oM`YڑoiȾ@HB\G<<Ϋq)o"yeg eHBN;}BUHZY tq~^_YH\|ݷ:D`.W6EB>KL!^~^g3G1)O?p9nm F jm#k?˝DwRġqsxɿ$t#sjɭk7q}]/S=2˲a2/ prWB1K!XY B[6# CoHa< =<LIw5r8+vL2 !v׋%v7bRb4's?mThWw=+n ƫ%SQ>G*VtQo*M?^"[+̌cD e[@a{-6ۚ:no9 k̖$DEe3,S Oŏ7H`H2>ӤY6l"V ~}|BFT( T_/-<LWՐ"5?WZj^Ѝ&'B:WB3w`tgJDf.Fq?=|C_½mqץ׍a()o&'d6N5Z ёnBN$wx Gq6u]%/4C8EKe"_x!ª(Ê ,͙IxBu0 FU2IbCrmY$A*JTZ!r}# )^pt'Rp*$Vi}YjR6N&W|X3P;K4> 'fӏ$0Yb++: rpmdfSo:ε{1VZcmD.m[c' )}g-G?RU%4b29zuG\oWAVz+ ݲVl86N-{qF`,(Cx^zj.,; (NF񡕾vt˓8 >6ĥd iW(DTksLI*\Ӻ8?3t6-'۴ܱKn%.ǴוV3!Jô8$ѷA:>S˶k}]<4$K +1ՍK&0WG~Ss| i Ib}Sj/93sh5ϑ08&%FkPXIgZLޮyOk3ͩ4is<3(7&jrad4Kf1)"Ir3P i&Gĝ8OL*:DἮ^Yg"2ʋ+*-Ղ)ר?Gf$_?0YBp}B ؅U u8D B̜$#/ Gi4+n0W"iYhrErho4({;#oY=upf,*ߗ_q.KaeZ(&!Q-݋F!-|Z}GMs_0q_(ͮw ,I+톧\U w29B(Y;8h"_Gu8Xz,od<#|Uʵ nX} ד֛.,WH fLCP|hK]8J )w z <)՝ ,Fe%#cQ4U*?(lcRS~wt)R@pYPArVdok,5O|~1ƭ!S8EMčT7<4+?*p3뺘58r84 `:ng|,wks3I@ɗ wu=J CMt(^=+g e\vx嶰w]lF*Y(̺_w@6=kw'4EP R.ZU٘Ө b^+슷~Ag> irs9DIv k$KSyvίUBV{`aaz%B pGSROBO~>1±w<}Gn}cTAo6EUny %W<^N8o'cz.]m%pTbL^?\XDόY,Xm@ oKBW\g/7ZafRWiqi0[ͧt:jêOշ(4uC4ϲ)ڱzeP2Eq'}9 `Ls? %f6' :0݌R + 1o:w#j)<HCVW ܃m ,&[雏R*,c=4@#^].*{(LXIUr +yQ|\qٶd֫v|O!qz_D2]S^0;BxYɑA\tAWinrj=cQu,K]+QbLIeAt?ht|3-BZaR$t r)_T%J݃_cnqꤢo7dA01<3Iw9Eb!JhH[kuRev|= ~&&U*-]:i,_JЏȤR-2&3fMMDݲ/l`5O0S gns/ʠt]56͸d{?OɇxN ~#=4,P},_ySoV!j7~:0t=K_YS} S-?ˬtňs3dhCNDfh(dB̍&iU65N&.*v@n+\+o!\rc~41@*kSYXl1Cmf8J(U{TWO5`36bT/Fh`(!:hEO߶n! ~q]?+s26>{J3_4WW2# bLeZa\!^ ‰krg *dj\hu?=]n$>]W=p EY.m ɿ4opm<9-F]D(! I6g>/U9 bis-^ Jު9 Ԗ&&,"D"KڒSUY]LAM-*h$_Rٸ^O4 Ց`n|3˻/B@X`/龀<87*ejّM.P>J`[pngFh0P+߮t:?An-6k=,R;}|U_lr9E7W5?j/>_HIY×jxiBD!}xwRvGsHUˉ$EVnbۮt~02H2}涅!.#j#mj٭I}K.C_$xQG޾ۅvw=SDZ7zQ1$Ȗ[vI%>kB`(SEh?Pj!CvuyWSu~Ĭ XWe !۱&I_wGhe LC.JaC '#l4S¢ʤ%=AI?dP$5]Ջ7 l&+cil~ X ^\ (VdnޡLā?n~-Tܼsr f! q (`׸ Z)}{Րrz.r)3Ў9( b-"8fN\aW2fH|A YՌJL ^!]‟c7G3p6tk@5NBګk.4!,-A=%VkeCqH Ăqvlzڗʨ]x7;ak^*g¥R_6@VWc_MKAUF--A( H2<%לUі)~jM`NB$Tl?q൤ezȉ^|fqk5%Z<'9tZ[id~%9Of |d;GgbdpQB#'Sd >G6;ÌA0켿W2O;&-⛻ ְ)JN-kkJ/WvWN}ʢ3~P81mE:Sx"6*m7LlOGX ۍ9{ob6!)WJ=:0秎ᡓܢ.Ivn*ίά +󁨂D%LvoY]WƟ8-nTu!BLP⫌N?,4?0ZDefh:\#ǫ\$H59pBtPb<7^?MaHE_,%Z67բ\N lF;CLo -!h^CG~ԍMnoTKGS:8:QR pu?xF)Ӏ rA7JnTpݧ*#|:9Yv JľA)EG ehLe4-&c:JZ][?l oWZa8Qr§mHƿ'څ=1nf䩺L) 7YVq( ی4XQzts<HlS|eܫ_| .HAlJtF$"q׹,PA/E4g:Ӣ3tݼ+TʮL?ِ,I$ coL&V}w;sK1'{|,Vkm>\b.F!Ϗ'չ?Mz3ȇ䯀ɀS<\na=YkI`y'\?dn; j|22+,!UlPd7vPeܿхia Ψop Ha *{^-@TKР*cF;6]C/JV}y}dU/:qX(.QQ5] Qۺie]5ȨZ2XF [%zۅj.o 3pxڈE*z+`D!5GUk˂b1l7Wɋ6֓ G)'k+= y4%*>*g4v3ZP}K`SvB%q8Ʃa7I&o.}>HIMtzk:~LR(vHD5JΧ vA4@ 3 m>Ĥ!.<woN~&)<yX7/hDޤ`_AP,Y?/͆Gf+\%7)׉>JpYq{9߁ɮ4# 諶MBr aƸ;6," ʏĉf"2dK!`<`P˾VxUK%:m4QIU. R޼:ȿ6.MKjbǔ ^#39&&jk#}A%Tqz6mx}.\iqդ%̍9t *Lh;T3˥#'|CRMVx+(/CiGb`Z3 r4dd 3H䁀!"?14DswF,^^:;n ׇPY6ڃODuq'$DKڟX/F:60V) /+zJ|7Ӻ'Nik{35\!VY-5_lEb(6"#|&ZrSd)' ~Rxf[8͗'i@4O&_VV/( 8M%Պ;l>%wg_3N>$ 7>س۳-!7պTcʳ]Lѭۇz퐌<{/c 2Ϙb aHW(|0s+֒jMlN879~zIuaořäyaxf,)Q;1MNg 3;V:z}y&J7$0~-<ǟl*ClĠDC,=`d#3Ň] 2Y^TgZ+GW6}$#kI"=7:j 0#51"h ??vd0h81lKB:4\nJK98ho \?ѳvV0zuGoV;]V&ywF.r2gjW2HCXBbaĚa5;yDz痚y%b ?cxw(5~_16<(}Oj "@|72%u>[5^SjXA#I=Aʝ=њM?;x*}K7 IUc-ީzf$ R3N&r#MB3by] cެkL\3z^ lr?Kղ`Y$_4%eȱk/VOGNJqm.Oh%$1kZ0n6j,kY 7p<ZvIQߌe\@ 6b?Ղ_y.w01Ka.PYW \ 3gg̼U$I:QVvyKs# i'v&=T6iL{V6TWh۰ &Pn"   ш2]ooNH|Ÿ+A{v|{N<&W}BTdn5 YQƥBvF c9ɑMbKf ݪn(8p0X,–q7]aXg|`쏼 &X< q ̅@=_w_U>s9܏ݯ)U\J0kCLAWo՛)34cjT}߳2p% 3!SWpNP\peшCWv+ga0gzhQuwHų=ԭU"çV6s]U$eG1([@2B.?+?1F 2&4M81 P`^A==g|] eǀ+C0YTo.YqWy=69 6emZo5,wSHU҃\u'vn:"m8969Gu``L}@/l,XK"^]nIZ8zHTYu"O*{ B0`{Ë5QĪlZika O'1nn`LVhTJ1?;)Zu<C0Nu0 j+)c%zXƽp uGQ@©>?7Y;uh\Bj7ᤤE;d^1R>8qXF U 3%B͒n|w&$ 2W ^r|?6|j5$(T.OV*zd#߄ VOLw5&i)2X !k#ԔyU8Br KSb _8&ņLoWM=g_Ro0Mj`;u;Fm9r|$>`X !jlXp%C9sVjE,KFFUHF]feQ?\aqG(ZrfiQVrw(6rBq"7ʭ@E(椫t/s$k(mZr|2EAHmL$Wm:kMq4eR+dsȤ!3,>֞wMFpE۽-]njtR&U( uf xfW~@&G v) yg#@M֋e!{l oQa\ |n\YiU9WVK/r _1G$m}P!M\cY>Z^n!qlTiNz;${GUrƄrXIE, _4HE Es)4.haN H({@kG2D*~:n>]E(Y[Q}$勥4W$HVX~J )Bxb+W}Us:uONieoU?Tfn@M+A_q_p:9l30$.ò sW; }6m}v0@nUŽ~RNEp4?A}Na&ѕ[78 `sKDw,7i.7gu J&9=,J"LEu4zNo֙*/#+-6HhB[X5XCG/P*}6b%fAC_;]4 h#rq1_U0Ɠ5?a4 )R-[1n{懄M&;6;/uayw +zD{Ԋ,36obYFٷ juTQ˥]w3 (kC=MW0b+>c}/1>?DM\vmfg;|i6fY.C(8*GWޛ21*Z/E yJ__i`5ң \ӱX|_`:Ё@DL8dKs6t?3!\INs<0xlq {kAb~ζI(SѶ 7T7P,ifOf%==fyl 7LNI5PK9걚^l '4+=30}xmN;b2cKgB;E>)& H/7f4 au:0fS5.į{YhM+)ln 9. 2|-G[mNltSkmC]Iڶ#YBRy#&aJ1vn6!1Y^GILuDD`~ҧ=]MGfMdXLčzS_YhFSڦ~3̐Gj\f]T I յ0 lh9VTDoloON65@VCZw'"1 C;acl6 IJ?NwS<-추%=YU P~<:nx;˾WQhh[[E(IݺX+Pֿi> ]έkd@882d`(q7ЁFėF]uC91_(s>OBEsw$19O]&zlAWU2/}i-/Hhs[`Ձ/6 ΒLH*T~Sr/%wC_{JvWͰjϏaa7q̝x vP zRe˧[I 5K "E<},y| ,#4ۧbÁf,1<  NŃˡ&ʪ-zJ>r*'Dg'FMhhIAmZLah!7'J![)&ë9=ؼ3 9:h{Z.c%Tx{b)ݻ08ͣCbo{UnZ6|uc8rDЅKb<$<+~Oޜ_ rJ6 /SQQ]I}e-nq_٠* oz.c@nգ<_㢞%39Yi.tDKٗuTe%jp(r2h{o#S@9斂E\ȭ˚ ;91_ëEtP;o\#s## J}T~=Ah!Ms:KۋQ^o9eaR# ƭY ql> 93~LI/)'eeQ' @hSv4=v֌))K"J ӔKd| Շ '2-Kw=}bdG8 vYBNZ`u? $YScNP]uKuvstNbש"8˗ߔVE5$,G G0)or`0 af,E3eIF?۟ڬ!l(ӰBII,oMbG A v?V>,Y Ȅ `8f4deO ^jAK90mI"ќPĶW0ysmq*yp߸g_D:*ĽͰ4?H9Pwvdh[G ~{&"Ā© CY;⨺v9=UPH7Go-sipZ|Zf#.":U]C5#<#JXH K0-%a:PAR"E6+xW+Z#ڙrcYw,Sz6{ͳgps`S(Y& dX&Fn@3c»fǮ>,jQa} I鏤,zAhctJ \FƃD'7y|aNИiZ`c-u=+2kaৗ-a{ӓ^3])RN>j?T 30 x*}O]4.D~< HQC!Вqxl/I)8j;{ QB~3)3g"0YNj!}jb\ۼceDmhC2IGC;b&R|$zOPN0ا>In@85 {aVq`ŊK(#r\Ҡ3bWʡJI+ȍJ ɖߥh|JUWR&]G3OwbM g~6l="$_x@dJ 2 \f\h vTA.06n7<*M<~, R̉"HbzIP}^ &KAђE*FL~ȬHxy+^9R/J譍c՛#}O Pqj!0SFI A!'$"bnJ'(_Tq2XƵ:5#|#p/> Ɗ%ɿFckStߝI301E~tUY^l`X=gkAK~k cSvD/C8:&e3<~B ;X.c_uZ+PBiJ3e˜G:tn\&tg3U׭bd>؊exWG@y|zGII*u [1<*OH%^#E(ӂl^++cq d(Lb[WGnc~*5FM$$i2.꽇 endstream endobj 274 0 obj <> endobj 275 0 obj [276 0 R] endobj 276 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2075 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 451.699 715.95 Tm 3 Tr /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 119.299 673.25 Tm 108 Tz /OPExtFont2 11.5 Tf (vations, to increase as the number of observations increases. In practice we use ) Tj 1 0 0 1 120 650.2 Tm 106 Tz (`within four standard deviations' \(39\) i.e. the states, treated to be consistent with ) Tj 1 0 0 1 119.299 627.149 Tm 107 Tz (observations, never farther than 4a from the observations. Although the dynam-) Tj 1 0 0 1 119.049 604.35 Tm 105 Tz (ically consistent ensemble produce a desirable ensemble state of the current state ) Tj 1 0 0 1 119.049 581.299 Tm 108 Tz (where the ensemble members are consistent with both model dynamics and the ) Tj 1 0 0 1 119.299 558.75 Tm 107 Tz (observations, it is extremely costly to construct such ensemble, when the model ) Tj 1 0 0 1 119.049 535.7 Tm 106 Tz (states are in the high dimensional state space. Even in low dimensional systems, ) Tj 1 0 0 1 118.799 512.45 Tm 105 Tz (it is prohibitively costly when a relative long observation window is considered. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 105 Tz 3 Tr 1 0 0 1 119.299 460.35 Tm 117 Tz /OPExtFont3 15.5 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 117 Tz 3 Tr 1 0 0 1 118.799 426.05 Tm 102 Tz /OPExtFont2 11.5 Tf (In this section we first compare the ISGD method with 4DVAR method by looking ) Tj 1 0 0 1 119.049 403 Tm 109 Tz (at the model trajectory each produces. We then compare the ISIS method with ) Tj 1 0 0 1 118.549 379.949 Tm 106 Tz (Ensemble Kalman Filter by comparing ensemble members in the state space and ) Tj 1 0 0 1 118.549 356.699 Tm 105 Tz (evaluating them using the new e-ball method defined in Section 3.7.2. Finally we ) Tj 1 0 0 1 118.549 333.899 Tm (compare our met hod with the perfect ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 105 Tz 3 Tr 1 0 0 1 118.799 289.5 Tm 125 Tz /OPExtFont2 13.5 Tf (3.7.1 IS GD vs 4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13.5 Tf 125 Tz 3 Tr 1 0 0 1 118.549 258.75 Tm 108 Tz /OPExtFont2 11.5 Tf (Since the 4DVAR method produces a model trajectory, we can use such model ) Tj 1 0 0 1 118.099 235.7 Tm 106 Tz (trajectory as a reference trajectory to form the ensemble in the same way as ISIS ) Tj 1 0 0 1 117.849 212.7 Tm 107 Tz (method. Here instead of comparing the ensemble nowcasting results, we simply ) Tj 1 0 0 1 117.849 189.649 Tm 106 Tz (compare the trajectory produced by 4DVAR with the reference trajectory gener-) Tj 1 0 0 1 118.099 166.6 Tm 111 Tz (ated by ISGD. We apply both methods to Ikeda Map \(Experiment A\) and the ) Tj 1 0 0 1 118.549 143.549 Tm 106 Tz (18 dimensional Lorenz96 Model I \(Experiment B\). For each case three different ) Tj 1 0 0 1 117.599 120.5 Tm 111 Tz (length assimilation windows are tested. For Ikeda Map, the assimilation win- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 111 Tz 3 Tr 1 0 0 1 309.35 51.899 Tm 91 Tz (48 ) Tj ET EMC endstream endobj 277 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 278 0 obj <> stream 0 ,,~b6z,[w9hxG QGEմ&R9,!c9G7tfESF1 Yʦ ~_W#ps߶fi7ՔE!,AX(ƕG=(dz&wBX GJ棧Yn-JE <Fϔ7[uX^YV|qPq?}K|,I~f8P)=<ߠnY ~uQ*v$ou[|!-{%ri,+3==[=7;!)4ĥ1/`\ũ.j4Jڃ>REuMFHeXdXޮ1YY/ۘtK bTz6WxP*ltad4tbppgɡj!Ψ0Im6@$o.VԍTlqh'bHxq>Ӛ0Ǘ䲵۹6<|2˖BFP76.1yGbCW7D/F?ܠ@6Ţ>E17 )ryt-TM֨xY!Lmoܻq2SL}6fuQH팖9$~"QKemWV_܄`eOpL d{7mƍsAͷ3 N a94. dEæ x ss Ƞ `=ވdQ?PJ%Ef* L'.(m ~:~vX1 7W\}eSZ? c ShJ n{3[o`Ѫ./ G<uͣn_HVzW➠pBh9[?U71딢oKojO05(Ob RQy"(o*VMaNs `T8_8~[Jok7H#,#I9J34!V׌ u&n e4[:gHBfHoVj XJ *I9ݧc藑}2Ź~-5E\P^5πŹ}|pu|yj%#z(_-*WY6R7`J=&%م g9 `돴=KMo9GoZ෻@j[r!`"}+Afq>?S"EY+=rǷy^hҭHE_ 9Ĝ Psg:J `SKrcL!KÅi{~ͺ;}D#&ew!<ȮbDﬥO`RU2eܤ5eb5&TCd/[qD^.LU؏v v(Ϫ{@(6ѱr(u,$.V ޒSRAi[j$k rV<|qbJ8/٤t*E@6}(mJ _4NtTr'+j;'diekh YN&۴v;B0azr[hMw][bu)i $m %)d fk{')/VaO!}%4jXM6[$˽!g$s `6콴.uz&}JguGױMij=clhCEChQ03⨇ogS"ATA!=2tZ'y$R2~L;U6$,y)l4,gHa T+9nTGMCѼ¬ 1-KPENAW*AC YOܢh2>V tF(iXbJպ<sS.W],oƻn&~>PU5W,Ϳ;t8_d#/ۢ[kJ}+sx,-Wx5G[xfrm Q&߄cߊfK .HEA?;BȎkIWM^.FRn`yQwa >3p5`ʻ3,~VydR!JB]qU4R=/"xcy⹞L*v[ IUQ~աc':DS0˘%,b;PEKlxٱbjM*Ģ&- Rc [:(ƫK[z뤼*K6C+Ls.~^Ɲ3-` zD rڣisr*¦QHbOW0W(S>!l)L kKu[Y>FwfQx$ /6Rӱ9\=>]Ij@NqeN@Rfg>w4IY1\o IɹCU1? tѰT5XNOBMl$tDB2B/>QY8d+.0kG|V^t4bU$ Eeu@v Q &.?#D[Ęa2#ڛx1F~iR={a9(혗b] J,ҫzպ "9P~ov,P 5+Mw ifn@)oE'OpgQب3"l%K6j>~t"PbMA/w<{Ns| C )A9%#T~5_bǙt3p̓,ek$X'ω f &F eP`)_j[>Ae"$7WhNQj(isxG/qyLI5xTaܶT#@/>DxrfeyBr  )F{U$uT=W{RERo5h)U>w0sJHڟE[5#nj샊T1lWʬ=Bݢ-߸Ou28(;ҷmIċSƝ | o,?[Y}c|$r7<۠ӴJ)M4Q*/`=Xζr?i'/ @^j)Kz%^:\uTM1 &ʫN kB(o1}5_CѮ__`Br 7 z*=+q HdaL婜ƫ6,nUJ+SpMBtn0Ry̿z.;-x~&nfQ ثk x$:K_EVnM+>ly*ZYdvg1uR#u ~_ +H =wͲ >S܅ =x[Wvd[%7Z}}ќ9e"_z D14;!)EVYaNZ^|ZuM텰Al2&e1:#Uֆ?` ,S]za^$6p%S~Re]b"Βσn>$ՓVd}/NyBך.v9't;.VPB4fhaص,/m#v]I )SHF3 Rdon[O\YC hm>"SeeҐs+]P l2d)0. Rbyq\~C&|:}(h"ېF v$8iy]6v>9krGX8JYC{xW/rm3XUAN4"28shߒM#cPF=|fN+O׵ϨLuR&?5]IZubѻ1& O4عWIbW I,RTLԲ0/ULZ\ĺZEpо#^Nu ;ALm`xP// YzRz1zZ0.ٗT ZHR}Vk>gCHDbnmRy9$s/\kFFMķ 9ofBA4\tCvZYHm$<`2*|Go4̊x%q*W= c4MN&߶;a,Nɇfl%a_tZs!Ec1עw< w>Kusd]U&^rmTLTDb}za%Q5qlD꾉~/UmIȝ [@p XxU!h;8*)E(3w-3Ycل#zJ}C舺 eUז7l1A[d|} a T,! l$c%В,CkME,D ;:XMB`LXMvaY'Tl-ti4\wj qW:ub',trfGEz-xV,I&yRd_VC .]&{@רnhjQ_K%AT#@E+±(zHe*D}/Ђ#vKA'?rmݮ v 6z++pZH1B- w1ҖJ-yqŖH.!E̾BAO$/k_hVK4€ݷip Pp'2TزΦR5[b'Y}l!Bz =כ J"TEwc֘Jz>-Vb5ʜ Opv=ڶqDHi60+g21l!40}]o\llwÍq c_]4nD,T@-aH%W8D8ùVy_R4sCs>T!͞g5ٲ ubgpK"K+#3ߗT+Dq\9kʡL>W})lj㬚Y 5mW o/s0HhѴaaΙ.Vi)P]C qV 9.?uْHٴw_NcblHp]p薰h=Xc8;B_#*/Fޕ*90@I7ι0g2#0:5grH6CJ-!WeIB U() )Px8<4h׭KD B ܔ913S cmMn*klᤕ^D&S-D;kŁHnGDEOS)E*sxXXDgd0#v:+t]s9OpV1k0(iFb֥v9ڄNsV0ߝDA+ V=5i=B=@f}Nń[BHPhZON7rK^m  8@v{ Ƙ g]&1s9-|T)`lMN"gTsC8!!_74V&҈͇ dнznVAzGd/17qk7uxȉYS.ǝ$dZ0XcoC5Do/J OYMAZ=+󓫧-jvb%&s{"f j ɛǺ̪Z0V ^cqcSfGaj4]}F#jj0G$A<-Ed>ٔ#tm%5^OW% ,u<=fFj@+<#'KOr~ʵ4)D U;+a?o_sIݘ4%aw0I[j*-pӀą'ǮDyq Rպ27Z\2g_|!^(Kk,KwPs\VΉ)x Ὄ5Q R?+|!V԰a"w@L5izLCė^r &x"Kn!:CAE:ő#;<]#.SZNje1f#lwYP z\bP8 \r\Le%샍lߩ[A7W35( TkoVZoԶĪIXYtaJ𸳜3O4QJRR: mn_m9Ē3~Z`,^^CRv_O2Mww7*oZ!?7 rJq|jCh"n52rm΀|!:73b}SP~![XNd KbՐpS:}dCg'4I *1oDŽn^yѱ<5w5E(8?ش<y/pȴiv=%+"B"} rshXGWjh z({qCf`m']ͱekfg'ϰa(3XG 0W2?vYUBEcR_ [XR3dTAkzτx _ endstream endobj 279 0 obj <> endobj 280 0 obj [281 0 R] endobj 281 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2076 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 450.5 716.899 Tm 3 Tr /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 118.099 673.95 Tm 93 Tz (dows are 4 steps, 6 steps and 8 steps. For Lorenz96, the assimilation windows ) Tj 1 0 0 1 118.099 650.899 Tm 92 Tz (are 8 hours \(short window\), 16 hours \(median window\) and 32 hours \(long win-) Tj 1 0 0 1 117.849 627.899 Tm 91 Tz (dow\). An hour indicates 0.01 Lorenz96 time unit \(see Section 2.4\). Details of the ) Tj 1 0 0 1 117.849 605.1 Tm 92 Tz (experiments are listed in Appendix B Table B.1 ) Tj 1 0 0 1 357.1 605.1 Tm 87 Tz /OPExtFont6 12 Tf (& ) Tj 1 0 0 1 369.6 605.1 Tm 84 Tz /OPExtFont3 11 Tf (B.2. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 84 Tz 3 Tr 1 0 0 1 134.65 582.299 Tm 90 Tz (We use the second term of the 4DVAR cost function, i.e. the distance between ) Tj 1 0 0 1 117.849 559.25 Tm (observations and model trajectory \(equation 3.34\), and the distance between true ) Tj 1 0 0 1 117.599 536.45 Tm 96 Tz (states and model trajectory \(equation 3.35\) as diagnostic tools to look at the ) Tj 1 0 0 1 117.849 513.149 Tm 91 Tz (quality the model trajectories generated by each method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 254.65 445.5 Tm 139 Tz /OPExtFont2 9 Tf (\(h\(xti\) sti\)Tril\(h\(xti\) sti\), ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 9 Tf 139 Tz 3 Tr 1 0 0 1 484.1 448.35 Tm 87 Tz /OPExtFont3 11 Tf (\(3.34\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 289.699 374.199 Tm 63 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 63 Tz 3 Tr 1 0 0 1 484.1 373.699 Tm 87 Tz (\(3.35\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 134.15 331.949 Tm 95 Tz (From Table 3.1 and 3.2, we can see that when the assimilation window is ) Tj 1 0 0 1 116.9 308.899 Tm 92 Tz (short for both Ikeda and Lorenz96 experiments, both 4DVAR and ISGD tend to ) Tj 1 0 0 1 117.099 285.899 Tm 93 Tz (generate model trajectories that are closer to the true states than to the obser-) Tj 1 0 0 1 116.9 262.6 Tm 89 Tz (vations ) Tj 1 0 0 1 156.699 262.6 Tm 38 Tz (1) Tj 1 0 0 1 161.5 262.85 Tm 94 Tz (. This is expected as both methods can be treated as noise reduction ) Tj 1 0 0 1 117.099 239.799 Tm 93 Tz (method. For ISGD method, the larger window length is considered, the better ) Tj 1 0 0 1 117.099 216.75 Tm 94 Tz (model trajectories are produced. We expect the ensemble formed based on the ) Tj 1 0 0 1 117.099 193.7 Tm 92 Tz (reference trajectory to produce better ensemble forecast when the reference tra-) Tj 1 0 0 1 116.15 170.7 Tm 93 Tz (jectory is closer to the true states of the system. For 4DVAR method, when the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 132.949 150.049 Tm 91 Tz /OPExtFont3 9.5 Tf ('Although the trajectories is slightly father away from the observations, they are still con-) Tj 1 0 0 1 116.9 138.299 Tm 89 Tz (sistent with the observational noise. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 89 Tz 3 Tr 1 0 0 1 132.5 126.75 Tm 83 Tz /OPExtFont3 6.5 Tf (2) Tj 1 0 0 1 137.05 126.75 Tm 90 Tz /OPExtFont3 9.5 Tf (closer to the true states of the system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 90 Tz 3 Tr 1 0 0 1 308.399 52.85 Tm 79 Tz /OPExtFont3 11 Tf (49 ) Tj ET EMC endstream endobj 282 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 283 0 obj <> stream 0 ,,b7!V;ΰmTraeU{.yG Rf-y/T.͹}?;2~9C=0q¤0Qu3PSЫgpAQ >#bۉimt[)KcߋBKd} 0dV4,sh.n=`ꤍ'X9p}hn[B4v~%1h=\?9gѩ  ^8AMmT"MuNMX`xWhr]|Ζ_h|g#+}v0Rb B,lN 8pLVej`v Mt .}5A ]cm$ Wu9;'Vhfm˧f]/Z"\"Z(J*N:|r_[#qEKvAM\*5RLAur-Vif^lSM>a9w#+xJM:8oMa L$_4{+H?oADM WŎ}F n]M|BZ>FF0x|X **ly6H`%rooNVKL|uQI <=L}'ŅnINz!`erO tZOr }d>7w^Ӿ \sR/`(Hʳ$<d A+@VSz >:D;ض˻1ᑱfYD%>^g=::w ^T3-eZGGX~"B(|>e :|i<У:Q03ur=W??pc 3 uY{~b_=+g:maxUV{'O h-ۀS_3٣y#ws  l|e T.!ɊX\Se dq\QGk _ 'M:gCPg tճ泾F8ѿ<[~Vmy{懬KωMj&vpG[ 4jk pKSbCƑ2BЛ|~A*]W= tFƞDwxD[)ġFw@SjSU,z  o<1b&,)܉zOsS鍟Ic'&5++I?ΧZ49Dt3CsQ50kyS!?/ش;%'"jBх GV߭ubm8`,9ȮX~%$Ӧ`ww4OUSuuM[%gQ`x+@= f!D2~?*Mqʷ;$=7M+(B=o!*Y_XDYdHY$w!8#Y9gvmnk0]_w 㠺ewA2]?!Z'NjOg!4QG&S2678 jO)}(הp|5j5gqY-֪@!a!uC1x웋~μ/,dIynho`^iǽ3zHQ tlJÜo)"L Y1$3+ܦqAΈ~ SDՓ$ebPUÁ{(qWV{Xj} ǯ"%"%0҉O.M;w.&] yh \㮅Vx 4(ʹ4f~Pk] -~:wN"%J Ǿ\ >I1*٦2%YZ"$4Ϯ<˟á00I6Jm2vD鑴 +Шu;~;X%_Q`=V3lbaOKUY?P'NjJrM=rphM(pq,D,wUe_>**Wr-ɮ8ry. VޫS7G@RF[kR"ݘqFpF 5qf{+ѓk! Pg2/tx{u3HT6 ;v|n,/ т8 oAFl TKv֮J}! ߼Zb}=WmDtVePvɓ:ѻxbԕFb=ߋӤ: Nqގ5OI=XDoj^!l ԐwS#P=Ż;;hł$7$ `DK*G"ϋ}x tP~LBIyeʨgspSx53N#᫥˖xᘰB'֏d|HsLΎȆL7/:^C=!!kZn6kK%cQ'w99h-,t&bD[`߶wċ"ϥ; ~'gRF-@0:>"+F_6s:&\m)c$ϵq$u&^RG(OaY('Qӑr+PS-UPW;Ye,@e{Kɢ_JtULGfC1F`(\\l;nh]#R-7>S>%$]+]Euw˭p=vD 5 L\hXay 7aS$bU `u"#X2ѝad3bDF93lS,"HquF*.Os1Z|dQ瑉"aerl7E9|*@LwTcO=ܯB"k}R'tflQPcU_`ڑ N'H`ҧ8@ ͌!u}7."³Y5-"jG7?},*2J~E2mwqj^ʾ_|'nRbBuӬxn4UZ|wec~dt.>2ϝt |KEr[cߧZI4&x-/)2#n:,Q2ԧZzg s8p-qXƺ8I>}g`I63}e.P$2@(ͨng{"PgSbiS8zϋoi{CBaѩ?~nOCa2}#pH,ɋMGڼK|/^p|'tOTLo='.]|C۵ș x)Ul|5^ksxNknmzeuS8pR|ǥE$;[ud=d淓r$d9R\=(u[09]5d?O!JTIcJW8NmV-cBX}dTCu?AI\tdE'sYalZW z\o°Ywx@:ݿxIoE&{7{Dz#@3-{5ʛ;QEXJTkn/MK}`q ?4vcKb 6lNv(hGAu>"S O޷*\g.sWVR@d!nc\Uyvnadg[^sZi3k-vyu]R@xqj{T-*ʞkdJ+2cPE@#a ,g \/10S8U v!4La K]&qQ{<ŷ5cS P?a+ÁA.{FqKQO~t:/ʫ?N+8"a* sU9`E[#Hq+\6Io1cql-|ϙVxbrxyO\1Û\*Xr>=$_~K)*ISA(m.DQK)X)t1 9Й6.Jejr$gbR*>ZqS=)(?\/Mpt*AS*-4O Lg ?ҾfT3Y.D9[J_ݬpmJ:pNr-9OYr&Bk?i;ͽXhp ]OUq9c-h|L=S%$-{ôRzNO">㥖#6^߲ LS_ k7枞Bt GDY:9R5 $-fdh%Ka&/ ;7sg31쓇%mόwW@Mdmbư3wV'JǫhLʱQ_i䩩)E:ubn|t5خm飾vsү)OKLwItjӎVB /uGc˥뺼 [e}Cj&XGd$YQW,uZS'FʹZĎ(7TB*Xi*A9~p*1ʺb ov2)VRO(YFD3|x@v`]tt'cyR(yF$,vcFK: :?jEO&t Ї_ѳgoQWgWYGU:lQ%5%9$}@FDHӍXYYexә*c+Vm!|Frϵ\H2dMZ elo&}I-{M2 ]ʷA$2|`vOyavϱ6$ Rr5lb߂^õ\C*2 }_5Va?zW:T ďY:_1!CV"gީi:,@̆+o)N\ YNMM 9yk a_eH b PxvֹM3!uwft&VGjaWe~~(^z"Eӧ? CaPƵ*-zI9͂nI=WAu' EuqPm't,!*.? ) 0_ɡ0gI;~jSpPdM47@fj2@ >ZTSkȤ=b]THVqpKI?R!RCQ@挷 ^CT(tF BL٭Z~!U=S2d Yi([Np%MST9QU$YPB>-o`ܳ8ȳ۽9&6pѮn53П {Iők߿`M5$-@H<6;Cb.%>AZgz9s֙$Ϛ^֋S!xF98e(~Y$M"*~;[{`®dTahƜfxh΅!&wr畢lh'jq2}3~tT=ClWnP1C 3I^N5QDZVadbR]w5vO~Q\F4ߡB%FOvS(Piqkd_I$$Fɚ؏/v}& w_*w$wŷ/ussCDax؋r[$7F٬*"c)օjAϏu+NA=) ҅YfEƋ|%RH8@vAWlxʄ9{x\JŃ#oMj#GfNp/ՆXTcnȽclG%acN$x=&z֍vА\ 琀H2Кr B3Slf$T $E_tu!Y37_b]{pnS 0DN hhr .|/Ej(THPğI 1ؖ N2"8n&.WY=j,|m(@y0ZmLd'V Ʒ 0jK^P2߱KrvzƽJKr>O~V )hN%BB򵐴\{!q /_ pC?Hl8k#!c9C14 0dJO9,_T 6h0SIϷlqȨUx"Pizx auA-3H%(Em;#= bSIs5xKJܹ7\E5flDS`NHa3 UC%MdǴcW; _zC3EdcJn4i~p\=UQC\vu=rrWxzYclq!XDܚI׵߲R: B*:>Rz ? endstream endobj 284 0 obj <> endobj 285 0 obj [286 0 R] endobj 286 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2077 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 451.699 716.45 Tm 3 Tr /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 164.9 675.149 Tm 104 Tz /OPExtFont2 11.5 Tf (Window length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 274.55 674.899 Tm 107 Tz (a\) ) Tj 1 0 0 1 292.1 674.899 Tm 108 Tz /OPExtFont3 10.5 Tf (Distance from observations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 108 Tz 3 Tr 1 0 0 1 262.8 661.25 Tm 102 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 102 Tz 3 Tr 1 0 0 1 344.649 661.25 Tm 96 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 96 Tz 3 Tr 1 0 0 1 420.699 661 Tm 92 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 92 Tz 3 Tr 1 0 0 1 251.5 647.299 Tm 79 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 79 Tz 3 Tr 1 0 0 1 293.05 647.299 Tm 80 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 80 Tz 3 Tr 1 0 0 1 327.35 647.299 Tm 79 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 79 Tz 3 Tr 1 0 0 1 368.899 647.299 Tm 81 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 81 Tz 3 Tr 1 0 0 1 403.449 647.299 Tm 78 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 78 Tz 3 Tr 1 0 0 1 444.949 647.299 Tm 81 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 81 Tz 3 Tr 1 0 0 1 185.5 633.149 Tm 104 Tz /OPExtFont2 11.5 Tf (4 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 252.25 632.899 Tm 91 Tz (1.58 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 293.3 632.899 Tm 90 Tz (1.66 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 90 Tz 3 Tr 1 0 0 1 328.1 632.899 Tm 89 Tz (1.51 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 89 Tz 3 Tr 1 0 0 1 369.1 632.899 Tm 91 Tz (1.59 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 404.149 632.899 Tm (1.63 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 444.949 632.7 Tm (1.73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 185.75 619 Tm 104 Tz (6 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 252 618.75 Tm 94 Tz (11.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 94 Tz 3 Tr 1 0 0 1 293.3 618.75 Tm 91 Tz (1.77 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 327.6 618.75 Tm 95 Tz (8.17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 369.1 618.75 Tm 88 Tz (1.71 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 88 Tz 3 Tr 1 0 0 1 404.149 618.5 Tm 91 Tz (14.28 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 444.699 618.5 Tm 93 Tz (1.83 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 93 Tz 3 Tr 1 0 0 1 185.5 604.85 Tm 104 Tz (8 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 251.5 604.85 Tm 96 Tz (51.84 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 96 Tz 3 Tr 1 0 0 1 293.05 604.6 Tm 90 Tz (1.85 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 90 Tz 3 Tr 1 0 0 1 327.1 604.6 Tm 97 Tz (46.16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 97 Tz 3 Tr 1 0 0 1 368.899 604.35 Tm 92 Tz (1.80 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 92 Tz 3 Tr 1 0 0 1 403.449 604.35 Tm 96 Tz (58.54 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 96 Tz 3 Tr 1 0 0 1 444.699 604.1 Tm 93 Tz (1.90 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 93 Tz 3 Tr 1 0 0 1 164.65 589 Tm 105 Tz (Window length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 105 Tz 3 Tr 1 0 0 1 294.949 589 Tm 100 Tz (b\) ) Tj 1 0 0 1 312.25 589 Tm 109 Tz /OPExtFont3 10.5 Tf (Distance from truth ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 109 Tz 3 Tr 1 0 0 1 262.55 575.1 Tm 102 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 102 Tz 3 Tr 1 0 0 1 344.649 575.299 Tm 95 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 95 Tz 3 Tr 1 0 0 1 420.5 574.85 Tm 92 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 92 Tz 3 Tr 1 0 0 1 251.3 561.399 Tm 79 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 79 Tz 3 Tr 1 0 0 1 292.8 561.149 Tm 81 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 81 Tz 3 Tr 1 0 0 1 327.1 561.149 Tm 79 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 79 Tz 3 Tr 1 0 0 1 368.899 561.149 Tm 80 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 80 Tz 3 Tr 1 0 0 1 403.449 560.899 Tm 77 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 77 Tz 3 Tr 1 0 0 1 444.699 560.899 Tm 81 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 81 Tz 3 Tr 1 0 0 1 185.3 546.75 Tm 105 Tz /OPExtFont2 11.5 Tf (4 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 105 Tz 3 Tr 1 0 0 1 251.3 546.75 Tm 95 Tz (0.52 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 292.55 546.75 Tm 91 Tz (0.61 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 327.1 546.75 Tm 95 Tz (0.48 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 368.399 546.5 Tm 92 Tz (0.55 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 92 Tz 3 Tr 1 0 0 1 403.449 546.5 Tm (0.55 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 92 Tz 3 Tr 1 0 0 1 444.25 546.5 Tm 95 Tz (0.67 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 185.75 532.35 Tm 104 Tz (6 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 251.5 532.6 Tm 91 Tz (9.51 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 292.3 532.6 Tm 94 Tz (0.39 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 94 Tz 3 Tr 1 0 0 1 327.35 532.6 Tm 95 Tz (6.70 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 368.649 532.35 Tm 92 Tz (0.36 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 92 Tz 3 Tr 1 0 0 1 404.149 532.35 Tm (12.59 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 92 Tz 3 Tr 1 0 0 1 444.25 532.35 Tm 94 Tz (0.42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 94 Tz 3 Tr 1 0 0 1 185.5 518.45 Tm 104 Tz (8 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 251.3 518.45 Tm 96 Tz (50.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 96 Tz 3 Tr 1 0 0 1 292.3 518.45 Tm 94 Tz (0.28 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 94 Tz 3 Tr 1 0 0 1 327.1 518.2 Tm 96 Tz (43.59 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 96 Tz 3 Tr 1 0 0 1 368.649 518.2 Tm 91 Tz (0.25 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 403.449 518.2 Tm 95 Tz (55.77 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 95 Tz 3 Tr 1 0 0 1 444.25 518.2 Tm 94 Tz (0.31 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 94 Tz 3 Tr 1 0 0 1 118.799 494.699 Tm 109 Tz (Table 3.1: a\) Distance between the observations and the model trajectory gen-) Tj 1 0 0 1 118.799 481 Tm 106 Tz (erated by 4DVAR and ISGD for Ikeda experiment, b\) Distance between the true ) Tj 1 0 0 1 118.549 467.1 Tm (states and the model trajectory generated by 4DVAR and ISGD for Ikeda exper-) Tj 1 0 0 1 118.549 453.149 Tm (iment, Average: average distance, Lower and Upper are the 90 percent bootstrap ) Tj 1 0 0 1 118.799 439 Tm 104 Tz (re-sampling bounds, the noise model is N\(0, 0.05\) and the statistics are calculated ) Tj 1 0 0 1 118.549 425.1 Tm 107 Tz (based on 1024 assimilations and 512 bootstrap samples are used to calculate the ) Tj 1 0 0 1 118.549 411.149 Tm (error bars \(Details of the experiment are listed in Appendix B Table B.1\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 107 Tz 3 Tr 1 0 0 1 118.299 377.8 Tm 109 Tz (window length is relatively long, it suffers from the multiple local minima and ) Tj 1 0 0 1 118.299 354.75 Tm 108 Tz (produces the model trajectory which is both inconsistent with observations and ) Tj 1 0 0 1 118.099 331.699 Tm (far away from the truth although we expect to obtain more information of both ) Tj 1 0 0 1 118.099 308.45 Tm 105 Tz (observation and model dynamics from the longer window of observations. As we ) Tj 1 0 0 1 118.099 285.649 Tm 104 Tz (discussed in Section ) Tj 1 0 0 1 220.099 285.399 Tm 80 Tz /OPExtFont3 11 Tf (3.4, ) Tj 1 0 0 1 241.9 285.399 Tm 106 Tz /OPExtFont2 11.5 Tf (applying the 4DVAR algorithm, one faces the dilemma ) Tj 1 0 0 1 117.849 262.35 Tm 108 Tz (of either from the difficulties of locating the global minima with long assimila-) Tj 1 0 0 1 117.849 239.549 Tm 106 Tz (tion window or from losing information of model dynamics and observations by ) Tj 1 0 0 1 117.849 216.5 Tm 107 Tz (using short window. Without introducing such shortcomings, our ISGD method ) Tj 1 0 0 1 117.599 193.5 Tm 108 Tz (produces better model trajectories. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 108 Tz 3 Tr 1 0 0 1 309.35 52.1 Tm 91 Tz (50 ) Tj ET EMC endstream endobj 287 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 288 0 obj <> stream 0 ,,zzV.6[Wޥl䧉DrpCE4J 7Jzy##>}k*HsHgl?kf GC#*.B b&,~3V g`sazwB=`ԝ*IFm/4jr>X5t H0Ȑ[>A}+;6 #w*??'ez*lhHX;^6Me3CDddXnĿ4eS xDkJi.m]@7%^z=DC/yBd6*F^ܯ>2ڧ=S ssn|Jʄ0Xhz*{G*6̗B#7Q|/ff "n*Tj(mhzI4EamXkq\@ E@?h]e36JCcpRC"e&qs66U5E~#o)|fv,(+jTկ:8徺a_i8"0Q'p[9ۿCiiCV/ {VqeC^C)`˃mi1A̙o}CU3J_o:O@</54ͫa1@mJ@FD<0ٶ!b%Xœ@Ū}~۸."DL|F(d}0OAIq# 'U(-T'؉ `Ϲ';Y'@e^NGS:p o Y~ eW4ʓ&$ j)]C$@UH{h$ xA3^nL V(!,[ J{us*oCҺ9H&INZk3 e{G3 3bF9~X]\7z 9_t\>/'( lU/\ γiU%W Q=-u'l|뻾g00;L蒸c'֨% Zeg: ߫C۹6&C`-;2=Xaɧ<, 6dh=L ) {qN‰l|44G= bZ-f:HtUmU#T~ySC߭vBq Vp:rNu; ZX;}͋<pv8W vLb湩#Jic/ekb5~л߀pDTeHf9.W:3ݰ''tbӛ ##pzuZC}JQ W`u @;eEB`ъ7H@=*6ѹ5)(MI8CErQ,>5DQmZs;V)4tqLBleXΔ76dxKɪ6Ԟfz[_m_gD*헰Loʈ4mѩc*4]i%~Y*2sѱWC"D{\wsMKX[BllmŦ`9,hi~ mLyeĚW@oٺ3_/wg4UA~X84̯Ev[û<փs̹{[/m(={ypC Xe?4W\$^zSJ*I*p@?/SLn<͈풬'*RX_йk+gD?466~/SQQʶ>Xd8R b E3vʀӷ 6wog>Qi4=yu|&iPn>6γ#2\YASw֛)OJ*.Qҡ.?B0"⩤EF^{7 ANtoղlZ3? ܄x1ϛH Pլxb/')qpqi!LWw[A(VIԻ&_ij-)qur9@۟F#5]$BY>ׂcK*ږl5.oReCx1U\Ot\9%~7Q6c}luMn&8?P\Ԅ..Z߯Mk4.މV::8?wmI-CQ+YGk`lA5>1> lZ }w]21W&t7X*Q%M4xj;R*$37R2Ƙȵb~%&ŭ?Oy(QmzYٳn=U;қiꥴ!a2izثǙ&SVJam1o gE \`~WG62Vr`@fq5oi݌rz6@g95*(T B!Z.W~Cg9o>[Qyaʖ+ՅdV~ Dg話6W$:m^\WJY6l]_cDB"YK "_C{/~0C)>ٖ,-V*ɋWT`fOi`30UVƇ?{B]Dp 0uQ 5Nb_?P룯z_ug-'9:r<@htÈAe V_5Ʉq-^=܄&-aҠթ &3wi*h4sQV!F|ԛ9DE}hQP92nxU"#0}J:p^bzk#n>DB9YSY [I79Mܒf%hkSQڮQu&2%a~ޣM5(8?; ;?@=`q#;y+t:TRrx=TG<xxl(j KxoCI[=I9Grm -D޸b #>:a-OoRIsc~rTx7~(J oo34_[MF?z&i\E@=|шR%~VRJM{5,l eS{P&+wi|/AbQub-52g`zZa$:< (b'̞eGKq]ӿn}LUvڈ"i"Znz@ʀc.+dK?~'W+)hs[, =W6o`SI_:vrPNC`$k2GK*H4 9U:LXk=lDf1\u'A )ngueLlZvmr|K'W'.XDβ z'_=3c`-ӊsS4?yJeb3Sxq'S0Aw'PW`{$3z` WgKf.J0ATҮ(@(So;z$Co5o64%5e˟ft.{C iiUj<IU>y/WVAqXژr.Dk ).qz iTN%o@Gs`^ &t;e=#άiKbMr>Bw჏=:=5B%EiRA; $+zX]wԨ0[= + OT{j:KX']'^A Ey: u x4#1oAjA3KXŔ< Ra]@Yӯy8{m9uqe90KfIwqGA-*/// ̇t\D*ԠE<B$V=R9SƷ(Mfb5DuKM\8O rIXV4w/3Ab\ؕ})bt``hM!Ŝ̠r.ްI዆TLqY3XW7$-W,u^jP4.}+_7l {D\˗!Hɨf l.A(*lPzR<gy~IQZ`dgZz}XQcbr4$ي}G/HC֮7]kley٧$yQ4Tfe/O$ED( ǯX1ZOvLғ?V`1 `vEo\~mp|'>Lק]70/<<4 %.M[hKvgBy3/(<„\1^ѫ%&'p@Y Xh yќIo:$sꌥZ/v^%3 9~|PN9+|P ;pr ?Sva2'l< bZO6W9^)-]u"n&XNPGKn+$%VվyWQCԷU?ΦGW4XbC@xlɱVlep (A ;총) $)%PvMCQmUA%YpO &QV%OqiLr5?&_dԱc}OHH{d7gL4Z~SN3"<&ͶiRNE ZezC<&jXu&uEڱHFpV)cVٰ?V_JBY`Ogɣ$}4lwݛwfi iJ AՍ Y|4˸i{?7-ti,,ډVjHK7oay)qă Z"pK?`";]z҃2V(0b{ Ԍ2/=龯{9{jLdqEP|;ܙWZeHq|:7'̴ ` o r["f|v1bޅX[`'t Zn[_ք9[[J6;~_'!&hk|PA_aC!Ho"r⊢bbi?f׫˜JHNh5'fb<;DK*z 6l%$K!ҫ0]YClEkN|jĿTg@[Y )Z!o=c5sFHܲ9 <r>S ojU(͈r: ⣑I=OStb "fYnN@< ]3U5bхdGk5AW*v/2seFGQ V:&"C,|* {*d?`즋 -IGӽ~  o &)<)0p42ŀ%4Y@b= \$Rvwz% pʻұn+!_˥͍p->>ȫ<ާLlxfR-Dz;wF$eJ+&ΥpaBgǴQy+h $B _a{qtT( *_Ihn)5CR}.tWj5Uo|2:Wva27lۮtT0 IMv (Z] [PVOP*<$b!?&》H%`)h@QbOQ;DՑc .'ހ[pK ƫqr9Q1/x910ڬX>~TxS W}=W ` ~H`rW}Q>xJ~,سGN, t>Y(^p)ׯqe&Pg DX)&Alz-·$L?w%`G +qՁ=Ic q"Rn;u .{rTZU 8g?S+q$˅s !-&J< .-Vʷ31H|[y, d- WxhK4W88C:5w|y'Z0V)h^8=ؗbX8]zM(LF'J{\Z_兗L᫨X#CE(pTu!s^)L/' ǑMq[g=l9U[dG]sҠUߑThDf@iwoo7?m/Ԝ,NH̖2BP+7xD5sEJtvJNG2a=ӷ{$,PG ~GyS钷)=#k { ߄ ǭ9/LxM6mY 4Dw%zx.b>ʵ8mQN۠D^AxXf iLDrQNiU ?J05SIJoF1|5-l1VĊ\A1w]*h?Q;;q<]y(8FsU˛Tk[JCbgiط(hL!0 :P{AIN}8۫0]^,OT+:;Mp EKD ]K`d< _OI`sߟHٵ=R_ qIAKkU6 <ꩦJ=>?1H0[ă&JagUZ5 ϦXxd|=a$'>|\bq$і(,\lh,k9%tyR-vrU h>0k6Xr|FD"y9jKb,{$K5@5ƌh,:Ucm|a/ݴD5`)b7k`$! @jV(|WYdToD\Umx^1lH6?Bb[GLYRNLBBGgåW ɎG:sw WUYD-f !"l.THR.URt\;>*mA #"Sa2sف FpֲcX̜5V񬻦>B:^5\»{˨p'nK`Sį91H緁܁w xu3NkDd$c{+u<4`CYuQMb1xx6:z ćd'YT{$=gBL]D^XN*>E -Tz6Ňw֎#Zj:c|xNI(5[^4K#i`v@jأweOڥ?\3^]6xN4Mcl]-94]+<.ԻEwaĀg'b~Tӆ].$У7$d՛<_wҜ/6ѕ"%Kslt޽V\wX t챛tJkɻv@[^OiE '63od!G-# HQ R*bR,:#l*]xúb8SZ/ns6B_I06\f|Yڽ1VqC4 BG3LS"A##N1jQqiuꕻ E7q+ ?߬Fa@,_VwMqe%@|>T|2n0zשSv(nR1QeٱS•7hWC@_w,G"_o7caNA,̓pFڄ&c[N{M}|'Loax6^w.mu"s?8O @e;E(% w\Z~EH]ƚ\RQRU8vM_,pOd~chk"T^sa# Nıkt3.w{3m^44H[ꋾXh 次X (Yv9$e.Μ )v|G7][kss݃ ;`|uX׊}ͨ簚2xϏPunm0u]C0*3Ma{ٲ7]ƴ$Fvltg5GAbl,Vu0.h]2+G㬽R> endobj 290 0 obj [291 0 R] endobj 291 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2078 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 451.899 717.149 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 164.65 675.149 Tm 97 Tz (Window length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 274.8 675.399 Tm 84 Tz /OPExtFont13 11.5 Tf (a\) Distance from observations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 263.05 661.25 Tm 83 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 83 Tz 3 Tr 1 0 0 1 344.899 661.5 Tm 84 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 420.699 661.5 Tm (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 251.75 647.549 Tm (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 293.3 647.549 Tm 79 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 79 Tz 3 Tr 1 0 0 1 327.6 647.549 Tm 84 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 369.1 647.549 Tm 80 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 80 Tz 3 Tr 1 0 0 1 403.699 647.549 Tm 84 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 445.199 647.549 Tm 80 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 80 Tz 3 Tr 1 0 0 1 184.8 633.149 Tm 92 Tz /OPExtFont5 13 Tf (8 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 252.25 633.399 Tm 87 Tz (16.0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 293.5 633.149 Tm 85 Tz (16.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 85 Tz 3 Tr 1 0 0 1 328.3 633.149 Tm 86 Tz (15.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 369.1 633.149 Tm 88 Tz (16.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 404.149 633.149 Tm 85 Tz (16.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 85 Tz 3 Tr 1 0 0 1 445.199 633.149 Tm 87 Tz (16.8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 182.15 619 Tm 92 Tz (16 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 252.25 619 Tm 88 Tz (16.8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 293.3 619 Tm 87 Tz (17.0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 328.55 619 Tm 85 Tz (16.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 85 Tz 3 Tr 1 0 0 1 369.1 619 Tm 87 Tz (16.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 404.149 619 Tm 88 Tz (16.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 444.949 619.25 Tm (17.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 181.699 604.85 Tm 93 Tz (32 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 251.75 604.85 Tm 89 Tz (28.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 293.5 604.85 Tm 85 Tz (17.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 85 Tz 3 Tr 1 0 0 1 327.85 604.85 Tm 88 Tz (27.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 369.1 604.85 Tm 86 Tz (17.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 403.699 604.85 Tm 91 Tz (28.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 444.949 604.85 Tm 88 Tz (17.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 165.099 589 Tm 96 Tz (Window length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 294.949 589.25 Tm 85 Tz /OPExtFont13 11.5 Tf (b\) Distance from truth ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 263.3 575.299 Tm 83 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 83 Tz 3 Tr 1 0 0 1 345.1 575.299 Tm (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 83 Tz 3 Tr 1 0 0 1 420.699 575.299 Tm 84 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 251.75 561.399 Tm 85 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 293.5 561.399 Tm 80 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 80 Tz 3 Tr 1 0 0 1 327.85 561.399 Tm 83 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 83 Tz 3 Tr 1 0 0 1 369.1 561.649 Tm 80 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 80 Tz 3 Tr 1 0 0 1 403.699 561.649 Tm 84 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 445.199 561.649 Tm 80 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 80 Tz 3 Tr 1 0 0 1 184.8 547 Tm 92 Tz /OPExtFont5 13 Tf (8 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 251.75 547.25 Tm 88 Tz (2.73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 293.05 547 Tm 87 Tz (0.93 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 327.85 547 Tm 88 Tz (2.68 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 368.899 547 Tm (0.89 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 403.699 547 Tm 89 Tz (2.78 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 444.5 547.25 Tm (0.96 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 182.15 532.6 Tm 92 Tz (16 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 252.5 532.85 Tm 86 Tz (1.35 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 293.05 532.85 Tm (0.41 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 328.3 532.85 Tm 87 Tz (1.33 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 368.649 532.85 Tm 91 Tz (0.40 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 404.149 532.85 Tm 88 Tz (1.37 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 444.5 532.85 Tm 91 Tz (0.42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 181.699 518.45 Tm 93 Tz (32 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 252.25 518.45 Tm 89 Tz (11.76 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 293.3 518.45 Tm 86 Tz (0.19 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 328.55 518.45 Tm 88 Tz (11.17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 368.899 518.45 Tm 89 Tz (0.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 404.399 518.7 Tm (12.46 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 444.699 518.7 Tm 91 Tz (0.20 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 119.299 494.899 Tm 100 Tz (Table 3.2: a\) Distance between the observations and the model trajectory gen-) Tj 1 0 0 1 119.5 481 Tm 97 Tz (erated by 4DVAR and ISGD for Lorenz96 experiment, b\) Distance between the ) Tj 1 0 0 1 119.299 467.3 Tm 94 Tz (true states and the model trajectory generated by 4DVAR and ISGD for Lorenz96 ) Tj 1 0 0 1 119.5 453.399 Tm 103 Tz (experiment, Average: average distance, Lower and Upper are the 90 percent ) Tj 1 0 0 1 119.5 439.5 Tm 102 Tz (bootstrap re-sampling bounds, the noise model is N\(0, 0.4\) and the statistics ) Tj 1 0 0 1 119.5 425.55 Tm 100 Tz (are calculated based on 1024 assimilations and 512 bootstrap samples are used ) Tj 1 0 0 1 119.299 411.399 Tm 101 Tz (to calculate the error bars \(Details of the experiment are listed in Appendix B ) Tj 1 0 0 1 119.299 397.5 Tm 97 Tz (Table B.2\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 119.5 366.5 Tm 124 Tz /OPExtFont5 15 Tf (3.7.2 ISIS vs EnKF ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 15 Tf 124 Tz 3 Tr 1 0 0 1 119.5 336.3 Tm 96 Tz /OPExtFont5 13 Tf (In this section we first explore the low dimensional case in order to provide easily ) Tj 1 0 0 1 119.049 313 Tm 98 Tz (visualised evidence. Then we evaluate the nowcasts using c-ball method defined ) Tj 1 0 0 1 119.299 289.7 Tm 91 Tz (on following. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 135.849 259 Tm 101 Tz ( Compare the results in the state space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 101 Tz 3 Tr 1 0 0 1 146.9 232.1 Tm 98 Tz (We applied both ISIS and EnKF in the 2 dimensional Ikeda Map \(Experi-) Tj 1 0 0 1 146.9 209.1 Tm 97 Tz (ment C\) and plot the ensemble results in the state space \(The details of the ) Tj 1 0 0 1 147.099 186.049 Tm 99 Tz (experiments are given in Appendix B Table B.3\). Four nowcast examples ) Tj 1 0 0 1 147.349 163 Tm 96 Tz (are plotted in Figure 3.5. In all panels of Figure 3.5, the ensemble, produced ) Tj 1 0 0 1 146.9 139.7 Tm 98 Tz (by ISIS method, not only stays closer to the true state but also reflects the ) Tj 1 0 0 1 146.9 116.899 Tm 100 Tz (structure of the model's attractor as the ensemble members lies along the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 311.05 52.35 Tm 80 Tz (51 ) Tj ET EMC endstream endobj 292 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 293 0 obj <> stream 0 ,,'єb7!_$I#Ds0j>8vhp|*~#͌;ͩ&V㮇T# h}[\ʙjPUԧ%Yn!'Ɨ@t֐Z=p2@c uBsV;t bH'g O#X@ǨDavulwlhrgG‡cMU>72.}F]XdE[M=1#@!>"C15ddTm]ߍδwV/>I1'cPqwW,ՙ_ݘa}z4%sj:ľH#!`r PI7 S7 4;'2y-y2x|Mvtm[^A`kN$L6Jۉ`')kq?R uڄuH-l#Am K۵?Kh ΉKYpfVB _bC!f|~p7I¾F}3Y=Eŵ ŀU;I˴LV7M#gt; ( Y#2X G^K|n e׶rJd99:qrd#!#4ag?20,0ClF'B;OBnb/6Q><#*eC El fNv5Cmx\J<`oR8U/ؙ,֛DK`S3olq=l|#%A-ж G:.˓% %7qxȠ$X-XJ& 8)JE5$%zVҭ2ȍj \euP„QŊg65 3`k1{(ncX|* UZ <98&&ςܳ٢Ϸ*%6v%zcώpA46˼:o @|y h'~>Xֈ%>T-4(K4K%uvq?v Ozu2hD1$czoq4DF&%UߩF=M/^7ً&>8 0h9񄳨1|H*rZ;BR ^xM/oYk2qjAˇ.I_JKTDS<~48yxt1T>%TDJf}zϮDY"ƂAq8*( Nr)S `^h260{:tF_QQZtx]l;cp*Ut:,97?<7]: y 3`crUOlƃ~}KщsbQ2ȠCe%#,{k}8ff{ڡu?é%/бW,B*-DnӉ~u8Z/= X,݉e&9'Ft ojJƕ@& I9q]7ipo=֡!.մ~ qcmW40[\_;WhO +nX8e*M@*ῃfb*Բ~>KQ;vk]OzF.hsbMH4;?kSW)R ~4P# "cYc kJAEJAޞ%SctmdnU'v$+,Lg[wh7w$FTkֶЊâdu#fήᩘ\9SuX7|&y>!opCz)E7s?iwy+ ;UtHL@ӿ}"ljXk> ؘg?C]' _F`D]y~t5%Y;%8u㸦n/!Jee3>w`K'"p?κ>Pe#g1Xl&ù֧_hwO&lhLQ6Vs ^/ʶ҈ NlxƊ-^&!r)Bv#չļ yIeƫ{Z XlxiUp _I}݁kqx1S_QSjP(\ƥMAP;[珞Cg_6TLI,*vM`@)X}]va4 /\]pI#r;z"Aj #-8 =f˞Lǁd7>fJ ~6 p,"C!eMt0kmm \T8 JM*-eoww>X,ݖ[^DRz؊X "Je 9A&a ҏ'_@̢/3-$!lk16s1B. )%MR)]ܢ2x:7Aǐ11v 2ɱ`D7ZV**M}wcw%Ҷ] tI#(MM I!mԾ91P05? o֢F@O)?(|܀*jW!) >b{% n*ֿsуJ*a6g]H' r0I΀xuaFIϋZ\BA_レ\Zt$ fʸ ȆbܯܮXta!b?ZR"Ag~=x.ȥBq[:H3!Ôr,īU-6L)9%.!>7oH#GU3G1av ~>t=53X.>*Zl?IG |cx{32}i;g%=r/ d((T'^v;x"Ƹy2<j!K(aY0ˏE-4#+.IiIi3DV}6G _l, ;\{LF1\+xhx. {g!_ЦL>q4T;b }v@r&\zMms]O*GfF7|p xZ('J<)D&,:v;֭KpxW>*krU ܀ש ] y &_mS0/x @eڇH_+ٍ}^|j^5)R@GӮ?GQ{_L5)e,[äha{"fLz[*BX#KfM5cv~f3C9 iR`)svwe n7#w, KcRr)NjwkF+aDW\r6 }{lnw)BL\9BJv&AJ %\ j\JJЫ#Omk"}5KDZ{tf;n@MR`?< :gS?&ݡ3W42ÊiErBײe/G_ow3vh$ZQ5 Om?L0*Rqrr1[lKyY&c1v]BH"J2{0ؿ9׆YtYSle u$ہ-zܶ>.; _,wϒܧ],b @T"<}WŽ(/{pڣL G̷yJ/S(*R] 0铹J\e2m[ο,*uqRf4ҏ|V5<UB)X{< BExxPExHy "ބrXce8% j~~R?J#]!Kic CCsyUR([n/.X)`ǨOsHxGazk$.aIWÅ A]x<Mn5Mu+W"`,#2C7%8>*!VV ^|:f0Na❷8-u"&0rRH ;\9άt4|,EoCMurzq{L(o00T!»!qАbSC|&]]36o^QxB$8WT@ޠPA(CYƖd͞zZK]HguiȷwPk'"Ƶ^5Ll&^<4ĺDAW$ fLRVEc̋#j—`Foz)>."[3Y"6>bJKMSܕiUI2eN& Lz{oc('γ7*,<4N:V,e#,s<ŲN+:Q/7'Btɋ}%!ҹ)/:%{.p1"ri` J[ 'A`W `93 Dl|\G Q[B f  ͍p#t;֨d"=mp=?d2m&6m@SfKдVfCr/if2 \Ņy!%w%NdX52͚'^XhMȤ/LhagÓSx8 !ST`cj PQtYg)զ_5U]v . p;Vg_!^{tek+3wٹp9 ]g!:l6 5O5sUۿU#ܘ˶딁BLo֓}) uDJ7pTXkhyy\;tc]X%2mVr nۈ2dUQkH,p |""D/KAfp׺% o.*'ߒAaBrTg0K4I  Fݟ~gOGojW^讘SQlIVvN?TQ.% Suho!cMP1&ԧAux kC];[=eLOeVBBy@Q#n\ZE)3^gF BьL(Di+0Ac¾I+g']! m0 :~G-{$|K(A՘C͍ί׵v.Z/B4"}y҃z BM R,JgPB)?𴯱?;7JyCǹ&U@/cr=JZ/7: vBh"JGz4΍DL'eCa!j(m!\¼e:l닍`m*ֶ;7UU(V8׀2d3d""4?fq;cFtpR~o/Sڝ8,uM-CفIs>ͼ b yT97DIvzWg,D!{RyZ`A '[«NO ֥ubɈktMzX܃{@(jU-c 0TgRCy@8vkWȜOQuqmIe6!U1T@g41G@>H1UH&?۶0m<7'Eg2`k<n!窇OKMni`1Y*Վp!Zyy` :^zKh#sbBM &`v2g7|/5pc~U҈ E?{ɂ-$R}=֨3O?^)K ]y'sŒA(d1b$98n>c5?ro"~H iO;"4 `x̍u_ꅕ ?cIRԂKrҾ)9F0L^z+N j&U] q{v8Au>숱3ȷ»ץ>%[4z<8xpÆsa#Ī󛶝 VTX{XS\\r|C3l԰U+ q$>7:u2r&~rzN!'Y9e0(adގgQ ${cmkobxB.H1 W3Ħ ;.qTk>H!|mѸhi!|JskYl,7\\('n'[q=z #4e c!eY#7e(.v9'W3TGZ,^CGA@\su|M^g¨"t , DU)MN$_6 8B`z mUhdAg"\ڹ̵Kc2)_z6:] [4_|ױJ7nAn%^xT%:pn6C( G*P%a Q cL@G@0+g \D}>*w8zǡӕ$MQݥ̗shZW&G,$Aѳw,-*u+ܗ亢FdRO`\4?8 OL2z!,2B@cCH+{aL*;)lRNlaSNa$T~.̿%M̼sH˴CJL W&DړPfWATD 3='Pjy7>,)ղ/_Ic cAC-bpUF:{%т[,XOp T0ʍvuwt24ЅT<*bMñd:X뾉;i?l}X'; 0<Z&kT]@dqm̮rʣRkWb?[Xe'3em!鎬M255zN"ъx[oaLW;4$){tD$>fq鴥<;*B'v^y3VpГ:.!b:XxA}?"*> .swM: )283*s&ici2<;2i?}p"P >Nk; [XI}<3=} L}(d,IsU|F.5A H?&|_Uou@ʞSO-Hg۾ kAGz쑕RTщ۫UWnOġ'ٴ6Dszz (-6S0A`a]?7ߤ8Y%v(j2La y QS-mBo29݀+U*otI.o8sp(9clzy IdƑs-6[8E1W}|KwqooXB Tk\cG 9av(:Mg  y  ,xtYKA,迒ΏkF({cM{|OϦVwQ'+*. ]ZٿC]GbH2Òՙ2Ლ5I4 1)oK?cmɒ ˗I&C9BM1Gng~b/M' ܐ B)HfRE gksUX㏁; i0?ڻo Qxct!0pj o[{( 9a|\I\湇|PHJ[{T% .[5Qyץ߁ Gq g5o'@` b',X.LRm:ZN:!/,^Qu39'PIpm{qݺ&rJǹU1)Me1ձ3JA"ckb.D{6iQ쵝'cmkI%.!oW8ǀ|z2@ Gp45$O ]f^3dnhs,*}liC(}sҬ %|!{DuhZ\~8((%ی;:W|…@ð4*Ͽqm 913{dw\X92TœV=U㽍%//;L}ݶU<s|e;ЬQNg%i*{`p@_NxH\z(Vu`9:U54)ʖ*$sA~q:i 7e7[<uzQIg"@ԎކjV#8# gY:\m|J RV f,^f 8h+2A j0 lЙX8X*n2=pWB`/Ai+WGz"3-.=dT˦TD|t3y %{կ'tJxV:W $ݸ0x`d{.3HeFEOR7jɷW2VBj'n++g<.3Jm|6 rzP.R=&CXg9,*fW fcй- 3GT0r\^8ŰrtgkjR~tɰHԑ@UC^dap@_wQE#pj@򖆫B1TL4nϬpYT{c[s1idoY_d,^o|0 _5E]w){W>R$4B?9+Q^@_/{K,upA" ƾ[llWGeE2]5)6A Me\Uѭt- k7%^XdO/w<`9'D 9CZ9_ s týK|eY`&?6wu(+NMt]^~fpqOQ适&m׿?,5)[B$uƉcLI ؊ fgGK6 RE6n3y`.JQ5^#`ζ7fmO("ȝi'\\J%G<[O"\2.iXӽ $uE^ Sl+ ]eiІ Dp"xMR9?$N^T~bO6U[l}ٻ9cHx+=(Ixv*7s3nd?( ؂Aڔ& &?q~:tNxvy^6z,G9.aL2DR~h3ႈ⳧MAjOY&{,&BL ! v(pB⇊X7/F4[5U~›VlAAvB^?l"$ ڑZ/7̓.({zg.×5w;&|-\#~t2?syQWmX|N?ݓ/~,klf~@tҍfM臲ɞsK7{ՏZ1yIOʗ~Qq6\ ډľ|!'#zݡ]{gc4LEstA(DԄYAehEM~̵x2i0Xg9" , U%} }q /;׍ +9Ax"'yHdZ񇞱aVD3^UY5ASD`.Kӂ9UvmIr924\>P%x! -pR\[sTaQpHzfM~XPAv=4yvrKN ~f6n2쑇=xyc8>W;Pf(Wg:OX=#y*grŰ@_bhk&/;\F;dr ֘\f8zFX=OF> endobj 295 0 obj [296 0 R] endobj 296 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 836 0 0 cm /ImagePart_2079 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 452.649 717.45 Tm 3 Tr /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 148.3 674.5 Tm 94 Tz (model attractor. The EnKF ensemble, however, has its own structure as ) Tj 1 0 0 1 148.3 651.7 Tm 91 Tz (the ensemble members do not lie along the model attractor. In the top two ) Tj 1 0 0 1 148.099 628.899 Tm 89 Tz (panels of Figure 3.5, the EnKF ensemble manage to cover the true state and ) Tj 1 0 0 1 148.099 605.85 Tm 92 Tz (tends to stay close to the model's attractor. While in bottom two panels of ) Tj 1 0 0 1 148.3 582.549 Tm 91 Tz (Figure 3.5, the ensemble members are systematically off the attractor and ) Tj 1 0 0 1 148.099 559.75 Tm (tend to stay close to the observations and not covering the true state. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 137.3 527.1 Tm 92 Tz ( Evaluate both methods via 6-ball ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 148.099 499.5 Tm 95 Tz (Here we introduce a simple new probabilistic evaluation method, which ) Tj 1 0 0 1 148.099 476.5 Tm 94 Tz (evaluate the ensemble forecasts without transforming it into probability ) Tj 1 0 0 1 148.099 453.449 Tm 88 Tz (distribution. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 148.099 425.6 Tm 93 Tz (Given the verification corresponding to the forecast at time t, in this case ) Tj 1 0 0 1 147.849 402.8 Tm 95 Tz (the verification is the true state at ) Tj 1 0 0 1 327.6 402.8 Tm 111 Tz /OPExtFont6 12.5 Tf (t = ) Tj 1 0 0 1 350.149 402.8 Tm 94 Tz /OPExtFont3 11 Tf (0. One can draw a hyper-sphere ) Tj 1 0 0 1 147.599 379.75 Tm 91 Tz (with radius E \(hereafter ) Tj 1 0 0 1 270 379.75 Tm 83 Tz /OPExtFont6 12.5 Tf (6-ball\) ) Tj 1 0 0 1 304.1 379.75 Tm 93 Tz /OPExtFont3 11 Tf (around the verification. For any methods, ) Tj 1 0 0 1 147.599 356.699 Tm (one can record the probability mass that is inside different size of 6-ball. ) Tj 1 0 0 1 147.849 333.699 Tm 92 Tz (One can compare the result between two methods by simply counting the ) Tj 1 0 0 1 147.599 310.399 Tm 94 Tz (proportion of times one method beats the other. If the methods tie, both ) Tj 1 0 0 1 147.349 287.35 Tm 90 Tz (methods win. When the size of the 6-ball is very small, we expect neither of ) Tj 1 0 0 1 147.349 264.299 Tm 91 Tz (the methods to be able to have ensemble members inside the 6-ball. When ) Tj 1 0 0 1 147.349 241.5 Tm 94 Tz (the size of the 6-ball is big enough, we expect all the ensemble members ) Tj 1 0 0 1 147.099 218.25 Tm 92 Tz (will fall inside the c-ball. In both cases, both methods wins. When the size ) Tj 1 0 0 1 147.349 195.45 Tm 95 Tz (of the 6-ball is neither too large nor too small, we can investigate which ) Tj 1 0 0 1 147.099 172.149 Tm 89 Tz (method produces ensemble forecasts assigns more probability mass around ) Tj 1 0 0 1 147.349 149.1 Tm 97 Tz (the verification. The advantage of the 6-ball method is that it is simple ) Tj 1 0 0 1 147.349 126.1 Tm 93 Tz (and easy to implement. Note the weakness of this method is that it is not ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 311.05 52.649 Tm 75 Tz (52 ) Tj ET EMC endstream endobj 297 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 298 0 obj <> stream 0 ,,ggj?ǰL,X̴{XGv mBUw׀gAe6Jw*qB^l܀k ar:%Pb2*lbx100uvh٭ g(X-JiÉKʡ;I4Do1v{#UŻO&//Հ/"X0۪,eķXxk1i [-1Ϗ<9DfbwSF6Va T6ՇoBl0]e ~4qB"pO0AK{6/%RKB1ˁ;#ZRo4i#f}ѥy{-@=MD lT<lX?:ڗiS1z(<+,O^ưj}ƕPǩ/ eC _Cڬl! r E#X#@0ٿ(6*ג"MAKkр⁴BPxBVb'Ԇ|5Ԓ9& OSɇh<̼6a*hjզ urE] @IK} 4&ϧ*'9~Fcj>8c A1>H\M)N"jzo}% 4[Pr 6>ݰ̚1!IcJ\+썘鰿f)Lc渿qzO_WڗɳșIZ"жٱ촥߯ȲڳұB/ݳϟMu5ݳٝb9c$OtY/8+>ͽ<g`x9&fjQRJ(!@GpUx7aPRH/ iC!@ؐ6AYDRT.plmj_'Yj{鶾`'gHmy]=mօՇkn֨oL#9!JYR u,1иʽ\&Hڷ QQ s;L9+T?a}UꛨZ;dQ*7pXomsBą z\MD«WFV\A&42O>z2~WOMi/ w-W!u Mp5*?!crDzZy |b6 +w(G²/f^t8(\c&๩ W[-X"O4n”0Y6˅Ll@H0iĀJdV/Ax>9>˰Xub-ڏQa~~Ej7,Od!l7wfL؉y/IDgf]FU͓= "zWp)::\LdRWSfp'ґ4]5f{>E>cZkVbY*p05-Ym38'&"8c l=Oƈ42f32yzWµ;j(1U|~zϖ{8|9 2n~B),!OnMU[ ")A-9/#PJ0` ;s΁-mFmw+={4kٱM:d-ƽN؊E]SLHt4QXMz$ P) st>tݐXEg74$i? >7$xifϏsJ_~˲_2T%5Zo44.` rW`zDR,l M|} (I>0Lj.N. _gΦ 5'9$:qJx;mr1/VP&ns+18ev8(nLz3,;{Ylà@S)-=F:o90gυ_S7jy/X0$m(L|[g(zL$Oe u}Jz$AZu㡰Ff2 :Kx̹6Mp-`_8Bj$zFk\p)MZvu_Iڱbi }ᐴrp!y$3IUcrD,Re{{Y ,NnOlo` ʛn *ޞm'uXͪfU2MEoLq`2"n'Ve,RFIEo{jv8<ӎ$r6IUc]ROE>nꌠ^6ׁ\*Mo]uya8Fa BwcdoOLHsr42Xq`1RYk 㔉;sND VT??51 2~+*^ȳNǎ H@;R2u@OJc Xhk3+=Cާ#JxBHpejEBn*LP-O}zw {pi+VvddUyMC{4=bygϤϼ(d}cK+W6]㵆Lp%o<5+gRjmOvh?v RnwX /UP=` _4{xƱ쇿 ^IC&rԗHTw(.=m'? Rh%ţ -kkRe9|#d4oB$DGYhi.M\CD&r Gh|ڀE EvVTf di9JҸnMl;x[B站\ZʰOx{xFg d 'zƎΉ1b$ǒQէP/f ;JH wKtge9 RJ$!{-yȄq@i7~<܋W+4riیT ޠ){o_"tJ?ƫp%szdEu.]'Ԥ19zZ4 ɰNRlKoC? ŅW8p c Z3KEd#@Bl&rAm}G oEqo+n}E1W`C5. tzF cd❒+T1zfnC$caL[DUPU a$?S) ֙H[ J_&/lj-bkQyƹhϿ6v FI !Ao|Q?6W4al!Ln? Q+2Q o6ox͉k gDկ;OvGгRw.O@䕂 iLx Rb+r5~r,+bcf'S:OzDA8r_w 0y,|'nt5JƤ>kZ^Is-:ĞQE 0=uSLvv;aQsVJ0 [QcH o|hŰK(T#7h_fQ `&UOI@<b&ɚ>KS ̮lM(Iګ)g+6u= @lX=(s{0q"t kKK@dk>ʾ)~sӠfZ,Va~TQºӇ P1 _gxS/L̝wL8>%ީu'WaFµC$pq5s/Rj1x&lbp P [6pZŃy@Ymu@{vcÚV{x[Cvl% ;lN#hضKgٔɦMٴTPf)$&~j_chPЅό*x |QSCUi ܩa~esCJ&˙1y}˃.EgOȗR6c"M0k3H#uejG)y9` fIe OCorlIoOȪ:z:0|Sr1]gaKICD}PZ 46BsH[!7Ҁ+$P8ۿ<ƪkw2B"з'9;@YL}qgx;0юޕ$,.);1{T8 NeIiK6 Vbja)X5) Erv?+XhI`@L}r1AdgYxuC`A겮J)bt3}"wBGu>pwv]Wf1Ѡ=jKx#y&?P}aҦ^}Fi*qJ`Fc%7}Z^Q4S%{{ b-rL+ ZjM_q"蓓kj˦ξ@]hVޔrHN)WPIAkC8HFu ,#&,@gP 2Y=%O< Բ㪾x~i1!jgڠAƏy!Ƞ?q3wq*I֢T:oBNvAM+9T<s shj𹽹Rp;34;"~qa'q9L$YD9L|(x1QpS]CJC;Ͽ_j-DRO⤳֎,lC5E>mm#@ա};`h0IvIl"QgNΙlH+dZI'};~|}l 2׀3#C?٠$b{_ݻVP)f-L0;IּH3Sd(Qc%J 6sqfDÃ5BL8OX-!XS|cK_  } U(opp;p}A[YNb^QYViDa> 9־MjF_AεH*ݷcm\GpV()?R݆6 A)|Aȅ6f1<IJg|Є3W8Ov- vHIbEapBbcL|/,*Bqx@(L2٦_WaX(3znXLSmv*1ЫaiC'9SrYV:NLyHDn*0P|ζ,}{jbWzZx !HQŃqԸA- $= ,7倵4f7_7O gW/(Cj5ԺC@Y- vEfVw*O2FT.,rO1#LIޥ!֡NMlKe!,YmiӸ<)֤ܾ F 09dD"t.iAH]bwxV^F )FEV0rH\<Ϋ׏qAР:A Qr= \\2f0}p+=fWȼ' o^yV|Ҁp{wh3KOy~倂/Ƥigzf{{="hw%t( lV& .(3R;[얜RT\F`hΞC; ׾ )ltl* D{w3{ՙZ0ݼ߂ nkvM W9["իǁQ g!-I|;ߘa [C9jgnY"_uŠzF{_TԧD]Hx=8 h9wŮ+JMsS6$*h1aBP MRg 0U0H՝h)lB•}R$3˯E<`!υY35Bf}І\sd)hv~݆;b8l8uBz B#+C40L*"/O)$ջѿKʄゴ3v۱.uq&2qG&6Դ}bޱ(!#糦0bղ)Pf'V0]mZXhփS*.Ql$iCjvL]aj}ҚG+J#^ Xy9A)!4XJ*)NW$ry X2 糥lY -n[Ssb#mBXt vaےMM IXI˷爫6!WyU͌g ̹.HnyWgR,f9=;~Q^LX?4bÂ]cO3a-kYU fXy.^%׌cv}2>e'υko# 8. ҕ{sOn𤶂&ɬ 7,[:i"C8:K CF3tB+QMOtvp@"tC>cKbVd]@?T{nZO?o @GReH1 lw +6y~]K }sօ!OFo4qgm1 hSL /jH Bڸ0BOSLy! zҞ_3ˍOJu1F*p(|~ OQ0ioK g~4ukC|]0ݴZƏΧ ux5I~8QՖSxrZ#t7m ۨ_XI;  ډ֦[CL7603kȡʽ?jΰlIvx%v}I$.nGߗgcj\n{7Ee6إêF*:?BG=9^r;ʳ!@X[^uS`}C)K%{ 1yQ5G;nvG:d"\%CM8@iLF$vtܯ]&!K@l Es|?-T $M_۔J$_ل6U_b"FԠ `!HDЬK!:Z endstream endobj 299 0 obj <> endobj 300 0 obj [301 0 R] endobj 301 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 500 0 0 796 0 0 cm /ImagePart_2080 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 250.8 640.95 Tm 82 Tz 3 Tr /OPExtFont18 5.5 Tf (3.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr 1 0 0 1 298.1 635.45 Tm 103 Tz /OPExtFont9 5 Tf (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 103 Tz 3 Tr 1 0 0 1 250.55 622.25 Tm /OPExtFont9 5.5 Tf (3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 103 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 103 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 103 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 103 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 103 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 103 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 103 Tz 3 Tr 1 0 0 1 298.1 618.149 Tm /OPExtFont9 5 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 103 Tz 3 Tr 1 0 0 1 250.8 603.5 Tm 82 Tz /OPExtFont18 5.5 Tf (2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr 1 0 0 1 298.1 601.1 Tm 100 Tz /OPExtFont9 5 Tf (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 3 Tr 1 0 0 1 250.8 584.799 Tm 104 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 104 Tz 3 Tr 1 0 0 1 250.8 528.149 Tm 82 Tz /OPExtFont18 5.5 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 82 Tz 3 Tr 1 0 0 1 298.1 583.85 Tm 103 Tz /OPExtFont9 5 Tf (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 103 Tz 3 Tr 1 0 0 1 251.5 565.85 Tm 93 Tz (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 93 Tz 3 Tr 1 0 0 1 298.1 567.049 Tm 103 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 103 Tz 3 Tr 1 0 0 1 251.5 547.35 Tm 43 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 43 Tz 3 Tr 1 0 0 1 298.1 549.75 Tm 89 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 89 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 89 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 89 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 89 Tz 3 Tr 1 0 0 1 302.649 532.7 Tm 95 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr 1 0 0 1 295.449 515.7 Tm 102 Tz (-0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 102 Tz 3 Tr 1 0 0 1 249.349 481.6 Tm 103 Tz /OPExtFont18 5.5 Tf (x 10' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 103 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 103 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 103 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 5.5 Tf 103 Tz 3 Tr 1 0 0 1 235.199 341.699 Tm 13 Tz /OPExtFont1 192 Tf (1) Tj 1 0 0 1 250.8 462.399 Tm 73 Tz /OPExtFont19 5.5 Tf (3.5 ) Tj 1 0 0 1 258 462.399 Tm 1983 Tz (\t) Tj 1 0 0 1 295.199 461.199 Tm 94 Tz (-03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 94 Tz 3 Tr 1 0 0 1 250.8 444.899 Tm 104 Tz /OPExtFont9 5 Tf (3 ) Tj 1 0 0 1 253.699 444.899 Tm 2000 Tz (\t) Tj 1 0 0 1 295.199 443.899 Tm 79 Tz /OPExtFont19 5.5 Tf (-0.4 ) Tj 1 0 0 1 250.8 427.6 Tm 73 Tz (2.5 ) Tj 1 0 0 1 258 427.6 Tm 1983 Tz (\t) Tj 1 0 0 1 295.199 426.899 Tm 81 Tz (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 81 Tz 3 Tr 1 0 0 1 250.8 410.1 Tm 74 Tz (2 ) Tj 1 0 0 1 253.699 410.1 Tm 1855 Tz (\t) Tj 1 0 0 1 288.5 409.6 Tm 79 Tz (.. -0.6 ) Tj 1 0 0 1 251.5 392.55 Tm 66 Tz (1.5 ) Tj 1 0 0 1 258 392.55 Tm 1983 Tz (\t) Tj 1 0 0 1 295.199 392.55 Tm 79 Tz (-0.7 ) Tj 1 0 0 1 251.3 375.05 Tm 35 Tz (1 ) Tj 1 0 0 1 252.699 375.05 Tm 2000 Tz (\t) Tj 1 0 0 1 295.199 375.3 Tm 81 Tz (-0.8 ) Tj 1 0 0 1 250.8 357.5 Tm 73 Tz (0.5 ) Tj 1 0 0 1 258 357.5 Tm 1983 Tz (\t) Tj 1 0 0 1 295.199 358 Tm 81 Tz (-0.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 81 Tz 3 Tr 1 0 0 1 249.349 651.049 Tm 86 Tz /OPExtFont12 5 Tf (x ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 5 Tf 86 Tz 3 Tr 1 0 0 1 307.199 505.1 Tm 114 Tz /OPExtFont9 5 Tf (-0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 114 Tz 3 Tr 1 0 0 1 319.899 335.199 Tm 83 Tz /OPExtFont19 5.5 Tf (-0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 83 Tz 3 Tr 1 0 0 1 333.35 505.1 Tm 107 Tz /OPExtFont9 5 Tf (-0.) Tj 1 0 0 1 341.05 505.35 Tm 37 Tz /OPExtFont9 4.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 37 Tz 3 Tr 1 0 0 1 345.6 335.199 Tm 108 Tz /OPExtFont9 5 Tf (-0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 108 Tz 3 Tr 1 0 0 1 363.85 504.899 Tm 95 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr 1 0 0 1 376.55 335.199 Tm 74 Tz /OPExtFont19 5.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 74 Tz 3 Tr 1 0 0 1 387.1 504.899 Tm 66 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 66 Tz 3 Tr 1 0 0 1 400.1 335.199 Tm 63 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 63 Tz 3 Tr 1 0 0 1 412.8 504.649 Tm 78 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 78 Tz 3 Tr 1 0 0 1 426 335.199 Tm 73 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 73 Tz 3 Tr 1 0 0 1 438.699 504.649 Tm (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 73 Tz 3 Tr 1 0 0 1 451.699 335.199 Tm (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 73 Tz 3 Tr 1 0 0 1 476.649 650.799 Tm 87 Tz (x10) Tj 1 0 0 1 486.949 650.549 Tm 73 Tz /OPExtFont1 5.5 Tf (-3 ) Tj 1 0 0 1 490.55 650.799 Tm 53 Tz /OPExtFont19 5.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 53 Tz 3 Tr 1 0 0 1 478.1 633.75 Tm 75 Tz (3.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 75 Tz 3 Tr 1 0 0 1 478.1 615.75 Tm 79 Tz (3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 79 Tz 3 Tr 1 0 0 1 478.3 597.75 Tm 73 Tz (2.5 ) Tj 1 0 0 1 478.3 580.25 Tm 74 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 74 Tz 3 Tr 1 0 0 1 478.8 562.25 Tm 68 Tz (1.5 ) Tj 1 0 0 1 478.8 544.7 Tm 37 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 37 Tz 3 Tr 1 0 0 1 478.1 526.7 Tm 75 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 75 Tz 3 Tr 1 0 0 1 476.899 481.6 Tm 96 Tz /OPExtFont12 4.5 Tf (x ) Tj 1 0 0 1 481.699 481.35 Tm 151 Tz /OPExtFont9 4.5 Tf (10' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 151 Tz 3 Tr 1 0 0 1 84.7 335.699 Tm 86 Tz /OPExtFont9 5 Tf (1.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 86 Tz 3 Tr 1 0 0 1 110.9 335.449 Tm 100 Tz (1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 3 Tr 1 0 0 1 137.05 335.449 Tm 96 Tz (1.3 ) Tj 1 0 0 1 143.75 335.699 Tm 1386 Tz (\t) Tj 1 0 0 1 162.949 335.449 Tm 93 Tz (1.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 93 Tz 3 Tr 1 0 0 1 188.65 335.449 Tm 100 Tz (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 3 Tr 1 0 0 1 214.55 335.199 Tm 70 Tz /OPExtFont19 5.5 Tf (1.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 5.5 Tf 70 Tz 3 Tr 1 0 0 1 99.099 505.1 Tm 103 Tz /OPExtFont9 5 Tf (0.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 103 Tz 3 Tr 1 0 0 1 69.849 417.5 Tm 100 Tz (0.4 ) Tj 1 0 0 1 69.849 400.25 Tm 96 Tz (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 96 Tz 3 Tr 1 0 0 1 69.849 382.949 Tm 100 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 3 Tr 1 0 0 1 69.849 365.899 Tm 86 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 86 Tz 3 Tr 1 0 0 1 74.15 348.649 Tm 95 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr 1 0 0 1 372.25 691.35 Tm 93 Tz /OPExtFont0 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 93 Tz 3 Tr 1 0 0 1 383.05 328.949 Tm 57 Tz /OPExtFont13 7 Tf (x ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 7 Tf 57 Tz 3 Tr 1 0 0 1 46.1 299.899 Tm 92 Tz /OPExtFont3 11 Tf (Figure 3.5: Ensemble results from both EnKF and ISIS for the Ikeda Map \(Ex-) Tj 1 0 0 1 45.6 286.25 Tm 89 Tz (periment C\). The true state of the system is centred in the picture located by the ) Tj 1 0 0 1 45.6 272.799 Tm 88 Tz (cross; the square is the corresponding observation; the background dots indicate ) Tj 1 0 0 1 45.6 259.1 Tm 92 Tz (samples from the Ikeda Map attractor. The EnKF ensemble is depicted by 512 ) Tj 1 0 0 1 45.6 245.7 Tm 90 Tz (purple dots. Since the EnKF ensemble members are equally weighted, the same ) Tj 1 0 0 1 45.6 232 Tm (colour is given. The ISIS ensemble is depicted by 512 coloured dots. The colour-) Tj 1 0 0 1 45.6 218.1 Tm 92 Tz (ing indicates their relative likelihood weights. Each panel is an example of one ) Tj 1 0 0 1 45.6 204.649 Tm 83 Tz (nowcast. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 83 Tz 3 Tr 1 0 0 1 73.2 174.399 Tm 88 Tz (proper \(12\). We will discuss the weakness of the ) Tj 1 0 0 1 304.1 174.399 Tm 91 Tz /OPExtFont2 11.5 Tf (E-ball ) Tj 1 0 0 1 333.1 174.399 Tm 87 Tz /OPExtFont3 11 Tf (method and compare ) Tj 1 0 0 1 73.2 151.85 Tm 90 Tz (it with the proper Ignorance Score in Section ) Tj 1 0 0 1 295.199 152.1 Tm 75 Tz /OPExtFont0 11 Tf (6.1.3. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 75 Tz 3 Tr 1 0 0 1 72.95 124.5 Tm 92 Tz /OPExtFont3 11 Tf (We compare our ISIS method with the EnKF method in both low dimen- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 234.5 41.45 Tm 75 Tz (53 ) Tj ET EMC endstream endobj 302 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 303 0 obj <> stream 0' ,,##kcާt|[I#h-~X8[)ǑfMCSgG ni@ɚj˃!ZgoO᥆^خj{""SK0EL"/X/>_θ>&RkKpp]urFG>ypbpa!&hkh䗸cC**V)_(u؟KYò p8?+8]YDb_uZhzA V?L 5C- ǒ9:),c%TMH)GBuM#$1 Gkb<@0FZP(3K`ƘF*2F|Mnzn)h.EOϨ xR[~ )J&)ڴf{xx14;a0~ 1**GnWP>*j{r̀$qHMKZA26,! ӂy\ hlBF|>[f=6ɴn4&ыwkBnV~sW'%Q";QN^`_x4Leەԃ2*4'o#qt,O=^lh Ogtʝ;d#d:ת0 {Btf+>wF*,bΐ1܏1kQc-qL6XX6@ =~x6-`GtrC);EԍnIc \߼_X?w 2>ʞMsο G\!;H6$˝QBt\FuP.rGzv+ІRXRBQ /1 pɹbxRЈX?θ LUHG\aGP`QxN,k | ;KB#:;7ytҕcYj%xZr|kec@jxtv ^@L=Pa`qDŽQBm>BH ,}|Ͳ%86( 7h"0&\+ܔJe2B*8gkBDf{\4$=7AC |FĀ22^J:[!D4' 쀡tL~vc߄6_vQ(*oN}UH! y۾{}$7;68uo4|FI% o7^{_oׅ?3ufc=dLO7]1VJ٪kaH1u&ҕL y,-}V(Tx\>b(CQt0Jݖ~_Fa34 D'X= (_cբVw II Ilˣwy_FH/VOcrB11¾OۇCڰZ2cPJ$E&O5p9b~=xZ؝)[%nw3R!!b J}3ۉ˛ϓLG4(ͧNR{2E;w))~>wܸF/h[5ZvJᜠ/U qp$HW"Z0H1'umP.y6ޥt6D`߫ IrG]ѣUqnQUBd|%5RTT\#]14 9y-zNL&^܈~"%|4Kt 0zFDHRT-NYUSAWLw؂2=W(|{)*ichF9x)ͬzM= H%, 3^2t&Ԑ#4uq=[%JMp^-;cF40 0yjl:ƧeABT:A}m?+;qS0l&d|7q1MI;,&q<(҅ @Kj5q3vGBg1Xy熧žKi^d{ک@'?9Uuxw>ޱ8.ub ڭRKUC΍FqnKԀIr/HB-g].k Ɔv{Ę1w~j4!7MHCa(٤;hT>YC+%U+1̵k̒=,n9uȰ1D*ЍvcP44H$`U.? !jܫ( 8֚/8-Dx@tf ,4$WdUȋ>¬A񮛺*TЎ=۳$.ײRӏХ˲:⸿+n<]KUT-%1\ 26xrX T@VU/!Ȉ^> ,|ZtmGi<3tmsWrY87@j%]eZ(Qϙ4QbY,sN<m0fIyVMYIا߸Mn+`f9 {}UԢ]p(x8S~yi]`2%B;(:SwH¯&5'B6$ހ}e[ù vQ*&(A?<9` $rKI~Dj[gzA3(M+d*]/'=))<[PJWJ-yGDžZq!o('[#uF~諵8`+dpI\SQMӪ g ,{ Y=bgofpd !/RV\ʿ펄-@Ix=VSd'q ~ Y=՗e/C.4_b~^Ejd^B33 #A r}!e9X7ky|h>|b>,88-&,^ז; sVofdݹi`W 3*CalFi/+|*8v W/h1.gsAD:ǏI _ .xK3~.S3)0 e2V3n.ze:W6vI.az]brfrGH.â9S-t60 E).\A?Ȼu PۀQJO+(~bw_ҫm eO UʰC1 R`y*,&ecڷ(KSjk3X;~ɻnB"djU+aJ+aE,BLA]ݙ;ϰ~\3/Kd)|ʠh"պξYR[;[SI-_pl6jw0m Dֹ= ~KL޼d~[z51 N*zXr5?܈xeuНuvzG0D+]$+lثjwd+68_Ԗ5YAg_* q46Ν!#oą)ss,(.3N";e?D"D2U",ċ# 47EQNOFe(({:m/Ew0'o=ץP1i^Œbuo(N8} M|493n4?P867ڟU~l=5' Rdd%+[&9Ho{d{bT^u[G뙲K" d{+$9!c^$搦P+y~ O^d D辐 go #[@ 'Om w+0r,]>1D;}sֱ:v!Eڄ 7sKm`b*3 E &w7.v:C|çY [F[RkND^=^3!;#_?cԀ釪b՞ݰQ9b /+f=t2=m"X`HkwtJa QL"rg%lM3>$,C:9܃6';;\"ۇ=oL='մɟ)1[8>Mñۤ+<ه= 2dDmҌȓBv+π3+ME^k"b m 3@_c7 d9f gXqGǹg DS6%2'"ٻ5<ƅgN}EnƷ h#^BAԝXT4}%tWNW2BJ1x8Z|4݂D_ɲXβE_dϋzRYS+B E<GZr>9;&D\JjݺK0ﳧ^"Ҵ:ڰ6ɬg9"C﷡k,#詹UR[nܬU%pnu[Ʉ~a̳$>݌88qd$<]BQeO h[ͻ){0 >AWM'A}%K g ~ȣHaz}ݾ\f,no`&`]Eٵ')ω9[6T5Eׅm:1yH.mxGQ=RW.}'d(Y'&,LҸx9'⬁o&ٹ]s,5B)>V'z4m6-2C-FKYnAo #SSs4e|5CcRf>~Vk*OV3U +O!/'q!Q>f4b]het@;AYYzm]p7_^ҕ%qj ђn]!_VH˰Ƅdэ02ì±FZm+`ugAƉ?o6Sdj-?o3{`5mL\(<_ThcYmq`Ms=KxEg w)0ye 40AT 4ƴAd3["f&iBJUS|A^94mq`TkB9ޛ*HOi :.eCPixyUNdKC2(k02 AGAWotb;8p@e7%7 I6JN[Uo"AP@:FYu}WF[PFGp}xg"4dR[ ^D#${ڟ3ddT'z0[oy<S1)>ewp=u{Hs#Ր*-9< <#|wNU}:KrCسCS,mp>IuޏOH!gHI48(@y(nUG,.P-xSz/Xjҙ/B-3`uZMK Js\幠8;? >/Y'pYT(ѱY;*8H3 Nig>K,am{2 ٭sLx\e*e٠,7YԫC mSbO~o GˁI2O{iQZeKȺ6"Jx i]řľ$JFozN`Zͨ-$!p%]^0~-;hr{E(^y_g: &/|qF^9o8vGsh_L$]S7VG Hdv u쳸f*l"k%x՛Ђ)71J8$#[Jokoc,Lr+wB)Z6 owQ t;";%$\ `ߑ,= [Vyqؗ_3ԯMq~]4.}IK^꩛kj3SL2ћP6Qy75j fq^O& %POJkVP(ʍ^.qpw:.x{W"X?U,J8JB" $+M{ݗ\!/v@ l6*Z&|EVd#n9*ֻ-!3C匭&!iY;$o,`ilD(d1.Ϩ((J#sOKy?kO_odZ-_XOeo7OpZ)vHb8e"Ǩ*.^R7zKXGo0SXzҫGňO ?23mwK3XWD0wE=$w CyL2.&@np.-s P9zێ ՗%*"ni$0b"Ǟ[5nh>l}'PAs~ m5EPyD>QMm ^vXwzyx 'n~hqk9vO+.m`c0s^jG~>nL$z`?¦ ! 6ӔS:%A!9' f=↋UӟL\lNUXgT6cp;;iX#M.4GVZcAsdPUrs5ez;BM܂6^xGbi=3~ Wq ٽM ܉7tSӢоBu$$nDLb3p@Հϛůwȍ:q5s[@H&M39oB0kO8+!G$i VOW-e :5)~ߍM} /iT}O,o9%2v\zM*2ňt-/ʦ41r IFDKzw8jIȎ;xhy/W0y^?/Yba(eP4ݛȊWH' >qUxaAeJ(.g6~"78gVk͂%h!vBmF:7cD  0~HuԹxQ~ Ib$ѱ/A=v><3 D+U%3%e9c1E`ҾAG4[QNd ,.[[Y̓h,vlԐW>?QG).œ7n%[wg|~JM H47zDɫ_eQ08'V0Ѽ:z_^uX{:é,/jkzY/3kDhyBQdi(}}1p6+du9$IiY0o@FQg[4!_/N(3gk4*7wlx8 _C)"]@zQRTj D6n:| BtE=*cmzkU>JӰ+±<:Qlo񰻃fPEc 5Qn\8#1@&2vRN8 s?ZA`6N!:cĞ'R V#м)ltKו,mZ;_V8$e[iWU@4[B`eb,ngM˄DMUCCȉd?Lgw%\HD5WG" & !i$z?j}f ҙMdgS"`dWxyB(U=uui?1u?Sp:,:EerJo,\VtL|AFKO}AnPs9}#j[Av^Sy,;9/c"ɶD? kxBxA"fhj6wg|^if{0u^v 5h*tj,v^%C\B7RZ?S|G¢m"g^`:LST:+y=! {}ƞcoc5u}#٬S 2Q%~Q0si e'сYG '*?x\ r9Gvv) .w8K6WTb=냱Sv*j4e|$Da qIfoaf͠n/^i endstream endobj 304 0 obj <> endobj 305 0 obj [306 0 R] endobj 306 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2081 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 452.149 715.95 Tm 3 Tr /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 147.599 673 Tm 96 Tz /OPExtFont5 13 Tf (sional Ikeda Map \(Experiment C\) and higher dimensional Lorenz 96 model ) Tj 1 0 0 1 148.099 649.95 Tm 98 Tz (I \(Experiment D\). The details of the experiments are given in Appendix B ) Tj 1 0 0 1 147.849 627.149 Tm 101 Tz (Table l3.3 & B.I. In both cases we evaluate the nowcasting performance ) Tj 1 0 0 1 147.599 604.1 Tm 100 Tz (using E-ball. Figure 3.6 shows the comparison between EnKF and ISIS. ) Tj 1 0 0 1 147.599 581.1 Tm (From the figures, it appears that the ensemble generated by ISIS outper-) Tj 1 0 0 1 147.599 558.049 Tm 94 Tz (forms the one generated by EnKF for almost all different sizes of the epsilon ) Tj 1 0 0 1 147.349 535 Tm 96 Tz (balls in both higher dimensional Lorenz96 and low dimensional Ikeda Map ) Tj 1 0 0 1 147.349 512.2 Tm 95 Tz (experiments. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 119.5 467.55 Tm 120 Tz /OPExtFont5 15 Tf (3.7.3 ISIS vs Dynamically consistent ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 15 Tf 120 Tz 3 Tr 1 0 0 1 119.299 437.1 Tm 98 Tz /OPExtFont5 13 Tf (In this section, we compare the nowcasting performance of ISIS ensemble with ) Tj 1 0 0 1 119.049 414.3 Tm 96 Tz (that of the dynamically consistent ensemble \(DCEn\). For the purpose of simplic-) Tj 1 0 0 1 119.049 391.25 Tm 94 Tz (ity and efficiency, in the following experiments only uniform bounded noise model ) Tj 1 0 0 1 118.799 367.949 Tm 96 Tz (is used to create the observations. Since finding the perfect ensemble members in ) Tj 1 0 0 1 118.549 345.149 Tm 99 Tz (the high dimensional case is extremely cost, we will only compare the results in ) Tj 1 0 0 1 118.549 322.1 Tm 97 Tz (the low dimensional Ikeda Map \(Experiment E\). Similar to the previous section, ) Tj 1 0 0 1 118.549 299.1 Tm 101 Tz (we first compare both methods by looking at the ensemble results in the state ) Tj 1 0 0 1 118.299 276.049 Tm 103 Tz (space and then we compare them by the c ball method. As we mentioned in ) Tj 1 0 0 1 118.299 253 Tm 97 Tz (section 3.6, the more observations are considered, the better DCEn member can ) Tj 1 0 0 1 118.549 229.95 Tm 101 Tz (be found. In Figure 3.7, 3.8, 3.9, 3.10, we compare the ISIS results \(with fixed ) Tj 1 0 0 1 118.299 206.899 Tm 98 Tz (window length, i.e. each window contains 12 observations\) with the results pro-) Tj 1 0 0 1 118.549 183.899 Tm 97 Tz (duced by DCEn where different number of observations are considered. Details ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 134.65 163.25 Tm 98 Tz /OPExtFont5 11 Tf ('Note we expect both methods wins when the size of the 6-ball is very small or very large. ) Tj 1 0 0 1 117.849 151.7 Tm (In the Ikeda experiment, it happens when the size of the 6-ball less than 0.001 or larger than 1 ) Tj 1 0 0 1 118.099 140.2 Tm 101 Tz (although it is not seen in panel a\) of Figure 3.6. And in the Lorenz96 experiment it happens ) Tj 1 0 0 1 118.099 128.7 Tm 99 Tz (when the size of the 6-ball larger than 6 although it is not seen in panel b\) of Figure 3.6. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11 Tf 99 Tz 3 Tr 1 0 0 1 310.1 51.649 Tm 86 Tz /OPExtFont5 13 Tf (54 ) Tj ET EMC endstream endobj 307 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 308 0 obj <> stream 0 ,,kRr,&X'FnRy;&tKV@j ]W8Ӹ4%u b a-4m$raؘ}(5<"Z/Pm5e*zmD=ȖlJ!3u mC帇B,*v.~|g>,^Iv*Ԧ#+ܹIb^+-ʰ!3Ő"$c3βr }آe@mBF5 (\KT~N}~m xfڵ%d0G`^諯ި2aFoJzy=dqdXFtm"U"O J؟5i&uBx7Af2:kVOʹTa"2.B\4zb_W"DI)Tӏ`VB({Rquau2@jC镂}EdX C}R (f @RdĿdbB&qn$Â*4ٴ)3!{M@Jgf*~ C?Mb:ֱ4 #* }'CryJِ mE- =n95̠~?GsT7\q$v=)׾ʇ(G,f(ą寽I-fJY ԩz Q8s؄ܫCT2EWI>5$cƤ.z{V4]"EE2\>ڂjHb9R[vYtGd]R0k!QGZi07P1y{R4_d"Y\;d,Q{W,SbB2'~T#iU*Nnлy_dƱ NJwjK$D?9lC3m/Rh6B+lTI;zϨr7'2Dꀪ . /.Tem"IHmFBC5z17׮|=e.KKAhea5#r/gCgc ;eLbfIZt (!]Qu/*,q)| mWQv+ @Y`Xi㶡ˇĔG *?\~)(xL}ǟ\uCeϺKX0;P#{ϓ+xYGG҇[xh'(홯3{\wg1mlu y[;S*r:Mc}B㨸R&d_`_YۑIJlmZY]5 3mj^ 0hDiމ['K ^:ycx*]ڪ0x7ntzh9m5ڒ6vhHBJ$tKG*nV6&}Y@ExfmA $+U`ՃsJpbxϵp#4bv39V ǘjsOxA'']ob/ׁfUtEuNE[ӿB䈴LT͛w"JjR EbOdbVl=~3 h4S %;TN¦79+Uj,RJo([ߛ&̤N*\g( qT'uAmb>+״F_3`'Vm)%3~B/iG7ҷWݗG\%E@7|eXC^Kd-*z l%"T&¿(ac9hudWKpCUcq$>/*sҚ ė~5o[* Bmf{ ' dĿ˝{ n*ڷHLUUُڊr¨4V:ξ#cS0t#r80vGO/AfƁ3D۠wm\ `?;IҴ.e ?Xdx17c@>d5aYE'erنu눓On/on|$6G ͬ-93$rB̧e@Hk U04z:+4_=69IP|DʑG?r-,6#/hD&hUqHƙ>F6ffG_+C_ʵ#{:Fwyĸ˪H>COWy;}:뚴bHyu`AAH;\SQijgs:[r12/'ff?`R4M^۸ܡg;xʐDb-7A,ͦ/Wid 1 j裏;[yR aXtɪQCFb㒢UT҉hsQZ;'nG˯^=cOѸNNs}9CyM@/)€DE+}șD@0/ph(&SCܪ>⑇M*' nd"xcvkt[{`j'IѦ)$Z6ŀ0)yڳ*㨾t8 ?Mg>x}\y ¤ bd& c@KVGArpt@OeUӘ3c?嫪o(N5],~귍 V9{5DfO؂YѼM㇈R6WDP L?&& 6iQ 0>Z+o 1fb},[VVE9.jx4 >68-#(ٷɿ%1ӫ)=r<yo𤺶 ]7 ycZ.s]J佪;} 1Pdzbjviff9)GJ d U^3Hu0BTJ?U /Sy)Iٹn<@ FC^Uma0l@ /#^H=E]dih:?FO[`4,Kcn}i&Oby5.n<`~dscK61H?rgh 7Dv_&P=4~DSx¯D@>&,"Yvp t`RtVq @T>S0Kۘ;qگ'nFJ*Qhzؘ/IS"2}OAc~hce.B}?Ktc؈SUTL.-t*m,4!G6gΨ~v2|#%D?:ꢲu6eW=sCζK 3Iek=*%QG>T9,/O^y.ܐ`Q/K ~[4KsqCN$CA)+o5\6h02>iU"y;B/m&Swòs1MjR9$q+3KLNY>Y>hvy(Se'X;hMPXQ!玷\4e{kٗ 1A?-%V]8UYhHon?۱Β 7Grܸ?zէ^FsaH8P "_۴:-2یB\u }Yg"Eg>ݵVW&tCڴd!ɟ}%G Mv +A(|sr[`ỉ*(*߮R zи, $ͧ<-JH"RfѺ,YʞͪLrK j^bkVIf:]/0C2fpiAK5FH/&]] UDmI|N`EJ9_׍fvbOgAzȰ&z畑{xhUP3If1ODCbQ*Z&ɘ% X=RR2,-;ns(?U)lє\_1V3,9Z[ 0 PR11w&kTb#a\ݏ~hm>Ի+6w|-V~ktQ@uS* t)-J߉ .K D7'MY/gWH#}% 7=\9 Cȁm ??VWBࡤ ˝nc!""C@~lO{A3+K7Ծ*)D,l@}Y/uBS(~UJb.`΀^У`5"S4 U?NQx&dFB!%mixʋ>5}]٧r^J1W7}.tk"qZvӦLhwvS4H Tr jw t#RUa*Utzo5EӍ*I J{'HuizAuhb85dJ3! B(%ѤVD@Ԝ)B1iHVJ9 \$F"aξ]{/7դQhK`|O&60gTq*Hxc|hpWiEM |\VO8xeQ%8CUA͡V= ,컘+૒d>8(R-w&VkΪsK͌{\\*ἒ*3KP+Ȅ ^+.\9ىmMK 8-*?~B=#]!q`X J^`6v[؇bR:Ud=䓁x\l!Udn P}AA^btS3^ y#zwm:t<|] fNǬi cEP;^x!c1.,h9rдD>x!_qq]^Hږ 6vs1G)UR#@<{5\3]@_,MP><[#2u@o_W va8;ݷ=qr"ҝp? %`=+2[D,9镗#p'e<儆{bgמ$k3?;G/Xdv>rGLޣhDB2_Ȓ UVߛ+O+@=^ Pji*tmՏ p{1V0JYuO5]' t^n*:3kD'qoLbO)P}((_dmm[m; ɛQ~f`cF9NM!CNtq !Vo{MC`"# &rxEϹ̕a:8ܰB^o1Nd`G8O,G\Yaߑ݆@CZ7/&!]9ZpĝMei+U+PN#v-%Xk` +md_tKAu@gl&4 4ᐰ8 4[zt>U[i: aQx^Sec>~ o+vY5ASt0^#V~XGCсtщE31 spJH Ivt}CLH~k*f"'E|s5',ψGKEUUolSkb0}DAW7.mj|7:-O!55dF>|3Z LTs\]4 T<Aϗ]~P=}[oiv5x,irCy [jy%_RocBS~2b*c ۼ{,2_2 d:тfDhNe8E9IgioN]]t?3U~-Gez>b'ߟ68Q l); 5u<Џb6m s+&x̷SkՍj8w* V1RDwv\4*TNIQLɔ֩NN] TM\`Q9|>ذ4"-mQ@RG NV'w (wcpELNΰ٘N;-e}ų"EG/Q-TZKWSrGk˟XR 1Xs/J~uHvĉ׽hLəXҬR1MqF`Yx*) ~ #(o<z4JwKosL 6"4e4KI6v}g ^ڡd%rJkS~~h[±6.a䥏Kݛb1s]ۤk?i~:U;J*YkWeg[6ѰB:v1T̫<rK[kK=#w0탠+h&9[CZt~( ^_[y<;kg!og07h®1ZQj%yThNIƈ&p!,p: #jm6*Ŕ:g%>]B.: UZ[Ӡ|N6HjvǭƫC5E/+ gvdeGz~3Wl(+æ#&U OZkz Ae3WH'?TrNHr:aD 'n $ 8a]SHk՜@ \| |QEvQ:KkjB+vP؟T>[EO=mk9, T'Љ$A@]f:[lMf"8/Dfa~ i@9N[B1lamǗg0JN-c$<YMHxQ&wšF-8bRӮ༸OTG%[T׹I@5⽼ B:ʖ9?(CMD|}.Z0e\TTgRȁK齶 p&nշ_vwSi[$Lʑll<ᶎ;{p񍚙V dɌ\ Y FL3c\hG}}g pJ u,;t:}^y.BA8VС̄kFpCeH̑$X|OK"0?$6an mT6C7iGbƘEQAIT`Pˎ-[cxHȭ/-r8[7yD5<ʹK06U!]H'i4Tp'VRprȫ=XI{G3v&)$$I7Lh ;: Av:G8 ,,(xtz+%B_@g(^l7vlp5=4]xQF~7w-j} m/2JQUvw9VrZznfHX`n+ev8q?ջ S5, 3/J?FދWy-]ܳ%PKj~I>.;]Llt=eT@EFH79X;T.ǡp_c)J>W*Q 0 U( nF,["!Gg2.j^R"28Dɧ4=&[ʇ^5y ЇV h.O2„zNf ?8t?^<Q E o:֪[@# NQTJR%n>Oula^( 5TϮXA-,ᡱE<x WiT.x*LpX3;9J`#)iY(mGlqݴ>3*6Cp`߳X/Ӌ/k\A`$ܫp^Y(a jwE7a9}sO k-f_iK `-Jf,3M ڟ ͑?昕Tg3u5p5FexcQ HXܧd@77<뮍G48H7vI_~IuD'3"n[7R 2)ȇiȝDl(B8Reת ='T0ڝ@pkŵ?xpEw4oVB 9h{t8E h/FW`/r 7pbØНax#냰 or*NjN g}]eeVxX V\FR埾!~%XL(H`?Wg $G3!ʩf]/r0:7`AKF=Zb&tu+c_صu Ѱ kM,mlJcrJ!ɪ} yP*rڽM7Haf2)D i=1wb"1S~ pp> WmAp+f9X50BJw;5wtn쪔QFj4p9gm/Iv-Tλ +,S9F8LI^= vA3/$qC& 7~q4e,b(rMT3N'jI̹@;p<'WW6:7]vchjҋ@Ui;C?ΨZ_ hk7Y_B*3U>w+*֐FP$}ϡq;DՈ]ւ'E|TG~4;ZbMhUk߶džjI7Q l->'t2WVYr5A5A8wdǾ.o8MB2ԕ$m a %DksG (ph"*CT5|$M>vkUw!"ә/6❵myiu-[)@QW]uUߴꀷ1Ȋ@iO.T+c2rec\*>8![[ {,ߜRhcR*ՠ0g,X rl[ɺ(C#bs)Cm#TTwRBwPgӇnX%u08kwƇk>fT_eRbw/ endstream endobj 309 0 obj <> endobj 310 0 obj [311 0 R] endobj 311 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 510 0 0 792 0 0 cm /ImagePart_2082 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 1 0 0 1 5755 7190 Tm 3 Tr ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 3 Tr 1 0 0 1 5851 7190 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 3 Tr 1 0 0 1 6335 7190 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 3 Tr 1 0 0 1 5755 8203 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 3 Tr 1 0 0 1 5851 8203 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 3 Tr 1 0 0 1 320.149 372.25 Tm 143 Tz /OPExtFont9 6.5 Tf (EnKF>=ISIS ) Tj 1 0 0 1 320.149 361.199 Tm (ISIS>=EnKF ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 143 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 5755 8338 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 143 Tz 3 Tr 1 0 0 1 5851 8338 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 143 Tz 3 Tr 1 0 0 1 5755 8554 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 143 Tz 3 Tr 1 0 0 1 5851 8554 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 143 Tz 3 Tr 1 0 0 1 5755 8702 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 143 Tz 3 Tr 1 0 0 1 5851 8702 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 143 Tz 3 Tr 1 0 0 1 6335 8702 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 143 Tz 3 Tr 1 0 0 1 97.2 468.5 Tm 86 Tz /OPExtFont9 8.5 Tf (o) Tj 1 0 0 1 102.5 462.949 Tm 78 Tz /OPExtFont11 8.5 Tf (o ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 8.5 Tf 78 Tz 3 Tr 1 0 0 1 330.699 462.699 Tm 125 Tz /OPExtFont9 6.5 Tf (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 125 Tz 3 Tr 1 0 0 1 388.8 462.5 Tm (0 5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 125 Tz 3 Tr 1 0 0 1 91.2 410.649 Tm 126 Tz /OPExtFont9 6 Tf (0.9 ) Tj 1 0 0 1 91.2 393.1 Tm (0.8 ) Tj 1 0 0 1 91.2 375.85 Tm 123 Tz (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 123 Tz 3 Tr 1 0 0 1 79.9 368.649 Tm 89 Tz /OPExtFont11 4 Tf (CO ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 89 Tz 3 Tr 1 0 0 1 79.9 358.55 Tm 162 Tz /OPExtFont9 6 Tf ( 0.6 ) Tj 1 0 0 1 78.25 349.449 Tm 192 Tz /OPExtFont9 6.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 192 Tz 3 Tr 1 0 0 1 79.9 341.05 Tm 156 Tz /OPExtFont9 6 Tf (S 0.5 ) Tj 1 0 0 1 78.25 333.6 Tm 77 Tz /OPExtFont9 6.5 Tf (*-E ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 77 Tz 3 Tr 1 0 0 1 84.95 323.75 Tm 90 Tz (-) Tj 1 0 0 1 83.5 323.75 Tm 138 Tz (\) o.4 ) Tj 1 0 0 1 79.9 314.649 Tm 96 Tz (0_ ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 96 Tz 3 Tr 1 0 0 1 90.95 306.25 Tm 116 Tz (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 116 Tz 3 Tr 1 0 0 1 90.95 288.949 Tm 126 Tz /OPExtFont9 6 Tf (0.2 ) Tj 1 0 0 1 90.95 271.7 Tm 109 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 109 Tz 3 Tr 1 0 0 1 90 624.7 Tm 130 Tz /OPExtFont9 6.5 Tf (0.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 130 Tz 3 Tr 1 0 0 1 90 607.2 Tm (0.8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 130 Tz 3 Tr 1 0 0 1 90 589.899 Tm (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 130 Tz 3 Tr 1 0 0 1 77.299 586.299 Tm 121 Tz /OPExtFont12 4 Tf (CI, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 4 Tf 121 Tz 3 Tr 1 0 0 1 90 572.649 Tm 130 Tz /OPExtFont9 6.5 Tf (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 130 Tz 3 Tr 1 0 0 1 312 541.899 Tm 133 Tz (EnKF>=ISIS ) Tj 1 0 0 1 312.25 532.549 Tm (ISIS>=EnKF ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 133 Tz 3 Tr 1 0 0 1 97.7 254.149 Tm 80 Tz /OPExtFont9 8.5 Tf (o) Tj 1 0 0 1 102.25 248.899 Tm 74 Tz /OPExtFont11 8.5 Tf (o ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 8.5 Tf 74 Tz 3 Tr 1 0 0 1 147.099 248.899 Tm 119 Tz /OPExtFont9 6.5 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 119 Tz 3 Tr 1 0 0 1 295.899 248.899 Tm 106 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 106 Tz 3 Tr 1 0 0 1 340.55 248.649 Tm 116 Tz (2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 116 Tz 3 Tr 1 0 0 1 392.149 248.649 Tm 120 Tz (3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 120 Tz 3 Tr 1 0 0 1 77.299 564.7 Tm 172 Tz /OPExtFont13 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 6 Tf 172 Tz 3 Tr 1 0 0 1 77.299 555.35 Tm 196 Tz /OPExtFont9 5.5 Tf (0 ) Tj 1 0 0 1 83.299 555.35 Tm 170 Tz /OPExtFont9 6.5 Tf ( 0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 170 Tz 3 Tr 1 0 0 1 77.299 537.85 Tm 134 Tz (o_ 0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 134 Tz 3 Tr 1 0 0 1 77.299 533.299 Tm 236 Tz /OPExtFont11 4 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 236 Tz 3 Tr 1 0 0 1 77.299 526.299 Tm 83 Tz /OPExtFont11 4.5 Tf (CD_ ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 83 Tz 3 Tr 1 0 0 1 89.75 520.549 Tm 130 Tz /OPExtFont9 6.5 Tf (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 130 Tz 3 Tr 1 0 0 1 89.75 503.3 Tm (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 130 Tz 3 Tr 1 0 0 1 89.75 486 Tm 111 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 111 Tz 3 Tr 1 0 0 1 375.85 690.5 Tm 98 Tz /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 98 Tz 3 Tr 1 0 0 1 48.7 209.049 Tm 91 Tz (Figure 3.6: Compare the EnKF and ISIS results via &ball, the blue line denotes ) Tj 1 0 0 1 48.5 195.6 Tm (the proportion of EnKF method wins and the red line denotes the proportion of ) Tj 1 0 0 1 48.5 181.899 Tm 88 Tz (ISIS method wins a\) Ikeda experiment, Noise level 0.05 \(Details of the experiment ) Tj 1 0 0 1 48.5 168.5 Tm 96 Tz (are listed in Appendix B Table ) Tj 1 0 0 1 209.75 168.5 Tm 89 Tz /OPExtFont20 12.5 Tf (B.3\); ) Tj 1 0 0 1 239.05 168.25 Tm 93 Tz /OPExtFont3 11 Tf (b\) Lorenz96 experiment, Noise level 0.5 ) Tj 1 0 0 1 49.2 154.799 Tm 92 Tz (\(Details of the experiment are listed in Appendix B Table ) Tj 1 0 0 1 332.649 154.799 Tm 88 Tz /OPExtFont20 12.5 Tf (B.4\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont20 12.5 Tf 88 Tz 3 Tr 1 0 0 1 237.099 40.299 Tm 75 Tz /OPExtFont3 11 Tf (55 ) Tj ET EMC endstream endobj 312 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 313 0 obj <> stream 0O ,,j`÷ڑue`>~\ƙ22Ӽ Xd-qCiFލ6]k4pPinIwN\Р^k+t5ԇdž;fu?ɴB<"r\rv#.瑯?#x(0 G;p@Ilʲ{H1g_Nq . IӌUңb'lROL ̾=jT@9"sX" I! XL@e',}nOx?e23XiU+; B)Pcɑq!+s @I+D#!oqZ)Gc{Bj?w ‶ڇ/ PsR"#xquA_t?7|@ʱ2#,3TbAʞpkZ붦pk;%fcgxOcB_Z]kcb@ Sϖ?2(u5*2ȿ*P٬m#:?`5P[j^Ng @ud~].ocF:~b\04^ɠJo "8$pT'o'k ܗ1[?9V[٢\e,d ̑ .%wv)-tziXqyX8Tᑅk1-^8xƌ6 GhJgUx \G_T7s1q掂$U9ӰHS }?}%˦:]Dv.iFUx Noed 8ɨ{iup ޻n5ohuRkjB#6mr8DdFT[QCB&jó0mZH'a-U#'rT9:YC2AcKT'e!aO1uӤ~?h7nf]-dPSuQe@O]\{F߇YFSm7LX,ŪQgts'"HxN`ٳ#CG=to/wJMIo {R 6wtI/ 1Y1~=D4>~sR;l n3DXlA+خK?!Ko4_|w< m#ɱ[f WjnS~1 HqJi!_ty~ AjIM湓VpֲokڴE":TYVx \>y#L̖Lj ǬK2SؠhVh8ҟ+=:#{z,zR3? A#3Ǩ~2w,l7/) .̻*J=̘ROĊwc0A&tZon]NvoT.n$NY [9wWv2j*˔ 'uʲwLTzqIRa(CM݌_i@;-0>!}LvlOOb^G&)NOGuOb0zJ+4d2uQ4N|Žm'ܽ 9_94% ŏΧ o`LZsܬVl*WI*As Z FEp˧z\gGNANDD]-' !d Eg GLd% ># Ik43ߡh" gom< U녱#{Jw9aFP~Yx=p!ۦ,AwQ,s?` ZKK{R7KIH\&B2Nt-WTZ_Jd!!D=5f_E`0Ni6SGz!cJmP9q0.&t 8s˯Ԯ]I5; m:ә"M,A&1-09!E̎_Bu*=-o,=o *uPiz&Ӏ/j4xQ?/ZGuP>3?dt`˼ɢt؉\ZʡWITams>`a1cnK 纘7x$3ʻI4|qw_ {."sw' FMP|bZHnbLW^vl[X\ep,NTuiˡġ|~?ǰ=%sضz>|g^bn+ç7,D bvq_}GDT%8Ă`&1~oġNJ"x")} Wn`p]ȸ! 781q&7ج1bHJǀ"udA+bJ RHVkM܆lC76S3FbA5h7&r,UFJ) a+Dw[OtE(DKmRS $J*" ;ck@9{4@*2+ )Mb% Xݝ7tM;.]%;&brɄ]g= ^dzJp/uBupWG \1NU6V222 X-~"g$V D=Fv.4KCzt`m?FΫTp| kB =ަ8* {^9'>f5ͨ=HJ,UG!įק!Ĉ1G'r,l8ygģ;CNr%ڲԉ!@[is]Y{ f#)5%"knnQOբPE\܅7&!':[r/u/gQ?/%&_! 1V>*re/(%z"%`q"!K^w:Ѱ=4׹ӿٟݟwhY>R8Rbo&-4״Sh2¤0Xw ٴy9O?aaQ.MƐ<] 8(Rl}LLxAa\TTw۝:DE(f4 ,,-5ٸ(#}i{K`UםNWdu"9Z3Ձk$R›#e߸S/@@:hCR|NZYZ/lx M~p0ݙqC}SVԿ8So<1LcA|!j;RlӪ,ܑ*e.*NOfp {"Zݚv>Em62) _E, JAf J J@^'˃$ ?o ϺOhn1 0FEE> BIIRn ;FCŖLo3]r8xژDi} $,R/H$,rzqرI.֨4la6*w 6!ZD4y2.b_aF)h_r%pc<|6;SlWҖE:J :|˳QHUіaꝩ?x`KBN rpd9^t{eDg/T_NĨ&d d>1DSC/>btgDx,b /(fhaPUI)#~mtyuEnaQYR~e*fRAd4¨oEN0!_$]Q1AiFcle ?A/^?ȌQG]f v&^ĦMfː측d+2mer6N ǻ؆xo7GZCI8w"l**?^s#> wvwQ+[@С_/D~2 5R{+Ow, p4|ԢYli*4˭olM Lw˴I-n %8_OmA=`#(ZYa":Ey>GF BCHޟ,tUHJ/R방8r@YͿwIk9Si>Sd?2R"75w@qc3N, jS,|l  JHC4Cz& !ؤ7*`~&}n =wPf^&ںbJ&t5L```ڨmG}(+ $%:"`OQ%y/o֍fW±sT]}&#Uߧt *g#9\w;:F򷺡} Qq@r-}6ںMn0?e.dO٘.U$֗{ՄӞsp K uGXioӓ~TFsq􀕷Lb5ٖg#>帿<fۦ"v?0F&IX@{Q=$Ӣ .B,0Gf|o>SZA'2c)3 9+621d&f<&bt1(GQyH,ػFJfk r5T䏗{zs2q&-y Q(갼d`b8U=݇yTcөdKAz9We|LB~w;Kols-%^ԁ3;WʸebU23LMbםBx:Cr'C}a qo5.+o(+>ҟks>7jO[4Muk޳hDq:o- õ=6ȳp_ -猾0zȘ/OV_X-wt"X2*o s,vv2Q9`6i!hr^&O'A޲dynZS"zttq3ڵ?,em@-ķ[ks 뙀$F0Q 9 ?>5D Iߟ#r&&RiIC1}@eD+1*u G⺽|g4'Cі+3*6.R@d6yL*Zَ2U7A̕] v\µfvA2LTtzw(Bw}G4A^7ݩD[3J"3_,b~94'r19nW0[֦c)yO'"Tc䒼䤪(02u)?I;&֬MdB"ugrb}=MkSzH?t@{5FgR"83weŪ/rC:xrP9_"3 endstream endobj 314 0 obj <> endobj 315 0 obj [316 0 R] endobj 316 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 835 0 0 cm /ImagePart_2083 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 454.55 716.45 Tm 3 Tr /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 122.15 673.25 Tm 109 Tz /OPExtFont2 11.5 Tf (of the experiment are given in Appendix B Table B.5. It appears that when the ) Tj 1 0 0 1 122.15 650.7 Tm 105 Tz (DCEn is constructed by considering a small number of observations \(e.g. 1 or 2\), ) Tj 1 0 0 1 121.9 627.649 Tm 108 Tz (the ISIS ensemble built on 12 observations outperforms the DCEn as shown in ) Tj 1 0 0 1 121.9 604.85 Tm 109 Tz (Figure 3.7, 3.8. From the first four panels of Figure 3.7 and 3.8, we found that ) Tj 1 0 0 1 121.45 581.549 Tm 110 Tz (some of the DCEn members lie on the same model's attractor as the true state ) Tj 1 0 0 1 121.7 558.75 Tm 104 Tz (does, some are not while the ISIS ensemble seems to be lying on the right model's ) Tj 1 0 0 1 121.7 535.7 Tm (attractor. And by evaluating the nowcast ensemble using e-ball method, we found ) Tj 1 0 0 1 121.45 512.899 Tm 108 Tz (the ISIS ensemble assigns more probability mass around the true state than the ) Tj 1 0 0 1 121.45 489.899 Tm 112 Tz (DCEn for almost all different sizes of E ball. This is due to the fact that lim-) Tj 1 0 0 1 121.45 466.85 Tm 107 Tz (ited dynamical information are contained in such short window of observations. ) Tj 1 0 0 1 121.2 443.8 Tm (When more observations are considered the DCEn outperforms the ) Tj 1 0 0 1 457.699 443.3 Tm 90 Tz /OPExtFont3 11 Tf (ISIS ) Tj 1 0 0 1 481.899 443.3 Tm 99 Tz /OPExtFont2 11.5 Tf (ensem-) Tj 1 0 0 1 121.2 420.75 Tm 108 Tz (ble. Figure 3.9 shows that even using half window-size of the observations, the ) Tj 1 0 0 1 121.2 397.949 Tm 105 Tz (DCEn outperforms the ISIS ensemble. The DCEn seems to be more concentrated ) Tj 1 0 0 1 121.2 375.149 Tm 109 Tz (and closer to the true state than the ISIS ensemble and assign more probability ) Tj 1 0 0 1 120.7 351.899 Tm (mass around the true state. Using the same length of the observations, with no ) Tj 1 0 0 1 120.5 328.85 Tm 106 Tz (surprise the DCEn again wins. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 106 Tz 3 Tr 1 0 0 1 137.5 305.549 Tm 107 Tz (As we discussed in Section 3.6, the DCEn is the optimal ensemble estimates ) Tj 1 0 0 1 120.5 282.5 Tm 109 Tz (one may achieve. It is expected to outperform any other state estimation meth-) Tj 1 0 0 1 120.5 259.7 Tm 105 Tz (ods. Although our ISIS ensemble, with no doubt, underperforms the dynamically ) Tj 1 0 0 1 120 236.7 Tm 108 Tz (consistent ensemble, it seems to have similar structure as the dynamically con-) Tj 1 0 0 1 120 213.649 Tm 106 Tz (sistent ensemble does. Note the ISGD algorithm is run for finite time, with more ) Tj 1 0 0 1 120.25 190.35 Tm 108 Tz (ISGD iterations, we conjecture the ISIS ensemble will converges to the DCEn. ) Tj 1 0 0 1 120 167.299 Tm (In practice, DCEn is computationally inapplicable while our IS methods can be ) Tj 1 0 0 1 120 144.5 Tm 106 Tz (applied in both low dimensional and high dimensional systems \(53\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 106 Tz 3 Tr 1 0 0 1 311.75 51.899 Tm 90 Tz (56 ) Tj ET EMC endstream endobj 317 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 318 0 obj <> stream 0 ,,[[b7!2n[]("`[d[q&'m11"ðLxuvZX[-̄*ճ.ӡ9Q?2 >7(]{iXpEBd4f8d$~ G Uvuۻtqn#(S- (&߶@mgSԬRزrI:-E+4>3}YY=Dg@ )'U!͏֬qSH&ˡ i6v?vD{4ʞjM q(Q@ *s7(9=a= _1@CWM+s0/MOf/96^=*C2TWϡy{~&FNIU"Y<422:.FI/Y)4rpVo/"o(Dm#`ٯ%ưOG~H`ƯZIKFGZdn !M>eԊAs2HsP.v9odz/a2 nOd){p哢BrT DER2D}pnܹxL>̻tjq]ڬ,l]8X)U`_mE=tE⑜=57>~ǭUh͍UXdS(YԩQ%\oF=XbPF,D}+`Hq ;Wd\w ?ci &*cjd*fݖ85,r~$:HL Cp~G&;> '3ަv`Y\@w H)$&);N\G,+=ZwkPe`Wo sPGH"~Y?s٪FMV#eZbY6{?h"dh.G:UꍜTzPH8gaj+3^95zf FτIW.=ʗ}%ҫ/<+xXDa9:'*QQjM~AwχDk(bx~֦q?~k,L9BP궷K6<# )j%-qjW'ykaAv=Blqsch侌mxUZ'\hQӰ*3:c 82J83rIZ|u4Ual-ib7߂=:Z{q0Bx|)'Wf۶i +e$1hDD@Xg98GT:J D8R&z{ j |UIS@jɔT$_#JջJ]kb{œsޭN5a0LldI!xSiD@ijdƥ{#mmxtBKaѡby,+ R\9!-TR<qSSWKT'*5ENno AL‰;;~G %y6==\BBt3/t >*cR2Ff O(ԓ\LDHXtwi ~;(wUwOן5x~ 55Ԫ١\Òd{ 04dnk/O0+MםYD`VRe[ukVCyiUh,Ul 47! k1Δ8A2M*e='v5 DD/1Ǒ%HF(=N|W4 .J.@ -+{)ݬȴFj~IuN)Lf8̪W9I+Hd0PU)J+XpF}H~{aEǿLDZ^ C3m"k[< SZ.4?)#ݖˋ["W#c*JntcVD:yݠTf ME48RsKK!hzvEo}ȍk?hYG@{&'Hk6x 9^nb%xl?aCXCǡ 8*}zzrtTR`;Nx6[c`h= #Z2ЁjqJ<m@04'z QhcGumB޼~W˵ƻ4ѷ8'UIW|)Rƥh|G'1״OmCYvS4*ԍ5JW6qBW%#e'ǩ?05V:y,C `PlxUtChԬb~/{s7N|eG!|:`\:Ì(C:A-<-@Nv9 %THF?.~Upv'4d##n8ipE]Lr!QLjF46W²X]`C\b^#(%H1JRᆮ@ovtT K c2^U Nk{ȉH~^ _f4DfL2z&M>gSS/2d)sڒ\wVe] !usrr[Џ_B E8 (4zub}bNfK1l\* ֥7q* ZtO5Nv~5sPö͉bԹ5"wSCUaߋBqZކǠ;nnɡvc*J(*v, Q |+C1LQWGj(H1F:?xg}<6vuG q̙gvt;D4_Y]tM4Fb"9@_ ]hU /J`y2X(1tܟ~]͢rB8R~fAK6!~< IASF+7&=kx&uY_=̏YfcUV}M-"-s MbC,Xx U)tJӊx,r5w9[@iqkEBɴ܎1>R29oWj!Gi4(7o[s}ҩ/ީ:bwcy9{eGy+T-?>6\iQZv eH%"Jfi-3-a;{bʏ.kZ޼&TF|¢*Q  0h^rXHa^^^‚4;}ӖnO4dN*j$/  ^D@? $6Ԑϧtêueľ{ba Y1l #JсCKQX,?Ŏk(IjGIϿ:ԟ:s#m/]^] Ԝޝ4b` ,JlZJknmxݬ:1$%#Bpβ""rHĸsmNu8@ IIwS6BL2=PQ^ wpf z9{yS&;Ow&L$Իj頷|(xa9tRmBm50QRvfqɀyèEUy{⟶Y?ƻZdW;ZSwȫO ])PI\9M(+J7(xpe}D.}:9J~K%zVt$B1џ:|B00I m8?RC[su']=WmNop9!Q919Cr|5cAT 6w`0B&Nrka`x`Qq;N[9̻7qcy"5D}畬6Ѐ>XLr 9D7k6s. Dj>XQ!{֖rܪ2d]of)/Jw u E"LQ;+ #Ã⧙f{i촯kpemEG/ugiي ȏǖ~$F"?ITڞ%>T2>2^Ac6+ܻxݛH'\QJ īٌ8zEwCxj>̻A9һv9O,!BG;W pJQ5$DS|Nӯd1gu}VNo]JW gu x /Z}><\K1 Fn/X?Ծz։ a#B?ʩ*@s!n^ou-VRd$^.9^va·']AOy=Kfć[&}T]K34)bV3`߻! ک>b XUjF X~K@G!,lK~ja8 Om|NţEXK3MW)^jh6\NQhRz(o;CVy7OsqzMhMU:#Z}l(*?>c< 9{3*HnR[@%Rv:Pv`(tIyUc(o) wNyEOXm Y}bDR ՔJZC*||k-Iy !ke/)u熚{( >نZS׍E|iJ\r@—>2|tGnJ1WhoKV䥀4nNmov21@"o72}g$هfHirM9ȗ^WQ-nI}rX~G&Q.XU-Z-GF*r- ⋛)S6֖9_KO6lv{P1%Gk6o컏ݙDӈʚ]nhl,ftpE8zX4U+˕ʴ(䳁-cSM_`8-~ǭZ-OqSz& Y_h^+ "p+yf(؂3y .#}RTSqT_tҐ(;SRկy;`@]=庘0z'(Me ev7c@E.`whEG'j:)ZSGh$R&W}0$͓i(Ubs!Ůֺ'3P5t`KkKf,t o1@ӟlBehy#d$4[ =k)V=bBVއp>ϙmm3jtCa/Ӓq+ @wly{D.Ԥ<]e{Z 'c ?q_LNrz77c1r'FtE8d2_rOUQ=5n6p-Dq(5tOY-%}=<WWb=쐿fAtKTϪnŔ~rQju ?t]hKD;򥳄05n> oX.((5_x]UPSETnZ+-E2 D{)j7[3{2!dR'&WӜ@[hNWsok)I0jo {KU+NO̕9l[Aэ@6tZYkx\B>Tm @Iu6Bn[R"V76"TLkVK+ ǯ:c1gGVlw3'LUF,ߜ,\]#=4IzŲIM׸BҘ4l/l'rә.V=4ȩ#aқ/֝NJw\qslM{"E[evܦ;LhCN1nx*R^NH67 ?*L[L嬬NDF4&,PGӉFʍX!&~uq[Yǰcfm-%Gψ_H _2}Qa+3f!M)Bv;!ꚡ<ʃKS"EDt͖>+@eJ; PMs4>:Ek2&~Ez2ofa@_('3e p(*I!fpG,زP(=Q( ct͌"#ҎK>r+>{Q0?XR_x~e,?UwuE]$Z[̀f*%RFЃt_˒;bN8$ 2zN`12o{Կ˫,q|YR0~3J )̉ !-\>Ƀr=iAqNlo!jw9ۘi&Aۍgt3_Fu T%}z{=£D*!&ϤH%6ܑ+͕hEX"za6|4خ endstream endobj 319 0 obj <> endobj 320 0 obj [321 0 R] endobj 321 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 483 0 0 786 0 0 cm /ImagePart_2084 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 98.15 566.649 Tm 303 Tz 3 Tr /OPExtFont9 3 Tf (. ) Tj 1 0 0 1 105.599 566.899 Tm 824 Tz /OPExtFont9 6 Tf (\t) Tj 1 0 0 1 119.299 566.649 Tm 136 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 136 Tz 3 Tr 1 0 0 1 92.15 556.1 Tm 74 Tz /OPExtFont9 7.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 74 Tz 3 Tr 1 0 0 1 365.05 574.299 Tm 75 Tz /OPExtFont18 4.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4.5 Tf 75 Tz 3 Tr 1 0 0 1 368.399 565.7 Tm 95 Tz /OPExtFont17 5.5 Tf (4tom T: ) Tj 1 0 0 1 378.699 556.799 Tm 163 Tz /OPExtFont1 4.5 Tf (s ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 163 Tz 3 Tr 1 0 0 1 57.6 631.2 Tm 96 Tz (-) Tj 1 0 0 1 60.7 631.45 Tm 98 Tz (1.02 ) Tj 1 0 0 1 57.6 619.45 Tm 114 Tz (-1.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 114 Tz 3 Tr 1 0 0 1 57.6 607.7 Tm 96 Tz (-) Tj 1 0 0 1 60.7 607.899 Tm 98 Tz (1.08 ) Tj 1 0 0 1 57.6 595.899 Tm 114 Tz (-1.08 ) Tj 1 0 0 1 60.25 584.399 Tm 108 Tz (-1.1 ) Tj 1 0 0 1 57.6 572.899 Tm 114 Tz (-1.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 114 Tz 3 Tr 1 0 0 1 57.6 561.1 Tm 96 Tz (-) Tj 1 0 0 1 60.7 561.1 Tm 98 Tz (1,14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 98 Tz 3 Tr 1 0 0 1 57.6 549.35 Tm 96 Tz (-) Tj 1 0 0 1 60.7 549.35 Tm 98 Tz (1.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 98 Tz 3 Tr 1 0 0 1 57.6 537.85 Tm 96 Tz (-) Tj 1 0 0 1 60.7 537.85 Tm 98 Tz (1.18 ) Tj 1 0 0 1 60.25 525.85 Tm 114 Tz (-1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 114 Tz 3 Tr 1 0 0 1 260.399 633.85 Tm 96 Tz (-) Tj 1 0 0 1 262.8 634.1 Tm 109 Tz (0.66 ) Tj 1 0 0 1 260.399 622.299 Tm 117 Tz (-0.86 ) Tj 1 0 0 1 263.05 610.549 Tm 120 Tz (-0.7 ) Tj 1 0 0 1 260.399 598.799 Tm 114 Tz (-0.72 ) Tj 1 0 0 1 260.399 587.049 Tm (-0.74 ) Tj 1 0 0 1 260.399 575.299 Tm (-0.76 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 114 Tz 3 Tr 1 0 0 1 260.399 563.75 Tm 96 Tz (-) Tj 1 0 0 1 262.8 563.75 Tm 106 Tz (0.78 ) Tj 1 0 0 1 263.05 552 Tm 117 Tz (-0.8 ) Tj 1 0 0 1 260.399 540.25 Tm 114 Tz (-0.82 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 114 Tz 3 Tr 1 0 0 1 260.399 528.7 Tm 96 Tz (-) Tj 1 0 0 1 262.8 528.7 Tm 106 Tz (0.84 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 106 Tz 3 Tr 1 0 0 1 77.75 518.899 Tm 157 Tz (0.31 0.32 0.33 034 0.35 0.38 037 0.38 0.39 0.4 ) Tj 1 0 0 1 225.349 518.899 Tm 2000 Tz (\t) Tj 1 0 0 1 275.5 518.649 Tm 148 Tz (0.06 0.07 0.08 0.09 0.1 ) Tj 1 0 0 1 344.399 518.649 Tm 693 Tz (\t) Tj 1 0 0 1 353.05 518.649 Tm 145 Tz (0.11 0.12 0.13 0.14 0.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 145 Tz 3 Tr 1 0 0 1 96.5 454.1 Tm 132 Tz /OPExtFont12 4 Tf (" ) Tj 1 0 0 1 102.7 454.1 Tm 1395 Tz /OPExtFont2 4 Tf (\t) Tj 1 0 0 1 116.65 454.1 Tm 66 Tz /OPExtFont12 4 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 4 Tf 66 Tz 3 Tr 1 0 0 1 73.7 374.149 Tm 147 Tz /OPExtFont1 4.5 Tf (1.14 1.15 1.18 1.17 1.18 1.19 ) Tj 1 0 0 1 160.3 374.149 Tm 637 Tz (\t) Tj 1 0 0 1 168.25 374.149 Tm 99 Tz (1.2 ) Tj 1 0 0 1 174.5 374.149 Tm 653 Tz (\t) Tj 1 0 0 1 182.65 374.149 Tm 90 Tz (1.21 ) Tj 1 0 0 1 190.55 374.149 Tm 617 Tz (\t) Tj 1 0 0 1 198.25 374.149 Tm 149 Tz (122 123 ) Tj 1 0 0 1 222.5 376.55 Tm 2000 Tz (\t) Tj 1 0 0 1 273.85 373.899 Tm 132 Tz (-003 -0.02 -0.01 ) Tj 1 0 0 1 316.3 373.899 Tm 810 Tz (\t) Tj 1 0 0 1 326.399 373.899 Tm 95 Tz (0 ) Tj 1 0 0 1 328.8 373.899 Tm 790 Tz (\t) Tj 1 0 0 1 338.649 373.899 Tm 147 Tz (0.01 0.02 0.03 0.04 0.05 0.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 147 Tz 3 Tr 1 0 0 1 60.25 490.8 Tm 101 Tz (0.32 ) Tj 1 0 0 1 62.899 479.05 Tm 99 Tz (0.3 ) Tj 1 0 0 1 60 467.3 Tm 94 Tz /OPExtFont21 4.5 Tf (028 ) Tj 1 0 0 1 60.25 455.75 Tm 101 Tz /OPExtFont1 4.5 Tf (0.26 ) Tj 1 0 0 1 60.25 444.25 Tm 117 Tz (024 ) Tj 1 0 0 1 60 432.5 Tm 103 Tz (0.22 ) Tj 1 0 0 1 62.899 420.949 Tm 123 Tz (02 ) Tj 1 0 0 1 60 409.199 Tm 103 Tz (0.18 ) Tj 1 0 0 1 60 397.449 Tm (0.18 ) Tj 1 0 0 1 60 385.699 Tm (0.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 103 Tz 3 Tr 1 0 0 1 189.849 304.8 Tm 158 Tz (1.88r1 ens wins ) Tj 1 0 0 1 190.099 298.55 Tm 169 Tz (IS ) Tj 1 0 0 1 200.65 298.55 Tm 154 Tz /OPExtFont21 4.5 Tf (ens ) Tj 1 0 0 1 217.199 298.55 Tm 170 Tz /OPExtFont1 4.5 Tf (wins ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 170 Tz 3 Tr 1 0 0 1 84.95 338.899 Tm 146 Tz /OPExtFont19 4.5 Tf (0.9 ) Tj 1 0 0 1 84.95 327.6 Tm (0.8 ) Tj 1 0 0 1 84.95 316.55 Tm (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 146 Tz 3 Tr 1 0 0 1 73.9 305.3 Tm 99 Tz /OPExtFont1 14.5 Tf (W) Tj ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 14.5 Tf 99 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 14.5 Tf 99 Tz 3 Tr 1 0 0 1 73.7 778.299 Tm 103 Tz ( ) Tj 1 0 0 1 84.95 305.3 Tm 146 Tz /OPExtFont19 4.5 Tf (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 146 Tz 3 Tr 1 0 0 1 84.95 293.75 Tm (0.5 ) Tj 1 0 0 1 73.7 282.699 Tm 166 Tz (g) Tj 1 0 0 1 78.7 282.699 Tm 113 Tz /OPExtFont1 4.5 Tf (- ) Tj 1 0 0 1 80.4 282.699 Tm 168 Tz /OPExtFont19 4.5 Tf ( 0.4 ) Tj 1 0 0 1 84.95 271.2 Tm 144 Tz (0.3 ) Tj 1 0 0 1 84.95 259.899 Tm (0.2 ) Tj 1 0 0 1 84.7 248.649 Tm 129 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 129 Tz 3 Tr 1 0 0 1 381.6 234 Tm 147 Tz (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 147 Tz 3 Tr 1 0 0 1 260.399 493.699 Tm 96 Tz /OPExtFont1 4.5 Tf (-) Tj 1 0 0 1 262.8 493.699 Tm 124 Tz (096 ) Tj 1 0 0 1 260.149 481.899 Tm 117 Tz (-0.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 117 Tz 3 Tr 1 0 0 1 260.399 458.899 Tm 96 Tz (-) Tj 1 0 0 1 262.8 458.899 Tm 106 Tz (0.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 106 Tz 3 Tr 1 0 0 1 260.399 447.35 Tm 96 Tz (-) Tj 1 0 0 1 262.8 447.35 Tm 106 Tz (0.14 ) Tj 1 0 0 1 260.399 435.6 Tm 114 Tz (-0.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 114 Tz 3 Tr 1 0 0 1 267.6 424.1 Tm 55 Tz /OPExtFont12 4 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 4 Tf 55 Tz 3 Tr 1 0 0 1 263.05 412.3 Tm 136 Tz /OPExtFont1 4.5 Tf (-02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 136 Tz 3 Tr 1 0 0 1 260.149 400.3 Tm 96 Tz (-) Tj 1 0 0 1 262.8 400.3 Tm 121 Tz (022 ) Tj 1 0 0 1 260.149 388.8 Tm 130 Tz (-024 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 130 Tz 3 Tr 1 0 0 1 316.1 448.1 Tm 99 Tz /OPExtFont7 7.5 Tf () Tj 1 0 0 1 319.449 448.1 Tm 74 Tz (1 ) Tj 1 0 0 1 322.55 444.5 Tm 48 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont7 7.5 Tf 48 Tz 3 Tr 1 0 0 1 371.05 682.549 Tm 99 Tz /OPExtFont3 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 44.399 200.649 Tm 92 Tz (Figure 3.7: Dynamically consistent ensemble built on 1 observation compared ) Tj 1 0 0 1 44.149 186.95 Tm 89 Tz (with ISIS ensemble built on 12 observations, the noise model is U\(-0.025,0.025\), ) Tj 1 0 0 1 44.399 173.299 Tm 93 Tz (each ensemble contains 64 ensemble members. The top four panels following ) Tj 1 0 0 1 44.399 159.6 Tm 91 Tz (Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted ) Tj 1 0 0 1 44.399 145.899 Tm 96 Tz (by green dots. The DCEn is depicted by purple dots. The bottom panel fol-) Tj 1 0 0 1 44.149 132.5 Tm 91 Tz (lowing Figure 3.6 compare the DCEn and ISIS results via &ball. \(Details of the ) Tj 1 0 0 1 44.149 118.799 Tm (experiment are listed in Appendix B Table B.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 232.8 32.899 Tm 77 Tz (57 ) Tj ET EMC endstream endobj 322 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 323 0 obj <> /FirstChar 0 /FontDescriptor 324 0 R /LastChar 128 /Subtype/TrueType /ToUnicode 325 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 341 402 587 0 0 0 0 332 543 543 0 0 361 479 361 0 710 710 710 710 710 710 710 710 710 710 402 402 0 0 0 616 0 776 761 723 830 683 650 811 837 545 555 770 637 947 846 850 732 850 782 710 681 812 763 1128 763 736 691 543 0 543 0 0 710 667 699 588 699 664 422 699 712 341 402 670 341 1058 712 685 699 699 497 593 455 712 648 979 668 650 596 710 0 710 0 0 1000]>> endobj 324 0 obj <> endobj 325 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Verdana-BoldItalicOPExtFont21) /Ordering (UCS) /Supplement 0 >> def /CMapName /Verdana-BoldItalicOPExtFont21 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 13 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2C> <2E> <002C> <30> <3B> <0030> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <2014> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 326 0 obj <> stream 0 ,,2}}kc f+osX˺95ydk%ϻ¡/S[3r]yRan*R'\!j_<9euR]|]C(QDS`AOճ滾5h0?&à1&ڼ۳͌հհ=@3حKż<0jr@Ŏ6KOV So;t*` ^8X_n \'x#4ٲZ_W7v|0/#E7\ķ&. ڋ52MĞEN+4_ q0 pZ?= \/xk18 dBm xe ILD.՗eLj0r ƻ cwp˜ ?s lU}ȈmĐ}U>S6F.lsAё=oW;o܈&7]{x r6[=<W'S5!1"+5EGƵtw\6ITz# :|2W9ISj*ŵD,t$Xsxf6X}9[-hkM!?)CY4 wĮ^U wGUt X\<.al8CY(w qu8'T̓ < W"' {ޛ^aEɋAnj,4*3Kn8&j/ƮezQN}QfNW#|&T^K"6 R,%Q[AH<0)"W)ɇ@W6&_g9~*À" C~MO.ea._@a7b |:'R1[ISq/jz{Ż 3y>;<i{5>pkY'=쒍Fr{+u;t̏?->^I(ZaENct>pm&/YSu/ l<'Jvp1&#K?FhUMV޳78{,X [UcIJ/߆Ҫ(o_(s#cy_g[nCK(7Skli†V-r| Mqt0߉zҶ( RR<*4$Fovtz /N%"ѯ;l0 /WGz:2Kp̪ V^rSI]eU0IP{;"Å_'ݶ[e7Id]="ORRf?+ɘ|[zyCXό"M'^7tCqSOۗoZG2&S !aRbÈj~WZ6CЈ \ .e#nzV̱^.\ *5 ],nbE/}&&э!ڦ 29P3U 6Q݄^N+ $Z iYn?v@~h͂ETiD0V,>ڎX0sK5U <M+wn}vQGƇoI`"@̸| լ/J{Xm3s@mא8SH_L*z6VhA>J3+#Yr uR$ AS{[VYdP}N!b)߽|e#r"rf=M炆L 18M>,cW kvL,^IgKL^6^umoBo  dVXYVԑ  OpuSr7"' Ě8ٙZӬ^KQ6<̋UTDhX( k#A6)K@0Ciŭ9&A}gώj *޻D 7=KTň_;N!yEI=5M5RP=p:ԫfl4? aQyE0_!>NQ`ĩծUMu{=y+s0X*4 )M &G3bbGC/]SeB[ sXS{ nm;mTFޡӀy'T0F+I7SD6ۗcG:bWD{yOf$dOʒ+%ċ<oV8{;2ͦqu"bBӺ(ۛZAc8tzW~3S?cS$Zwm 99ڰ*`%"QqOR|.|in\28pHetl;g>嵺rB4ޫ:D|݆! HmOE̩܇O,UPa^cDoQz`J'ǾQ`IT>M~ ֭3tGjE2]5O*$A\= Gw(y5P?,q)g╾uq_$r \[yG!&rxFmbzj!dOo,f 4}`T=ʦNiȄsq:x&SwZZC㔱_x欄P1021z8v [v7J `G-*q(DY:p qDPza=)ayqL3R@nM,*_-!  ; E.="XtE,qh:҂X(Xl ttp1,('vQ9itH py51@* bAvOCiLZ]io{DnEarՊ_c,Jdo^hםE>-i!U_~ T>.(Zρ+Eq MSfd 2mF6 “NMZMHwn>u@SMlhL5-zH9'eyV/` Yq\haX:M"lM*˓ 'H#5llMfY_dVz3{K~ti0L[h;XeI$y,8%%ij/) iQj.-R? \MNA'{w:aC̔gOvZ\*[`0׬5T ڹձBA)Y'VȕǢxJyx*_ɾ]wKkȬ^_fa887l%@q ͢E9Yb,3wGn8Z?٤+m-SP/8wHFT`uG 7

%w-3TvO*K{>s*]n '\.Gw6G>fMȵJէXX>)$8#9 !aرrz JÚ󈇫Sxsk(g D eO-#"wê;DCy>yhIRP:NE(r};F8r_ DԳt-1FZ:ZSFlׅbj#2E}A=s5ؓR:l&[df46FBQED B'ɭ5y U"ͺ*Վ%if(ϟ+Z|s.嫇烉X2b$,PgcuxFR#4sԎ\JY4ydԐ/sV UҴ14H߷^y:AI_pq{'ϫB]S}o= n'%Ir<-zhr޻ׅkU={Ve7F࿝s^h&{Tr F̷)]YaIw]6ED,X⟛kPſ`r:ƶ5t??оgO:=T 1u4 GϽ}5&rCp9Up=~q,j|ruWK2\3GTJU[1Nnz drx^h(zיld_x_$0/ 碗)[,Į=|wC7W^<"àPl@oVK&×j>BO(BPE8MxL#$o~r&G/g{=C\JB%gS_dqPP5b!YY-#Ǐ&Wk5R Jz'W1RLH7ScSbfmbTI z`+Tf3F!E{:'PUfH(KhU<8R27FvTVZ0Ke"fX`6Uv2&Gzf]Wf(Xf{(zvYQ˱O|:oHvdAxa&x ]k)-UTGE"|VhbbqbY=4QϖG d}#T|9Rqوb,6A=ʋ\󋊾B a_S FQ2%!K4 B-ΟG6bu)|WM (H qXiKzN٘e1]k2;Oޥ4v[] 1[UIlclE~hC#쨼o@^~,1NuT  _t3b]B:8Ll=001u6<_n\dxSNJ♹繓:hإ '4(߃][ђ|g~.5 XbJ-VҧaM5eSe t&^JĄ]?{7:8, Q\^@" 6>Aw'V.No&Jyj.C?xEb.xҺWFM/H.hz Y hWl&bR!On^` -U&q F@`=Gi|ױ9jv@H ̹ʌ>}8"_k jUy2R#HmR]d~JoTo}hzkNv1]r8VJH6 D'4a&{.S\둷sS`aHկ7Ů@qz>n-^"Pg0IcFVNMe^QMBB*GX8{j{jPElŝ|#axΫ ˓LTW Z[JyTCD?<7@ $361K@p kV`49=kMv0Np{mR;iq-##uی-3翴<$XZߔ0;*p097VeC6>.a'Z8K3c0 ܗ**4O}uN^ąE+ X(B#FmT#9ݢP|7;k_}DdI.[Oîlq`^ET>ඏ*1LaQP4T*hJ=-:R^ȘM7}l˗fgJBZ9PgsM*-MIF LRw-ZßW.>N4-PEbg0b|ΕR^;86E $C׼aasꚳQXHbO9Պ* 7 Eȴ w9}XXt[jI=5B皉 fk# BcVwvӯye~%n~?]FTp]4y:kXbﺎ>f< hQBd)7X4!NsE'!>V&kRM4Dĵl-}wwTԘvT,w~jJ;pK_kBڢ꩛P./ix MF_qn6dan3jخ֩P؍E#* IVQl\!u9Fm[sUgQ7h{gnVW?)VPMۥ`EkICuucl u +Št|iu&mpdw?.s\r]'|A/eBܢ7nJ^ &MaNjPă:b Z3h endstream endobj 327 0 obj <> endobj 328 0 obj [329 0 R] endobj 329 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 481 0 0 791 0 0 cm /ImagePart_2085 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 305.75 301.149 Tm 194 Tz 3 Tr /OPExtFont9 4.5 Tf (Per! ens wins ) Tj 1 0 0 1 305.75 294.899 Tm (IS ens wins ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 194 Tz 3 Tr 1 0 0 1 70.549 352.05 Tm 146 Tz /OPExtFont19 4.5 Tf (0.9 ) Tj 1 0 0 1 70.549 341 Tm 149 Tz (0.8 ) Tj 1 0 0 1 70.549 329.949 Tm (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 149 Tz 3 Tr 1 0 0 1 310.55 246.899 Tm 145 Tz (0.04 ) Tj 1 0 0 1 326.899 246.899 Tm 2000 Tz (\t) Tj 1 0 0 1 368.649 247.149 Tm 149 Tz (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 149 Tz 3 Tr 1 0 0 1 135.849 246.7 Tm 134 Tz (0.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 134 Tz 3 Tr 1 0 0 1 70.549 318.199 Tm 149 Tz (0.6 ) Tj 1 0 0 1 70.549 307.149 Tm (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 149 Tz 3 Tr 1 0 0 1 59.5 295.899 Tm 160 Tz (g) Tj 1 0 0 1 64.549 295.899 Tm 113 Tz /OPExtFont1 4.5 Tf (- ) Tj 1 0 0 1 66.25 295.899 Tm 192 Tz /OPExtFont19 4 Tf ( 0.4 ) Tj 1 0 0 1 70.549 284.35 Tm 146 Tz /OPExtFont19 4.5 Tf (0.3 ) Tj 1 0 0 1 70.549 273.1 Tm 149 Tz (0.2 ) Tj 1 0 0 1 70.549 261.799 Tm 131 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 131 Tz 3 Tr 1 0 0 1 78.25 250.299 Tm 134 Tz (0 ) Tj 1 0 0 1 87.599 246.899 Tm 80 Tz /OPExtFont1 4.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 80 Tz 3 Tr 1 0 0 1 193.9 246.7 Tm 149 Tz /OPExtFont19 4.5 Tf (0.02 ) Tj 1 0 0 1 210.699 246.7 Tm 2000 Tz (\t) Tj 1 0 0 1 252.25 246.899 Tm 149 Tz (0.03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 149 Tz 3 Tr 1 0 0 1 201.099 241.649 Tm 150 Tz (size ) Tj 1 0 0 1 216 241.649 Tm 177 Tz /OPExtFont19 4 Tf ( of ) Tj 1 0 0 1 226.3 241.649 Tm 163 Tz /OPExtFont19 4.5 Tf ( eps-ball ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 163 Tz 3 Tr 1 0 0 1 356.899 696.899 Tm 103 Tz /OPExtFont3 10.5 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 103 Tz 3 Tr 1 0 0 1 104.4 580.5 Tm 156 Tz /OPExtFont9 5.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 156 Tz 3 Tr 1 0 0 1 62.899 532.75 Tm 154 Tz /OPExtFont9 4.5 Tf (0.31 0.32 0.33 0.34 0.35 0.38 0.37 0.38 0.39 0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 154 Tz 3 Tr 1 0 0 1 45.6 508.3 Tm 103 Tz (0.02 ) Tj 1 0 0 1 52.299 496.5 Tm 95 Tz (0 ) Tj 1 0 0 1 42.95 484.5 Tm 112 Tz (-0.02 ) Tj 1 0 0 1 42.95 473 Tm 114 Tz (-0.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 42.95 461 Tm 96 Tz (-) Tj 1 0 0 1 45.6 461 Tm 103 Tz (0.06 ) Tj 1 0 0 1 36.7 449.5 Tm 125 Tz (. -0.08 ) Tj 1 0 0 1 45.85 437.699 Tm 105 Tz (-0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 105 Tz 3 Tr 1 0 0 1 42.95 425.949 Tm 96 Tz (-) Tj 1 0 0 1 45.6 425.949 Tm 103 Tz (0.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 103 Tz 3 Tr 1 0 0 1 42.95 414.449 Tm 96 Tz (-) Tj 1 0 0 1 45.35 414.449 Tm 106 Tz (0.14 ) Tj 1 0 0 1 42.95 402.699 Tm 114 Tz (-0.16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 58.799 387.55 Tm 98 Tz (1.06 ) Tj 1 0 0 1 67.45 387.55 Tm 557 Tz (\t) Tj 1 0 0 1 74.4 387.55 Tm 98 Tz (1.07 ) Tj 1 0 0 1 83.049 387.55 Tm 557 Tz (\t) Tj 1 0 0 1 90 387.55 Tm 98 Tz (1.06 ) Tj 1 0 0 1 98.65 387.55 Tm 557 Tz (\t) Tj 1 0 0 1 105.599 387.55 Tm 98 Tz (1.09 ) Tj 1 0 0 1 114.25 387.55 Tm 653 Tz (\t) Tj 1 0 0 1 122.4 387.55 Tm 87 Tz (1.1 ) Tj 1 0 0 1 127.9 387.55 Tm 734 Tz (\t) Tj 1 0 0 1 137.05 387.55 Tm 93 Tz (1.11 ) Tj 1 0 0 1 145.199 387.8 Tm 577 Tz (\t) Tj 1 0 0 1 152.4 387.8 Tm 101 Tz (1.12 ) Tj 1 0 0 1 161.3 387.55 Tm 557 Tz (\t) Tj 1 0 0 1 168.25 387.8 Tm 98 Tz (1.13 ) Tj 1 0 0 1 176.9 387.8 Tm 557 Tz (\t) Tj 1 0 0 1 183.849 387.8 Tm 98 Tz (1.14 ) Tj 1 0 0 1 192.5 387.8 Tm 557 Tz (\t) Tj 1 0 0 1 199.449 387.8 Tm 98 Tz (1.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 98 Tz 3 Tr 1 0 0 1 346.3 581.7 Tm 48 Tz /OPExtFont3 8.5 Tf (:,.S) Tj 1 0 0 1 355.449 581.7 Tm 141 Tz (: ) Tj 1 0 0 1 359.3 582.45 Tm 1219 Tz /OPExtFont9 3 Tf ( ) Tj 1 0 0 1 371.5 581.7 Tm 255 Tz /OPSUFont0 3 Tf ( ) Tj 1 0 0 1 376.1 581.7 Tm 100 Tz /OPExtFont9 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr 1 0 0 1 261.35 533 Tm 144 Tz /OPExtFont9 4.5 Tf (0.06 0.07 0.08 0.09 ) Tj 1 0 0 1 317.3 533 Tm 613 Tz (\t) Tj 1 0 0 1 324.949 533 Tm 91 Tz (0.1 ) Tj 1 0 0 1 330.699 533 Tm 673 Tz (\t) Tj 1 0 0 1 339.1 533 Tm 95 Tz (0.11 ) Tj 1 0 0 1 347.5 533 Tm 577 Tz (\t) Tj 1 0 0 1 354.699 533 Tm 143 Tz (0.12 0.13 0,14 0.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 143 Tz 3 Tr 1 0 0 1 318.699 440.85 Tm 255 Tz /OPSUFont0 3 Tf () Tj 1 0 0 1 323.5 434.1 Tm 744 Tz /OPExtFont5 3 Tf (t ) Tj 1 0 0 1 330.949 434.1 Tm 100 Tz /OPExtFont9 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr 1 0 0 1 261.35 387.8 Tm 159 Tz /OPExtFont9 4.5 Tf (0.27 0.28 0.29 0.3 0.310.32 0.33 034 0.35 0.36 ) Tj 1 0 0 1 336.699 382.3 Tm 56 Tz (X ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 56 Tz 3 Tr 1 0 0 1 246 647.95 Tm 87 Tz /OPExtFont19 4.5 Tf (-0.66 ) Tj 1 0 0 1 246 636.2 Tm 89 Tz (-0.68 ) Tj 1 0 0 1 248.65 624.899 Tm 120 Tz /OPExtFont9 4.5 Tf (-0.7 ) Tj 1 0 0 1 246 612.899 Tm 117 Tz (-0.72 ) Tj 1 0 0 1 246.25 601.399 Tm 114 Tz (-0.74 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 246.25 589.649 Tm 96 Tz (-) Tj 1 0 0 1 248.65 589.649 Tm 106 Tz (0.76 ) Tj 1 0 0 1 246.25 577.899 Tm 114 Tz (-0.78 ) Tj 1 0 0 1 248.9 566.1 Tm 117 Tz (-0.8 ) Tj 1 0 0 1 246.25 554.35 Tm 114 Tz (-0.82 ) Tj 1 0 0 1 246.25 542.6 Tm (-0.84 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 246.25 507.3 Tm (-0.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 246.5 495.55 Tm 96 Tz (-) Tj 1 0 0 1 248.9 495.55 Tm 124 Tz (008 ) Tj 1 0 0 1 249.099 483.8 Tm 108 Tz (-0.1 ) Tj 1 0 0 1 246.25 472.05 Tm 117 Tz (-0.12 ) Tj 1 0 0 1 246.25 460.3 Tm (-0.14 ) Tj 1 0 0 1 246.5 448.5 Tm 114 Tz (-0.16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 246.5 437 Tm 96 Tz (-) Tj 1 0 0 1 248.9 437 Tm 106 Tz (0.18 ) Tj 1 0 0 1 249.099 425 Tm 118 Tz (-0.2 ) Tj 1 0 0 1 246.5 413.5 Tm 130 Tz (-022 ) Tj 1 0 0 1 246.5 401.699 Tm 114 Tz (-0.24 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 42.95 645.1 Tm 96 Tz (-) Tj 1 0 0 1 46.1 645.1 Tm 95 Tz (1.02 ) Tj 1 0 0 1 42.95 633.299 Tm 114 Tz (-1.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 42.95 621.549 Tm 96 Tz (-) Tj 1 0 0 1 46.1 621.549 Tm 95 Tz (1.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 95 Tz 3 Tr 1 0 0 1 42.95 609.799 Tm 96 Tz (-) Tj 1 0 0 1 46.1 609.799 Tm 95 Tz (1.08 ) Tj 1 0 0 1 45.6 598.299 Tm 105 Tz (-1.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 105 Tz 3 Tr 1 0 0 1 42.95 586.5 Tm 96 Tz (-) Tj 1 0 0 1 46.1 586.5 Tm 98 Tz (1.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 98 Tz 3 Tr 1 0 0 1 42.7 575 Tm 96 Tz (-) Tj 1 0 0 1 46.1 575 Tm 98 Tz (1.14 ) Tj 1 0 0 1 42.95 563.25 Tm 114 Tz (-1.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 42.95 551.5 Tm 96 Tz (-) Tj 1 0 0 1 46.1 551.5 Tm 98 Tz (1.18 ) Tj 1 0 0 1 45.6 539.7 Tm 114 Tz (-1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 30.25 213.299 Tm 91 Tz /OPExtFont3 11 Tf (Figure 3.8: Dynamically consistent ensemble built on 2 observations compared ) Tj 1 0 0 1 30 199.649 Tm 89 Tz (with ISIS ensemble built on 12 observations, the noise model is U\(-0.025,0.025\), ) Tj 1 0 0 1 30.25 185.95 Tm 93 Tz (each ensemble contains 64 ensemble members. The top four panels following ) Tj 1 0 0 1 30.25 172.299 Tm 91 Tz (Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted ) Tj 1 0 0 1 30.25 158.6 Tm 97 Tz (by green dots. The DCEn is depicted by purple dots. The bottom panel fol-) Tj 1 0 0 1 30 144.899 Tm 92 Tz (lowing Figure 3.6 compare the DCEn and ISIS results via c-ball. \(Details of the ) Tj 1 0 0 1 30.25 131 Tm (experiment are listed in Appendix B Table B.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 219.849 44.85 Tm 75 Tz (58 ) Tj ET EMC endstream endobj 330 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 331 0 obj <> /FontDescriptor 332 0 R /Subtype/Type1 /ToUnicode 333 0 R /Type/Font>> endobj 332 0 obj <> endobj 333 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (CourierOPSUFont0) /Ordering (UCS) /Supplement 0 >> def /CMapName /CourierOPSUFont0 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 2 beginbfrange <20> <20> <0020> <80> <80> <2751> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 334 0 obj <> stream 0 ,,&j޲S55X8 TF["-\[{jO[CK>2B;4I4SGWQoŗZӴI!ڐN0gߔ5{@$薽K#@Nc,D)4iiԹ_-80HtHI !yV=Wi8uP)"΀u>rOх+#z285p=r75~.?9us]὏a(kowSzJWg;? c`fu^Yp2a|)ufen^#B +qю\lJGіDP C`zflfh“-+ V R8I6 ~J[CtUD#-B?p|3i;oLdWK[2 { x1nJ~Wbi @1b[ܒg((kabRux4UwU%4>Fv9#3qh_}Ag(&4MmJUnC|d~8hh^}5e˝-~XGbH 3۳m BZg`.iWRp]0TI<#Hihr8ONM7݊ #;*y@mc;2:R`)ěr\M EۤZ>(ZGY=|FdD$ėB^ 62t@(IܧcR+wps5ʭ_*ƍ'4 BoTV!g_#j=U'I109hojR>h )"IUfb]^a=2.mȬ总 8֖H޵҂.M9lY{BfzI>}Ix.v7^"0Vϗ\O[] HhB:RM*>w~ &AZQm@4=|z } 2/tG=ZgWpkoGro&h*C}G-|V]oGD]&){ϲv3M2%9я$5MH n26l~$$j^ఱsɺF@msI.w(:fO@'£pbG| v?ٲ[9&" ^R%O3?zCi9\|i^k>6EfwyU Za֎]Yb |@wĜ/yk$a&[ x&}Q%N:6Wg!~,y~++E M-٤*Oa"~?r{0U$G,BؙkK(x"T1}h}3@7w$c/qyͣР-i ??ǓMmY|͘yӏ0n徇^#OHD|xJXe}piOZV\LK7STA6)gg=vol&"([.n\k oASv~gaq|v@J*2xu[ )G.6duA:jQf9/&qi-@H@YRNX$-A寜Q܀[%}oY}A6C={guUs:Kq8IBbƤ~V":<1Z˧%{dnDiD+pV.onAmLrƬ*ЗE63e| 'A3nrG/eHkͧg(JP<ٳ 3ł^ǥBQ{g/>t^t6Õsffs.Ξl:ՃK9HY;hp]E1YJ˺ͯJz,s"\1!%ԁBO&}e\x5AFnX#h-fȌHg.1N&stsTyR8%t5sQ~O?7(צ)e$8>{qSǮ^mfs9bRQdP݅ w t;a+<(_`5_[7o۬W߆Ds*aӃ2r߁cQ#tj nl+7|?`i̕,RgNI'Qέq%1*ҳŏ|;Ӧ l(YٝG[`ds_ϜBh#c_M|?e$DfGøRjow8MM^s$~^Jc 4fМ:a-`_iOU03]ZՊU&C^ne-y7=h#k2, e䯄LDe nD54bbzvG?+w,25A - 8=v_6筸LVk]3(=PDaN¿r ^}l;|Bo=Eatk [&amՋ}(wBp^b菻|HE! >7Tձ􄯽Ұ³-!E0ܰcXw"G JQ?G0ay wB7@!`ްzZ`4{)M{ߔb^ON/^//hrם_?ѡ~%z>3{Yei {tUE4#l4)ԿCL "`Hހ/MA2ӏשrx?.Z9ҏ״Y?' mɳ3-Mɶ p96p@-pE+~DūN%)W*GX&P<~)|x3+x̜Ok`.`= mwN$(́F[dv7VXf I 2]kzᑜ$W}\MI0++=i,rږpHcvY7tf !G/+;Isu`4LGI.3.5ߘO<7TY&g'u ORĎ(j8=ף4G| 2,g7l%+s- <[͛`17},2},оq[A0\x$R^w~̭nDp /36sO؃)B{~@^v%IbpW4鹣ڒpѳKݴͰ!ռǨW̺jڲ= po]CEANۦ*l :=!?p@Dm7`&r8|r\4Nx;MLLxAҁ՞`tKj D]WƇN_ 0h0sn3#8{P63]a–R3(ݭ 1*O,9x:.Sÿ$DĪLquhCdzH> ؝ 5L$P!PGHpHeÞ_i}G_oap7Ü ] ڇOPgg5nɳL9eRY.%Ub*x9@n hIPFcٌ,/OGcWڶt>S&iل7k7] nǾ]RZoҟhAO83YΓVNG0lt (ز-1,?ZqhfCot0,vP ¿B,V)%Bn|fr tI<%疿Ca $Qjޝa$wYS|Ӝ(ismmZz_g?*9l*>vQ|$D?9CJ˧p:f )sY*B󏁡+Ԗ+6& GUA} !sk7SFC3|lIƱ9H!FG%k>4UXD ML:ᗒuZd@RvCeGB&gyآ(Oy!m_hl\ o@PDj~TOSg;lk`L[Oߧ|ЂvWdˑSO{9O u#<[knFب<>AUxŁĿ;]Szh*G!sse}z`r1yWfnn (a.FӘ7Nka'aơZJ;ϖ,S{fo2FPjB@L|{%N]duGu{Bg֘gqx8@A׆K/ا% hb5Gl(K5I*{>I<Iq2 q3}&ETWo!jK2"[7x~OTcj`P~58[',Wbx ;] M'Œ[nNK+.ϕXQA<. ȅ# g->ҶѶa>*k*[[-kW#Vcoz7z=`޿j*"H/?x}t'w6rZS7O0٘D)O z~Oּc9YϜz}xYrd>̙8RcWœP{FP= E4*Wplszl}3\i4~c.8Jw?K jf[% Pu6 v+=vBYo!_ƽñٞLT0k@yC1⪂33٫6dH ba seSGR]N2pQpV$#lÚ o[H`VIpcփg]|Ae}*0UӠ ZWj|JʽnA!CG#dmHKRz bsj~-IcruŸiztڙ\̲*oc_LAYa @ _}  ZRL̂ѐgc[L2_-_9lUf+Lz8cvj5kglX1k-f߿YU#;zBW -A+ [YRTP?ɡcMB|鼡+޷_m4\ĺρn]Uz!:Ĝ0{EQ@UU9c+mTur;+Xד. Z uu)f%Zc?qƧP̾kL:vSǂC@%1 ԁR7i-JX6-V<iXwgU ;H* 3`knV&^QpvN$]U0טlhBUǎQvb ԥ>7n Wi8QOJIoҩ r-]w/kw˺QѸ2mh(<~>%ImW-.Yu?sml>d%i"2ё [)9 $ݒG hƄ'CѸa=IsYuFN7+-1#}eBӗE)XQXLrF1_#ˡtį0{ tғ2p?ƒrCo>ƽG57۬?EiRP|CBE5)Uo:58Ph_oe\/-WȵԾvLaZ{aXIмM5{ު#5fZ7ʼn2⪷r-B9PHba-ʼnzuB&[Vw9^0@v}@`H CA _*B+8|1n7̄P?Z`٧MAJm=(<kMVZtpCb5Hl}~)XO p+3M BNIZ„dK~_iF6Eo>7p%MapH,\mi62w(9|o$LFv 9ck04ݗJ=.ꟛQ}FI :_bQ60tD 8T^i5GZ@b+.òNSAcrυo/l'3nGvAfi6[*>$Xћ rM;F1Mᣞ+y}yaƗY$ӵ><>ێ(ZP5\#G v jDWAld$IL[P˶4J7"3QD*ɡ۔c0lwdZTCΡ&2v@;c(ޯĺ팷6CE %o*^"B yY>c:<,cw|B$8qC(iVؘo5.s-Ej \]߈aAo[nF>X3Ĕ RU=&GxgЕҗX,QjE K}+ۗN'˖oivbS$ٸ'.jc`O' X{54u#ʎ 굏~XXپ;P,+.p?#?t"]t0XrTzd{&A83!6t|?zWKL@lqI5"Xh WƓ/ S|.xUnp^ʭ:_RD̩A?'3߫}7FxQ'P +y[d,{rw>lͅ~ uakkP/џ(8r]ڭNg%ݩvh bl3V7AK;yj綢rg0j%b)xDIad=渁֪ {\~7e!ah-ēKQʟ}Ź`?֔B%uX=W .$0فo#2D` |pRr|ߗ?}j^9,6F;r fV9;LyS7gi7thh@ I.}߶Һ.¨uU&W;XFYFSnrOUuۮ'b[5-)f3GAnЦkEI&Lih)bc4 7hR們!.OVM.PrĕZI% '+U&s2 reJCTI{5q P^O\'Mi_QKQf{3p/}D z*|j(ԋC {P}/nb5 endstream endobj 335 0 obj <> endobj 336 0 obj [337 0 R] endobj 337 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 500 0 0 789 0 0 cm /ImagePart_2086 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 116.9 566.75 Tm 136 Tz 3 Tr /OPExtFont9 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 136 Tz 3 Tr 1 0 0 1 54.95 631.299 Tm 96 Tz /OPExtFont9 4.5 Tf (-) Tj 1 0 0 1 58.1 631.299 Tm 101 Tz (1.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 101 Tz 3 Tr 1 0 0 1 54.95 619.549 Tm 96 Tz (-) Tj 1 0 0 1 58.1 619.549 Tm 101 Tz (1.04 ) Tj 1 0 0 1 54.95 607.799 Tm 119 Tz (-1.08 ) Tj 1 0 0 1 54.95 596.049 Tm 117 Tz (-1.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 54.95 561.25 Tm 96 Tz (-) Tj 1 0 0 1 58.1 561 Tm 101 Tz (1.14 ) Tj 1 0 0 1 54.95 549.25 Tm 117 Tz (-1.16 ) Tj 1 0 0 1 54.95 537.5 Tm (-1.18 ) Tj 1 0 0 1 57.6 525.7 Tm 120 Tz (-1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 120 Tz 3 Tr 1 0 0 1 258.25 634.2 Tm 117 Tz (-0.66 ) Tj 1 0 0 1 258.25 622.7 Tm (-0.68 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 261.1 610.899 Tm 96 Tz (-) Tj 1 0 0 1 263.5 610.899 Tm 107 Tz (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 107 Tz 3 Tr 1 0 0 1 258.25 598.899 Tm 96 Tz (-) Tj 1 0 0 1 260.649 598.899 Tm 109 Tz (0.72 ) Tj 1 0 0 1 258.25 587.399 Tm 117 Tz (-0.74 ) Tj 1 0 0 1 258.25 575.899 Tm 154 Tz (-0/6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 154 Tz 3 Tr 1 0 0 1 258.25 564.1 Tm 96 Tz (-) Tj 1 0 0 1 260.899 564.1 Tm 106 Tz (0.78 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 106 Tz 3 Tr 1 0 0 1 261.1 552.1 Tm 96 Tz (-) Tj 1 0 0 1 263.75 552.1 Tm 103 Tz (0.8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 103 Tz 3 Tr 1 0 0 1 258.25 540.35 Tm 96 Tz (-) Tj 1 0 0 1 260.899 540.35 Tm 106 Tz (0.82 ) Tj 1 0 0 1 258.25 528.85 Tm 117 Tz (-0.84 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 75.349 519 Tm 157 Tz (0.31 0.32 0.33 034 0.35 0.36 0.37 0.38 0.39 04 ) Tj 1 0 0 1 223.449 519 Tm 2000 Tz (\t) Tj 1 0 0 1 273.6 519 Tm 143 Tz (0.06 0.07 0.04 0.09 ) Tj 1 0 0 1 329.3 519 Tm 633 Tz (\t) Tj 1 0 0 1 337.199 519 Tm 91 Tz (0.1 ) Tj 1 0 0 1 342.949 519 Tm 653 Tz (\t) Tj 1 0 0 1 351.1 519.25 Tm 146 Tz (0.11 0.12 0.13 0.14 0.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 146 Tz 3 Tr 1 0 0 1 68.9 373.8 Tm 126 Tz (-0.03 -0.02 -0.01 ) Tj 1 0 0 1 110.9 373.8 Tm 826 Tz (\t) Tj 1 0 0 1 121.2 373.8 Tm 105 Tz (0 ) Tj 1 0 0 1 123.849 373.8 Tm 790 Tz (\t) Tj 1 0 0 1 133.699 373.8 Tm 154 Tz (0.01 0.02 0.03 004 0.05 006 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 154 Tz 3 Tr 1 0 0 1 281.75 373.8 Tm 131 Tz (0.68 0.69 ) Tj 1 0 0 1 306.5 373.8 Tm 613 Tz (\t) Tj 1 0 0 1 314.149 373.8 Tm 103 Tz (0.7 ) Tj 1 0 0 1 320.649 373.8 Tm 633 Tz (\t) Tj 1 0 0 1 328.55 374.05 Tm 148 Tz (0.71 0.72 0.73 0.74 0.75 0.76 0.77 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 148 Tz 3 Tr 1 0 0 1 54.95 493.8 Tm 117 Tz (-0.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 54.95 482.05 Tm 96 Tz (-) Tj 1 0 0 1 57.6 482.05 Tm 106 Tz (0.08 ) Tj 1 0 0 1 57.6 470.5 Tm 111 Tz (-0.1 ) Tj 1 0 0 1 54.95 458.75 Tm 117 Tz (-0.12 ) Tj 1 0 0 1 54.95 447.25 Tm (-0.14 ) Tj 1 0 0 1 54.95 435.25 Tm (-0.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 54.95 423.5 Tm 96 Tz (-) Tj 1 0 0 1 57.6 423.5 Tm 106 Tz (0.18 ) Tj 1 0 0 1 57.6 411.949 Tm 120 Tz (-0.2 ) Tj 1 0 0 1 54.95 400.199 Tm 117 Tz (-0.22 ) Tj 1 0 0 1 54.95 388.449 Tm 114 Tz (-0.24 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 114 Tz 3 Tr 1 0 0 1 258.25 484.199 Tm 117 Tz (-0.88 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 261.1 472.699 Tm 118 Tz (-0.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 118 Tz 3 Tr 1 0 0 1 258.25 460.699 Tm 96 Tz (-) Tj 1 0 0 1 261.1 460.699 Tm 121 Tz (022 ) Tj 1 0 0 1 258.25 449.149 Tm 117 Tz (-0.94 ) Tj 1 0 0 1 252.25 437.149 Tm 118 Tz (a. -0.96 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 118 Tz 3 Tr 1 0 0 1 258.25 425.649 Tm 96 Tz (-) Tj 1 0 0 1 260.899 425.649 Tm 106 Tz (0.98 ) Tj 1 0 0 1 264.949 414.1 Tm 113 Tz (-1 ) Tj 1 0 0 1 258.25 402.1 Tm 117 Tz (-1.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 258.25 390.85 Tm 96 Tz (-) Tj 1 0 0 1 261.35 390.85 Tm 118 Tz (104 ) Tj 1 0 0 1 261.35 379.1 Tm 101 Tz (1 06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 101 Tz 3 Tr 1 0 0 1 319.449 295.3 Tm 181 Tz /OPExtFont1 4.5 Tf (Pert ens wins ) Tj 1 0 0 1 319.699 289.1 Tm 172 Tz (IS ens wins. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 172 Tz 3 Tr 1 0 0 1 82.799 339 Tm 187 Tz /OPExtFont9 4.5 Tf (0.0 ) Tj 1 0 0 1 82.799 327.5 Tm (0.0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 187 Tz 3 Tr 1 0 0 1 82.799 316.199 Tm 159 Tz /OPExtFont17 4 Tf (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont17 4 Tf 159 Tz 3 Tr 1 0 0 1 70.099 304.899 Tm 70 Tz /OPExtFont9 4.5 Tf (' ) Tj 1 0 0 1 70.799 304.899 Tm 962 Tz (\t) Tj 1 0 0 1 82.799 304.899 Tm 187 Tz (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 187 Tz 3 Tr 1 0 0 1 71.5 293.649 Tm 100 Tz /OPExtFont9 4 Tf () Tj 1 0 0 1 82.799 293.649 Tm 140 Tz (0 . ) Tj 1 0 0 1 90.5 293.649 Tm 161 Tz /OPExtFont9 4.5 Tf (5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 161 Tz 3 Tr 1 0 0 1 71.5 282.1 Tm 198 Tz (- 0.4 ) Tj 1 0 0 1 82.799 270.6 Tm 183 Tz (0.3 ) Tj 1 0 0 1 82.549 259.549 Tm 191 Tz (0.2 ) Tj 1 0 0 1 82.799 248.049 Tm 161 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 161 Tz 3 Tr 1 0 0 1 380.399 233.149 Tm 191 Tz /OPExtFont1 4.5 Tf (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 191 Tz 3 Tr 1 0 0 1 369.1 682.899 Tm 93 Tz /OPExtFont0 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 93 Tz 3 Tr 1 0 0 1 42.25 199.549 Tm 91 Tz /OPExtFont3 11 Tf (Figure 3.9: Dynamically consistent ensemble built on 6 observations compared ) Tj 1 0 0 1 41.75 185.899 Tm 89 Tz (with ISIS ensemble built on 12 observations, the noise model is U\(-0.025,0.025\), ) Tj 1 0 0 1 41.75 172.2 Tm 93 Tz (each ensemble contains 64 ensemble members. The top four panels following ) Tj 1 0 0 1 42 158.5 Tm 91 Tz (Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted ) Tj 1 0 0 1 42 145.1 Tm 97 Tz (by green dots. The DCEn is depicted by purple dots. The bottom panel fol-) Tj 1 0 0 1 42 131.399 Tm 91 Tz (lowing Figure 3.6 compare the DCEn and ISIS results via e-ball. \(Details of the ) Tj 1 0 0 1 41.75 117.7 Tm 92 Tz (experiment are listed in Appendix B Table B.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 231.099 31.1 Tm 77 Tz (59 ) Tj ET EMC endstream endobj 338 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 339 0 obj <> stream 0' ,,UUkek 0^J+P. GW?EKWϣ5mY Ӟ>dlX5-5fяR3RIzx;`s_r& ]tZrט"Lγʠ:.x], $u ?tu)#G..=|*&8$$\Wm 40ftO+[CIy|테U\AeJudr]ij)#T,5>K>!;)9zx:js[:kfiM[Y/uf`P#,R$+=*u_PfecWv}eNߗU,'XWaKkb) Sos|Yl j`',cɨ=ys}w&e:' ZtT"4nZ3~LSvRV 2& 0‰gZ8/.'ŷk Q{W)S+m4ڮŊw?˫<Su|a+<A_:\rH/@Ut0ѥxIɽ9=(TES@H7+<0X+h-] B NPe M}х=ɧқ݁pʁT[;ѳpϊqK^Z|Ey" R՝ޅ1j0oPP>ӥ_+@V=#gE0Vu-#Aw3S cXA5H>'w$oL1Gqcpu>P#܌ĩ=^O zqF eͅ0%ii#栓y]x4&bI4V,n1FkUn,?RQ%*D,:tpBQr|&IX-oO*lS:{u+nM#ڏzVo8 ,SUܹ* ÍpXp:B{L 6'>zxJD^u,*9c>0FG3ƥ:OY/ }R6$lM@"3KJh{B;71T \~K.&8OZ-[pS|J Z.)=qh#l(Pe]n zTZaAפaCL]z8 ' SRU~8\9TL`TqsO3pTZq>ɼWL3Y2 q3+@?b8l}YR|z\d瑅Rn|St3\ҤCjVpGߞaV1y%w*ylNW2.U.6o23/4SqGPDٶVU~#H1-3v9q jٮ=VzR$3Pi!ǙX]|nZrV^?%4U.G3$/Ab݅r^&yΖ8pvM('Y(>Yv/0^l5 /̈8ݯc;njb5$HE:Er9^θ.eNDNi^eznyPY Ȅ\6-Q?/|)q՝%z]񷉵 3F?_Rooq1'stWfN*-8@9-1RTW׿Tͻ7ȣ3E&sW@H`AtiX(D C=[aHCz*Hb&J8ͽ`܅5ݦ\0 rgzv0f{z*pc} "m-ﺁ&|"Zhaq4X)K0܆`P91H G'ܲj =/8QR`1 (x.^h͞*h"県>c`S7BA1|uN# 41R-{P= [G w/0HdjICOLVfN2|whSx5 JK!SH<07PkzZw~T>>n! HǘTT۾rH_LdK ܟc~co¹=īI@u"[we' Š%a@c͗4ad_&Ę9z2zt2AB+&*?ЇEL$]`G2~A¿䠎!8Ym0KqMUAEQpW-lkY+ l.[_sS݈_~S yF&yEͿ۩%p߂ +*ZyRԚZJdr6$ECѴVʻkbow%$pjzv@7LI;2.]h \# یd 5eϋ޼̅rsVV% ?8w?q-CLxױ$HV(KVGLIYiN(-Y܍RS 0 fB{EEL[_DL~-8KᲣ N!wI[1HG'SZ=3 m]6aK00( քy[LH'3uU99 7/aeDItt6:ygbI^U;?BoA[.~nқpqh҈}D=b |$:υ>mxCN(}KZ@]6qyWYBc6.!ePI.Ƶ{J?M6~{ vx߷S =R2;q&#=J͡P$ĔBp֐NIcGqiVRaO)X) ]f\汝}:\\:nw@n燐=S?_6߯^'xb)z` c#z^ j D]q_m)v\O_vEs;b C>Q;EY UVHhIEi$jʑ>[sUܜQTKMj&5lX..F#e%h|b&[nv1=Pc$s`'w証€ SXa"E)4/UiT%&$>{ V^H3w |\ \ Dֻ;Kw> k 1Dd{/ ֆ?p +kb~OpJ+ݴCuG5F~ѹ-JFga%8ZH!ƋCw,_Oi|/՜)6Z|v՝ڢ*4B[X."tKR|Sm?T#H(%d0e\T$)c ̲"CRKWd#"V*XH%l @;ZJħRψ,>zWr;)q]mq WU`jSl>iP2FWL_6-.( yɶ"RA!D TAxNx<>,#C!0/@s!>s`~w7TvFJSu^JB-54!hD=d=\f,s?XV{FZHA+ĩgV cNrbL3j*ȘCsCA|I8)EaZ, LV|kD<SZ4McJMPzq<G\KrN?+)]Oo7 J kg+߼2&!BD[x)곇b7ԵYҽ\D2k*,unJ@v5i gqEc5WW*9Dy:kKB$SD;`Ttk/$`[ a< A{Q3 _U12Dg!aQo%_p2*Jfux$9HS^qa6ҭ7!Ps [1'$Lr\1<7;??~Eìô 0M_k]1 awxr )fgqΦby>%;JƶpxT9>P2Q|p>@SUȍ ݤDջU!FQmՇbV;'utk Qޤ*нϝxd`f%&"βu/NĿM:DǦ  G(Ul 8E)A~KKXŲB ޞ+i’y؃bϗ,Pzy Ⱥg'҄u#J,Uu RY=UAcHV{^=i==|]`$^B*w׆iQX$6.KF^'NZqGdC77]iǑAF)q ^栲oJ:?wX2```CIJH~/LLlS~/f-AݓۇB;1E|&¦i 6(벛|3pX*w|ؼzty8 K]P jhnTPvYݥj9 ݔLI/*PJ9hD"z 6`蟚z'sxROn؅ޥnH*h qqmCxmcC~&FMh#&{rn=UTb*}h dfqB ' >֐G.!BAAPoI6KՌC~x[[ơ ʺg٦j>A{[#} We}RX%>}j%޷@.A͕C)FgT +W4y6: NzZ6;L!GзΚAܾpZ_yugAJZ7ùn4O|(Y>!ZQ|#C/v`*iqh*6.yÙ1p~6w'dqe+1y)Q5|iQ`7&Ex5,CM NL rd@-c0)@B|g>ƻVvvb|rXhM$:DS}ph# ߨ4dlC@=;?Wpןn4Ur80H춀 ݂)S7q eո `^3W%(PKY  lO#=L>Kd %_5@ĸOi=޲I_-Qel?>y57'h)X#tI^%$N'rd-y(3\7M^2̡J!8#/{s{kM}VAjCҞ 4,k|o{g_X32^d7Z0l1!\Es<8+b[O[f]+,lo>P> \b@VXlR׽!1+= a(WY81 S9Dt|~k7J* ^- _Gjiz\$*M Ip0gRنSU$E1Lh3Wy?Y jI tAOY]g1-0mPӡЖ; VX[J'Lz:!7N:_qa-Wƞe:g%[G%j~mTRDFTΗ 9X-{H݀ NbQ[~sDnՖ~SgZSOO++r{pJ307a׷C+WNgySL)Pyh;,ee̻)ɦ{d<Ǜ..,1zr7C" 8`+#EآG; }fgGgp`X6L1R;w \$ 2DRz]rֳ3Pe~# U!u%27oGO A&Ls~`|mmkxK[iحj'|4*}dǷw߆L9i1h* ho܇ť:GUb.W{\jQN(FcTs\*"\[ˮ몛\c)@eodz4~>R 2g,72)PP=t;yz V89X]|l UE/Ȇ*"/i@džc{hT.yUuۻk{h/*FS-c#fʂ{) BF~axa@iX aئh{m=K8Ami նl *Nvzr̒3CEZ1h̜=eE'Z>IGU$ߤJFZ%[_vǶqpQ~_#JhU&uyaƷחF{J ԰Uq m`؃"#Bbx&V͎Է`lXPA\. J-2z;,RD](tҊ*+4?M9/a ڱ4~[)Z Z}Mo@=H/Of[ qfhAR(:GKZŸüT(O2;Ɨ Iv-upb}sGvͶNI2*Ù1J("MR G`Dd9@,4WT/#G\L8sbk.4jdIy>WHp jsYM-r e2{j 2 ~M2/Fq`5UX8x#uXNBx?hY#z04Q]ZvCZkFuA!Rg M쳤/Z?Nòg/56B`4T).$ @d:r9AIB^z3BSPZCQ D) #ܜN+(1x:6~a?ڄuQCmnrcM7CHhlm2^lM_e:C[UF͠QCr z0)@_I(#߿/IL_KzCKEb&lGVXR }4v$GbN:$=X0Kpm|fL5FCR]G\`r:g4>;CDoGb|6,F6a8m2[(\Vj%5ϗd d\z"a.(eg90&݇qP~t֭'V-f=ΒNK;PT` dHM9\@1 p`/MO"Mon);k=6PyΞm7eXiUkK5.T-sJyOYSl$Y2a2br#$"'&[ANT]%Ik )X>j,bbA31hfG$3r4P6$ eJ$t<] ,mCfq3r~)S[)) 6sJkD|?G:k0k{BżR2a  䏤*S'Q2OL74ٝ,ܱ5ٲԮ`ѓᎲ\5-卸PFNbT5-<.x:T)<ݼP,}zR%HbIᤇ /χL 㬀hȘs`lQʢ%)z4䡳9s endstream endobj 340 0 obj <> endobj 341 0 obj [342 0 R] endobj 342 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 484 0 0 783 0 0 cm /ImagePart_2087 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 380.399 580.899 Tm 143 Tz 3 Tr /OPExtFont9 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 143 Tz 3 Tr 1 0 0 1 270.25 529.799 Tm 113 Tz /OPExtFont19 4.5 Tf (0.06 0.07 0.08 0.09 ) Tj 1 0 0 1 326.149 529.799 Tm 518 Tz (\t) Tj 1 0 0 1 334.1 529.799 Tm 68 Tz (0.1 ) Tj 1 0 0 1 339.6 529.799 Tm 547 Tz (\t) Tj 1 0 0 1 348 529.799 Tm 118 Tz (0.11 0.12 0.13 014 0.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 118 Tz 3 Tr 1 0 0 1 255.349 412.899 Tm 99 Tz (-) Tj 1 0 0 1 258.25 412.899 Tm 77 Tz (1.02 ) Tj 1 0 0 1 255.349 401.149 Tm 86 Tz (-1.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 86 Tz 3 Tr 1 0 0 1 258.25 389.649 Tm 90 Tz (106) Tj 1 0 0 1 268.1 389.649 Tm 98 Tz /OPExtFont9 5.5 Tf ( ) Tj 1 0 0 1 270 389.649 Tm 2000 Tz (\t) Tj 1 0 0 1 422.899 389.649 Tm 65 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 65 Tz 3 Tr 1 0 0 1 278.399 384.6 Tm 125 Tz /OPExtFont19 4.5 Tf (0.68 0.69 0/ 0/1 0.72 0.73 0.74 0.75 0.79 0.77 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 125 Tz 3 Tr 1 0 0 1 377.05 243.95 Tm 152 Tz (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 152 Tz 3 Tr 1 0 0 1 255.349 644.75 Tm 86 Tz (-0.66 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 86 Tz 3 Tr 1 0 0 1 255.099 633.25 Tm 99 Tz (-) Tj 1 0 0 1 257.5 633.25 Tm 89 Tz (OAS ) Tj 1 0 0 1 257.75 621.5 Tm (-0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 89 Tz 3 Tr 1 0 0 1 255.099 609.7 Tm 88 Tz (-0.72 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 88 Tz 3 Tr 1 0 0 1 255.099 597.95 Tm 89 Tz (-0.74 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 89 Tz 3 Tr 1 0 0 1 255.099 586.45 Tm 99 Tz (-) Tj 1 0 0 1 257.75 586.45 Tm 81 Tz (0.76 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 81 Tz 3 Tr 1 0 0 1 255.349 574.7 Tm 86 Tz (-0.78 ) Tj 1 0 0 1 257.75 562.7 Tm 89 Tz (-0.8 ) Tj 1 0 0 1 255.349 551.149 Tm 98 Tz (-092 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 98 Tz 3 Tr 1 0 0 1 255.099 539.649 Tm 88 Tz (-0.64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 88 Tz 3 Tr 1 0 0 1 255.349 495.25 Tm 80 Tz (43.88 ) Tj 1 0 0 1 257.75 483.5 Tm 89 Tz (-0.9 ) Tj 1 0 0 1 255.349 471.699 Tm 86 Tz (-0.92 ) Tj 1 0 0 1 255.349 459.949 Tm (-0.94 ) Tj 1 0 0 1 255.349 448.199 Tm 98 Tz (-096 ) Tj 1 0 0 1 255.349 436.449 Tm (-016 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 98 Tz 3 Tr 1 0 0 1 374.899 443.399 Tm 136 Tz /OPExtFont9 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 136 Tz 3 Tr 1 0 0 1 366 693.7 Tm 94 Tz /OPExtFont0 11 Tf (3.7 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 94 Tz 3 Tr 1 0 0 1 38.899 210.35 Tm 88 Tz /OPExtFont3 11 Tf (Figure 3.10: Dynamically consistent ensemble built on 12 observations compared ) Tj 1 0 0 1 38.649 196.7 Tm 89 Tz (with ISIS ensemble built on 12 observations, the noise model is U\(-0.025,0.025\), ) Tj 1 0 0 1 38.649 183 Tm 93 Tz (each ensemble contains 64 ensemble members. The top four panels following ) Tj 1 0 0 1 38.899 169.299 Tm 91 Tz (Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted ) Tj 1 0 0 1 38.649 155.649 Tm 97 Tz (by green dots. The DCEn is depicted by purple dots. The bottom panel fol-) Tj 1 0 0 1 38.649 141.95 Tm 90 Tz (lowing Figure ) Tj 1 0 0 1 108.25 141.95 Tm 74 Tz /OPExtFont0 11 Tf (3.6 ) Tj 1 0 0 1 126.25 141.95 Tm 92 Tz /OPExtFont3 11 Tf (compare the DCEn and ISIS results via &ball. \(Details of the ) Tj 1 0 0 1 38.399 128.299 Tm (experiment are listed in Appendix B Table B.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 227.75 41.899 Tm 75 Tz (60 ) Tj ET EMC endstream endobj 343 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 344 0 obj <> stream 0 ,,kekcR ߔrH4`k QoYmO%\!%WVgc4s{["Vb )]=*6Zۖݰ<˼04i]5AUw3f~[̕M3nHISCT%8d< w XRi}mL{f|p4~@ͻ< 61|K[UxpdloZȘpwSQu]j)ϸ42< ŽfcL#_35i7+pa.?ti̕Lf5zҡ߱x&Zv2:Y:]J[C}yoXL!@eFgY} gsie=$ fe^I܍ˡ?;]$S.DI xykH$i L&Q Q_B@ʎ\Q@ƉRsԠ ռXiQoȳ ǵ ~"Gw5_,&ZߺW/z6bh.߽gHQ e>Q*sFf_} H0Dl*mІ|{y@HE? /D{$ Nġ"SJatKvLԇwP24F5t-/x|Ƥ@}x ||@X;ۼwY\*O^r+=oSPUvQyO8V^Yƌە3?fS6ƨdo٭pV:`7R0:`ay6~;E]:6 `Q/;LN So[_D,׷i֢_a6pLJ'NrLjA[)r\{)ZY=Co|XTaduņլgCe+Hfl6[򅻼bNА\T1*G"^2}A$f0:IQ Kʻ-B{3:_.BG4\@o&=yUVEC]UG`HPwDC]lwTr V&hl%" `뇓=aXsV3lC :AhNڽ}jNUG W\^~15D%a&|"V!dzkW1}g-t7p VV`ީ*ȳgYJY60t@ЖiI9ׯ]ҒNLvx}x"`gn(n*KO6L类N ]q/+&~yy%xēG-p>x c7Wo' O -Y{J(AĮK B2{upһFDΡd^[!A\F,pBTLD%f4Mh N55/&歰d56zil <੪A uxC=烪f xqb}?½P޿ӣ3Hλ03V[M_8 ae9x`J؎/e6S|gٓfwf;{eX[?pN74kK:/}שgaxC7c!Bz'zw:Z/]Eŋ .e$Hr't][Iǫx@PЉfɖe+zsfvSHMaO %"0͌n@H>u\'0ߑ#Vt:ᕚY8@+dp-س4"cu&6!Rnhv):b$5IE 2 o[D,v %CCC&Vm5`([_^~.߄m8x,![x Xǁ&He*z &atoX% D*hT{gf{.Wt&bG(a_'|/6T{ bq[YF$=݆uޝWpr*%KSA8Y~&;vғ3{G416\bw"KJݙDIsͷнU|a^,AyN 'J.K> X/>5װ戰_1\sS֪(c[DzϖfME?:RA5W. y.W-;3Z#]"^\k5n> Xm4n^dέQ ߌ(kLi}mIԫr.$SYTͶqFň37buC?_f]ˏ dPh ')nNG)0 ߱i_gHUsX)p;`kMt:yDriF` +D7*XgZRek}gj?PMm\Y<TYPҬF~?쯶j=F2HMTJ uiDy23HJq`޿/x _5E6;+=RcΕ hw%<}{ nGA.k9Ϙ͛T/}9DX%|#^Lgdׯ@w\AydZp'ߥmaPB4F+(Ҡ[V tk@uI[ qi|O@M`1GLY)ա+0l _U RbTG:& ' g ZS1OgU`GW#:R<`o8㆙ X!<4R; IW:Jc=yqTpk۩jdOUd̃,H* ?z#K&Bd JmK@([Zy9v ?\Dخƒy[+Q/JZ%9 uy2)O?h9bF9;#U8ώGMw>Ӧ<۶=A4LI>:h2\+g.ӻa(-hD\Y|wo uo`V?u|[MW-Fp^:}X)Af!^x]J^Һé Nj'7aXf9aPzݏ-f2U}4Gt$yk e^_̔kV_a>~:T Fh[ULIl U|a컗\ȫ$:sѮYJ.T 7K _FDfJ=@j Bk!1-'fч^9f7@q3 >Zڸ)PT3#Oɉc R p-B΃ci~/tv?W!::[cU$?x >N³Je;>}+ƵoDϑ.uaҎi}#vi* s> ^(/U$.%+KWȜe!*[6MO\9  6C6{pʼ^]6$q5QIB8U4O3b/rGLpyx@PL6 ń %C/s2!2=V 9nhHKBMޏN _,zDCmza4>$:tk!颺#KW#5YtJلټ_åb0:02n鞫·sX}H1c@o sdl^*ǫ=؄p-)7JKT1"Han^p#.o(}APڕ.@{"A Dz jsqk a؃'UEp_ Z-!( rH`e*YT~BD}k>Kr҈kU߀ 3$^'!vAcr8flɓYY]=7xi#̗Zn|y52ra:$?JDƇpWJF dYYٗ>ef)3f9=M i?yJG4ڒ#8®Z3.24T,`tM|]v$󴫩FO|Ko{8b ߎO+(, dה-s0 G4I/=9 Rj[Ay)g l@&t&Ƞ4XXҮs')T :Y~-r )˩5_D_{0,[ԍr9iYQ-" T)g1B[T8/rcP ? ;xz!рwtj O-jWJXH'ÏGےq(k0[9b)+j{BLN?4嘞:@Y.$1ZV6|74ZI9y*Y bX>1-{Ŵ8p J(: PS7ZE}%6T  AݩGK[W`.EctʉK7v?ml p}Ǧ꽰,/Q>w ̔pN2 @]q2C$bQGf-/ߗ>UUD䱺qr a^EǏrp ^vxIve-HF RDL|q$&AOJRەֶ:ȥB! SL4;ag-a;V.O9ROk[  Qf&5Ϸaj[=L> di^F8ܝTd8-T)Qb-NXzѷn2ß&mj Nla57кTWD ]ogSץ*W xۄQ]F_#e/o-ر|^^y+4qM QP r(xcu Nlt4ʎ'Rkg;10@KJKO㐝%MvX*Sw+9m!cL2XLcS4Mzds$5N?b78j$B&L֦3ը]yrg3K!;VCqcVDUjݴ15Aқ -ɥ c.aA[6ޱWM!2`SEyd 8>BK?{oߢ'ٸoQ?i'/N`&L~֌BUbJ0}/8>QJҘpU:^wfvn- *uN1hHTzf$гcIYAȩы\r_έ㢙Hż'5+46*rGT~=C>g1(C*0t( Β+?b+}.9}8fY]u唌jY9 m MO_090Jz6o3(6a5%+bͳ7$eY%'+oOxدqShjzB3 IDf`w*vb<y Nl)W?Hu&Zhf\Ε$%  q͠ȠJ)x2VmKQYaOƠS !76!0N@xÑ !#OP(xۨy|֖R>דZ9Ǡ +B@꠷)`6/CɘVϷcZIPH_u0&31&A[7%v[2'ӂ:R\Xv#uWˣqIoN"@Y҃.T:>ш[u:t*fƢT'1!F[.aҐB^ cPF٘iźYFs=ȷ':UAͿV! BagF40| ?.RZ9G 4dkf5 "/C fQ\{ێ ^)a)u<,+}%^Hvw8[xo+qQX]8b3@+"EO ;<w,!vQ[+EV~{Eq΂|AzL\.)O]JFӬ1Y{2zzh:"}7@tXݦN2V7jߩG:PJOg-2Alp/%L?QqgIu>WS4fYpV4!(d,]1X(,y4][?cWIc liu>0tRֵ5W9mxflEB @Zb㲉]RCm4#MSdǓ[G^ %? Vjc.H2ŨFkvWJa َ .DXCr$徠QiȤNY̫+?l0PG\ CQ|BuA `]_?_2P5IvƊLwϏ la Rg|IMnvoU((1RoaƟ&% r2= z:dfڪrUaho[4waEoSu`:e0~W {V*1 w%u>KMLVk}8?vrEP$~Xj61yU%: yvlH* s{ÃlP nTP5@+, NP$2&ٙ}}4-|@8 6,H4lj%2IVЗdkFk#_XVU58РYmqS/ J'L]O:d1/mf 7fR;4dn>j9T7Hg>^Ўɯ~N(%n7YRS>auw ZVYMP}(0ǹ Z$)V#$lXA1Pӡ-3$c~2gվ:?rKwY*o:y86cʶ}3Ƌ~UW aGL_ &~M@* ?BbooEU:҇aza)JJer] xbJۗO0"۰2IA&r#0WVYц^=;,HQڵVGL$IMީb52N :*|gJ34T0EfQt[8_#')-5d?cxCy`m"6}Ih~?1UujtJCF.( *ǏjāasbRTQ$7%)QU/9 }j?s1v)=jJM+Uc҈ ,kОU!(HQ47R"@xKr0RQyUez Z-Fu|yh͖7~?6ALÇ 2k|W zh r *2TҢ$q)HlƜ%eP=Q\r\sLncП/XgpWGlU8壅{ef!+J3g3B9)Ϧ_SLf;m}qEAi:kc42cW]̰ +Ln"+S-.v t]D%hΨVt3s)ŮrJ؊CcGo"-RPO U!wG $vcQd\[ ffsJO1|r .㳶/P[tf[X;}I M.h}_8΀UW`۰" A܋ʷ+ *>r'=GYFyZEQ˹-罂9 Ys5 ֫Vl`@_f%,ƻ]!շ(mK;Deb@z BL,JpWYRP z`W| BXT\E LK߸\wukCi5 fyHiFp3cr_#%QNjRӻ[W#`RsFrY3 a1Tf{VP~NL X?O%=RxcEQ%0Yg{_;&XJY8O"fpc 6TޝtƂQ+FTM~V (Z]<OXx~+JmadO' 믿GAWR֬w^ |Q?\!v~c;x+2GLQG8 Tn֊J?d#o_x(3Gpm󫛰#DDN:Bz? ~qƳ$KA+9'BR9]Tq\Y⎶(we}P)HА !*Ѡ瑸{VͥB|0* N;I1]_y H͟\ )^ ^R,Bc#绖E(\Փg 2_sw(ot/Z]4!g Kcu>#]b5_WX3E 2D ۻ{ qCyiޔ^(۸|2mm}ǘT#$!o,)dΩTPX~Zyb)FĴUrx:F/&~P͠_%#4'\\"V:R[ iJʈBPK-]ތJOq{ǹ͞S#FP%{[Uy*-_০λ*YKֹ0<#yu@z[ UɈP-jn$˅IJ8fZ~JY Lۣ4)4k;,4=dX N2f.alV kB&G^3xbU NI‚άSRj^kM2$Y;-:7z hHTd7@P;TS>йú03y 9U=F-Ҡk+dVOn endstream endobj 345 0 obj <> endobj 346 0 obj [347 0 R] endobj 347 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 607 0 0 838 0 0 cm /ImagePart_2088 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 423.6 718.95 Tm 99 Tz 3 Tr /OPExtFont3 11 Tf (3.8 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 116.65 676 Tm 112 Tz /OPExtFont3 15.5 Tf (3.8 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 112 Tz 3 Tr 1 0 0 1 116.15 641.7 Tm /OPExtFont2 11.5 Tf (In this chapter, we considered the problem of estimating the current states of ) Tj 1 0 0 1 115.7 618.899 Tm 109 Tz (the model in the perfect model scenario. Based on the Indistinguishable States ) Tj 1 0 0 1 115.9 595.6 Tm 106 Tz (Theory, reviewed in Section 3.2, a new methodology is introduced to address the ) Tj 1 0 0 1 115.7 572.799 Tm 103 Tz (nowcasting problem. Our methodology involves first applying the ISGD algorithm ) Tj 1 0 0 1 115.7 549.75 Tm 106 Tz (to identify a reference trajectory which reflects the set of indistinguishable states ) Tj 1 0 0 1 115.7 526.7 Tm 111 Tz (of the true state. The ISIS method is then introduced to form the ensemble by ) Tj 1 0 0 1 115.7 503.699 Tm 112 Tz (selecting the model trajectories from the set of indistinguishable states of the ) Tj 1 0 0 1 115.7 480.399 Tm 105 Tz (reference trajectory. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 105 Tz 3 Tr 1 0 0 1 132.5 457.6 Tm 106 Tz (The well established 4DVAR method is reviewed and the difference between ) Tj 1 0 0 1 115.45 434.55 Tm (4DVAR method and ISGD method is discussed. Applying both method to Ikeda ) Tj 1 0 0 1 115.7 411.5 Tm 111 Tz (Map and Lorenz96 Model I, we demonstrate that the ISGD method produces ) Tj 1 0 0 1 115.7 388.5 Tm 106 Tz (more consistent results than 4DVAR method. This result comes with no surprise ) Tj 1 0 0 1 115.7 365.199 Tm 110 Tz (due to the fundamental shortcoming of the 4DVAR method, i.e. one faces the ) Tj 1 0 0 1 115.45 342.399 Tm 109 Tz (dilemma of either from the difficulties of locating the global minima with long ) Tj 1 0 0 1 115.7 319.35 Tm 108 Tz (assimilation window or from losing information of model dynamics and obser-) Tj 1 0 0 1 115.45 296.299 Tm 112 Tz (vations by using short window. The widely used sequential method EnKF is ) Tj 1 0 0 1 115.2 273.049 Tm 108 Tz (reviewed and discussed. Comparisons between ISIS method and EnKF method ) Tj 1 0 0 1 114.95 250 Tm 105 Tz (have been made in low dimensional Ikeda map and higher dimensional Lorenz96 ) Tj 1 0 0 1 115.2 226.7 Tm 112 Tz (model. By looking at the ensemble results in the state space, we find that the ) Tj 1 0 0 1 115.2 203.7 Tm 110 Tz (structure of the ensemble obtained by ISIS method is more consistent with the ) Tj 1 0 0 1 115.2 180.399 Tm (model dynamics than that of the ensemble produced by EnKF method. A new ) Tj 1 0 0 1 114.95 157.6 Tm 105 Tz (simple evaluation method, &ball, is introduced to evaluate the nowcasting results ) Tj 1 0 0 1 115.2 134.299 Tm 110 Tz (of both methods. We find that in both Ikeda Map and Lorenz96 model experi- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 110 Tz 3 Tr 1 0 0 1 307.699 52.95 Tm 75 Tz /OPExtFont3 11 Tf (61 ) Tj ET EMC endstream endobj 348 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 349 0 obj <> stream 0 ,,AEEb7 oF$%?'ܧ3ufoylԶUb׃\67@~̌\ H '20Um(@,.PuG2@yk8ZV_IC/?Ū-LfXY蘵o?^(i? C7jՍHC` ?~.f3#lX*!Ȅw2: `T-/–p 8OwP|OrȌb,;(ԻQ NS 0U^RcDf56'Zd{Q |߅<\Q4Cm#"L61R%>8i|gŐ]LGDp`uNZ,RJMTLw}9ClS~o9 1\yiE+F={~5?-1)A@w7^2sKN76vP/< $KDuMID$S"k}D:._ž%̙\ZlsoNY@˿Gȉ)N8`a`ApVp UᴐQMc="ֹ:_#c% a ([weXJ.Q\6$\JnO%Bi6UhVaʩl]M)2 ~ WSNt|w'TeqmM<+=-,&(2=R2HJ@{Ԅ:9Ԑwp ra^sLP$yMo~EOF:yGucQ4~mKOƌ 5'/k{z2_(r'de'$.B aĜ*kz6k?;(⥨G ^)sicWI[p8Iʪ!Y*)Mb|Ӕk!.WLDdRm nw~:ASw?W:;iay_~a,f_|UߐY{j:"PYl^s6iϷȪFڿc"g[ؒZFʼnzٌܻ.߱;0(ުO,mD z Ogx~ AaLw _6qkI^DDLf6JfY1xy#Ò8݂%\*"$Ћ ~T1~DhRnN=w Jb݌T ow $G]YW+VeDՌֻEcs t5 %;KyW*Ų-x~=?i}O,W ׄR2eX u;A@TLW>~B21ٌnQA@Df1 SlKa@'8(\#G*48cpgY!tS.뭚s#b3-+:,.M*LGog(!7MpT'i4f-u;VG_ٌ .KiGJtT:sYMO ׵[.8nSKnzE9ɿui4bOBkAv%j_./dl[Ds^xGLNUrRlThr=Pq@dj`Li;cWRF9d\-/b+2&Ç9 z4cE7nO@ FFn d^9v|RccDcdvls|Y?m=AوU<[`6q26=UI$VyhL-?['7Jד,ؘQaHe._3U]؛ouƱvvuptqgsd2:i=]|)=]w`?JIt(O;(RwIpQRwJz[rښgB C 5g lTр |S!w_jws'Wى}iH;n9럶ؗ9d: 9$kV }AiiLY\БaW6k+jke%N^aOÒњ9\ABpnՈxsSҦ@ t9vmqiJk#u]99)C4w%d|PUEjbNWvDFC;9PK_L-͏kA-NnH;#hx[0k"Q4U49^V^WXV'm 9M)Aӛ\<\w(6&NwB3r~Yw_yBND,T=i`(aM\aM\Vc Fćbpe|V*]>!>ጟ0<`Mq(=ӡo*Wdk_GȟSϸRe(kz_I2H޸8aݪ(ɿ7Ex|=9I>ƊS1h@Q"X!2} 50eag/^owN6ᣔG5t,xgKQUN8>&FD?heԟEz{j/Gy0VOP- KBzlZp>7hѳaMlW{>|mJ֞׌'$#"nYq)b%S0H(RLt&7i&!))~rt=ӎi! 7\NGA GVD&^+8Ӛ4:㛓ˌrbqwb|220g((SR~la&OhJv }Q@&M_`ɣg.2$S03<8bH1eFZYmi"ORU]Y)A 9æ6Kˠci=>HJ!~{ &)gGb d*bHcR|ދ ||bJ3+D?j!ޮfJ<_ ݘ;i74K @ꝧFUQ.qM@O}QR~Yx le@&P 1?u|QR_19u Sd2UG[&GL½ꬻ;Kv* ~5?ϲu a%-Da;"Jd6c~y%MaDaiwL/C+> C#@(KjCCo[uXSdf.wӗ=;8J{ NdɅժzh#2M_oH{K)[f[iETBwI7Ygj|FԷg0SqJ(2wF +5짦̹`֫NeÚVPG䨮qʰ(VL/z09+@t+i,Ǽ+mЕr->Y6>*:p Zw:~+ȡ ;-@!,`yסvm\˜ۣ(cFUuI}H!N?*w&X~#0DX4W3X zO$VNDb93aVÎڶTHZPљҲ a P}IZj7u f{;%9;]5J~{ܬYq3V&@Za0̤9\cq*8lFGŒ?tH*(ϱYȻy+$ nOA*>Lul//MIbJeICf2F`k/E}z.]A[?n4\IVe"ݳIM[|Pi6 j;OoUd0aOW5)ǩmτ!Ys&Lz`;<6nfn0[blВX3/zTq l ,8Z,loͤ֏.؎rN.jix (H\< RzM7iPU8]=4scS~SƯ %[1o(P݀a٥W1uGmǕحYġEʗ,|񐡠c%+[úJz# y#6bhe~Ll<*mD9|MOhhֈXf6ZcarYi8Hw't@1ݗۈbTw^((ɖWǑ8Z oG0'iQ(Ye@f$=_   w'Ã|3߷E?!6i&M2G|J덎a˽QR!w3@-M]&, Ŷx[ ]ّ-͈JmԋNA@3v(v/Q ݏ؍c ]?-D^ٚ* 7A@ N؈T,No{\N3,CEEG&ЪRI̿4%s ozn}$jP*5#-ؖpҧkڱCl6Tu}ēNxe5_]@ۧ0G7jRXt^I S7 x.yWrS)Ƭ/i>0wj%{CY[?CdJ2a( T)s\h#y2x:k*WgXs6N ){ηYۼX:@eg+(|Ct" Wϗ]h!Ӯ"sLhw4Y e{ |߂=>+(:8&,"eׁGčV䈒ʮ9ۻ59=:~DcK.S3Aʁ`^q0t Ya* 2ƏO+\z@oebiNc~LURh\n6w9ȳ٨l ځVۨvΣwwD{T*@ gx/2@NMysB=K ¡$RN$͡x.鯸}i'Ňlsj|m0oIo&@ G*Ϯ@SJu㖒 UD#>#ԯ /$/#  e!PY]$:׊Տ^ٻz<ՈC 5mL`}žCSci@R">^t..8,ǶS,շɜU܈(;%RAȶ}7$Xճ'?(ֱ*/@}}.2;0鴡,Ǩő#Ե\n*>'Sz?ھ:#?:ڸ7&,<7Sf%!3倵˳Ÿ/ W% -. d~K3Qfz{OX+v53 nˤHScYx!G3Pjyw.Jd>jWF3@Šȣ;$P ]Bwޫr&SٗMHCzM _\fԐ,"6 {pzx9U{]- I)_O|$'(S!J+]RyBMu<ˍI'J.M'=@&N_8Iymu sf9d)3yG;;5z&!eô#kV!~jOa{nj4 _띱%Q_Ff7^WG8eᇦST=t]Rէ=?*aJ U@.b nτ(|QaHKefON!be'ePҨp8IE9ta ~*OkAZG`$yM/mYTZML2Ƣ9> endobj 351 0 obj [352 0 R] endobj 352 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 607 0 0 838 0 0 cm /ImagePart_2089 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 423.6 719.7 Tm 99 Tz 3 Tr /OPExtFont3 11 Tf (3.8 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 115.45 676.7 Tm 102 Tz /OPExtFont5 12.5 Tf (ments, our method systematically assigns more probability mass around the true ) Tj 1 0 0 1 115.45 653.7 Tm (state than the EnKF method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 132.25 630.899 Tm 103 Tz (The optimal ensemble, dynamically consistent ensemble \(perfect ensemble\), ) Tj 1 0 0 1 114.95 607.85 Tm 102 Tz (is described. Although the DCEn outperforms the ISIS ensemble, we found the ) Tj 1 0 0 1 115.2 584.549 Tm (ensembles they produce have similar structure as both methods produce the en-) Tj 1 0 0 1 114.95 561.75 Tm (sembles that reflect the dynamical information of the model. In practice, DCEn ) Tj 1 0 0 1 114.95 538.7 Tm (is computationally inapplicable while our IS methods can be applied in both low ) Tj 1 0 0 1 114.95 515.7 Tm 101 Tz (dimensional and high dimensional systems \(53\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 307.699 52.7 Tm 75 Tz /OPExtFont3 11 Tf (62 ) Tj ET EMC endstream endobj 353 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 354 0 obj <> stream 0 ,, jeܰ*VSӄ>]1YI>;ZO+'=Alp0H\2YQ8ҞL7(аMi+Ic* kb_d!6ӲAݤ9hE)n|?nldD(뺿W282]̗_~XH1Lp%ˊl:c"\J'm6G{ ;,͵kD2X H޽@;Qv7l7 (IoPG,DZ.M*`oj[χ0 xQidpMdT:x<m;[_~^ ~gk"kϪKaYHLS*q46EY3MoA+ ƒ(Vs (LlirO P07߿l՝꨽2Y,6mJ1i#`-,EHHr *W)Yl&X+tæTl`[͞x]{Uؚq~gb䖴/o:.ꥁ#6S(<_I b^-Ȼqov)4W,ƴysr5$)HH>EfM]e8|bh$ (@2t$Aߛ.Dһp[-a;/ӮO8'{wBҍh E,xjyATპKZ\-SKu,+KYO_Fv;<"ҮGV:yK *"KZc8ϕ.a8߫46H |e=d+ӱh[rr[AJm8yU[N4-g\wmSw-: p"h'q}MׅAUfvvX|I>io>  fD,zȾq2iO'Kgtπ074MR@f3ڇC'=`x1Φa8P~Gb|f-S2D)x-(>r -ԙǁI.H _(gX/Ǯ,+sQW)-r3DenMJnNm6feH yke(2: Ar7ian5y-_ /O`I4IF+eD"Q>A@)0vfO;s'0.Ifկ#i;eP^vI왛zKq>eXۀeikYQU~ӣ@xF [."<+z:[{:v ''H4|0 #" *7Kᴖ~I; RT)#. fT>GUə8>ni0/H;wЗy2wq{=D ;(MpT dDS&ÍFlfhTIU%:-`lz oFa3YF!G??rS@` c3P:alH;B~@X͓XoXBuSd胷`vUI~Æ ӷہPYs!Ɣ+r\*8rR$a{ӲBO:2ǐryM(8^sEHǚ_:_εjZ),KsF˅E]I'\WU71ܡke'OEwa'6"i >å:󵍓s%8s 33o,.ԩ8P?].+Ԋ\#m7ukV$pjَS.`1J,$R%󵘽Gr ̶hK00K x~ Ylkn)TO0%"?T`+!Os4<!{Z7Y+̀(^d-=fr.jm%$͊W_ V?%\‡D;ČSF:vFKFiX<V1y+!:DU vmk1'#{T&? gEGGScMַń@8>XµK|+(Κ?ɄSY/^*6s 8ZB Eܟ@vuhW5`i>|-vg iM὇3~j+0*BtW"̈P+/7n{bW)r3ԡXݜ3GdTB67 ƛa/L?%#70]eeR lt89n08C%yQ1Evט?QNFɧv7넉1ЕOfц/K5ƹ`. ii8=JDE*"uߝz# ,kuXMGnX? g7@OOЏҵqEܹY ^ᇊᏢT` XO%RgRہ`ص+,TŲq#e_Kg`˃ч̞vYY(yd3Wŕc᱉SV ;~P*lzR wyqY8JS* s*kO8t6zBٕavҖ+3G\%m4PCaC {!z>qJo Ź" ooNס,|4y%{4x u!7ae]y x2\'  :'Ãx#{5 oX -ʑ$lb,W]*F?D<6j`.MKTyB%]m['Ὤ|y9!Ygy`|\ O 6̊۸m-qz,2 tVx +6&Pjl˓X*'<=2Tm՝I3LCT4#(@W *VD} Iw2/k&|FuBY^;1wҴ7/ AjzRP}4bNM+QΡsAġ5:`R{o1"l%sN77ӼVJقJP0snjKB\xC/*N"s`U+P@ SˌA`}} Jha[[rP/o5kc0YhcŇ eI~6abE]4J :9˄Q:{&'hEv0Dc73.f;Ґ`~c5BRhT8½y1N.doh9E@^iCkFq׾9ڬ<rU; h H\n&Zr<;>Dޫe!*> u;5M!Nq?-`EMR_ e"y DT24{7@GrdxހhyVv 0>:#ZgF/߀ [X0]vv˭x$ _Q#?)6[kh|[wPKh3GM((ċ.ʿ%ĝTQk(9hUكŸHɿGӱImG ZG xϻx%?D4x0aK endstream endobj 355 0 obj <> endobj 356 0 obj [357 0 R] endobj 357 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 605 0 0 839 0 0 cm /ImagePart_2090 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 115.2 581.7 Tm 106 Tz 3 Tr /OPExtFont3 22.5 Tf (Chapter 4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 106 Tz 3 Tr 1 0 0 1 114.25 515 Tm 107 Tz (Parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 107 Tz 3 Tr 1 0 0 1 113.75 453.3 Tm 91 Tz /OPExtFont3 11 Tf (In this chapter we consider the problem of parameter estimation of deterministic ) Tj 1 0 0 1 113.75 430.3 Tm 94 Tz (nonlinear models. The future evolution of the nonlinear dynamical models de-) Tj 1 0 0 1 113.75 407.25 Tm 92 Tz (pend strongly on the initial conditions and parameter specifications. As forecast ) Tj 1 0 0 1 113.75 384.199 Tm 89 Tz (errors of nonlinear models will not be Gaussian distributed even if the observation ) Tj 1 0 0 1 113.75 360.899 Tm (errors are drawn from Gaussian distribution, tradition methods like least squares ) Tj 1 0 0 1 114 337.899 Tm 94 Tz (are not optimal. Methods have been developed to address the shortcomings of ) Tj 1 0 0 1 113.5 314.6 Tm 92 Tz (traditional methods, for example estimating model parameters by incorporating ) Tj 1 0 0 1 113.5 291.549 Tm (the global behaviour of the model into the selection criteria \(64\). Two new alter-) Tj 1 0 0 1 113.5 268.5 Tm 88 Tz (native approaches are introduced in this chapter within the perfect model scenario ) Tj 1 0 0 1 114 245.5 Tm 92 Tz (\(PMS\) where the mathematical structure of the model equations are correct and ) Tj 1 0 0 1 113.299 222.2 Tm 91 Tz (the noise model is known, but the true parameter values are unknown. The first ) Tj 1 0 0 1 113.5 198.899 Tm 94 Tz (approach forms the cost function based on probabilistic forecasting, we call it ) Tj 1 0 0 1 113.5 175.899 Tm 92 Tz (Forecast Based Estimates. The second approach focuses on the geometric prop-) Tj 1 0 0 1 113.299 152.85 Tm 91 Tz (erties of trajectories in short term while noting the global behaviour of the model ) Tj 1 0 0 1 113.049 129.549 Tm (in the long term, we call this method Dynamical Coherent Estimates. Dynamical ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 306 53.25 Tm 75 Tz (63 ) Tj ET EMC endstream endobj 358 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 359 0 obj <> stream 0 ,,K77b7 Bwѭ_-=M2&Y ϥl%-z~{[B"GiCKa+}]3;޽7h)# bֿq dyY/guG]07g\$LN%0\CIَ9%II]5+h2[s:[1H_ ̉:VUǼ>-9a4ր=DU|vHCf%50 QMbCT~!؇Ҁ?Os'b$0b' 3"9:%7wLJe)VgwF:.ܚCwن>N.hps*1WCp!b2}LM&m(/g"O;QD˹$dbx~gyk ;HX@fHx++m)2D^TOӬ|,b a-΁d{kGxw(̓Qۦ4wv#)U)(DHuNt6oϲ4:nd3fT7!Mh=kSQ\gxLiwy.ӌO`/MV9C1˩4&Jdw/GųS13'"gSɠpbu)MOh4Ͷ9fӵʁIA̅V7Be.VKkf#:V%; ;w΅lm$,ޡ8‚&j+%U wm>w`CcT.:2>a 3y( aEx {eWĝǝl fbKؕ|p>[( %m?Ez~Xq.r"&7.$paOX7KߢbhWU=Ԧ'C/W|"nF01أm4INKᙀw <6״BnY>f==sERA:_0 =_ RHdED J5/vq^Nwyа,>&د]I]ii>g{oq1.hs mС3邽;Y^XoU)bLQ{o"?hLbRY-RnRCZz8*y, G3wy+.1N@q$?9}S UxS"W(ح) ^7#5I|A9g`(I^x`iD|'ql`9kG"ڌŨ$BӷfZҚ:]tȻS8E6S*lIW?٤{2-% !z.[옻0;nO`˭RXeb4Pބa3H{EHÉ^bT1gЫoVo7w',|`k (JUdAARg{8ߎ 6ZDl?\rr?bG&h%0 G9]ͩڷUC"Z;|i}??֝'|r$LZ@NAsuxeγ{g;mFaXo' O&_5w^}vtg8@'N ;4u05/AVڍkErM g`:Ќf,'C+Y@c:T$]{<"(5E-84uőϔvY9u`1sr!9d6Hg#Lݹ B˖=cלujҊΖTҀ, 2=KyZ&7,6f&&*R.;tuU]ԚΕ&y6Zi hm.sRL^FZpӱH+5&+u9Н>G6.Z@6\cw/r\>.!j XA/?h]/RV(~?fP\vmX]ܳy$쬨; ~YIy#o1; ^CZAxaY^`QCP[iyG| %xۍWD?hoQ*ܖܰW%=Gʑ",b@%)/fazWvo_@jC ]l, JiS NJ @^)[7J=^[ůݯ0}̸FJ&F #jj\|.b|SQF50nJYNjᙏh;Za&)@Z lqf`B r\$m$eP2Sb3n᫣hWʼnz$ZT )a]We*{ԑzW';"FU a'ȃ.40GF!B1__̈L쁙Oj4uUq=epaSjZ`ÄfcA+b2I;'/|ߛ\Cm}E*jpdk7z2VFY@#()D1FS6}uG|K lj> ,U$نʴ&vj&XuϦ̘-<ҐWy+w;jmC{hܸbW\)Z %O7E1)̛[tHc.m9%*9ᦳٻ>һΤS‚i!͟6?3<+mA MլGz*l e<`7Ē5_=-|e= M(/ŞN~nfU\q,;D?>WL։9DJԔ+IV ㆷ毣":gyo귣P4[&0>E߬6̙6*Ҍus_Q_& g"N7wz 66P^NLK^Bhj6!G&ZC!UysLp_׏gLAr`^E3uZ=5~P?cc(DM]Cb;f ɓ֊'*<0-3w9cFX-ŕOs.-| ($nl0t5M+e?>ư'$}1*"6:>7Ђ-ܵi BRmQ6e7$;VW_Q|5f[s屆3~B`;jt7U%G#Wo[zk>tyj-1L|:to$t8MwEkVJ`#q0kI6WuHae ;С]A3 :%&3SL~ރF4_50K9>ն'|"=Q)"in uAhSl@^T[zr EA/&&=.oOiLI5wSPsx!~^t&3`#pi-Ym5I4d`hv6n'1&`oHӉKKMP`/`  5 Ɉ'à YmU" WA}8σk/'B {^G`,Q0h&g>J]^wbka‰?m&I`5~`iVJdPrTIS?V?Ej6ԜZAPGÀ"eb>2nͺ𨈱m\WF=1qT_wRddYEkvb VG 9vpIzot:6w4 8՟9A g޹8՚xNMy0"ǯfBb- $&łVڽw( 7SBˊM;=8eCf{ gp8)q+:m{-8("8D5Pdِݷ _ x 2T  GkBif^VpA*i\lpBq[}-4r.d 垛1osp4bOK+uaVQz[RG7o?$ˋqs<ZسY+zS[D-M혪|_Mm2?<܇pGEl@jM$U0[nsаsU,8LHX7:9)z{s&Ԡ7/ς'w-r1HbڳDXuCRjLLyfPJ@` V Pz0^(&a,N?;moxĚ[|^2wvm/ :0JzHr,,|nHtNS~3yӅ'|.ˢ ѿ,8_hi8NuHBSRN'֪O,a v~5aVm!1j$;% Q緸i|.k^BA@a,6H}bYq]"|SN DD#cv b 4Z=V:hn ~J±Icx(*XǗF?x[]` 1|&?O`f[o'z`vճq,^aE&&K`K#G_7zHT(gc ;FBՋN{{/#p?Y_mSB4WJ〓\*ƎLTb~f9d>pꌉ!)%Ii/Finűm#=^ ,uNfxF%GL`)Ep 9AEë.8.i_jc>ٰ'c9n%ժ"9{Nҝy+?&'ߋ~̰ҙ;B^柴7#jLg'HBZb#޺Fdz,yCDX=01~(jYA5q~ _h/ɬZNUM3]qݏWI{@WMNg_}dLѓ𶈴w KQfH">!'<E]pDȖ.uy ;^:+ NZJ΍/ɡhnəZ fm~$--MX5hM*ֱi"޵6&[r/[xռy%XdY,NX:u!^|;?iN2m23,!N. j?YlE(zng1'AL{;H"$%cCN!emvۿhIc| S^AصQS?(N ablC M1`ʹxz'(c*ȬmsUp-'X!ٍਲ,54L4ܯqp':z3g98te@=ji ]NC6dY5,h2 Dl;m\RZh銨@Ve$ 塟||Ʊmac@ @DZ0>B=73O$֣֞N,X67Ѵ,ԶtRŠTw%/9<"0FI#SQTT,/cbҞU$o-j ߍApv/pdL~=U}nMSUbYKBw1jc|A+% ɘ?rr;gmz^I;qa> endobj 361 0 obj [362 0 R] endobj 362 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 605 0 0 838 0 0 cm /ImagePart_2091 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 289.199 718.95 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (4.1 Technical statement of the problem ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 115.7 675.75 Tm 92 Tz (Coherent Estimates is also applicable to the case that only partial observations ) Tj 1 0 0 1 115.2 652.95 Tm 95 Tz (are available. We will first define the problem of parameter estimation in Sec-) Tj 1 0 0 1 115.2 629.899 Tm 92 Tz (tion 4.1. The traditional Least Squares estimates method is then described and ) Tj 1 0 0 1 115.2 606.899 Tm 90 Tz (discussed in section 4.2. Forecast Based Estimates and Dynamical Coherent Es-) Tj 1 0 0 1 115.2 584.1 Tm (timates are presented in section 4.3 and section 4.4 respectively. Our approaches ) Tj 1 0 0 1 114.95 561.049 Tm (are compared with Least Squares Estimates and the numerical results are shown ) Tj 1 0 0 1 114.95 538 Tm 89 Tz (on several nonlinear models. Fundamental challenges remain in estimating model ) Tj 1 0 0 1 114.95 514.7 Tm 91 Tz (parameters when the system is not a member of the model class. Discussions of ) Tj 1 0 0 1 114.95 491.699 Tm 96 Tz (applying both methods to the case that the model structure is imperfect and ) Tj 1 0 0 1 114.7 468.649 Tm 90 Tz (defining optimal parameter values are presented in section 4.5. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 114.7 416.3 Tm 108 Tz /OPExtFont3 16 Tf (4.1 Technical statement of the problem) Tj 1 0 0 1 449.3 416.3 Tm 44 Tz /OPExtFont3 3 Tf (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 44 Tz 3 Tr 1 0 0 1 114.7 381.75 Tm 90 Tz /OPExtFont3 11 Tf (Suppose the evolution of a system state x) Tj 1 0 0 1 315.85 381.75 Tm 72 Tz (i ) Tj 1 0 0 1 318.25 381.75 Tm 98 Tz /OPExtFont3 10.5 Tf ( E ) Tj 1 0 0 1 333.1 381.75 Tm 93 Tz /OPExtFont3 11 Tf (le is governed by finite dimensional ) Tj 1 0 0 1 114.25 358.699 Tm 90 Tz (discrete deterministic nonlinear dynamics: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 288 314.799 Tm 78 Tz /OPExtFont6 14.5 Tf (= ) Tj 1 0 0 1 295.699 314.799 Tm 1211 Tz (\t) Tj 1 0 0 1 339.6 314.799 Tm 33 Tz (, ) Tj 1 0 0 1 340.8 321.649 Tm 2000 Tz (\t) Tj 1 0 0 1 488.149 316.5 Tm 88 Tz /OPExtFont3 11 Tf (\(4.1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 114 274.25 Tm 93 Tz (where the system's parameters are contained in the vector a ) Tj 1 0 0 1 422.649 274.25 Tm 105 Tz /OPExtFont3 10.5 Tf (E R) Tj 1 0 0 1 442.55 274.25 Tm 37 Tz /OPExtFont2 10.5 Tf (1) Tj 1 0 0 1 446.149 274.25 Tm 43 Tz /OPExtFont3 10.5 Tf (. ) Tj 1 0 0 1 455.75 274.25 Tm 94 Tz /OPExtFont3 11 Tf (In the Per-) Tj 1 0 0 1 114 250.95 Tm 95 Tz (fect Model Scenario \(see section 3.1\), the model state space and system state ) Tj 1 0 0 1 114 227.899 Tm 98 Tz (space are identical. F\(x, a\) of a model is known to match that of the system ) Tj 1 0 0 1 113.75 204.899 Tm 90 Tz (exactly, i.e. ) Tj 1 0 0 1 176.4 204.899 Tm 84 Tz /OPExtFont8 16.5 Tf (F = ) Tj 1 0 0 1 202.099 204.899 Tm 98 Tz /OPExtFont8 13.5 Tf (F. ) Tj 1 0 0 1 220.3 204.649 Tm 93 Tz /OPExtFont3 11 Tf (Suppose the value for the vector of model parameters a is ) Tj 1 0 0 1 114 181.85 Tm 92 Tz (unknown and must be estimated from observations s) Tj 1 0 0 1 379.899 181.6 Tm 72 Tz (i ) Tj 1 0 0 1 382.3 181.6 Tm 95 Tz ( of the state variables ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 95 Tz 3 Tr 1 0 0 1 113.5 158.799 Tm 91 Tz (Assuming additive measurement error m yields observations s) Tj 1 0 0 1 421.449 158.549 Tm 72 Tz (i ) Tj 1 0 0 1 423.85 158.549 Tm 116 Tz ( = x) Tj 1 0 0 1 447.1 158.799 Tm 66 Tz (i ) Tj 1 0 0 1 449.3 158.549 Tm 96 Tz ( + m, where ) Tj 1 0 0 1 113.5 135.299 Tm 99 Tz (m is IID distributed. Without measurement error, l ) Tj 1 0 0 1 389.5 135.049 Tm 85 Tz /OPExtFont8 13.5 Tf (+ ) Tj 1 0 0 1 402.5 135.299 Tm 89 Tz /OPExtFont3 11 Tf (1 sequential measure- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 306.5 52 Tm 79 Tz (64 ) Tj ET EMC endstream endobj 363 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 364 0 obj <> stream 0 ,,jj"^%#)qQ :gA*Hf/rG`'n !9Q/烉/=[Ne>4~uP1e|nh ݃]]! AԶYm0¹{P'D38&s8w&RMKo;?#\Zɶ*MGt넸Sp G"+KkdF_|>"7klTolT&j~x$EvxH+~7bUDiQ#s_Cʃ8&Cȹ9`>xq e %sG( z^ ~.'\}VTUXUB)'3M^%*I B)J'&zc۲Y%vn׹DͱTSZEyȕ֩dTo_lͅIܕi-19)&N(g*Pf4^%>gLpϸ6>lMNݠ~TZ4-EoJ.:ڢϟ|) YύJvIy?\G]V+Ky=9ǭ^Vv#:8}Pz~ N`-QR]ˀAj9_xHq 3X#!dd쌚}/^ (H~76XqY2L .3zyaPgE:6۾Mmp7mB :J2fL5EwMOO؏ ?η)MAL +rqnf(1j;TKX>ƪ2yKp6(LʨYp 'k@Wo6$  3:y"q?'}>4:׆pI)]E#u&1F JYE79O'Lfv-p!;kzڥӪ@MuotrK֘Vz"D)z?QOw$i7cxYRY(b߂Ƈ>Z6rrvwDq`J3 $)`1F,HផÍ|#e+zGLE4D clBӔTv~a}\93{ᶈ`RTYbS x?X4 :-C7)#!A!M: &DNo' @#˟xn bi3Ck(L'|b5 9^hDklYp؝O+l3/(Sݏ~i< B{ iH@4xH8+isz LGl ی>X2z4+#DZϜ!&⦳败-%*῭ۧ,ښą< ;~ u~FTϻE*Y{2菼ye=cP[ghoݤ3]UḾ'imivەd|z A4:l!P-xd腸{?Wt8oW1les)(VUʕhn=B/sDyC5W'h2/7C? r`a"XWt2,t8aT&v1o|r_nKxJ/y˪Z7\-{-'m+{ fy^Iq8h\߃jO:e\5.qWfW⡦VOU'3` ,-xaZ#Ji[̲?Wf[13Vko1qyXKU )46dSx2tm^y(D>۞OVG̛ݍ0YF4PNqؔL92͙{sVLML:29kc.Rȥ{-ela6Xju#b woжmdom U#{V+V"&*g3i0[5M'JURTqaj]vΘZwuW=͝kT57KǗN1.TA/+ <082TDH'ZN!)M=Dȁ,f$z1DpZc~_rkjpP@ʇkT~qs&6 9z|`bEr=;=8[%y/fh|xdtZmK}+ },|c01ȑGv\؈\X\!fa߄JҨ2$!iSMZU?;!Lg<;+ xv.\zQ?SBB<;)NGW+-$*^# )ATYAIEB" ެ?H*ޫߑ^Q6Ԯm+pD!1{/6.w^}Sϩb`;c,~`?KN)KOC" I-|ez: ϛܛ]@ hB4 jۦcRft ,#CP-Gf1^F5%-p)kLuFf-EM4sq8~YGF=%#T"!w=bs$d?L7nh[cTFkgc:ڧl5xZpX?J?ir^)D%Â*t5taTųodDT=Gƥ!"{JFt~ )\$s΃\_b^,"p,S!7J{rF׊%}]iPu.{pJ,veuп])S:H!7nRT5CBdfssz`y YQ0 N9Lq=R&>K!izX䋬|9 'GyH((VyTEZƒ醽Lz1x`3KL(n({)%^i􌻗= & >P;6=&΋n2Y6<4WG"6닂6-Ĭ*0u!8AkcC*K+F&4x69 …ز׊6_#RtK6@{~"TBD=Y%73J"X<;kJ*o Yxkrc:)MQAY0Ԣ鎮 mjz)=2o,h!"4W<8s=Iy"?D.~Fȯ/[Z~TVWHuWisHs=ظQ*@͢{GZ=]GO"<`}њm64^P!Tk yBTI}B=jߑV/&zq6 D+~8\D;$(H)`oIR^ͦMIX 3~!ΈٺSLy$(fouMF8پ#!s_T#_MM<<|$v΂8EfRFxM}SN%c+Z%u}[Ydfa#!b t\$|lROyI-bDdxH#T,,MQ?x /8WVZ7J/ (ƆK6<~X%}Iv/# ȏd5\,W=urY=j-7 V-WXgސŽ>x^)w~ٲszw ۋHo|Շ;k(IR"&Q1]z[?B;)n"MD0Dkut3dq'#F'^?,q:jRqBJ]~Zs4C/Jh)Xdk_/– pzad'fRJGw1YA­_O|MuHO/Ű e?fq=kYs(tJA`|} QJE%EZpK}1lkDOVE,q׳]]s"7805CO w!d,t!VCfzL?˗Mg V>AjdϏ|a76~S(**5T+,x:o|0[ۉ4qSí&CQlSd9Y~$zvle+匦\fft)U  'Ã;țMZnp]q߃(1, :,뽟]c[ Cr,4VǩVI s coFY7aX.Jk({\}֝%r'c>3̚8&z pl=*nZ@z%%bL+K9*W)Z(ݨqQUZ((Y gP6X|o* R|rt@pgH5.KdH+ʟD >c|%}&Qȇ*b&7MH^ci ئv'h(iAH[A"MLiOoڊKs5@Yӭ g 6KC97IYАN?s HF(*H vD̈́Z0wm {šڽkFIF8zu$֚cӓ*s+?z7]d]LX,R8P'\,\8)K>ݽ_ύ5Zs P*A &:wLm:GO yNLe΃Jb&IY @%A(&ehͬIj?#֙& &ϏC~įxu)pӂH"uLe<|GKpUquSZ^􀴴EFIq }H g?%c#-v@~#yLtat^F恷M@WQ2PJ}JBto~y./i$FRcۭ;AO$W:OS A'?Em 8^fFx~>\R-0o݌V+R" w…_hñ=xrZ{Xt{WCJb~6qUQ1#/ŪaSR[F`a%փə0F3P L34 N+ f+mav dE7/2n Yq,6vYzI>Zu9n`~G~ƽ ,+PmccI`!.iHkXY|&UC&SSǵT|){D'z.EQ-F/K :nM&'0;VU9lbb6U& k6Qȱp'L1Rd8&|ZVS2*&=wݛݒ7 ,,> ?Q,4<&BԒj.iܦR#L/3>H/Q`87jg^K9-eY ʔ{_=S3n >wjAC?ff O*F j5xK+qO$΅hqS%h$Pؽri\H il )&xRvQC{`;HT1zϡF2"o(1`yv o%x| 8@Ai5b/qՎNr2EˑΡ6U/M󢸄|W2rH.H=& lvhA*OPXe+~|LbXeAތq}=mgFO{mx?ϰjW&8UVMqK6Lk7ڱ(nQ1 'ؖr1x]V:FE؂Coմ )]9Eol4 aSbfPGJ70Qj LA:E|e%P40 I&h(/4 x\Ĩ. N=UHh^R F iX ໧@ ta&qNI4s|'1 @iS=Ls&tgY;: "w]u]eqRQҒ"m<!D4lW8J] ]@k'q1rǦc5ؔk|fy4Fa*1^V,5JYeG.2]\ޥD>Gs?F\dTmp(0 Za`Ϭ0_?~*̨I3irsnS-9eza04]) d|dkP5%Dgzp=Q38 @LJ 8]#x&_<Ȓ*@r0'zj<1[ endstream endobj 365 0 obj <> endobj 366 0 obj [367 0 R] endobj 367 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 604 0 0 839 0 0 cm /ImagePart_2092 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 354.25 720.2 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (4.2 Least Squares estimates ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 114.95 677 Tm 88 Tz (ments s) Tj 1 0 0 1 153.099 677 Tm 80 Tz (i) Tj 1 0 0 1 157.449 677 Tm 41 Tz (, ) Tj 1 0 0 1 158.9 677 Tm 1182 Tz (\t) Tj 1 0 0 1 200.4 677 Tm 79 Tz (s) Tj 1 0 0 1 205.199 677 Tm 89 Tz (i+) Tj 1 0 0 1 214.8 677 Tm 91 Tz (1 would, in general, be sufficient to identify the true param- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 114.95 653.95 Tm 94 Tz (eter a \(64\). In the presence of observational noise, the true state of the system ) Tj 1 0 0 1 114.7 631.149 Tm 52 Tz (3) Tj 1 0 0 1 117.849 631.149 Tm 48 Tz (-) Tj 1 0 0 1 118.299 631.149 Tm 93 Tz (4 can not be determined precisely even infinite observations are provided and ) Tj 1 0 0 1 114.95 608.1 Tm 91 Tz (the parameter values are known exactly \(48\). As we will see, this also makes the ) Tj 1 0 0 1 114.7 585.1 Tm 90 Tz (problem of parameter estimation much harder. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 131.75 562.049 Tm 92 Tz (In this chapter we focus on addressing the problem of parameter estimation ) Tj 1 0 0 1 114.95 539 Tm 91 Tz (in the perfect model scenario. Our aim is to extract the information from a finite ) Tj 1 0 0 1 114.7 515.95 Tm (series of observations given the exact noise model and the functional form of the ) Tj 1 0 0 1 114.5 492.899 Tm (dynamic model to determine the model parameter values. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 131.5 469.899 Tm 95 Tz (We never identify the true model parameter precisely of course; rather we ) Tj 1 0 0 1 114.25 446.85 Tm 89 Tz (introduce two methods for extracting significant information on parameter values, ) Tj 1 0 0 1 114.5 423.8 Tm 92 Tz (one via evaluating the probabilistic forecast performance that they produce; the ) Tj 1 0 0 1 114.7 400.5 Tm 91 Tz (other via the trajectories they admit. And how to report the parameter estimates ) Tj 1 0 0 1 114.25 377.5 Tm 89 Tz (based on our methods are discussed. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 114.5 324.899 Tm 107 Tz /OPExtFont3 16 Tf (4.2 Least Squares estimates ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 16 Tf 107 Tz 3 Tr 1 0 0 1 114.25 290.6 Tm 92 Tz /OPExtFont3 11 Tf (The famous least squares method \(8; 27; 56\) estimates the parameter by testing ) Tj 1 0 0 1 114 267.299 Tm 89 Tz (the error in the forecast initialised at observations. The one-step least squares\(LS\) ) Tj 1 0 0 1 114.25 244.299 Tm 95 Tz (estimate gives the value of parameter which minimises the least squares cost ) Tj 1 0 0 1 114 221.25 Tm 86 Tz (function. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 305.5 193.399 Tm 105 Tz /OPExtFont4 8 Tf (N -1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 8 Tf 105 Tz 3 Tr 1 0 0 1 256.1 177.299 Tm 120 Tz (CLS) Tj 1 0 0 1 276.25 177.1 Tm 99 Tz /OPExtFont3 11 Tf (\(a\) ) Tj 1 0 0 1 289.199 186 Tm 1176 Tz (\t) Tj 1 0 0 1 330.5 178.75 Tm 101 Tz (rr) Tj 1 0 0 1 340.55 178.75 Tm 72 Tz (i ) Tj 1 0 0 1 342.949 178.75 Tm 71 Tz ( , ) Tj 1 0 0 1 348 184.049 Tm 2000 Tz (\t) Tj 1 0 0 1 487.699 178.75 Tm 88 Tz (\(4.2\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 307.699 165.299 Tm 103 Tz /OPExtFont4 8 Tf (i=1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 8 Tf 103 Tz 3 Tr 1 0 0 1 306.25 53.5 Tm 77 Tz /OPExtFont3 11 Tf (65 ) Tj ET EMC endstream endobj 368 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 369 0 obj <> stream 0 ,,kbbb7! fg(q>ڱ擳-IѤ;虰MQX$YG'6ul"nf+/Pǭ.FH'.4= o}й)ymLrcV*ڽ,{đt0Ȍ0E&f^ nыm ip:݈&p0ZQ"k #ҪwBܯr_sXKb{ WEpdoi$EӃ_*-eFHBg('IZФэ,)WR(ź![ K^s8,=u)pi-|CZklb(.rMpP[GlC K"@ k_s& pτ%!вi{W:籗sm؁~D?iqYđΕ(X-VUoT"vaFcRWa//Ec;7v[yzyYMaO9N(/1CË-75:#CB5d=>+SQd 2̱]B8S)˓U0 o F%RK`Y َ0$#+c"mxҀ8j1NW7fwamܘGs霒ץ?ãQxfV*SNEMtE9`FLj漄X؟3)O ȂLyXT"L,ZTH7Rg; ]?RA -SP4v_ȤteOXřT-qk(ow_OSa Z_g5^ Y0wfHhJ 9:jW*"ҽB^# 7'%Rp;(1\*񽖿7WD2*G$MR%̞ |%Kf-E[('{U".Ϸw?\g1%SO6 B,Dw@CeKW}$WK'*챖;ր/mBӧphQĠ6}=hӯ?68/:5^-Ջ IP8I[L⪠Wae6OHx{Tz)c-yna!PMԄD?C1״Fiȕ3 :g*(P3 Mjwȟ珏YEU$qlBH[">դڰڹ<@NuYaKf>䁅كM%6:Ӭ+.<끶>˖Pm~}sG:t.p3Rz4J\H k톥/yC{/mdgV%YכK8b\y8Cb2^qkrHhfࠣ &qzAf3m]`&P[-=ȘB,lOv)v׫ $$񋙯PW .kzA!6\@;A!-Tw4+k6\wLE XR<"]-&|+;#N ĝx6l=y9QMQD}ORrlmݎQ©i[12FhQm^af1J,Xi5xfٟ\t<}lO$$_ALf M/ tnaNq=I>3ˎ՚;n)ﲰ'Í."a  QaЉ]HVt(fq(^nzt)lOȞ-CF8>;qOH *=V䊳TI UzI:m֖ǩ&2`|07'?-siOwjqBձKDm}AVͻHkEof.l[3 jIu6ZKmsH"UB˴DZ<#p?AVRcn3xu[8֋j]q# h;2R~GNmp,\<2r3,^ y^g 6'#}nY nQ1)H ѥ#߹)XZEިt$uQ.hp5o&ԏd8k˞q.Iq )jĉe/c*rdg$hCjzlDpZ]"uyȭxzfѦpD#7%b9R |^:j^Eg\ t__svrCmXVu>_"~-iނ 2䜩9.Q^K,a|z+> D"ʹaw.[(#B >G=|b| ;򹖜>4pQ̻Q 2)wh q6%{U7/qN ]FD5_j-O* ǓOKƷz x\wŇ$>8ؕlzWbJ7.Τ8܂IFc9:sֻ>RU {s9ywDQs)mⒽݏKv:+]ɖw[DeB᧰IZ(nL#pc& V\MKYAdi}̈ތ[Ƽ`3vh[I(!#mm[9^S Tb~NvEJcdBFi!rٹ/XE͍[e41]fDA7 ZOV'%JȚcf6kIe8D bԴMzѡ!O5e磎[iDzZk|U^ά `?!Fډ;Hԍ"=.ص`ӱ􊙻彦Pv>H9癭6̪5<4VXmO.$R%^.ӆou< 2!<&)<`{Ƿ|>#:+ icM 6`,`&?7)E=F焕@fݕEL%9q?PsJ A"v_\=~F((>/ 7]1“X^mֵ]Nʶ)im|ͩ{ãʞF,GQ!h' "!,FZ:e4 1d'ľSb2؆:Oԉ~\/Uy>9 d)ډ<6QVzD&crF,[ vPX DpUHG)jv4Gޝ#"A&HA9a6< a!ڑqi$}gpBRV7KlNmw74E!f,WoCk  O'ÃQiw/)vvQq, sXB:]P|m%iH0ܠ!5XsVW ry{Ax~O>]ʘĿ$9bZJꙑDpqXqmr,"H hЁiPoe0 ˉEJi9Y L8j~n| yoTMsYʎ|3ڕ_O}>3,-b0rۯ#EcW$0DIV_?ZP@[p2hIaB4 k".rRZDPEݝYdIW-ҵD.C*`8%efdؙf,eSjZZ0)bDڻ}ϿD'x'aƭXey)k鰔&<@WS8;'E:^#Ex}-zYaK"ܫbki8_r{$#KQjY^e̝~Ʃм)ih:,y5o#དྷՁW21(4 楟b-/oiVfWn>k[~"B2eS>Uؒlrtf`#q@ӜNh{aodϣCצ0:㯬Y^Ra,V U=X E3YL&Xoz/?87 '܊0 >ˡ=.է!,V^=XrЎzR-9/x̑[mQ838I~`-~GCu]S%;'U_q/)ᰩ1:?RBI2cI=iHL$Z9bC(y')~|bNt MK  H3VUD"]BcW|%(Q&,^1Sk^  ȓjF77>k:!j-֢&޴)z7<{\m9S}=|lμfMȮՌʝ`K G MioޙƂ%yap^%ǧWYL 9)V숣*?[]0]?OPZ #1O.gjUh:*XA=R%V7^΃Pj+uO<\IF< c9I0 mwmt!CjS+,tnTFBT XnΞ]u0OAi\⮑S_ʜG3Nd|,j+[翖<2JPϒ{2'!7dPZ?Ӓ=Ś ^{̄yBP+5@|R)GY~+5d{-]<_X{UG@^8D Mp0uۄdxLDiR2p(DUBtU] 7,:3N73 Cx'E8P YHtd5s6"ϘUB t3b͈Ŵ:{^7@{2r_P$(9%2P2ssEږx%)%\6Կ;}/*r FdIK fV3P6i(:9/p̉N 4qGJGsM uF3Hw/[ƹ}$ F+o,f*a`P$J*Hj`Wnm^J\F}TZf0^+H~R[ L\4531q=*ƻ핼V|+)FؿJJ`>{ @is"ґ&ۿgGBFmO-T,%:' kW^<=-c]X@.xBV=Ԗk_6Qy|}8coKe†- i<r$=m9% *~d_ JWxWmKgƓ}5<"i$l޸(!KX Jœ,3abaVKQ\}-~+oiN v#܊a9Mx=YEq"jp9pa1Tơ̮TpuM>m&@u]&CR4?V\ endstream endobj 370 0 obj <> endobj 371 0 obj [372 0 R] endobj 372 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 605 0 0 839 0 0 cm /ImagePart_2093 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 354.699 719.5 Tm 102 Tz 3 Tr /OPExtFont3 11 Tf (4.2 Least Squares estimates ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 115.45 676.299 Tm 88 Tz (where ) Tj 1 0 0 1 148.099 676.299 Tm 105 Tz /OPExtFont4 11 Tf (ern = s) Tj 1 0 0 1 186.949 676.299 Tm 99 Tz /OPExtFont8 11 Tf (i+i ) Tj 1 0 0 1 199.199 676.299 Tm 98 Tz /OPExtFont4 11 Tf ( F\(s) Tj 1 0 0 1 233.05 676.299 Tm 85 Tz /OPExtFont8 11 Tf (i) Tj 1 0 0 1 236.65 676.299 Tm 50 Tz /OPExtFont4 11 Tf (, ) Tj 1 0 0 1 241.449 676.5 Tm 93 Tz /OPExtFont3 11 Tf (a\), the one-step prediction error. The LS cost function ) Tj 1 0 0 1 115.7 653.5 Tm 98 Tz (can be derived from Maximum Likelihood Estimate\(MLE\) \(17\). Assume the ) Tj 1 0 0 1 115.7 630.45 Tm 92 Tz (observational noise and the forecast error, i.e. s) Tj 1 0 0 1 353.3 630.7 Tm 83 Tz /OPExtFont5 11 Tf (i+1 ) Tj 1 0 0 1 365.75 630.7 Tm 97 Tz /OPExtFont3 11 Tf ( F\(s) Tj 1 0 0 1 400.1 630.7 Tm 85 Tz /OPExtFont5 11 Tf (i) Tj 1 0 0 1 404.149 630.7 Tm 92 Tz /OPExtFont3 11 Tf (, a\), are IID Gaussian ) Tj 1 0 0 1 115.7 607.649 Tm 90 Tz (distributed with mean 0 and standard deviation ) Tj 1 0 0 1 351.85 607.649 Tm 87 Tz /OPExtFont4 11 Tf (a. ) Tj 1 0 0 1 366.949 607.649 Tm 89 Tz /OPExtFont3 11 Tf (Given the observations s) Tj 1 0 0 1 486 607.649 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 490.55 607.649 Tm 71 Tz /OPExtFont3 11 Tf (, t ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 71 Tz 3 Tr 1 0 0 1 115.9 584.35 Tm 67 Tz (1, ) Tj 1 0 0 1 122.9 584.35 Tm 889 Tz (\t) Tj 1 0 0 1 154.099 584.35 Tm 92 Tz (the likelihood function of parameter a is then given by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 238.8 527.5 Tm 52 Tz (1 ) Tj 1 0 0 1 242.4 527.5 Tm 1216 Tz (\t) Tj 1 0 0 1 285.1 525.799 Tm 75 Tz (, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 75 Tz 3 Tr 1 0 0 1 177.849 517.899 Tm 113 Tz (L\(a\) = ) Tj 1 0 0 1 217.9 517.149 Tm 91 Tz /OPExtFont5 11 Tf (\(27r0) Tj 1 0 0 1 238.099 516.7 Tm 34 Tz /OPExtFont3 11 Tf (_) Tj 1 0 0 1 240.5 516.7 Tm 92 Tz /OPExtFont5 11 Tf (2\)N) Tj 1 0 0 1 256.3 516.2 Tm 51 Tz /OPExtFont3 11 Tf (/) Tj 1 0 0 1 259.899 516.2 Tm 69 Tz /OPExtFont5 11 Tf (2 ) Tj 1 0 0 1 263.5 515.95 Tm 95 Tz /OPExtFont3 11 Tf ( expl) Tj 1 0 0 1 289.449 515.25 Tm 65 Tz ( ) Tj 1 0 0 1 296.649 515.25 Tm 28 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 28 Tz 3 Tr 1 0 0 1 341.05 519.549 Tm 75 Tz (s) Tj 1 0 0 1 346.1 519.549 Tm 95 Tz /OPExtFont5 11 Tf (t+i ) Tj 1 0 0 1 358.55 519.1 Tm 82 Tz /OPExtFont3 11 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 82 Tz 3 Tr 1 0 0 1 488.649 519.299 Tm 87 Tz (\(4.3\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 115.2 476.35 Tm 92 Tz (By minimising the log likelihood function, i.e. ) Tj 1 0 0 1 346.8 476.35 Tm 110 Tz /OPExtFont4 11 Tf (log\(L\(a\)\), ) Tj 1 0 0 1 400.1 476.35 Tm 90 Tz /OPExtFont3 11 Tf (the Least Squares cost ) Tj 1 0 0 1 114.95 453.3 Tm 96 Tz (function is then derived. IVIcsharry and Smith \(64\) proved that even with an ) Tj 1 0 0 1 114.95 430.3 Tm 88 Tz (infinite amount of data the optimal least squares solution is biased when it applied ) Tj 1 0 0 1 114.95 407.25 Tm 97 Tz (to the 1-D Logistic Map. Figure 4.1 plots the least square estimates against ) Tj 1 0 0 1 114.95 383.949 Tm 93 Tz (different noise level ) Tj 1 0 0 1 217.699 383.949 Tm 38 Tz (1 ) Tj 1 0 0 1 220.3 383.949 Tm 98 Tz ( for both Logistic map and Ikeda map. Figure 4.2 plots ) Tj 1 0 0 1 114.95 360.899 Tm 93 Tz (the Least Squares cost function in the parameter space for both Moore-Spiegel ) Tj 1 0 0 1 114.95 337.899 Tm 96 Tz (System and Henon Map experiments, given the noise level fixed. We can see ) Tj 1 0 0 1 114.95 314.6 Tm 91 Tz (from both figures that Least Squares Estimates systematically rejects the correct ) Tj 1 0 0 1 114.95 291.549 Tm (parameter value and from Figure 4.1, the higher the noise level is, the more bias ) Tj 1 0 0 1 114.7 268.5 Tm 96 Tz (in the estimate \(20\). The 911Թmethod fails simply because the assumption of ) Tj 1 0 0 1 114.5 245.25 Tm 93 Tz (Independent Normal Distributed \(IND\) forecast errors does not hold even if the ) Tj 1 0 0 1 114.5 222.45 Tm 91 Tz (noise is IND. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 130.8 203.7 Tm 71 Tz /OPExtFont3 6.5 Tf (1) Tj 1 0 0 1 134.9 203.7 Tm 91 Tz /OPExtFont3 9.5 Tf (The different noise levels in the plots are defined by the ratio between the standard devi-) Tj 1 0 0 1 114.7 192.2 Tm (ation of the observation noise and the standard deviation of the signal ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 91 Tz 3 Tr 1 0 0 1 307.199 52.5 Tm 79 Tz /OPExtFont3 11 Tf (66 ) Tj ET EMC endstream endobj 373 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 374 0 obj <> stream 0 ,,הb72usj>p p=TH]cϜ mJt{[m`:oRDZ8Kd_@Cso55 .,Gzl3Fukl7~v׺ 4Դi_:r:x׾ }CD kvc](&>(1QȵWoiX -ZI:a2h.῱=A*Lز01ts^:sLtcQ28Փ(3h >=9=FXҰ+ȱ"-[ ½;fQ<ާJULeX"#ie9 $0VBn˼ͅEp~nq)z`-x`p!G\:2O)ʙF=x kl[X)׶޵ K)\ثW.! ~Y#rHb`Gb!f"A\w\yH Fx'\ГI";]RvG7xk+V_5':Y/x7XF1gl^Q޿f/L &W;? Ì)_j)nv`bZzgcL`λפxABiSSzޤojQ@/$>Hvd+(y#@|e=nlQ7 Dd՗.ܖ9 bY_S 7 h@kPHoʃPe jTRH4-MΏ!Olrg:C05 5D&nr!^R*f񗡹jߤ2۔A-1v'`պpYBw[,usJ jg?>;ɠ#G{/ұʱ3'6о;Mէ8)A<cN[or _I*b%P]|q2?oeS+áO䊖azʣE ¿x[J29wD d;.eQJpoBw }c,ykL|7wtg4&ȡ9B &W W1LKFߓ^狭!1Ve '!1DUSG7hM=VH0X33 U Mu5%,8G<"n㲮:] O2cy E~Wm < :1AK"˜z"y+@{[ۅH1NnT.=1D]'3)6<~!AU+vVދHv絕f]i%t[,c.='I4 hK῔jUj9a;~qѵDw'S}(itteZU_ dеbWqKXw) r%& * ZҞJ",;~MX]o+֭_|>5xwljb0(9J1>(e ݼ ʑbj|{ 9QeɈK4#Yr!vu7%@<LG$5*+G[i-|bM~"XaErZ=!BIێvĬhJ{G|j8)&.j8j{XB3Y1m3a#vLHX2.H$1vTj!2FcTubbMd_ Aξ'!Ѐqc$oQ[EI?.cHhe[@:ިd %sf'vȾD۝.s8=R(x. 6Ƽ \(=>CWr8zA}!#`Z#TLkG"w{K yKHQKǟv_X P]ٯ XFOBTRye?(2tI+;Cϸf6|)hr]ӽ2ktuմE36W}0~o1y6/(%yƌ{GT?#mMC+vbd4B2 ]-&.챆4a7(r;ρoMǴT֜ӭ~RBR 70(qYȒ,Y8vGTKG1__|;.ĝCc؅/Gy$ArM/3H~[?6 Lb[Fo\:HDYh?'<ೝ.ڙq=yup}?\Y2_\0'bd׋,C#_6\,M-RrUV|ŀzvKSy?>dfBo+]=L9q^="cQ~ X/2V733<}ޗս/zlBʹ1e.G&r"{Oh㓐Ap#4rݓNi.7_!@q[Z[iȭ D"۸/yH8 ÅG5o>EpePhEPO8|H k ^}7kg T;2v:)ϒOTX,w "\)x÷]8h.'}m -" ь YCvT"#^l~'7R$(O%*'> =1oJ Wli巩J~xzuyF*E_Lo&Zh5a- 4mc+;"N׃і% _!+U,X4m&kf5: = T/l0M POn <#oc-)m.K Y611`OB2#;"^~P;O8mm00.& ~߮hq_4GIMʻ.#U' rm̛IR`^S>\|ߖ]3'='mo!G8sR:8v EI!1(:b*1ʵ-"3N>:r_KlUn>B|L(|$ӦCb s*&KVXI`jMuؠ ?B=dDAT@}y6 +GhHm ˇFL-Hi5q1659W#ܫǬloUvåR@WcyԇY/ĠqiLEtL'8 z,5M꼧);ŽʔΪx8 mIՌgؠcvL'RW]"طjAg(w~fXP.GÔyIJ竝OkhǙ2/({H _&ar7@rL΃BylݯAL]2(ҚL#vhE.JE>!#*[,Ml%T&mD:BvL}>#*9A/OOaw91Skq$3$Kr&@zɏ,'ox[- =ĀW-ۨCcWf$HݚOas*!#QpWxp p`liRW ^ga0U"Ds n&:5¶U[// Hu T‡=Il*܏x DE\:1-qF"^ n[_aׁy[\&kZq]=%g '&D=s弦7kQ= [u&ūHPe<߯VJj`N"qIdό zhA:oVUl3]c_{a{@B8QN͝!d•tiۦyĀ$")g7;h,ȔVw O|{O~;pnx@s&X`a#BW9Smtޜ}itDrcv ϔB^0 `&=^<A =v3э*4Q}&Lw97w!:ԑж_seer]X^;*s"维w^N]>N_$EWY鵚\wmV v`NȘiP~!Q`L!>`*Zk91m4IC!tgoz $wR- =8կ=6]{:>SU4\(,PiL0ɥ9 y@LRq42ַz eTA'[1Y5KFt5?#@X.+pVk5ՔT]rf+(^h̛}X9_A8&M R/"hǯ=Px} [5jT LAY[@򴬜?4I6O% ЛIM+-dp ԼOWCa8ۆQ̈́'2q7` 5O|6ش͜s[>yG:n`ȥ?r޶^Z}ڳ{N!%D:_/1ʒ+:B{}VZ\"+ұП#'ŹA 6M6tT M\~M\4Fݵ_@4'ruh {8I`Jq*2 aYk;7c,N=8iM> c Mv}^ ˑ%s!HZ9GkO:@fh_3Μk.$>xs3NBs;LgN6m=V.3$ 66] $=(; +! 3PtTbxo\Msĥ\m1*q3+kȲ 9((rLN=aLvY]vdCT;pDzñRaWh5Y\SHǓ͘Lf(|*QsY)_[fmn6hGh]C&7+6^rc>"ZN£$`fwO>W"R˭J'(UOWOSFN6gKF|kyϪsy02e9~o2fw1{_ngʬ L#gs \ͱw7q^'IBS)nAQA(3soӞ.y>t !ۖR)±4 P{ɡJjDNT&5ysbOU,-!ߺpl E'eE{3 *hy 3[Pg[_2 4kj2@@ &00B3_} *>Gմ(y֠4tٵ-HAR¯8Uy%ڼ< _z4.g? -%ۨ# RWLyFHXTbbȌ࡫IosS .EigW@s ҦP`/xi˕B3?R]5a1S#I{VB#}Tcg)}~ms ̳_Z̃`¹)QExR|"AҶJuыf Lk%>ʻ--Qã,7۸鳦چ𿸿۱R ,[jH tœv(TbUYl4rku^E܋@0ʉh%PV- r)?2U_$em;aFD *ya k$ TfIMr\S&U+d\m1An5!4;CWGFKJ:rTpS/ARÎ{DG>ʦ3iʲkҰƻ<' ;V(HXx#ixM&Zvfk=UC s 9(D5gr>Z~2I!$ EVK-v td IYE-Ĵl>3 / j*|,0qLU$iP9֚`P4N8Fx)yg^ QUɍly\ڌp'';2Y;X&f(K5JY|yΏ>qw0tgX i֏QVN: 2DU  Lj)qyb,:^w@3Sz]x_0դWw$*?Ƹo=4'Q]\={ gr/  vW>`Xè<P.\PYg &(LS/F`[1BA@:NBo ZcK= \=eb/U**fgxhטHUPSSـ[-R+F|-}]t. {dԩIȜ|yrmA,<\PNoh/blR]AWwCS9Xق><=WˮmZ4{pA-*)%Se{J ]nal@L9z\}n~c/*<\y%>slNA DĂ8JUW.;.IÉRmP<۴'8Bs¾ wFv{DiIc@Hr[x j͛KeY5aBc. e}E0"~|>Ɏ2F@vV$|(+ipoI8@L?R»XfGDLVX)+^ D8.6.Jd̄՘lVu r!z3:ݕ i5syc[`ND=j#T/FQ @*Ĕi~2A뺁G4FfVߌM;Wf6?pR,֯ -訉DS~HIy<]BwLBVq=-䚃l썺G?n.xcrKȷ_QmK`5(wOu!G*i?tD;kJ~Tok冐x$Se4Vڳ!I{m6 䰗dtuimzpה(hչa|e5M/t 5NAL0,Wj=B¬"9} \y:9;[X5T6Pjh.bQ&[i1Lá?nܳ]vbm2M,PowiZ .qޖ y Wr/II>s1( #9pVXBb>sI2XZa!F;kZgZc“( ɹfB^|Y4= -FPq0iLVaa!g0a-{3N'zS:G  ̣J4x,Dm:\-%G;jy^i -t_ a"[Czy6j7,Rj/;be Ne$+MCq@P;f{'{<aҢ*fO'PO `wXf~DIJSl*7?"v|-LHDƐ4c9 2'9_QdB yridEaz&_!i۸ց}`Aa}=3 -ͺ fŕo9 Rzj8Qn~}s@;dm#W90hK>ßyQtXױ ڡyS|tɧ1[tf2" 㦌Iu!UFis#+ x ' WWC aIy*S)P 9c*d?"Jko2S$`T5ug4.M_O:k:<"9uN kһ=2D-ߦd3:^H9݁WXw=ls{hα]σ9 uUe2'l\=a#W.qZ]a-(g%.°^}y $@5ՌAV]B_ph4{#9 iˎ 7$c|BfBjQdc΍GkV=BGGW(1N5޸~MgѭUqۃF> oHzHn-SV*˼cDo?K窈#JtW`i/=RCU~e&'kSBcz}l6E mLنIVNSQ~*c`̜UoHѿ Z  Ţp hۡ;DE3}Ъehhy cQ|l'AȏC"aOZ r nUSƠikB#d8~)<^NJ/=80?0MGlr?SF@(2[R'b+OntyvAta$!^tBufnC#5RUZ):ETFcBѤzʃcT\E'+TsJ( ĨmA~q MKπDb\(KRYMz}> endobj 376 0 obj [377 0 R] endobj 377 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 494 0 0 806 0 0 cm /ImagePart_2094 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 63.85 615.899 Tm 162 Tz 3 Tr /OPExtFont12 3.5 Tf (15. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 162 Tz 3 Tr 1 0 0 1 63.35 539.1 Tm 84 Tz /OPExtFont9 4.5 Tf (0. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 84 Tz 3 Tr 1 0 0 1 198.699 535.75 Tm 130 Tz /OPExtFont18 3.5 Tf (09 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 3.5 Tf 130 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 5107 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 5242 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6418 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6504 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6566 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6619 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6682 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6739 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6826 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6883 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6941 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 6998 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7056 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7118 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7162 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7205 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7248 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7291 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7334 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7378 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7435 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7493 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7550 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7618 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7685 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7781 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7848 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7906 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 7978 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 8078 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 8141 3014 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 130 Tz 3 Tr 1 0 0 1 393.1 625.049 Tm 104 Tz /OPExtFont1 4.5 Tf (\(b\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4.5 Tf 104 Tz 3 Tr 1 0 0 1 255.349 615.899 Tm 160 Tz /OPExtFont12 3.5 Tf (07- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 160 Tz 3 Tr 1 0 0 1 273.85 536 Tm 132 Tz (01 ) Tj 1 0 0 1 278.899 536 Tm 960 Tz /OPExtFont2 3.5 Tf (\t) Tj 1 0 0 1 288.5 536 Tm 144 Tz /OPExtFont12 3.5 Tf (02 ) Tj 1 0 0 1 294 536 Tm 889 Tz /OPExtFont2 3.5 Tf (\t) Tj 1 0 0 1 302.899 536 Tm 150 Tz /OPExtFont12 3.5 Tf (03 ) Tj 1 0 0 1 308.649 536 Tm 910 Tz /OPExtFont2 3.5 Tf (\t) Tj 1 0 0 1 317.75 536 Tm 132 Tz /OPExtFont12 3.5 Tf (04 ) Tj 1 0 0 1 322.8 536 Tm 934 Tz /OPExtFont2 3.5 Tf (\t) Tj 1 0 0 1 332.149 536 Tm 150 Tz /OPExtFont12 3.5 Tf (05 ) Tj 1 0 0 1 337.899 536 Tm 890 Tz /OPExtFont2 3.5 Tf (\t) Tj 1 0 0 1 346.8 536 Tm 123 Tz /OPExtFont18 3.5 Tf (06 ) Tj 1 0 0 1 352.3 536 Tm 889 Tz /OPExtFont22 3.5 Tf (\t) Tj 1 0 0 1 361.199 536 Tm 129 Tz /OPExtFont18 3.5 Tf (02 ) Tj 1 0 0 1 366.949 536 Tm 890 Tz /OPExtFont22 3.5 Tf (\t) Tj 1 0 0 1 375.85 536 Tm 123 Tz /OPExtFont18 3.5 Tf (08 ) Tj 1 0 0 1 381.35 536 Tm 889 Tz /OPExtFont22 3.5 Tf (\t) Tj 1 0 0 1 390.25 536 Tm 107 Tz /OPExtFont18 3.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 3.5 Tf 107 Tz 3 Tr 1 0 0 1 321.6 529.5 Tm 110 Tz /OPExtFont18 4 Tf (a) Tj 1 0 0 1 324.699 529.5 Tm 108 Tz /OPExtFont18 3.5 Tf (nous) Tj 1 0 0 1 334.1 529.75 Tm 128 Tz (ia) Tj 1 0 0 1 338.149 529.75 Tm 82 Tz (9ignffil ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 3.5 Tf 82 Tz 3 Tr 1 0 0 1 205.9 696.549 Tm 102 Tz /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 42.5 501.899 Tm 89 Tz (Figure 4.1: Parameter estimation using LS cost functions for different noise level, ) Tj 1 0 0 1 42.5 488 Tm (the black shading reflects the 95% limits and the red solid line is the mean, they ) Tj 1 0 0 1 42.25 474.55 Tm 86 Tz (are calculated from 1000 realizations and each cost function is calculated based on ) Tj 1 0 0 1 42.25 460.649 Tm 90 Tz (the observations with length 100, the blue flat line indicates the true parameter ) Tj 1 0 0 1 42 446.949 Tm 94 Tz (value \(a\) Logistic Map for a = 1.85 \(b\) Ikeda Map for u = 0.83 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 42.5 414.3 Tm 112 Tz /OPExtFont3 15 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15 Tf 112 Tz 3 Tr 1 0 0 1 42.25 380.25 Tm 92 Tz /OPExtFont3 11 Tf (In this section we address the parameter estimation problem by looking at the ) Tj 1 0 0 1 42.25 357.699 Tm (forecast performance of different parameter values. Given the same initial con-) Tj 1 0 0 1 42 334.899 Tm 91 Tz (ditions, the forecast performance varies as different parameter values are used. ) Tj 1 0 0 1 42.25 312.1 Tm 89 Tz (An illustration of the procedure used to obtain the forecast skill score is depicted ) Tj 1 0 0 1 42.25 289.299 Tm 92 Tz (in the schematic flow chart of Figure ) Tj 1 0 0 1 228.25 289.299 Tm /OPExtFont20 12.5 Tf (4.3 ) Tj 1 0 0 1 247.449 289.5 Tm /OPExtFont3 11 Tf (\(Details of each step of the procedure ) Tj 1 0 0 1 42.25 266.7 Tm 90 Tz (are described in the following sections\): An ensemble of initial conditions is first ) Tj 1 0 0 1 42.25 243.899 Tm 91 Tz (formed to account the initial uncertainty. The forecast ensemble at lead time ) Tj 1 0 0 1 422.649 244.149 Tm 113 Tz /OPExtFont6 12 Tf (N ) Tj 1 0 0 1 42 221.1 Tm 91 Tz /OPExtFont3 11 Tf (is obtained by iterating the initial condition ensemble ) Tj 1 0 0 1 309.6 221.35 Tm 113 Tz /OPExtFont6 12 Tf (N ) Tj 1 0 0 1 323.5 221.35 Tm 90 Tz /OPExtFont3 11 Tf (times forward through ) Tj 1 0 0 1 42 198.549 Tm 91 Tz (the model for given parameter values. The ensemble forecast is then interpreted ) Tj 1 0 0 1 42.25 175.75 Tm 93 Tz (as a continuous forecast distribution by standard kernel dressing. In order to ) Tj 1 0 0 1 42 153.2 Tm 92 Tz (evaluate the probabilistic forecast in a more robust way, we blend the forecast ) Tj 1 0 0 1 42.25 130.399 Tm 94 Tz (distribution with the sample climatology, i.e. the historical distribution of the ) Tj 1 0 0 1 42 107.6 Tm 90 Tz (data. In the end we evaluate the forecast distribution via a probabilistic forecast ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 232.3 41.85 Tm 79 Tz (67 ) Tj ET EMC endstream endobj 378 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 379 0 obj <> stream 0 !,, 66kRr,[UES8If23{[Y^ivf1^j{L\ FyB믶$$ kJȔ'Z N2mNe/zb'ܵFv99 2f qCo|Wr7$q?p.nI][W倅+s|~d;]hauţ7CD!q #}:-X)4k8.*MAg,!BD❚s5=Nnu_fY ?Q{r(67J5Ůքs痖ݝoŽ$ZtQB%~9 o3dHRDɺ b,N0s{HuV{ܜ+ɆY^{P=V&z#ŮιNߙԻ頪)C5*pV"l +IF@wiI *z@T^sM lA^CC¦Դ@=4ԯ/ט _ M۞w?>G~1S*@xvQr"H6GZXԤ?&tqHhZVYWD ѺgFdimL\Ṍʋ x~@1g0p lN\ J^YئtsU0-KJH05DLQ5y9[+f nL9IJ6bN}frl/V<`I0'7yb;#إoy%w24^d+O%5C#LZA/M:l>,awX:+g4'IwRuP@ޑR^쌊_O[ dHT8gHgE}g@rwyŸ]E,V&]0&@{r&{I,Zat;7x vOm GhS&@i5(j]߹Z.zJQJnw!Ϛ"ڕ NnU@l/ħ|T^7 Ρ!] N9J>V,wHHly9K82|v#WڮWcނ3 G!4/_b9n&u"Ws"wbjS'ekÛB^8?8oNRMtڅT<N]w!@7,,(/a>;܏$WV!z=[:s.m0rhUy>/L 7,/<׬k! F4zv27M&ytLB+RnV>ӷHI_ X; eߥcd;019cA[̶HAIU7ANzƛnb<1Gyk%? hJT'_LjM=seHd $g5A !Md$]KM-H/^4˭E~x(ѓ`U5gx]J'> C,1 XDYH{}g].keχf?îOG5)_,>X'&'j>%j̻#հ,zФ;lɭ%4MО<{ 3 I09 L6aE"őys:+耴~CyVsh\k\ۅY*Eՠp3M[O0)"_m;N1;Qy3Vmx`b1bA{ Rj ~#(NxG֕5KVh1=I -z7-r^$ ( |XÎ4StdSA,Zx4c^#LisO?^'e+KU]{//VB-Jt8/2V)Iӻ tv6* gLK/XtC|4!u}S ͳʺ8en:^fu56ts/]Sei,Ɇ7H7]M-TuD4^$9oaY;5<+Am0h/2:_K>2R8^>3' q /ʆk+~xܕDuSWm. g22Ylnv`kb̄tsH1R^F{%ip5zPƴN/9EEljAӯhMq(i~@MU%I,LZdn2G4[Mq׃C-H.Xu ~^}iefӢ*7 벆TpiY/0mȵ--Ղ쩷ɔwH1vtEWIXs֬fY5n9T 5yD^L|<, 9Wj&6OKw,.3B5)t l*v+U4my2 ]Þ`U TBƁd4jۧP0ߛ952@}T^ہ'pŁ2'x8NF/.TÎ_}{# ^C m)P kQO|߹sdVZ=2 @s>|~C/Ez a030s ‰tWLlyB g:S  H #$V8]{/Uq1?CCCpSt#K [c\5Կ)vSX5!U0’ ˀ;Eکam_y6>YK.!~\?ilʣ@v Eau P~gvB*wMRtM^\t% zR~ͦv8[Q+$;k5KRm:ycW>%pSR~4{ i';Wؖk7ny wdު#CPL.GjxzQ8m|sŷf9 z,7XHA=[\_dtwoT _%1p+"/3N!D8L^Oym4X3 TQ 1 m698'xVD߻:WX 5Ǣ!P'dvPBs}U .\\|WC` qZcFЮcXmD0,YgXt`#ҖjXnOQ<*hx`$.2}i3,"R^SH5V4̉~naٳU69F<1w S_wxxdd,a1}eHبd$zoy;MH˥sMe4"넙Aph\O8VlۦI`g1"h͆-(wVSnaOʍ̜f=&-8A5Nh *[x&"L 1af*S:ggjU;g.MvSjLOnċ~>GZ%z(ZOO[>Na:jHV룼f񠵎g`yJK6OJ&S|i5~bHݞo6VYAjDWldǮ86"vo 1(E NTZ0=cv|o!=*叨a>'&΀zɟ >]1s=|Mnw ? 0۫p/.ğs찭X:6#F<P7|fweЎ;:/Nˠk.ڧQTɃ(w9x~8?ʙښEKHR1nt ZױBdĽŐ<;{ܺtJWfl9Jǰ6v\߱V95{)nu<& ȐצՖq7~F8xrmȎtQ 1=.L .|,*,ߕB<}-Rɻo.J(} Cٷ0O۴R77U[MSTE@/@~d3BUS ϫ&v%F neARǘ΄Bauh\UJ 06{:w^W.GAҚ kسa!b/,oxn{쥟$+G` Rv:B;D,e\^T%]g[%daK~JW`}թ_[CDŽ#](Pk9-i6䪲6JJRM}IKvq=$۶5?_x$]tU w!PpXq7Y(M+f \b藮Hu̼ۀHL dXuES1ѥm;W["LJXP`/&1ѾA^-x$捁6xWfI`!]` 1{I-.Eh?3fPH/ri&*!2`nNj{E򵸂=^Ǒi Չ`d#P#an.{ ])n1VJvEK#@5jŪRN0$N|4}cJ<ں$YUŭӮ/? &VڌjֺQ-\^3) q/ׂ߮8cvoLV0iX Upj8 ++&X_XDPi\C- r[idetYDsP3r:>ThgVvI.zFrCP1 ;/Ǹn3fQ.<bzӤ9,?tDHx(\hL ;!2ƕ+;BڽSYHrƨٹfVO=(Zb [|\CO5cb*?w)Pt㲧.dHb1KX?ps+qK1ayVVBIp$H n_N0)*y=k?^{{q@BTr2 >r@OPsyp592q{/A}u5 +]b!WƥiAejslyWX ?3yG؞죽@ŔM棳l@ŀ-XUyP.j#dȺfyS `X @#RvXMdg(P rw9a6eCJۻ~!lHϢ{%%ħ-j y j78;rG?NaYX7ĬTI[gwy:Y-[;?c-7chļNn]}ndGwҒmIqnsv*6G ?pu2+4HxR.Qw3Ev4ئƆGV]FtpO 6ft9{ ș|Aޞ?ߵFIG~ DzCgPoB+n(]~'%sj|Ƭ˕ԨYXjK6%(Rk 6gd~H*[;ܣG@$ (f!eH, -Sòąi 6-s&0CEM6ڬEnDrЄ[`F}zʜ/jZ{% ӌXj+$^[ !G/)fDnkCl*2jT`5T:.gE9}#(!8,"60*QK0bO>}Eu܅lPb'6j m!j$J Q}-yuxs@B,!w:@ovQ{ `G@k G+3χүޱc=t P1pR-)?}ӣ $" 3F Ӓ '9#P:kAlJ$Ht.ssgG=g0#;[ 9OfYZYVȢ4Si::PUM nc<*<l)^E8=uʙi*;_)API@.tb=$s- KO 2ػQ /#;#]*vUL1?_5+ BJA*NOѯv oE|.#QF0̥lՠ[Juv{&ϓ 4m Un!޴]r9TEaꐃ;Α\gB 4.Xr8iO1 5yA!ڬ5rQLϚ8ɗ[gc[_#_-uOȲ(~Q8X'iń`PH!҈8&L<+)[j>mY'!~r) &|ې;^W! 3v1PY_u( upr"OPŏ˹cbSN( t.gGJ}dU ஆLli6 '64PѢ KlHhxnr͠2>]k/ҿdc/Hb_iHC˃aC G8v}.1`lbI]t4lL*hAٛ';*r᥼p;b̓b_M6|&IUmċQqEHXQ}E֕DhT 1GH"xI6Ɛ&=%(|g-Xui-fMEЎ3` 2H($Mˡޔ'r+o{YO^vPKc4Cx3mi $IͪA{gZذA0s%b8#TΡ@[-WHA.m7 x"}X|CYP< |FM7=rBcH 0:^q̎#lG(IFɻM%튬$&9z ޿ߦD^t0rxӧjB@OLxT %ZzP /(>qxR;Y~!A9uW:BbУ0O!FcYLsqv!je]gS$\ Utϵb$"gk>T1H6aĶf#U1m>V?h?TH#[QFfq|ErqS[zٟxSipe|>bDΈ;--#HST2.&] Nv%~SR= ~!Odyr΃? .ٌA 2x(9l't OV@5O}P{BT8k?<2nw,.d6RSkHy"%G02dq2 t-(ڻYJ9lh0R}%AaV1\0q>n;n0m-V! .ud8i.%L ti[oOj:Xt ^O# q%EŴ@DyB»F~6dMhj?w.Un?ϬW,GDlhz{p |QC y3Z(=PET+\GLd^ d<^JQ5r! ]4٥D$ &{ĸlo|6G~s3OQrt??hD*ы`3]IVcN\F \TXg|ʩs@n] -}7DmcP^xVBၠEQTrʿ?3 /L'8@RNɎJff0#b_1H~GK&IfxSc=RX-[fR@$0oФ; uKgslo|off9$ 0A;ۗ`,fdyWW֯A| i"5ƈƾ$Pa[P;1b&IkdO&f#3Aomjd[lHԋ6aɴP|ͮثr\dlG)9^yy(A:F)C xXb^p7?($by(xprVю%߿LZt<1$A͢zDM`CA3>s\ ?bGGY!ŒZ5AجvUqZY8rmޯ &>%9  5>V3y0aOżd0&6yP37- Iߒn:pg\L:~_kOYZJēVljܕy#Ho3"UfDeo7kWe?v6?OY҈NKפ~5\?G]m[]ͿXinAd̔sБOKy*T* +S@ {DB;3 rV52 I3Lns Sl2/7y"m07u?#^AD e8lW71NEٓp) Vg?(rP94qv`y;/[$bJ*qIUb*OXx; *3[wY !sOn%*Y@-7go/hu+|ֵm-H=zM  .n=|^by73zbXC9~B򦉫ԭUj}NAk1̢؀˄-Ze XC<}ʭZ,VjNIKstN!R oufSycmTU|>o줵 l|#7AuX=VVsR{5&cMn`'h3Pfs WÐNf"ҒjJDQ!JpJv4餬}$G2^aDkQJ0x48BngU 7 ۞1i㋽9}Isa29sj3>Q2rǽ\)amVf&`K i鿢F0 Bm14K')IXG.F,wOFz6Ňa M!> 9ĶWKX !O> qG\>P!x$\F:N+spr˶\gie l&ɖ]$faԏNg2i2Kuh*}PczUD 'Ư >29W<ᦱ':SV+Fd' 6d;6Hgo?>3D2H KKv:"l[qfIܣTgoanIՈu3 -9S}VIZ 10 iJQ6m.W]5J!3'RoHi:H^@GT SjM!.Q';ː8Wf,+̆ +l gag4bYks"bz@]qgo1|Ã٭{41K/zd/Gk'$Xy@4&-xAcNZ ?VS7kiSNhiC-B0++aQZi"|qA7AZÕA f~y'Ɋq%Ǻ#U-J\2RODfPo81Skht|CAWNl0a]c$0kGM9u~ "JPgZ..ZH)".y:lxq:)K&N{]NCZ~SA~S0Qcde&I- 8 - _*=IˠcR?U $Y=~sJ{ԏ^]WC-c%\ l+%s'P#Fl7=ZfDKmy ŇSGطZȗX6f䘥*0 },Җ:@q\MX]XlK:O1=wqU|aFAYY;2Y닦<IN#&C-[p ̣k`+KvЈn`@"_׮ڕ[f;@~-yŒl|N>%//.1s}tb9n:"^K&v \3N< ۡ^gX ż/ a/2V0&qfh;ڔm"gmdQOx 畽,ikGW"YiYf[6J"a N"4к5kTxn5֥g&%fV{˔rv'y9'@v{[Üh.G@ٰԜW)++y ۲笶nb/?>\bǷnp;QkOF=^X$Fufe{-ϝpI.V 81#.;J ݌Bb+ "_Zr^$ HF8z=4\nQZX e)ޟ(¼zDxͨ_ޙ.[[10Q}dTtIܻ Wu#hZHf|vt p[0:lZf֡r}&A[V/XT(\عESs .Fg 0 \& iy߉%'턓-!N멠L7DNVäg){˳N *렛AhS>流Vң%pmb RVTNbK׉\m)(Eɍ͕ n AsGP>?\YF2nKZ 5 *NM `zٸñ,\iFfj $,)?VT| {c*>l9#_W:|3A}MohNF7֔*/9!0AQ0ȼc݆x Hb&Os.=ǯ*[2ʩ;ȧ5Oq`*[\ +`J/[ F{cq&Y5b+%-=dQ>XK$ B 3ԋr\6yF}_$ r^sםA*P,ً/X tЛbhRN 0|6.+uK U1,;4V $AEFXOW>>@@w#.ΆوԘ1^۰寪ܷɅ4~\ʗj*ǒմM;'n,ӾѴ܉yeBqՄ9'׌L+x`rxl6\wjf٣PcŊ?r%̹p)rҚBbYS3RV1Z8vƕpѭUBI TPͮs^ɹ-;C8+!".# |)r)- ;C d.@˙ rҐqq>g!0U^>Giݤ{,oT߮LJMdվmo=|@ !.%|MyLбfor'9= ; |>)/\^̶)} ׭>n f?؍cJN_Ҿ7>|ޮ8H>FPz?'xN6P-v+gRDRk{] %~q||EP)ɒ@#͓wS  f'a6Cf|$kCo,3m-7.͡&?Ry_s%js&#O )ZWN,q(GqJi\;}+%ʼg[CԪPl"W "ˌ^A LŌyN]hfB2R.]s45n$i 5ۼ _H@ lfy͟OX+HR]Rn#;M[]cz8/u@‡OR^R*[6LRD]I9*GlolvO' M^+6q'U;&k#"p VYMf\p𴕗\K3xLP>ێ KOHDԸ1茓}Jހޤ&$bZn'\[tSZÀ endstream endobj 380 0 obj <> endobj 381 0 obj [382 0 R] endobj 382 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 605 0 0 838 0 0 cm /ImagePart_2095 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 273.6 509.199 Tm 77 Tz 3 Tr /OPExtFont12 7 Tf (104 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 7 Tf 77 Tz 3 Tr 1 0 0 1 337.899 510.899 Tm 86 Tz /OPExtFont5 13 Tf (1.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 396.25 511.1 Tm 83 Tz /OPExtFont2 13 Tf (1.4 ) Tj 1 0 0 1 400.3 499.85 Tm 92 Tz (a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13 Tf 92 Tz 3 Tr 1 0 0 1 455.05 511.1 Tm 76 Tz /OPExtFont3 11 Tf (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 76 Tz 3 Tr 1 0 0 1 129.349 670.5 Tm 82 Tz /OPExtFont12 7 Tf (0.085 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 7 Tf 82 Tz 3 Tr 1 0 0 1 129.099 631.6 Tm 84 Tz (0.084 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 7 Tf 84 Tz 3 Tr 1 0 0 1 122.15 603.75 Tm 77 Tz /OPExtFont12 8.5 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 8.5 Tf 77 Tz 3 Tr 1 0 0 1 121.2 593.2 Tm 85 Tz /OPExtFont12 6 Tf (tn) Tj 1 0 0 1 122.15 592.95 Tm 62 Tz /OPExtFont9 6 Tf (3 ) Tj 1 0 0 1 125.75 592.7 Tm 92 Tz /OPExtFont12 7 Tf ( 0.083 ) Tj 1 0 0 1 121.2 578.799 Tm 70 Tz (cc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 7 Tf 70 Tz 3 Tr 1 0 0 1 128.9 553.85 Tm 84 Tz (0.082 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 7 Tf 84 Tz 3 Tr 1 0 0 1 316.8 600.899 Tm 83 Tz /OPExtFont10 12 Tf (b ) Tj 1 0 0 1 327.35 594.149 Tm 89 Tz /OPExtFont5 13 Tf (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 321.6 521.2 Tm 91 Tz (0.25 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 490.8 650.299 Tm 80 Tz /OPExtFont3 11 Tf (0.18 ) Tj 1 0 0 1 490.8 623.899 Tm (0.17 ) Tj 1 0 0 1 490.55 597.299 Tm (0.16 ) Tj 1 0 0 1 490.55 570.649 Tm 81 Tz (0.15 ) Tj 1 0 0 1 490.8 543.75 Tm 80 Tz (0.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 80 Tz 3 Tr 1 0 0 1 321.85 666.399 Tm (0.35 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 80 Tz 3 Tr 1 0 0 1 282.699 718.7 Tm 103 Tz (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 115.9 472.949 Tm /OPExtFont5 13 Tf (Figure 4.2: LS cost function in the parameter space, \(a\) Moore-Spiegel Flow ) Tj 1 0 0 1 115.7 458.8 Tm 102 Tz (with true parameter value R=100 \(vertical line\), Noise level=0.05; \(b\) Henon ) Tj 1 0 0 1 115.7 444.899 Tm 97 Tz (Map with true parameter values a=1.4 and b=0.3 \(white plus\), Noise level=0.05. ) Tj 1 0 0 1 115.9 430.949 Tm (In each case, LS cost function is calculated based on 2048 observations. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 115.45 397.85 Tm 99 Tz (skill score, Ignorance. Such forecast score is treated as a cost function to obtain ) Tj 1 0 0 1 115.7 374.8 Tm 98 Tz (the estimate of the unknown parameter. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 115.7 330.149 Tm 106 Tz /OPExtFont3 13.5 Tf (4.3.1 Ensemble forecast ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13.5 Tf 106 Tz 3 Tr 1 0 0 1 115.2 299.45 Tm 98 Tz /OPExtFont5 13 Tf (Even with perfect knowledge of the model class of the system and the observa-) Tj 1 0 0 1 115.2 276.149 Tm 100 Tz (tional noise model, it is not possible to disentangle uncertainty in the dynamics ) Tj 1 0 0 1 114.95 253.1 Tm 97 Tz (from uncertainty in a given set of observations. Any parameter values, except the ) Tj 1 0 0 1 115.2 230.1 Tm 98 Tz (true parameter values, being used will introduce extra uncertainty in the dynam-) Tj 1 0 0 1 114.95 207.049 Tm 102 Tz (ics. In order to partially account for those uncertainty in the initial condition, ) Tj 1 0 0 1 114.95 184 Tm 97 Tz (we suggest using ensemble forecast. An ) Tj 1 0 0 1 314.149 183.75 Tm 88 Tz /OPExtFont4 11 Tf (ensemble forecast ) Tj 1 0 0 1 401.75 183.5 Tm 99 Tz /OPExtFont5 13 Tf (is a forecast initialised ) Tj 1 0 0 1 114.7 160.5 Tm 102 Tz (with an ensemble of initial states. Methods, like ISIS, EnKF and Dynamically ) Tj 1 0 0 1 115.2 137.45 Tm 100 Tz (Consistent ensemble \(introduced in Chapter 3\) can be used to form an ensem- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 307.699 52 Tm 75 Tz /OPExtFont3 11 Tf (68 ) Tj ET EMC endstream endobj 383 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 384 0 obj <> stream 0 ,,PIIj*S/GN?֨%`e)Y'(%j@Vf^w a%օwmcǚ5d̫zX HD!c WeeȘ y1ڗPDd~Bi`u3xrY"\0mP pyjs0_@6R+D2Nܲ\dvJ@xL*K$w^V2Bf @Q4CYTI3 3xd>\B.KKPo|e?ieMH]$/0'0-oP `oLnQfzZt 4[ {Dž*8aFܟKz`b@ER9#tD|fi$yMhS6sN}i: VSq&k 9e*O [[ ԷھunN t+Di*=K@3ZfxEBs$/GAX kc@o\X!tQ+K2nCcj\(毜;TJHM <{'0MO17=˥Iե5 v| 1@|Ha|̖lȕ<]yV=A}Lq6n_T%aΫp6IB$ ({0fE v*&em\l?JXxT%m7_=6ZxEj\$s1ތ3=zK7r>Yuܲ6'djVuFݨ)~ʨfc*YC3 ;4~V ߬w2^W&+{X[%78KY| Ҝ;vaMyN~9$`1srߠGw'iVAH,x8QSK[C4@z3ݨҚ#79/u2G凋 Xһ9X%w&ן<#x\hi6jeH.c]F 0wFGrf? )d1ЋN `YN=QY~`o&FUMs=k|S F[c }&}Z) oZ"×Wz{>4DJkX9VG]?rL}flt,̟^7ۡ-|k(HaJj@Vr4?oj z >#o9":NLM!jssngY,b?6>Ւ &DUϜY`=O^);rT\7I,jɒ<"}qIgi\z.s/` _rAܯzKL]jQӛ d p2ƭ!~:I_:EȂah+ {bl,շnK0P~u7KEWY.ME,{BE|K:v@N_68u* QQRT֙tVZ7Vei4 /s(*sŅ<3 x$Cɩ~V:@*.ζ `YȔFݵ%5]2,0WYg9AU{»N@TP/]fS~i0|nqP\fD.وMN=k箘{>s?}'h.٧,6@GM\Zf٫Ϸl_~qPF|*nimBSQq,N:@J:|꫄gw&lq)+ܩ-ehgAUpNгY{\{ v"^[2G PqǟJSUS|4[թkpOHM u5SSˮj2U P$X5 Uk\8k @MǷɖ$Rw sAc^6R%SV_j092E*K%ܼXW+K:']3?_̦#L9, *  >{)]^NWջf arѴjք̴-RjT\|3pPY )Cp4[j:7v!O?P6QC2C_[PI ԛ^mY?"ӍFlX܄~z(K()}SM^3-wZ~gAč$\B{WќVGE3 Q6Oy;[ sƮTC!Q&eR[ FړV0qT׹ks~HXvOwNίNJwbs3MZy 09w+(⩅>N!ew:C"T c=hRΝ4fČ*sڶq+G|.]pߔ7kyˆUbqp>we8hqs͸3Ylje/nIC{4p g+ gClx%= =m#8ͷ[)t%SJN563!m 9r.48Uѭ|x6#dI< L؎ x4̞{>8[/O'ZN.©]N44z߈x\5٨:;}Dw.\|lMGYO= ZkR.D~AD~ (NM-N/:f[ode1,^N꾯&[ L"te8\UC+<~tEJ='-#G.kK elɥFyn'^ԑI+9tkh|E<@TEGUHmAʀwA1G赑^CUcƀi1 ,^T$,BcjljTJ~ Ư DxcJhF2`&0C3OzDضoN֐7ȶUeqV}C˘c6,n9[C\>an?ώA)0+̵h`[(FE `2HIHF1. HsC/zx U/3'lh s'AnU W+YY#(# UvgDO=ۋ?7[ ydB0}/\*#֟ݒ$ A7!$3 &_ƒ;Kɑ _S^ 0 ߙD4dUQJ2O8Ƞ $q ^x[%8Ȯw?=wg]ə"ջN-]'+5 [+Hgt5S*evlUjx%x^A\ {z MOy^o) d[:b^D^l22X bPHuS@<`8q^҂Uu!CìÄr"C`Ұ3Hۮ|?㥧a!mGQ7{y}c;A`Gj"}3+]~6vbDM49$ gf RɲF˓@%) _Ƌܽo#<\h;`')5jiܿn;X4ҋ} @ys;y%[0' I˥͙R(9M)+ #:#A)H_| &6gv;*r86cBL\Ɨ.c@ n +N;2w~:vP|ӱnpRoåZ#~Η.o9ad"28W` 2 y$@3+-mP?Ļno?;)l APaSۇd03DAHtUN,lf~B[`Glx}^!ܥgVn6٧YXSyH3N`بvP䱼2NC?q7 rD\$!r$6[췉hƥЪt+6E,tkr5XR } ߰)Qcdɖ-˥K A조"r(m2`Ƕr n5w\0kטaZ t|XoLP?Ϋ|\t{" rm/ѸLB,ѧ'UxW9Nm9~8a A gƸ!sq!%Z- 4r BӻhH B FX7;υa3)gɗjfGo7B#k.Sֶ0֔dnV#g'V^n @X{kOBy=j.0#j[SYY;mqg`oY-)_ē4l핼)z6ȻYb6+%l y)>?mZ|M!~^W SJ|u9Aҙ6\77-\HzEg]ϑo;iV[EŸ$IƘIz?a% "oX{ՖA[`~fSԣ_!y Qd 5h5x=֌zH:= it=h|NdL@(w]n=X +{7W]LFޝsj)=ʇ=T[KV9Xb=Sa}x.py}IU̘SZ^BTb\]4y6şRr 5%op0 _W`dv;jj !# V;FCh|6οzs#`ו58gtHS3ltWJ'lijvvS&cf2w?Jg_(^WY%i# Yu4'rHŮ~ w*ЏJ,?%+Mk$фc†-d͂ߛoxx9U.}(: wfαϻC PG6R:(KX?'Þc|6oB/ޞmlʀlMXk̢}z;f|xH|vMJ )Xdq#fmw!@:g@?h#%h,1yB܅D(/wJBOi84n:r cxcwUDs Y+Iܲ, VN 0ӂA44NhRs,olmcƫ1jpc۝jW~\>u6lM[0u.Id:ڂXmﶣq] uxa&С5OԏEMSL ,w٤ RPߝrѬFh ܦ5Eba[Pc;kX0.ҞVLϿ̹ G*oqZ'9<%y1g?]G >Rv6ypI{/ep=|2f\W(2_91:crBm JƊ{0FcKf6uRaC¾}{ZE3D'/zcvrȪ*޸o"N#wĠ9VD٦(9!h/3%yQ`&k Oq<,!w/>3Pܬi*5̑!8"i}")5<*䒓kהU>#1դژʃ3+7;[󸦰(0AKdžu#L<,}pr* ?eG')S9&;]ds#*~jm )H§8Isp]UOQ}$u45n*Uew:VO@,ά!0E1=Td␳߳P]U`ϏJS'2SÀxR>IK Eo%ꩶܧ{ 3h43d:O (ȖonSU]+3mL:+1i9Ϙ>f@G(`h+ gnT '=B z-7GxP=9_ pP|%;OրP2zB*RXtԄZP_DpKZ:DPmG: ɷ U]iD>_h9 O.S9jXfdO0+ i0Zcۼ=IUv&saz zYwϸ'yT63JLQ'u~xfĝ ACyjaxJZLB?~{w߀ ^BO8$mrw%X`|<Q?RvU/ ZñA>KZ7AC}R܉k0H9VNgJ ?pN2,FUtj6n UAcR[tP+r ieO(/KY*mYvY,eSӾɜ6VW+L0j0Hŭ7 ~s;9%'CDd#̴mk`#3<ؿiA`lXﵣ{WTH]XzR,)Pp ]&iBޓEIT^j?ΪF5Vt]5#Sxo=a棲kO|M udG&db_{)(tdN])O,Rl B&y(f ^~n`μei}oG}PņZKJFA;dfs4׏,o `0dB,-CU(1V&j<\Wg)/V:߀uܽ.:QQ`=L mi EPc ˛ #TbABU]'…5GHJl%b'XLѯLc 6{fIHX9ȧREfJ YjYqsR5 ymA^lۊ"ǮyeK?:@2ï.,Fsjk^9ZgqĶ$}wxIwSk%|~L2[\ D hwO(+㺟R 2/Rtyyӧ(H,Dß!p:>~FduMZ"1$n l@i9[\eV`'l 昏H_`[7CR-8(=7|-}MmR\OBU R Ϟ@ژQ% Zy-z}/u`QsyX{xbQ_ ]bbڥ2.X`=Ci*8&cC15ow-%.D*]n٦C&*_bz5$h~|,ip'Kץ@4nryfkn$2t= @hL+oa֯>*$&Ui_胵xMU4AKCKNd4[ңjڑ/ EX* 9MgYn.K혊M #~%cH)Jhe01Sfc`C~9Ǽ]"5x^xY 7,Ak/-eK~DŽm39âNlЏb̤n)ֆp@)bp&^0G}ԩg*I2bZMnJCxi׋8gpz/vN%'~+یGz ȡȆOGU؉k;֜;L6Kd:QT v,)9mGi U0k6ꮪ3 vةw ~1ݡ/τu±r2ڱl|'^"̬]:؉1F9$M(^Xy{]v8'}H$ r=NX=b FC0Jd[kLԛ,_$Hɘl}f @gG6JcŎЅٚmG6{+,nc,d&-#?CfB38 N_7}H&,:E=2D#&Vү{E"d Y\-Ίĥ0r{w/$f=,4s$D!dbZH`ށm=Q]jPjo< &,鄓N6tIQ8LHStEjy|.9ƒYɰhVTD) ŽyYjߚ@;_4Nv]UԚV֗,{YOMR)^CmxO;SQV1[ 0yɋ7uyغ ב<K?<*+{Oq8Tĩ;vH W5oQ]>5 Ц0r┑ïc %[†,lspKpN2wat&g nʕ2OY҉-=7tI$),Zl$idP nvP.j0s_Jg+O҈p-[{EuVfK8au㣴cdÈy{<$0~Ёە/.'zTb:AM)`M41pyG5 Ab*2'Ŵ"ӫ5j^b W}%,fyd\F_qF3r߆5mI\[mCzQ'>%SS+QlK8!Wtkgͤ$&NZn]E󟉈oe򖇒NIQ^$/i|ɩ G7H~ِkF Bt&'#_>:Bxe[߼B?>ձYI +tP IsNRY A{bB,i+oV3 ^}xE`AC9̝!ȶNɤ\BA `sTkKNFyZ!wqXxq5wnѥDPQI!*q'#NWP1UHN1Op$%pmB + aWԶƀcaa_o'™K03y:#f2%9rC,֞3  *b7x8uk`h#*GÙi2*3PsپT +̠L%_{7{! 8y3'B-a=8/K.@Ym %kY9?gѐ |rr#uRGw~U= 7- w|oTc*ܙ1W 3im^x(05 Ft~G>9U5L]Ҳޔ XNtlE @\O.FT)O$q ^6]M4KsܶO ͂7Th{3qD#RSg|7B%(\VYBPQ[(>uȕߖ;}^["HeβU=v@I"+>zN&ﶶ͞R;[OF0u&)4ݺ B*rrꤛfuH+[X&hrdPAxŒ ^VvO4"#23@wWq8@J.9y8ڑ6 WZ?VU*j)Qĥta7E֚0 R@ؚzw ͑Z\)37/>3@y;Um1ռ([myHQlVˋ啡o+vϘ(:ըGii}KS.= -ʍ';I 2oEH/|]J2qX"MHKݏp'1?d|5=6\gP}pN5vUGkm?m5,:ITNl|Us}ռ!1ʣPZc]:1!$T{-^+;r.`2@I Lv'Qj+5fi!Gs_)ZJ8@Ǎ*z0Jyf'RLںE;f=W1{Nr}tcAo$#n6 2 7~.$-xڔ$59xx|.z+Gڽ9M3wi9 :iRRh\:ٽ(PIAe?,ҊF2MF#}72ZD00de{<^ +drhb g0Yf`N~كr~?[5rzFDt(>H:՞f/mԿ4s ѓϼV.pD֝ӕ~(J Z>Vi E՚Rqɀ^1Եo>#r\Fテ Պ!NHxfWA5)DPRu-'+]f73Gbn?ox;.3./PZy{Z?, nU]2\Ja*](wХ+`CbóH,1MvMvS\bp~^P 'aU|3 fn"[xgU3P@[B֌QƐ#d 72$\9I57z皫.3U)-_ STŧ`>|g׮떳fF!74l4!$<93Kl/Fg:&M "职&%W_-bE P{K뙉up!(w=+RɰtĶ{s 4Ñ'/Q VJ䡡5|/D8#2GBZb:{'K:u4*Rc!?`kgi!jTԈz-[$d世=7'ˁwDg<7]=KѻeIKI'O mhx 9yqo(hpC8͓f;uz֫D}'e盒y%SZ~91$LcO9,ईèHybG8cO'i`Aq`CԯFm!B_u=t_Twh I\qvw*DxѤk]YTlpE"9In:%pu&N]8̥+W-WrYs8>w7UrhXV]|8sMAۚ4Cdtf|ck9P n0 7WGݩRKп-y,\m ?q2fˮ&{,:K _yDT$ǘ%]sW YB,+coˠ<l,x%xsΚcٗZ$#~EG[x~Np;c$Uf0W:F璗*g5G(`i6}Føgup a>~y]4U p'clcSaADW3gdo`~!j?G?tfKlw.2eĈ|Aa>WiP9B _g~ .<]9  MɛP_4ߓ 1ln>Ȓ)eH. :s5s73iܳ #5SҍL[sjr\-9t\СsG)d 謄/9b WٞwFi(xqydU]L8j:%fpӦ)[.!dBp 5VE[1pIsnN'Q.#ޒf;s)W}?1M5y5Y$ܻ@3>F[X]$Q% D Ɉ.\2A%VxrWZu>=0\s߆ħZjѳ,[>$U]7t-eRmyaKD颿ČGc6|I(p~}(_Nق$-,\0sZY Xz:>G䭅ic\K7SAL*pQe34yJp\dŝ" pP]W>ֽ?fQ\Xq$߷ק[`QRHO ZT~@x$\T5.YŃm ^CDCt X?LGZv'@?:O^t 7Eׂe4(Ic)|uճo>+/TEC :*oDZ@d 2x*3>W >V蒓jϸ}.ʙA6 OUxOG0$.Vۤ K< W]ƣ; @脢FVtN77rϧuF>ܙl#&D=ǣcʜG+Y&3Chp9$Bxm ~lS^Y?RR#, ÎsI?I`ui9(K7U\EϗYW7Һ|T۝2soD 0+D ^u;;u%xٳ-Qiq3'&wcn$(%Mxf<>><6"- !ta=;nQ< F'`OϴhXx:UD y1ғð_qI9tFboYPrQսG~^zҫ6i4{:yOfFV`x-[V^̚[+4s)9^6ro™8&UR16frgAW-޽nPzuMJT<b5}1cI%SKzuֿ_K4epἕAn&WS=aa"E$)͇~42vD'=9!3q2ePOVL鰘=j4==s6V ]&j* *kG BVJlEqUKJINZ rlڛA1@5:@e hÛFcHdM#L6\˞a`#`لdb|[L05d1#C"J\녗Mvfsz(Q_ "zg $CV1ۉNx?bmm KͥHETx 2R_xE8O !Q;K@_H]3I! Zpm8N_!4_qȝo*j."B7*1 lrhL3}[s 4獬,?ܑ9G5.&@7<dūc_QyZ}~ ܈|HfZ# C~yj-zZw;ij&hf%]ہ^3db)pqc+ݕ2CmTO1?3XC=mvHR0}s$yQeNd r!V, QMht&Z, ;`gS!lⳄ>>,l7h稪e)HB>"*HZ̧+Xm[ yuTu>"xW9i)_u+cOդMπOAbOC, B+j#ml?4A@x]S!K[_` KFoێʝv2*>38v04[B:ZC:)(Q,{-zIo_˂K}XV\rgܞ-b'px妚%J/ |i;cqGdK%v\)TrD-骉;'k ^?/w!jfsYdP86Ȟ͖9 HXAxJ잟T7#b(ü67Jչג6Ɔꭓ7˲]쒀,Eكj4hqEz.JdY05W<`]HBS U of f +y~u)+ϐC_Qye]*k(RH}Om_WBdϹn(uѭxuFY6i%Z%+DZ! i0@;u,ggT nNٺvz-9mEY`2 ^4^@Vf:M2I̽y̲"1sFKrOTs ֯`)@FzӅM2s80Y8t3M+&xTQ<9 vDZs5q_?Hi(mkiʢ㏤elT'gJ!oK Cz*UKWI+Qu6fO+b^e@;֍T-r&/69HԀ/x_f{um=j䃳jPPJP>9]ct*kmˑSQCO,YĐC)$ \XLS>`:jƀC@j~~zQs{p$ +'@84Nt7/nKT:QGD0Oe{E1]HAC])fؼ;m. !Aࣕ2;%C$ygR[2"SA*-z0M ʭI?xs)# cj}i`Iwpzzpn0Z B82`cY{(mс9UNV]}|au؉(V.xLTKXhٺYsb >XTkXWJvV_/v`gM 줯 NкnR6ٳigk:t$dѧL[RhJټkӆ~@~?K]F”]u60ӣ1~Q[Ņ.3C)MSz,j)Q'sM=Dz/}!Y@+GPG )ҬK/ }ǰV1beѲWpr' (> jW4f_j!9t׎3Oc]ofߚfCܷ)SO䦳x]R k }Ncys1.6Vr.vŦ4,`5T 5Ƭ<F/$U#֙X7 q`? U TM> endobj 386 0 obj [387 0 R] endobj 387 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 605 0 0 838 0 0 cm /ImagePart_2096 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 282.5 718.7 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 249.599 642.649 Tm 96 Tz /OPExtFont2 17 Tf (An initial condition ) Tj 1 0 0 1 282.699 623.899 Tm 95 Tz (ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 17 Tf 95 Tz 3 Tr 1 0 0 1 296.399 592.95 Tm 86 Tz /OPExtFont20 14 Tf (Mo del ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont20 14 Tf 86 Tz 3 Tr 1 0 0 1 297.1 578.549 Tm 101 Tz (Ffr, ) Tj 1 0 0 1 319.899 578.549 Tm 100 Tz /OPExtFont23 11 Tf (a\) ) Tj 1 0 0 1 346.8 578.549 Tm 740 Tz (\t) Tj 1 0 0 1 374.399 578.549 Tm 26 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont23 11 Tf 26 Tz 3 Tr 1 0 0 1 252.5 545.899 Tm 95 Tz /OPExtFont2 17 Tf (Forecast ensemble ) Tj 1 0 0 1 268.3 527.2 Tm 96 Tz (at lead time N ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 17 Tf 96 Tz 3 Tr 1 0 0 1 294.699 496.949 Tm 99 Tz /OPExtFont20 14 Tf (Kernel ) Tj 1 0 0 1 251.3 482.8 Tm 822 Tz (\t) Tj 1 0 0 1 280.1 482.55 Tm 107 Tz ( dressing ) Tj 1 0 0 1 346.55 482.55 Tm 891 Tz (\t) Tj 1 0 0 1 377.75 482.55 Tm 28 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont20 14 Tf 28 Tz 3 Tr 1 0 0 1 223.199 450.149 Tm 97 Tz /OPExtFont2 17 Tf (Model forecast distribution ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 17 Tf 97 Tz 3 Tr 1 0 0 1 292.1 424.949 Tm 91 Tz /OPExtFont3 11 Tf (Blending ) Tj 1 0 0 1 302.649 412 Tm 92 Tz (with ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 228 369.5 Tm 97 Tz /OPExtFont2 17 Tf (Final forecast distribution ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 17 Tf 97 Tz 3 Tr 1 0 0 1 292.1 343.6 Tm 90 Tz /OPExtFont3 11 Tf (Evaluate ) Tj 1 0 0 1 305.75 330.649 Tm 83 Tz (the ) Tj 1 0 0 1 250.8 317.45 Tm 827 Tz (\t) Tj 1 0 0 1 279.85 317.45 Tm 117 Tz ( forecast ) Tj 1 0 0 1 347.05 317.45 Tm 827 Tz (\t) Tj 1 0 0 1 376.1 317.45 Tm 28 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 28 Tz 3 Tr 1 0 0 1 257.5 287.7 Tm 96 Tz /OPExtFont2 17 Tf (Cost function for ) Tj 1 0 0 1 272.899 268.95 Tm 98 Tz (parameter ) Tj 1 0 0 1 343.899 268.95 Tm 90 Tz /OPExtFont6 17.5 Tf (a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 17.5 Tf 90 Tz 3 Tr 1 0 0 1 114.95 209.2 Tm 96 Tz /OPExtFont3 11 Tf (Figure 4.3: Schematic flowchart of obtaining forecast based cost function for ) Tj 1 0 0 1 114.95 195.299 Tm 91 Tz (parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 114.5 162.149 Tm 93 Tz (ble of initial states. Here we adopt another simple method, called Inverse Noise ) Tj 1 0 0 1 115.2 139.1 Tm 92 Tz (\(Defined in the following paragraph\), to form the initial condition ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 307.199 52.5 Tm 77 Tz (69 ) Tj ET EMC endstream endobj 388 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 389 0 obj <> endobj 390 0 obj <> endobj 391 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (BookmanOldStyle-BoldItalicOPExtFont23) /Ordering (UCS) /Supplement 0 >> def /CMapName /BookmanOldStyle-BoldItalicOPExtFont23 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 12 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2C> <2E> <002C> <30> <3B> <0030> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 392 0 obj <> stream 0 ,,#jb6󸄿6L34 澦c1n.S|aD vG](' *7Zevl60,s6xVԶ:`aS wX=j+HGVl.5k2H8Nܪs=>*MM+Q'kHO,|*4~!$ rT8Sfq*L 3gSb*݅Bro6VFAq ?h%Ρglnځ@X*Mx$aUr361+ 46"C%-0݁F;L;tL͂)nbk՗`Qc]$!Pq$#yuw\I+W:JfWL=?Ѳ-IBIH5rC#9+hˑ>1>00řĭ6╂Ie債zl$X꺘<ý~9‡ ΆVej6(@'?Ҝ,ioti:H(>,z#߸Ԯ %t9!Khju`WI=?:+0[ [N`HgU= ?)2o4 8R1`JK ڡqv]eJmŗaX R]Q|9b!zT^Q9w +a+IHw%^>X( h?fctM)qS41WolcΡ~dJDy_C]YP[3()ܬ-92<e N7bUSw6<"h!Iq}#P 씉t )3Gb@s L^*22iO(eA;O%Ax_kҥXdv5η)oB䭷-WfoAS7SwL,1Ga˪,ө4կᨲ˞<`߰dvMZxp3pOGvMFҰi-r>: ToԨ1c}TWޮ8~j pV"lQ=fB#Gmn Uc9sAQ:&`~wHMNB/a:62HIJUY!e.xpt(U*WCLrnLݲH;FVR'ܰ!EG{HDyvBZ{.P ?VB9!ɱ teq2`-w^YNyt%rYOosBh3YTf8i,'4$mEWE큋qKIJe^)cp.]GF@fw?E74HxM_wmKUB:Q|YJ 9aL92ͰW+ݢFSYF hJw%@;s1._E*1PFEJ .scˡjω2t!pҟ>s1O {g\:d΅Fp9 x\ ~WK{>@->&uׁ(d$X _zWPR6o[k3W!x o`x@#Zm ݝ;{ j9ǘT4f0VlYdVHvϴv4 JS7F]fW*:s)fP;2GοBR( Wx,}m`@DVJ3&n.F!Vsv%0hBjUP՟:Gj2h7Ŷ俷oSZmKㄾptmZft-ْ(|ssLTSaD WƬϓmZb-NKPϠZ.df#~P~iQs5XІ(Fg yF4~si:@ A)Y2u. {4/Q0$ި633%cRt.F+ %6?R=`F#Ջ+4a5 Jr0I1"@1šȬĐgc~w!5~(d]m}Z?E0VXriSTzu.#ScF4Y**Dc1 ȚFdLoHV!00om3 nb㵧A){q7ubZ׾.CLz(_Ί)TKxYϛO '~?]Դ$E*o|gJ)IKV%B<$v'ne#*oo]W|W%^m1'W˕< ]?L0yvl_J}D0 imn(=Lp.!zgLMSn%!:U3\[!5JP% JÀeBpf.R\ؕAsBFz;Ϣ|"c5%phF|Vy#F ߫w!|?k$=O@OICfLXiǣg-z Ew>u%~)w|fvѧ!- u5ڗ)—˵k;g\25Lvyw_t?b,kk/=] TT<{pX`i( ޺mCMO^|BU{J~n8T @\7Yp5ܨoK})$+zS΁z[Lz:>HNzpẮe1g jp5nnO5kp 5Km\䷛g<=*{l*Y|$bC#87NRc*{ gr<[b(&.hqfj [%1UO#dt0O Ov~ٗҰ딫;x 1sg܂* ",vCf+ N۹YYn\{^ɪ!J X&f#ٍ0m^?0wdqn)"F@˕Y!1\EīIG>+dGh?ؽף8spuQ`-& wM:r}ɦ#]dkՋ'SOIx2ۃ_ gzJLU`p/-}lS_L,@G_1xlTu:%2$`PUjgd%QRrs|Vk/U(ܕ+I2()NAJdsQUb&PM`㓥.ә }}Ne 9`("maFX1%3 k=yc2<| ROj %]駺mڠVJΕPP?j!RYf }cm?O,ĂZIPӆ8)L1)Z%G B,BA~*YU4,8Ҋ︡l{--ߘHWTBB:/ӂuOb-DݷkI{JgGXgPvPeNXgMQ5 fo-_aCq#LbjD"u.ƃޥ#p GǙ?&Պf'%'/WJ]Pfva.Mdwhi rhUAtwuQX.VTXRl7 S:pU*b/=^#u'f|֨vPoG!͔Zc*m"$@IzW9Qȿpu&*N>tlco1T E7/w{;?6B.]WcrQsuǠc퐠)%# TNhM)*{g<-gBŘw"Eh3DyG*rpAMR t7!z[i•&൘.h煫Ͻ{v^_jk5^sk`k_rwk'5I}í k<9Bj/=Z\v*lA8[#j[Z)i 6cށ7id)[l XgӒ{ۯ%d8))hWع.eR7!Qit?#[ono= wLZyAUzn^Ɓ #l0?a"(ZCO U7PrGT$olmtDD1 :jY*>g*o rԶUVHUuתBaXL} 3lIe7p%m'1:FkMݧg}u,44\ZAƾX{9$5ǽO;~ 0\Rϼ,Rќ3+ Ow jlK ~H9eKONmR/! g5,!>ܔւѶ>ESUfhILvdX"7Ph@")DCP*IT&gP,qG,/g!S;uK"B ! cY `l!4z-jWRr"Vm^Q#_ &V0R9$0agNHmܼ4)mLH`j<d҄P WSגecϪr^gC]wDL (k/zvEI0 wӝ^M" t6hjOZ7{,^F2ڨ1ܠ!XkWSӺ T7n/R>W}/xa66SVĠ؇$2:>2$6.ラN]"FGΊq|`$?`bGxu>Z˿qÜ*VP|#_?V1VJ_s?pD "b_},%y_~fyܝq2$+$Q:Q:nnv֛!x\ǾSA0IiTgz1%XAQ }?2 zW,HPr5>V}6pd,( "Qlm fZ{M˯ؖ4Y F.fi>">4^T&92 L2W3f MzULΛzU<9b$Mpͭ#UNAڳ](pt 1)qmy|?a'4M@G~3~%ðdv@m3ki!6s-eS D2ޖl?B"qc̝OOGwyrO[@4YՄ_F5P^֚lRw;M樧c Zy9\mY0:RR_ al~D4>$[0%f=ExhRMf_@aHWt:=-3+׊iߑD981$Ҋ rڛ|2M 4H2uZ_tHB&܉fy ޔ^󜹱kN 6$8*( ijl<-&'?4MZ/p`2hxrڂk$0Y֯kcfhN 1EfpP1^H!vΚ [ā4qe¥=1!m"ʟ U4%szJʞ1Yڤ}D >Ev0 \ {lJQE낣q ]e}Ȁ?Ǘa'Bg5.uA|eY]ԓU pcbT|kEa ׁK)#=L69 aLx\Q=Hz4߂Żus}sZxmA Moh,/ZT0^k|ahsљyبБ鴈DoHš}I10}H?$}~R)+EYv A\slc7)řR~d=:}΁\gCe$f/)=syqW<1^'Ej5 0͒J"U8S}=[ R77һ($[ 4O;u&#y:ͧN1@5d #>O_[CN߅f3k{W!MUViǾW67q1\ZXk "IyOOPL\YJSp@#|RY"5+:uTXԕ%f s\?m8dW5JIA ‹\^mMuy!M׮q|7%4m `f4,ҞclR9 &72iҞzp @}}r4|)44kQfEܚJP-42"/GE6Tur?3!|%c{%9pڋCM;V;J;9\oOvCf}af\p_T9J1!GՑX@$Z`Dz{h,7lg5hɤA{b  (Ņ'\m9PIoI=\=.Cv\+"9u֋FU# Q<6TJ|J;z,2 _k$YO+.y*oKuKcz}=nK^][\LL^"hxbKpTϫJاLڏA%n›`}(RbѤ4a qʌjg^] ͞縇?*"ҙ0Zlf.tí'AnAcU_/bzX:JMKZ-fK^W1d|uEъf.4KK$Qʹ} -9x{oOpki[;ݣT^R&ptXVWm}lf6ZԤ.!NvfZ/k m.5fsM$Сb3 w?00vAxK*A<+Q4(G-@9Y " 3?!Xnu^f~dP%nʦ_ te)q5{j b%KE|21l&%SɮٸAVY?H"\6-W1+׫e+(-i?ΚA-ĒB(nsʰ@/:<PXTm4tPKs!Soh],W~Fo8Ƴ`LU6e^mBxS6H ltN@|kOvNE8J=` x[ jQ Ln,1Ʒ/] f L<~YCS5ey`E#TN PۜIy6KK`FOphtifRwIiaY[֚j3Cs1ߌ*)TiLC]Dћv&û-,9#ۜ͠] fU(q]pZޗԓB8XR}8[ZR1֋)8٠؍ MH)zԦ5Ì$1orOO%@w1N>ᯐ;ڥ9.ߴ2<*+`O!>-0J[z ф\x1p]\k&El_FR 3d'RB=3Aq|wu{3_%j)L+S,9v@+BO1swrqxI#~(t;초2pns P'd%"δzC0Xc|q?罵>}vhދU~\?RF_XRRHyevWD&蜇`od!sA oM-L_muq '%:Nc~^SGS_$pyA?e{ܾ,ye+G,, v􂹻:3̷ZK}-9 [Py萕9p ?& endstream endobj 393 0 obj <> endobj 394 0 obj [395 0 R] endobj 395 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 607 0 0 836 0 0 cm /ImagePart_2097 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 285.1 717.899 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 136.3 674.95 Tm 94 Tz (Given a model of the observational noise, one can add random draws from ) Tj 1 0 0 1 118.549 652.149 Tm 89 Tz (the inverse of the observational noise model to the observation to define ensemble ) Tj 1 0 0 1 118.549 629.1 Tm 93 Tz (members. As each ensemble member is an independent draw from the inverse ) Tj 1 0 0 1 118.549 606.1 Tm 89 Tz (observational noise distribution, each ensemble member is equally weighted. This ) Tj 1 0 0 1 118.549 582.799 Tm 93 Tz (Inverse Noise method is an easy way to form the ensemble although the initial ) Tj 1 0 0 1 118.299 560 Tm 91 Tz (states are not guaranteed to ) Tj 1 0 0 1 262.1 560 Tm 38 Tz (1 ) Tj 1 0 0 1 264.699 560 Tm 92 Tz ( be consistent with the long term model dynamics ) Tj 1 0 0 1 118.099 537.2 Tm 96 Tz (i.e. the ensemble members are not on the attracting manifold of the model \(if ) Tj 1 0 0 1 118.099 513.899 Tm 92 Tz (there is one\). For purposes of illustration and simplicity, most results shown in ) Tj 1 0 0 1 118.099 490.899 Tm (section 4.3.4 are obtained by using Inverse Noise instead of other sophisticated ) Tj 1 0 0 1 118.099 467.85 Tm 91 Tz (state estimation methods \(Discussed in chapter 3\) to form the ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 117.849 423.199 Tm 110 Tz /OPExtFont3 13 Tf (4.3.2 Ensemble interpretation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 110 Tz 3 Tr 1 0 0 1 117.849 392.699 Tm 93 Tz /OPExtFont3 11 Tf (Ensemble members are often transformed into a distribution function which is ) Tj 1 0 0 1 117.599 369.449 Tm 92 Tz (easier to express the information contains in the ensemble members and it can ) Tj 1 0 0 1 117.599 346.149 Tm 94 Tz (be evaluated by forecast skill scores. Continuous forecast distributions can be ) Tj 1 0 0 1 117.599 323.1 Tm 95 Tz (produced from an ensemble by kernel dressing the ensemble forecast. In this ) Tj 1 0 0 1 117.349 300.1 Tm (section we give a brief introduction to standard kernel dressing which will be ) Tj 1 0 0 1 117.599 277.049 Tm 96 Tz (used to explain the problem in this section \(see \(13; 75\) for more details\). We ) Tj 1 0 0 1 117.349 254 Tm 88 Tz (define an ) Tj 1 0 0 1 165.599 253.75 Tm 131 Tz /OPExtFont6 8.5 Tf (Nens ) Tj 1 0 0 1 192.25 254 Tm 93 Tz /OPExtFont3 11 Tf (member ensemble at time t to be X) Tj 1 0 0 1 367.899 254 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 370.55 253.75 Tm 265 Tz /OPExtFont3 11 Tf ( ..., ) Tj 1 0 0 1 420.25 253.75 Tm 110 Tz /OPExtFont6 20.5 Tf (xr] ) Tj 1 0 0 1 453.1 254 Tm 92 Tz /OPExtFont3 11 Tf (and treat all ) Tj 1 0 0 1 117.349 230.7 Tm 90 Tz (ensemble members as exchangeable. In other words, the ensemble interpretation ) Tj 1 0 0 1 117.099 207.45 Tm 92 Tz (methods do not depend on the ordering of the ensemble members \(13\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 134.15 184.649 Tm (A standard kernel dressing approach is to transform the ensemble members ) Tj 1 0 0 1 117.099 161.6 Tm (into a probability density function: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 133.449 140.7 Tm 90 Tz /OPExtFont3 9.5 Tf ('guaranteed not to, in the case of dispersive dynamics. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 90 Tz 3 Tr 1 0 0 1 309.6 51.2 Tm 79 Tz /OPExtFont3 11 Tf (70 ) Tj ET EMC endstream endobj 396 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 397 0 obj <> stream 0 ,,b2~%$NVp|٤ ̮x>yr&aD@SBwܙtZrلND/Vت]*JoqT@!I]>Mp-RBf:irA ͷ==p/H*!$]ԅ ?5ς8ϐk:I''/ 1uY>R;~(֧`aO Y,05T^)=,XeAqD٨kn`{lRADBdqstV(+v%`?SA)Έ۔Ux00-CԐ_=eGK=x Bdmb={E8cIX@~ARvQ.`ЮPB1oHZS݄5KRԊu'd_ ah!Ekl~$U} Z y;,sdq9I3aWԌj, g%/j޵BZ1i96!K-Xg%KȻ?vt|z\':DhK;UÈj8鏘!&XH[I4G-٣@}gb"&A' h7D\W?&M{$ΤMPIM >z쌼UZ5r %f8q oKCEzZm%鐥H'42 KSYD#ej\P%=cK#K7S OY]+caz^`j9@,Oxr a͎>a3E:}ECkLeo֏k-tٞ}Lcd q-oV#u7FhYz~e.ʳ6d,iz4Y$؅THk0WZ-7Sg"qkrV11j7y6^[5\D&2cԚnI8at W_rlxُMUqXjW ӄ&I^;]W!ݴL_Vեؿ|R0Z;/AUX񍄎 ֣ATC!Ĥy2}p]*KF7in,#_2? nn!FQ WwU(Er(kbWo+j裡X|Ow2Sh>V|4-[ MQ@(|%5lxD`f5d1~B"]qȼ jŧgapZ`Lq R rɏKӘKS<(( Hv.#s46]t4Om]z b_J|^+Ciݹ>!dŘUFɉVd-À+臘;Hu|@"J2Ì\vvٌj'?{)S.25ނG݋gcQE(#Wztd utqz L`d&Ե}.ղ6EJ0xT7gV9*#M!n"Hue W(mw8i28&Anmtt^BG%NMh wyDx5NA_:Lh ׹`W, 7^/=vqD̾G:(HwsOrBY:"̕n4 ђ^k~7SEnJw[)3hG(C)Pk:d\C,,xB]}T8F>zeh_bVvfg$Ix.'[~- F-w2]FtϵE]n#ulF!}bE4{IқU%"Vpyy9\=ӈ}Nm*6ܶ$Ɔ0<k~W^Y^>pyjVmvkԇxCjKqM\,ZB WRVgIK>\A[w-n|@N.9֭2dSj|`7G+XXR5 |V n],}e_fvdz])лq[{)Kl hl){j%UV3酚?"`fGnw\z8['4E`3g#]QahQ2W-HPҺ4+ML]#~Yu$Qwy׈KbKDba#,v'k]yv9 ̷G}9rvZW;aSyP|5'|_+*;NVdmBZm:E6̆0X\ nˎ&bݕ]FCԙZUMmjN~^tp!O ܔI) Wa]su*poJl}ܔ- 3 jopIkol5[˪e$\eyN{u@mESKk3BJ"'%~h>QQMA.lBddeo Tt8l^祊 a~s?0F77z*4X`9<)2*݋Q NzP5!BG<{&̈zի("‘~b%(fK&M8367`ggjǸN)w/x\u]pCgy1*TWˆ=^%*( (,ݳfx)$,vN_,3HinQv$]㙊~_p=0OX 3.{yn]9 7i=B]0hfj8eD9<۲7c%]i@jA̅XY&CԦ1b1+l X`+Dh-q^5pBN7 /8Icay`<uӶ20畛+JBp)iٔjR&a c`fQnT!"c.*Ј߷)?EC*+?Zk)Et#AoSE1d)BoT( H+` 8m `uc^^ 2eYhVFs؍oOitpo>/݁NmXx~&V}^`g%B6ّ8pgDW%"뵄-F'VQmދvUѓ6~I+iea3N1Z~t+! 7je$[S1{7~AŴ`(/MR_UQ'f\{>ayے1jdAAGK,S!;JJͭe,d 8PcX%x?E:w0s5-K]l|2'Cfwg5* 7u 2c'-o;3={j/50IM\J;J]Cf9g^Wo_*oua✌GCbv5E%}Q4 ճOI.G\Qhp.J,TAҾo;]@Zb0Q#>#ÚYqzS8p=;9#>~koAy Яfl?z1'ʍ p mxK`^{Sp䉅CAjFRAÏxjZRRA?'Q$a>΍+B(wΛuo2qse–2iM3!+_sshkB@u9LA)1 Q&GN, ah;iWV\ia#UW)0:"yQnvś[:=z'z k]7J^p sDZ38VTxA2fd%(C2w;ghs[o7l[N<-f֤4sɍ;4d'j]L+S"KŗPHׄ.L#}vOIpEh @ [)E3Ϝ^E4Qn`PꝗU1O86Wf)YzaP5E!+t}}fۃ2,`g^WtQ|ѣ.tt]-H| oe/3KB~#;z>)|is~ apW˃vĥ?WtPS/%jf2ͽl*k;Zc,{HMLY"C"7C;˂FY- ORo>ԓY)JAp Oѐ&WV6/^Xͩ* l; qSCDbb ͆ EX&dd$ # vTV$ۂKsdid]`4zXK!Y eM.A(^t3pBꔟ`Bi.љ@MM Dq [ ~ݛa/E6 1FU&^x}O=E D[723+~ή ,0|r؂9rW* qe<]{ )(,7J~c0wRk76h.5Yh4DskRDcj'~ς ' 7&:%SQ(00TZ3]pe;b@d;,k 4wbG OGi eKH%勏IbۻN64zX4f;F=@-EM7>-5(EאD zod!(Q3 ,9Xfiu`aM0FvCVnE<8yI*K//'ءJ9eFƻTyb]<.)Y"N@etԙH.`DjYeB 7A>83hƸ=z2C'g(Z[$NA7 @dT36R$>caެ%p8R*o# :8$rCVGOWH_.AG SUtIUQ W67.{R7W>מr\f~>ځ2vA`p*r]#{)\>1gk]1;OE [|:WwL\ww?pT=4c "tJWJ %n4AI6Q0EY*A}_09WK-?>Ŋ{yww/fh: < yL1`62;8bS w@GVA D Г*aNKBe 8_[~U1պiR jׄվ[?`DOiGmBFa+oR H\y4HY"ؐ*O9mAڮ>2;TJ`Z)aQ7ÕPݹD_^\q'e, sB r-oL5jȯ\=çm=-sek4-Ia&ݣﬔKmHa7#ʧ>dpq,9"cɼ7nư#6fX4vyS'[3/X8 jm5"CE~Dw!U ÒVZ:"_:N;/a>02znO|L'q[nre ?;(K+}~n!ΠZ' ܊2Tx拻'n Ӧ9ĂHk)IemF0yټ8hfYmOs(:I&oՎsĜ'P2K"{ν"~Jؑd#1z.7N.IgXYBC @Ë1KA}6}".. tZu~ ri*GEIaPx ^GO4W8^=A'^m]yΤ(:y@WgW/gI],/ver`u)aO,*XPaj^EM5E7PŶ;۔oNr+3$_06ѧuXᡳYZ!KUE2xDedH#}Y, P&JUډ\=xiwR]] {OD(vبLA\j.)(vuĀZURٟmj j=?ӳqm X\40='X%"x4|qK;\g)C4ƔF5XHY϶]PxQR1?t< $%[eDGUⳘqi%vl(/y1w tI, _L/u 8~b =I髶5V}gQ4`e]bZlv!rMܷL=@չbChJ9zH$P ``un+glkV $#wߴ bhͣL61-)zye (m}9$asxkx u2 ~o41|k(q=Cݖ8"$gǮQہS_4h[VeTS"Kl dv?-ڳ#|ދ8zDm q^ ]ib}RJz5Wt;(ع`f$R2솧u{vMYn gתTґA]fzկ2wڅԔ`;4aunx?4I9le9kՖZ>I 4qHmDK#q# [5w;084 tƿN(ь{=Q3_Au'^Is]s#6/9ѩF4 1qN.l5~h ֧S[wRͻ`؎`Og)nwY6iTכ>ײӭʰڎu°lj60"ĉ<.;|{ %DMC$*k?:S肥&kS=񂙼NeC-BqL{(· tfn+;w<8%UӭrU̬A>OpD(?uO -"S n{Z*m>‹p~Eض\ *ԛ.TG 7v%zK ~?uKW%0 `*[P4$Ch1h*J+՛W}{M'NLG 0_f|PUo/vzS)m^?&NS>7j\94%ٳdZ)aS\[hms;OUj[3rq3\1i$:/,i endstream endobj 398 0 obj <> endobj 399 0 obj [400 0 R] endobj 400 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 606 0 0 836 0 0 cm /ImagePart_2098 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 284.149 718.149 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 490.55 633.2 Tm 89 Tz (\(4.4\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 117.599 591.2 Tm 88 Tz (where ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 295.699 557.35 Tm 69 Tz /OPExtFont6 11 Tf (1 ) Tj 1 0 0 1 299.5 557.35 Tm 1368 Tz /OPExtFont6 12.5 Tf (\t) Tj 1 0 0 1 342.25 556.649 Tm 64 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12.5 Tf 64 Tz 3 Tr 1 0 0 1 245.75 546.299 Tm 111 Tz (K\(\(\) = ) Tj 1 0 0 1 296.649 541.049 Tm 66 Tz (TIT) Tj 1 0 0 1 310.1 546.549 Tm 90 Tz (exP\() Tj 1 0 0 1 332.399 546.549 Tm 174 Tz /OPExtFont4 12.5 Tf (-) Tj 1 0 0 1 341.3 546.549 Tm 96 Tz /OPExtFont6 12.5 Tf (2) Tj 1 0 0 1 348.5 546.799 Tm 55 Tz /OPExtFont3 11 Tf (5) Tj 1 0 0 1 354.25 546.549 Tm 52 Tz (2) Tj 1 0 0 1 359.05 546.549 Tm 91 Tz (\), ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 490.8 548.95 Tm 88 Tz (\(4.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 117.349 506.949 Tm 90 Tz (where y is a random variable corresponding to the density function ) Tj 1 0 0 1 448.8 506.949 Tm 92 Tz /OPExtFont6 12.5 Tf (p ) Tj 1 0 0 1 458.399 506.949 Tm 84 Tz /OPExtFont3 11 Tf (and ) Tj 1 0 0 1 480 506.949 Tm 119 Tz /OPExtFont6 12.5 Tf (KO ) Tj 1 0 0 1 505.449 506.699 Tm 79 Tz /OPExtFont3 11 Tf (is ) Tj 1 0 0 1 117.349 483.899 Tm 87 Tz (the kernel density function, for standard kernel dressing we use standard Gaussian ) Tj 1 0 0 1 117.099 460.899 Tm 91 Tz (density to be the kernel density function. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 134.4 437.85 Tm 89 Tz (In this case a standard kernel dressed ensemble is a sum of Gaussian kernels. ) Tj 1 0 0 1 117.349 415.05 Tm 95 Tz (Each ensemble member is replaced by a Gaussian kernel centred at x) Tj 1 0 0 1 477.35 414.8 Tm 65 Tz (i) Tj 1 0 0 1 481.199 414.8 Tm 117 Tz (. The ) Tj 1 0 0 1 117.099 392 Tm 92 Tz (width of each kernel, called the ) Tj 1 0 0 1 277.199 391.75 Tm 94 Tz /OPExtFont6 12.5 Tf (kernel width, ) Tj 1 0 0 1 343.699 391.75 Tm 93 Tz /OPExtFont3 11 Tf (is given by the standard deviation ) Tj 1 0 0 1 117.099 368.5 Tm (of the Gaussian kernel. The kernel width as one of the parameters of ensemble ) Tj 1 0 0 1 116.9 345.449 Tm 94 Tz (interpretation can be determined by optimising the expected performance, for ) Tj 1 0 0 1 117.099 322.399 Tm 92 Tz (example the ignorance score introduced in the next section, based on a training ) Tj 1 0 0 1 116.65 299.35 Tm 90 Tz (set of ensemble and its verification pairs. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 133.449 276.299 Tm 94 Tz (We are aware that the variance of the standard kernel dressed ensemble is ) Tj 1 0 0 1 117.099 253.299 Tm 93 Tz (always larger than the variance of the raw ensemble, no matter how the kernel ) Tj 1 0 0 1 116.65 229.75 Tm 94 Tz (width is actually determined \(93\). When the ensemble is over dispersive, or in ) Tj 1 0 0 1 116.9 206.5 Tm 91 Tz (other words, the ensemble members are further away from each other than from ) Tj 1 0 0 1 116.4 183.7 Tm 89 Tz (the verification, the standard kernel dressing may even under-performs the Gaus-) Tj 1 0 0 1 116.4 160.649 Tm 92 Tz (sian fit \(93\). In practice, ensembles tend to be under dispersive. Many advanced ) Tj 1 0 0 1 116.65 137.6 Tm 91 Tz (and complicated dressing methods exist, for example Brocker \(13\) introduced an ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 309.1 51.45 Tm 74 Tz (71 ) Tj ET EMC endstream endobj 401 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 402 0 obj <> stream 0 ,,ffb7!Yne/orvvM#bض(3NƬ…lq–ʖ8:ՠ{ct  i$҈~(EZt ˼c` xZQޑ4/ N9w{c6-:Yp+%_I}Xy`|tde7X̎(r5Az*/՛nC]2# Lqx3gbvIJ^$ބ Irg"9OZe ܐ4zL" %̓?f&{-+PIcJ-}/70?纗'eߵQ,v r;:?Sڑ(Gޡ]4"8G"iv<޻4A,3dbﵼc{ G8qd1o@1닺nPņ}f`ځJ=띹%jn *AQ.8bنX#WPO^54=/|Fs+j=5YY֖M(e3m 4tkO^աzvͻ?|BHv=#>g3 ʞ}(JxIKTˌ90s0}(+H4vUWvٖt4 昱Fb߰kI t ^m蟽.biVQ2A;Q  u\$F-'/-}QfW|1e ",qFB>`:3"'6f|eːZB~nBqv'L#JpTI);EF\j!a_WEUUX7t Kp50"v% I7xZ#bwo^(S>)K0$[AjƏi,]F*ȷ.g3ügR{CAkH`$>|?dв ,@l_.]IgdKPkW;uw;[[2%vBk,_2"bM> 0#PD$""#dS(/FQ~Mo:Hg "褯EY/+TfcUӱC$f*dG쪩&^tRKT鸓~φ?LyX)| ,'}/2ǥv/HVOl+؎{owZA$s"Åwd3>]uS@OZ \Z *د*i-+:HMGU.^iHuf`X+ph\`;>G|,'){hڍ5uPKG}1ҝijB3§ 7}&fc)VO{\wɴxiX崮wU-9{#+kk >* ˄2~:[^Pvr'“ C_%Jl%q8Dme^ЧyҀaTd:A_~j|!=7њY=*dhlHsG$Mo‘ " v ǓA1xՕZU{6N}O=FVF/ ! ŗxovxCl֎@1zC,7 RD葦҇X(>i)(, TJ/֔OWg. xֹу54OIf7^0۸zYXEj?9N뉵 ) PyYЉ5dnǎڤ[1):p^y,!lƻW6\Nz$,$/컠-5F'$Hc.a4~ 17oPqJԭe~f/>˂l~CA+ޢ[(߂lݗhAX -`5ukLP|,a Qk_ϠYczz$ϤC fr^cb^-Cׂ <ۚ?dP#2;-]X _q!(&?%@D%DNŽ{]P`6|%~mqN8*˳;+/jNUajhrftί|t6.RUl\J~@p cC-G4n$ѝ0Ͷ"~T{?OGs( :ǃuX(W/3U-Q{_),8)gI5u n<*m2l'iHWpb3Ȝw1VyuO0_Ctɞ9x~~$8$=] < fgZoQCN۰ptWU>ަ]*~{M]b,(>Q{V?U/\q:۳ YRjyFzQv1+yV҄~#ᯩr$7i&C67N: b@m;.lSk%>`_9۽ل6{f_2k/c'RF?:WRSմ*(3OMϛ/ \CAG4&/4f$^0(,2ymaS&9*ޢ^V 9휳mIY N` 0i*;f }Q>XCsT-\^.4~jOM}ԦE$fO5gad0ՆójE{޹(5b7 YC5Z5wqs+{硴>2}BF/~޿eͣ?CRZ-H7@% cD0V(~\4|i_G$`JkP_%Vi+O^r^D"Y #1Kvhq2'K,UxR|Fov=P! i_*fv:9ms/m?ځ=Y CJQ)=rɀ&gw-ƁC8|e*l25)5h(V\-]2i #`dI̭>Z6&K۽tl{ݚ{bly4)g| gETV\{§_ Z=]^guoa3yP] "ۓPvڙTa-PfmWj&j6<[q~&Rf#{ [X kv.ˢ;:vL`qU ˉٹII-d`L?{$Zw>;/8;o<-x짒P{N]pG36+r-h:ɿu1f㧼S/ɥr/\'BFW-d|oˆhC#M/1P&{3[b'AjMe ]*TlKNsCg֠$LXņ$ o.'m6Vp2T `RͲx{rw-:CӴEl+tT 7Sh֒E:߮`ia44F?A$bҿmR-RB8Qz/]4&bڂػ46:4(  qYJkV}ٺT2gȁrDiwmGM3VSI*lь)=q6XoG4ք{.+G(ʴWL)Zֲ7ʼn*8J-/ D$MWdyanwv|p:JqWcp:a3s׭W `P_;>D 5c-] N! %DWIzN4`fD4t[IN{g~4G-=oTnp(P'|w( @[:hIĸcm)2:7vjC}B )ldA}/pӕww[ARLUĘ]E.,1G1wQk;."kփe1saeHs{D2ر^aj`ۈ 2kxgK .wsc;_.`^%<4Z~[y7&ɿy1z>kʆ*Uc˵0.00 V}*"ϲ)J )[o5V q 1l]OX֦'- 3Y]dA,JF, ӯMNs*64t$ H<1s.Ac?JhӖc3魳Ʊmg0ڜ"ra n'qNH.,Ah t~@T#|Pq<Nb<;)dQk؛rO1aո;HzvDt92t!:r7O^ zj-c%pkq0 яw9]ڷPA ܥl0\о>"_T݋ -^(˙$=nxyE%>U,Ak {ij،'de QYCG̲гWX;y=R ]"U[G`k~+ #b8q ׊t2`"V}OOXxfpr;dI*l'#rŌP@uw{:x ^Zۭb$VAQnt+[sm0O=K:j;}}rEG`e0KyXَ_[ʪ~#K rgu]K9NxS]dL^ u|C@&G4u5Ctt%ݭPU1I+/BSyl kwFR=E0.n곔E|$OD^dI$У[%:&\UqNi,q:J78wCxQEyLםh >4\'V`vh=4"a H)8 Mҟ{_Ln} uZ$w*Rk`4axw>7vqE[ ZlrX#?uOĘV%Հ?N). tɩ|lM5!Em?VjXBFj` ZTC:G?*lE!q>֊2? &E<(#MuKnAV 8>;]U"XWITiii4P`y ,A'IU%>/!0ܾ,*G<:d4UTj}35y;!&\ѯ5A.ByiGߺ7bS) Wmʠ1 q;/^w7$u3zy%W2 YUљv2 <(yrV Ŝ يNd*$m:U$:zZMw~Nb+Wd=k4n; VtnHڋYYS8Y4o:|mV*~9 IjvBM P)J 뙞P-zjZKwl[u{vp8 0CPԪdB Oj6v~+g x\}0&vR#` ʶ(1?\ؗhUo4Kbs^'oFc%0uFJyS@rf nx8iU6¶oIcRG4P =Xf2[i,#܌6[{,)K{ݳD:h{2@gM>!Ё 3K#-*Y9j DZ! G윐2Otmg?$N 󶟑4W5`yo=`UW$֣Ԅ*aÒژJQ^٭[G-Iԡ4F)51a5: XџoTo^bB|lƶsםѹ;36ǒ}$]8Rj-oZ]#%~{HT%:8Ъ#ĥ'ٮ;9HD!k_u %,[2 6 iXQ@>l)ʸ=;J5001<_t0` 㭫Xۅ齦ƾѾ$@6,A-_6E%K6|INTzp88 `.[p=ݜhmԓ&_ Q#E7< _Dovd$̀ .JM!w2pH#$&+}ﳷBYah 0J8bFͧ\= lBAZs}ZQXt ?}au?9'k%\XcOu C)"x͈8CGCZ4Z<'|*_4)[mo{\ tVL$`畆LM!S+y{I(|~v endstream endobj 403 0 obj <> endobj 404 0 obj [405 0 R] endobj 405 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 603 0 0 837 0 0 cm /ImagePart_2099 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 283.449 717.7 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 117.099 675.25 Tm 90 Tz (improved kernel dressing, called "affine kernel dressing" that is more flexible and ) Tj 1 0 0 1 117.099 652.2 Tm 91 Tz (robust kernel dressing method. In this chapter we use standard kernel dressing ) Tj 1 0 0 1 117.099 629.149 Tm (to produce the results as it is straightforward to understand and implement. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 133.9 606.1 Tm 88 Tz (For any finite ensemble, there remains the chance that the verification lies out-) Tj 1 0 0 1 116.9 583.299 Tm 91 Tz (side the range of the ensemble. Even if the verification is selected from the same ) Tj 1 0 0 1 116.9 560.299 Tm 93 Tz (distribution as the ensemble itself, the probability of this happening is ) Tj 1 0 0 1 496.3 564.35 Tm 84 Tz /OPExtFont2 8 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 8 Tf 84 Tz 3 Tr 1 0 0 1 488.649 558.1 Tm 126 Tz /OPExtFont4 5.5 Tf (Nens ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 5.5 Tf 126 Tz 3 Tr 1 0 0 1 117.099 537.25 Tm 94 Tz /OPExtFont3 11 Tf (Given the nonlinearity of the model, these points may be very far from the en-) Tj 1 0 0 1 116.4 514.2 Tm 96 Tz (semble, and appear as "outliers" or "bad busts". Those outliers will affect the ) Tj 1 0 0 1 116.4 491.149 Tm 94 Tz (kernel width significantly by making them wider in order to make the forecast ) Tj 1 0 0 1 116.4 468.1 Tm 92 Tz (distributions cover them which therefore degrades the performance of probabil-) Tj 1 0 0 1 116.15 445.1 Tm 95 Tz (ity forecast where the outliers do not appear. To overcome such problems, we ) Tj 1 0 0 1 116.15 422.05 Tm 91 Tz (combine the forecast distribution with the sample climatology. As we mentioned ) Tj 1 0 0 1 115.9 399.25 Tm (in Section 2.3, the sample climatology ) Tj 1 0 0 1 308.399 403.3 Tm 38 Tz (1 ) Tj 1 0 0 1 311.05 398.75 Tm 93 Tz ( is the distribution of the historical data ) Tj 1 0 0 1 115.9 375.699 Tm 88 Tz (which can also be treated as an estimate of observed invariant measure of the sys-) Tj 1 0 0 1 115.7 352.449 Tm 93 Tz (tem. The probability density function of climatology can be approximated from ) Tj 1 0 0 1 115.7 329.649 Tm 90 Tz (the historical data simply by kernel dressing the historical data. In this thesis we ) Tj 1 0 0 1 115.7 306.6 Tm 91 Tz (use standard kernel dressing to approximate the density function of climatology. ) Tj 1 0 0 1 115.7 283.299 Tm 90 Tz (The probabilistic forecast can be improved on average by blending model forecast ) Tj 1 0 0 1 115.45 260.299 Tm 91 Tz (distribution, which is obtained from the dressed ensemble, with the climatology. ) Tj 1 0 0 1 115.45 237.25 Tm 92 Tz (By blending with the climatology, defines the forecast distribution to be: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 234.699 192.6 Tm 111 Tz (PO = aPm + \() Tj 1 0 0 1 319.899 191.899 Tm 60 Tz (1 ) Tj 1 0 0 1 324 191.899 Tm 89 Tz ( cf\)Pc\('\) ) Tj 1 0 0 1 370.8 203.549 Tm 2000 Tz (\t) Tj 1 0 0 1 488.899 194.5 Tm 88 Tz (\(4.6\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 114.7 153.25 Tm 89 Tz (where ) Tj 1 0 0 1 146.4 153.25 Tm 104 Tz /OPExtFont6 11.5 Tf (p) Tj 1 0 0 1 152.4 153.25 Tm 66 Tz /OPExtFont4 11.5 Tf (m ) Tj 1 0 0 1 159.099 152.75 Tm 89 Tz /OPExtFont3 11 Tf ( is the density function generated by dressing the ensemble and p) Tj 1 0 0 1 477.85 152.5 Tm 54 Tz (c ) Tj 1 0 0 1 480.949 152.5 Tm 91 Tz ( is the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 131.05 132.35 Tm 65 Tz /OPExtFont3 6.5 Tf (1) Tj 1 0 0 1 134.9 132.1 Tm 98 Tz /OPExtFont5 11 Tf (We will often drop the word "sample" afterwards ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11 Tf 98 Tz 3 Tr 1 0 0 1 307.699 51.7 Tm 77 Tz /OPExtFont3 11 Tf (72 ) Tj ET EMC endstream endobj 406 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 407 0 obj <> stream 0 ,,a``j0Ile~]Qk*H 8TgTet*u\~EJU*%-3:1}mKelMݰcM^@£6iƭXq`]춼PzM"!*W^2#L_CֱuVlQk/`XwÍh4QGSC0PU'6}i7U7eb;:Wln֞cz YXv0.[p$k֖TiArMe=U]dOH '7ZAr̅S֍_gF.f_Ar ja*x[Pgᯂ|[U-L̊bbHۊ<,wg]h#HP#|f%Ɵo|a8^!pǏ4!_р/S(徜/D虴r,˗+K^a\m7gHG-!W>ʶļ`T_?]u_^mC. Z[Rر/mE;S^c=mTÉKKc!1-"JTkST8xTL9Joo6RϹ^Y.vӾ tKD(D!<L%mfף`WqV<*#!rKo?6/ msZsLck!QC;}νkVǗWī-"|~Er\]NPQ/B+q5gI>g+²HC~˷zUUHI%\5"]ɇ Z][u|-TgjPZB{ν_7U@v`WzŨ)}04 J(ϘEZ_^sHx4;79}O0:5p-Kbꅶģ'vwߵSZKV|v_max^D:(2v~ ^9Qm)m S(u8 ?4D =~S4qů ZkdtDIr9RUΰﶈ3u;T0=%ɱ4׶Z1< #œ{%bW*@g\EYE zPpF-SRSbC!Zwr? rԧ8QCE,:9ՠ̊eE"I k8fyjint'D(jc ۛ$_ŽzyG,2o<*BʵЗ6nU  RG5Pgw_nmG ifKQ%QwZ+jt܍T@ )]sBN C0Ext~gY;_;T(9w4MKZ isF=>Ʉޥױ0X(gͳ)je+c.J>q.&(@'2@-lyP10tyE1maz'ISQx3|)*8tzM&Ȃk(w&{>Ԟ3G?8E&˳V(&o̒ -T7IzOz s(sx.h$}`@ʔX*VƢS4(&Bu^*QLQ<ù#97+C: T`Đ" eԎj{]j UNֺ5m8qh7ݺNz`r(e~ŝH~=E f!qMa#^mm!H<57yQ8Zi6KuG4/hBy`ވ޼w}C-^*hAdCp3q(T KfOӡt) i^bh/V˴En+$52uqs8U1|Dby}Pz#`VӳV 9JT+fҞGp&N9nmfH U\%{@lfK߽s .L$\_sQJ.T{?7WU>;'t\Y.,{wcm f_b퍯V\ܖa_qײMBM퇍-#K&.uq&p2t++YY`l?&,ku'{!r燰}K|N~ 6+Oi1gX~L*7ZUvF7*|u!aOf70%z۔K]`ƳxsF uU %{8w(1nrl&ǭdL7tYO4LܻHCې;MNi(aFp& /v _ǻk`3RPHUNG2#U d'16;\g^鱛aD7+WIz&]VDNOCgʠygEVFstdjs-PG߭]0ӍBL*Yl31:pm\<˵G0/@R}1Ƞ_߱D5?t5x>ݲѳKζ48]9&4ʹ{S~Eb}buj"2,L8,6t/m9D Q͸fm^M`LV<0SG*>5D?o u~Υu嵎ڧB,MhC@a^;04Rbx9bcɒʽFCslסx dPntxHCd-?7=qY7~Otl0u=}Q1v`QڞYa6) _ud\w'-lQPBqz|cJV¿fʼ8)ݵ::#̴.ݰֹmQYn<3ò2=>k@NTuW(rZ}'-= SDR.>Kph#4%!R܆&'O +^zaWˇ7M] P0/#>pyFZ^aQch=roVy)e&_uavͩm"@v! ^ aaPx2WN6Ku  (ŅznZ/V{mUbP5aL6}t̜ Rj84qKH^ sP|,'g4)}ysșXAvꦹ r]!j mx?Mj(؜b #0z%oDh Vz}<+]zVV<}$_ RH=^LƝtҮE޴=l iS½ZZ$C;z[Fcgi R;SkN=y>Cnuxwri\i 0*_nrHX)ʯkYª8.nZ40!+'%-f,=UʂyM^ ^%X*F"֟*OF$rO n@b?$f&OyDŽ t&'za]0[-$V 8]}JBS-MA<) PeE>aelAr(E"ht~.HDzj0$liJy=II[T#Uj#ʱ 9ۊIm1e5\hnXYtFcY1Qޕ A/=>u y61NsJ9 }zh;'!V:jz*VSw[zNz\p@Kj*R` eMJVV0f`EFҪS+*N7Q~O6|J ǝ)JlC"/li+ZSoV4 pc.Qu `Ҁ G'Jc1D,SWT Vw.D[L@Gk[dcid 03b>QVw6UB`7Z[I}Y.8g-v} lR&8\Չ]DK%^sm#fL?ҲNx{o2 Ҕ"#5=DIbr- .5 JoRBunXZ9x> |Z;yԦ5BQ;h+—4'}$0A9aQZ6gp1MQ}0ECEMrDW2|mc8ziF$$D{{Ŕ= _ް˪)Bp"Fn/P-UYf4hr{ ռ%ooXVS i*J̰4,tT=lG?x}b*qjE ` :aBBZh46IVDм~02'7s.( T^kMs1gĸ l#.e_ K. 9 Gu ҹ$ ˗J]'G$ѩʷ k]p)_%_̀$o&)6m;j6s&t+ npZޜo " 9X%B?S}A+WJ1ZoͷX^Z F5vp.M9O[%\H)'n$d gbÑ.[H,)TXY3b_yDĽl v_!;|I1o9݈!3H]oT*̓Az#5 h[oU\e0>K~/.x||lTyqonmEٴZx5w- 330bq7zM ;M^u9+$\HLa;mOjwB iIQޱҡQIww]g)ɣg!0R$`7̎M2E^=t024071^ux UnIf}E.ɬYP74/% ޹o5($ۼ\FH"fK x^DO3Vg$ȢPxCD[>^ v. N'r513 l|(·96|?;AoOrvk(ǜ%lN>s j|OMgvo1bT[ͷf3M\)nſJnoݒc-nlq_Ý:ҭmHMטLʝA3+c\\%a$s^p#;U2G|aisD]5R :Ғ|k9@藬hdL/VK70 kͣHdiKO\vԨ5̩P*0*$(YCHA2fuj:+89F&qj&w98cśFtcTk1HeG!f<qUMuST| \@_KgU tVOAА[.;kvY={BY|R?'p' XRԌcq,x7_Ԝ%~|p_zDh _Rqae)E>3mC]†/ߴM< I͸zіE`H +5$O}g+Y1g Iο0`9C(lRYՎc@=XOնHea%.7AFoˎ$y9׈j}/J?oNM#4Z9׮5{ҧ'ATdDYqZMq3q7sdnsW68K;^$+5diƙKDX^0&ƨK$P[B$dBad3숕5)Jٹ/K4%==ni=IƪMІ3 4ݙvS|^P C%QR[TcT0!ؒ@+C0v$aJnҝ ŃN8c6Qą3<,b]0?N{? <=YPQY;cL֪lRȂ6 R|Xnw:x"lw8|Ր<ݒa*@="[4L0:9+g<.F(Z Y,cdopc\ɵR&(3qm=s"bU-[#26ܩq.3\D2ZatV= N0X:EF5 E9V,sF9;y/qrmh?Ԫ@-ZG puW LYK/B2yh8woK8c0g0NF؋B|$юTk2:(40Qd7Z|bRZR (?YS9MeJ endstream endobj 408 0 obj <> endobj 409 0 obj [410 0 R] endobj 410 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 602 0 0 838 0 0 cm /ImagePart_2100 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 283.199 718.5 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 117.099 675.5 Tm 92 Tz (estimate of climatological density, the subscript m denotes the model and ) Tj 1 0 0 1 487.449 675.5 Tm 85 Tz /OPExtFont6 12 Tf (c ) Tj 1 0 0 1 496.55 675.5 Tm 88 Tz /OPExtFont3 11 Tf (the ) Tj 1 0 0 1 117.099 652.5 Tm 96 Tz (climatology. a ) Tj 1 0 0 1 194.15 652.5 Tm 102 Tz /OPExtFont5 11.5 Tf (E [0, ) Tj 1 0 0 1 219.849 652.5 Tm 92 Tz /OPExtFont3 11 Tf (1], called blending parameter, denotes the weight assign to ) Tj 1 0 0 1 116.9 629.45 Tm 91 Tz (the model forecast distribution. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 133.9 606.399 Tm 94 Tz (Note that comparing forecast performance of different models may provide ) Tj 1 0 0 1 117.099 583.6 Tm 93 Tz (a misleading comparison without blending climatology. As it might be the case ) Tj 1 0 0 1 116.9 560.549 Tm 97 Tz (that, without blending climatology Model A outperforms Model B while with ) Tj 1 0 0 1 116.9 537.5 Tm 91 Tz (blending climatology this is not the case. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 116.65 492.649 Tm 109 Tz /OPExtFont3 13 Tf (4.3.3 Scoring probabilistic forecasts ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 109 Tz 3 Tr 1 0 0 1 116.4 462.399 Tm 95 Tz /OPExtFont3 11 Tf (A probability forecast describes our expectation of how likely an event is on a ) Tj 1 0 0 1 116.65 439.35 Tm 92 Tz (particular occasion. One may wish to ask whether a probability forecast is right ) Tj 1 0 0 1 116.65 416.3 Tm 94 Tz (or wrong. Unlike point forecasts, however, single probability forecasts have no ) Tj 1 0 0 1 116.4 393.3 Tm 96 Tz (such clear sense of "right" and "wrong". One can only measure how good the ) Tj 1 0 0 1 116.4 370 Tm 95 Tz (probabilistic forecasts are by looking at a large set of forecasts. Conventional ) Tj 1 0 0 1 116.4 346.699 Tm 90 Tz (diagnostics for evaluating deterministic forecasts, measures such as "root-mean-) Tj 1 0 0 1 116.4 323.7 Tm 92 Tz (square error", are not useful with probabilistic forecasts \(37\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 133.199 300.649 Tm (A probabilistic forecast skill score is a function S\(p\(y\), Y\), where Y is the ver-) Tj 1 0 0 1 116.4 277.35 Tm 93 Tz (ification and p\(y\) is a probability density. Following Good \(1950\), Roulston. and ) Tj 1 0 0 1 116.4 254.299 Tm 89 Tz (Smith \(2001\) introduced a measure of the quality of the forecasting scheme, which ) Tj 1 0 0 1 116.15 231.299 Tm 90 Tz (is called Ignorance. Ignorance is a logarithmic scoring rule that can be calculated ) Tj 1 0 0 1 116.4 208 Tm 94 Tz (for real forecasts and realizations. It is equivalent to the expected returns that ) Tj 1 0 0 1 115.9 184.95 Tm 92 Tz (would be obtained by placing bets proportional to the forecast probabilities \(75\). ) Tj 1 0 0 1 115.9 161.899 Tm 94 Tz (And Ignorance is the only proper local score for continuous variables \(12; 75\). ) Tj 1 0 0 1 116.15 138.649 Tm 92 Tz (The Ignorance Score is given by: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 308.899 51.75 Tm 77 Tz (73 ) Tj ET EMC endstream endobj 411 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 412 0 obj <> stream 0 ,,~~b6 @]߇ E*\uo`u1~|Piڋp4VK{ ZÌj'b'M c"U\5`N7;kcJZXHJ{2j2K?dJ|AFCB%E؞" 4,Oѥ(ܵ6즯`8 !bi^;|7"Cwo4~&>nGZ^8^fnP Ow gnҺaKr4)!E58ٓ?Nv~/i"0b(dmp3Q |-Mhk>6jiYA]v6Us:+mXvaFzr{E@qی"$=".&VTxMs]V0>;+mɐe Of̄U X]p@έtӖ7* G@3b(fyU[v7Dj&ݘŝ^ޠIkl9QB(1WZF=ZAB (bf9n4M=@k *9^P/sO92c2O0y4Z}5\NŐR!Nr)hTV sa㕒fx%[)u [U? C`"ߑak dS tgpfDUy_w+f4[eh&e~S|#fRk~ tB c+T%Ce]9xMSOȸy 8}˲t~2λC}FN&ⱼ5卥X ~BViOMVA\5!/qʱwa?HFȬ,hv 3έ\&PU liO{7E<1NHح=Zp@P9Nud~,L>B屫۲J$H,?{M˾WrPtg$柟.,Χ셳ܧ$2vⅺ,ij՚öı+ոj!ıg7Ҭvް왜ԨJt6╉-5<En= 2%p5֒z#PSaM" 2RU=~.P]-΢Ԁ9$qs:7bn ߄lᧂW$L-]F)lygڗdMv]ft/RXZȻcr]fGq1rtkMo\ńC q>ҰcjͿkڅO4'1<={"fA|aTdi#$3@UG8ϙ'uڐpgw%*# Sl69$쵾J3z&0hٛΩyၩP{gOq90^39.ri@;`Cn9`wh$MeDڢLm#7 HRHm$琋*$ #*J:OK2sC^kIҢ?ZIUJ;kwo,r )_qL&v'=5OƒfGU1=zT8l 8hVgex%| i[at~f2xJ-=O5;J UZ͔ZT lV\J67}G~0X?ˊxI`3[~"&}A̒mMˬIl`GAWG9LJlgo+yKuqFVqiSvXm:^_ *r!M![nd# uy5Givepc)BQ)Xl`%oyu~zQo|me M1hXQ +HV>)—o bo: j@+{†YC.]Ceb"+ w.,Z,.tLsߡư)Ы%n#U`t*Qik(-q,.W⸙t4:EqV>߅TuK$t{fA8"Cl u\2Rks]<w Ҳ ڄW1o2v D5gzCYfaKB Nc :ʁ青]C4"*6R5k4ۀ}\~L^"5d>Ẁ(+Ļ+#Ε^lͿ&|7(h_!:Qŭ|Ug82@!~7^ 檯TgnVP`,Aga]:wU ? 󺐞ܯoONE`MqocN7mƅJ+V-vw}^BO hr4ˁ' 3/8?Ylńo;Fg}ٳ(QO"Å||,ōh[EBةDv=Ri-mWLg, t8VbStQŸi'dQ<6)|7.7VtVO`oMYJ_HpK\aΛT; ^*L5cC^HfgL&ı{rL\-~7{Jy?Y"zW\h!I2Vw~w#i=8`O|땧3N܀69HXm uCs0(z)Q#ךv17vV(&#ၺvy+p-vʶ%\He{o3 8W` @Gm˗{%);9u͋D֣,'O `#6{K/%r4~m_Mѯ&LR;U: ާ+E>mLtG懮 m\zAbREf$hP:a% &n 3vt#p*Y5 $gfrM2Cy i:0Xu~'ap 5i *ҩdF_4%b/bﲫbN*:2Ep#%u fP eY% SZڕ;ZBj?\V94,۫36!_X&:(!(¦Ա:Ⲱ6ّ?J!*$ڰLM=fᄆ< ⪪ۙX?m-Azr0!˘\zbus&n.KQzjpJ㲎璎WapӢ[\XJ\tCȑ@kOBFeui[p 9tf=,34#征g8 NB)HMzIٴ¢~.e3JLS+o jJe@܃g}"[*|>_>)Db;^Kǚ.8 lw wz M '7AͧuJ*CуZ'Uod6 sR)%kQ\IeY`'Hqml4>r?内@Є$FosT!4089ʍD[^~FReCG$oq VӃJIzn|}I!QKq=$C!{k3qk#&wR CUrG)b2g4侌h@܃lpi!֫(TPڝz֐0UA 5Da)H SG:{&t&[z,q}ixj9u!(2[n߿Ҋ!I3|04xQn|M)UƩEnKqo!Ⱦ1go+W'v0RP3OFgF̣f4{I6.C[^FY ѿ`/2Ȍ6sٮ+'lz`Л3ǿ 0B>('DE iɟE]o!9x%/RQtI(Rʠk= 1[bX#Ҷ汫UVM]hjU1v0 ?Cs>iGwE@ZQUREք{N }: qa4(F9\/EY+^Wӳ 5hj=z:tPPq  u'Ã;/L:&6Ch6˸*d|O m{=j/P"5Z.݉O fݞW<AL5~LWR†Ȗ"2otWl]X F׆ka=f6*c@1ZI [C\ϵM4J$he7!*|?Q`*YC;daC'2#-$;Jљ=]ѡǩP&ս鴡\Ⱙy<).oH4MW[yGuNy'/W^Csצ$!1p%m.Geg[ DUYڗTJJ,$4(0E  P.+T~nq٘?% k}PjwO9BCx#%,o,h~13j앱4 YPr>?ͳK/. 3Ȯl2>9Ԧr,p $juTwk'OFh _y!l z\sH<SU+ ep2Gg#ѵ(ß.o  {T]^ZpNĢX}| $IRrRIruTc> ~9lⰭ%?7jνٵ5;ܔmZ099P.#9'w.Gkb"+)#1c ҭ5ĥWmF xrj/hW&/n{MP~?1Qfv)Q7?Г{8v4 y$`;f<1Y1f P~fl+!LT}5Gg[2OTȈ>p#'JG)\ƤT>'p8R Nq?+X;}\~@n䁰XVZVY+AYցYW*jE#$5^cx`n៤*;F Kj;̪)劕)A Ke ԪM& oE|`!F>VA[nI`܁J51N&/yL>k2n&0{"\ Paw; 97-])mLH!sMk /Xm? ):bi<ciK9t }z7&?^ {cdO|3܏ِhj6mF(TGݙG+uUK3䞠5`eqE[ s;t_)xNsS?q]PYi onou+{aYvx;_A=P [z%Q(0).\E=.ew΍Lܰn+A3>(8+3z岊vܛhy=i'ǯֽ2*< STI/h( a$ݵ!voaBr?G(oNơww\7sQ%[FiFR+.L?{86z7[DOta~gŽV޲\>]3!&ެ<ʐtc:3t79B|M_f6EC//~5lvgx@tWa$V57/.nX [Hh ݙ-\ux{Ganv`S*^MLw,^E|ѱҹYQV*0)4do&՘L$6?髃6(%LҲNwҢAVٯ'𯯰ʱhLfɨ幱Q*7°$~< ?> endobj 414 0 obj [415 0 R] endobj 415 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 604 0 0 839 0 0 cm /ImagePart_2101 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 284.149 719.7 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 245.5 631.899 Tm 98 Tz (S\(P\(Y\), ) Tj 1 0 0 1 279.6 631.899 Tm 567 Tz (\t) Tj 1 0 0 1 299.5 634.5 Tm 104 Tz (= log\(p\(Y\)\) ) Tj 1 0 0 1 365.75 643.399 Tm 2000 Tz (\t) Tj 1 0 0 1 490.8 634.5 Tm 88 Tz (\(4.7\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 117.849 592.75 Tm 90 Tz (The difference between the Ignorance scores of two forecast schemes, reflects the ) Tj 1 0 0 1 117.849 569.7 Tm 91 Tz (expected wealth doubling time under a Kelly Betting. ) Tj 1 0 0 1 381.85 569.7 Tm 35 Tz (1 ) Tj 1 0 0 1 384.25 569.7 Tm 92 Tz ( We employ the ignorance ) Tj 1 0 0 1 117.599 546.45 Tm (score to evaluate the probabilistic forecast in this thesis. In practice, we have to ) Tj 1 0 0 1 117.849 523.649 Tm 95 Tz (go to empirical since we have limited data. Given N forecast-verification pairs ) Tj 1 0 0 1 118.099 498.699 Tm 87 Tz /OPExtFont6 11.5 Tf (\(Pt, ) Tj 1 0 0 1 136.099 498.699 Tm 98 Tz /OPExtFont3 11 Tf (Yt, t = ) Tj 1 0 0 1 175.199 500.6 Tm 109 Tz /OPExtFont6 11.5 Tf (1,...,N\) \(forecast-verification pair ) Tj 1 0 0 1 348 500.35 Tm 95 Tz /OPExtFont3 11 Tf (are a forecast and what actually ) Tj 1 0 0 1 117.349 477.3 Tm 93 Tz (happened, for example a forecast probability distribution of the temperature in ) Tj 1 0 0 1 117.349 454.5 Tm 91 Tz (London Heathrow and the temperature actually observed\), the empirical average ) Tj 1 0 0 1 117.349 431.5 Tm 90 Tz (Ignorance skill score is given by: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 219.349 364.3 Tm 94 Tz /OPExtFont6 11.5 Tf (SEmp\(P\(Y\), ) Tj 1 0 0 1 274.1 362.1 Tm 118 Tz /OPExtFont3 11 Tf (Y\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 118 Tz 3 Tr 1 0 0 1 336.25 363.3 Tm 239 Tz /OPExtFont4 3 Tf () Tj 1 0 0 1 344.899 363.3 Tm 104 Tz /OPExtFont6 11.5 Tf (log\(P\(Y\)\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11.5 Tf 104 Tz 3 Tr 1 0 0 1 490.3 365.949 Tm 89 Tz /OPExtFont3 11 Tf (\(4.8\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 116.65 323.95 Tm 90 Tz (This empirical average Ignorance skill score is used as a cost function to estimate ) Tj 1 0 0 1 116.4 300.899 Tm 88 Tz (the parameter values of the model in the results shown in next section. In practice, ) Tj 1 0 0 1 116.4 277.649 Tm 95 Tz (we can get an idea how accurate of uncertainty in our empirical ignorance by ) Tj 1 0 0 1 116.4 254.6 Tm 91 Tz (bootstrapping. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 132.699 233.7 Tm 97 Tz /OPExtFont5 11 Tf ('In a Kelly betting contest \(57\), one bets all of one's wealth on every outcome in proportion ) Tj 1 0 0 1 116.15 222.2 Tm 98 Tz (to the forecast probability of that outcome. More precisely, a fraction wi of ones wealth, where ) Tj 1 0 0 1 116.4 210.899 Tm 97 Tz (co, is the forecast probability of event ) Tj 1 0 0 1 276.25 210.7 Tm 76 Tz /OPExtFont6 10.5 Tf (.E) Tj 1 0 0 1 282.949 210.7 Tm 37 Tz (2) Tj 1 0 0 1 284.649 210.7 Tm 26 Tz (, ) Tj 1 0 0 1 289.449 210.7 Tm 97 Tz /OPExtFont5 11 Tf (occurring, should be wagered on the ith outcome. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11 Tf 97 Tz 3 Tr 1 0 0 1 308.649 53.25 Tm 77 Tz /OPExtFont3 11 Tf (74 ) Tj ET EMC endstream endobj 416 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 417 0 obj <> stream 0 ,,V4LW0hWY[ ?iRun_L 5$>2a#F/)sÙTAE% J$zFiIhNCgA ؂T\=tGd#V]#sGy\78Rs*u/}^}BJ!AQc΢{=1W҉vf f]2g7~H8g+p7PKb}jc7>bH)'>$t~geZtGZ.[f Dr F"X]W;ޝB?#oxrH']Y֙;!XpE%%JBn.N\6U[V%DbqvvFlف&Z`p޷q+Cf((:P|NXOOZꪺtL^ĎKB3p|"Īg#~KaXL_F6ÐQ qIoٍ}r`Y<6|1gZQCV^ vxҕIbOq[j[0PՕjBHWdwus'ZJQE)JaaM6]T{!jcth7Kw|%}D0 iȥD[s 9-5%yZrm*KIA4JSw9_Ie~R>b  i?xK/82 7,XolDI~|Nzs5ެ0 dqti}M00s /mQT{35ʡԍα]Z|nP9v*q@Ux['Im AIv-$5gd=JD2zpvP_2z^BQ%58*7`NhˎR#݃suZ;CoAî*L[m΃QQh2;*)P 2,KGMG }P vA]&8OKʼRAn3" 2 E ;W=aӇFjOn )P̢%zg i/?yyIԳX(iܪY,8.!\вW*cZЊ͐}Ie͝G"(g;K[| 6LPnbMe/$Jq8&M }·RDQ"u[wе=@!\1EWr&gMubl+ޫFuT/8>.huKQp#Q$oHTҰ ~šE9]&_NlЊ/,Q,pٴ@w'DڧQ6\oqT=Ńh,rKse앉X)T>hlS<>tC 6u^}|؞] /$̘?QM~ibQe>YvL}(&|`swDЦvrU ^osJYzWmam gXyz%k=@.jۭhN2Jln/E?ĆO 78TL*xN% Q^|mBcV̷j\N) ~<Ґ#P#'Đ 4L722ӝV Mj;qȐEMUL4twqѠvP򦄭2횹k I #Ń=+f.:LCQH!1(Uh@γw8+r!$M|#}!B' )jkK1E&[s\`\ #ÌL,D:Z&'NP0Kȃ^$83(h?e*t*~^AQzr" L>}B [ze~0"؊A" IKe$&Á&*hVEi7lt>; rɜ ?Zb9~Q397A > Ի廥Mo4$밪ܔ'Ѷ16Kp≕IKBCRzpiIg넉whJeS䎣7e,!D_-QPI8^ ?dVJ`:GDgb#]uqmKDq$6WXgM24c4Rm~_@-$يݷ9q۝6POJ?D`~$\)N4Ѱ8N/(."kL_;R*?gD-ߊ`NM8 *z3suܪMhQ{I+^W)(؝کu;r!-NR< D';AH蹌Vqk IJEΰjSmD,|ʜ|^FXϹv+jܿ~VKȱNR5[EL.Ekx%`=H\esFz)NΥ5dݾh &Bq;:X![QJ-J/>/ٰю<&W"cYUSr|/2+Q`|ǨB`,@N?I YY.eڣs1PTW uTtQH9;޴oC]論B{)`a3AzȜ}h= zOe[mW?QA>3̃0P&/<ɧ[ 0tC 1nDs,r(ۇ+NMѶu6#0=eUKå(9- >^9ɴP#LxE'KCv! ~D_!"KՈl|[y%Ky9냶$L <Mɫ:['&oZl`O a i "JvnH!HٱZQn#Ұp J G]./: oNeUc/`n_ِ7^*3}xyê%5IM`\a2`\xnbGM0hpb2ғA]C9! hd٫TDz zetp/3pA4#:lےک`ޚuB1QUҖQ%|6E'm@~@2_f1ZLYkǐo4 <6^R7cAy o&6= 3K@,\,3D-aoiE\n5zNH4HZئu)Xu6Hu/<Ҧ8a'k}?CPw$}2w5CQrw"IWHXV/֣pQqi,\o@!Zq %Bd^:bhS=<=>VoBDʽOq Hv?gtwYFP|Ѕ AmT""p/M&*_Ui FJVl)8 A*>98J1ĒõĿ4,/1"8^]Ć1ٞXճݺf%.`njqb`9콶a(%i(ձʾ#Ih:4'Pc^ԕ?,m8?5@qUAm(i@IC (x6>xАKr18 ۵0NX\F&4P67!'4m $ӦEaJ B2q'ID8\\'4iDvphA,X 1=-JIu,7ξ7 Qҟvu^ ^f8, c8. Mf V;UkÆx s tp㷝uyl|PlJC$FD.WElocsEU#7(6E-. Esj:*EZX%.C h\SQX7xzZONEuҤ7!7ŕrR/%pɭ &ݿ (*uJ\≁^SJnKB:7>.P3|3 m4\a{`ЂLc@Ad9+"Zo(o&4,)X&a}z NqF?]%r ܛtao^\ OZ  o Wf9׮]ƀ #4PF% PIMXQ^S.Ge@fCPcտPwG8C危Y؉  ˈ(ņ&T-?dZ/Ϧ#K LbI q"$K`tO떅?!w [w#" C@USaE&Uվ8hZEYsw'sjzN^.2Tqӫ(Y R Y"pP2e36>Вp cHC3n/7^>h$sԵ8}·pz +e{+b$PI3r5]<lS"t:@i?+A>ȷ8Xܰڳ5ܲԤ9)<3ԍ-_8/'I?D;MpQ]g{\ysxslNI9. x  5#j#G ݰnW^jEH,^sbTGai3>4@C-wl)7w! bY6>4lS׬Lr5)Aq|6! Yb *FoX ErNף-Ba߫[tk\U=} :jT ϋl,!VKR?p&;&,Z0 šxRdwb-tZ. NYQW+-} kv r".*qGGygy3oEE};^\)nK7mDK& LW"`sID},'zkf& zDk3E[mxG]174rL<&{N[|qP! ~@~JSpi)NKX^5k<:ɞJBGff$&RRki, hmAC"qBg}.: D{ÓIU.`@6`'߾t=t]p[;k=HFx!v[4(UɡmWwRXpmgC~2$/S8}6Ur1 Od&T :Y^\PiNO Byl`dP|Vk² aO5g/? #Ae0pm[&_#U 0\ h/0P liK 4z zM41LZ8IUfCby#`h?Q:__'&xҿ%Q+%ep.B0$ˀu1 Ju2X'xVh39淼C0 +?)BnunWY4OI_Wv\24WGW;NBf`U{v{*=Yvê%-SBcʹ,Qp Vxc<*cXU1- U6ʁsbA*jċԯs;Njk!,NB{fӚȇsY`RVLq,3y3mUQ}w8ewf<+zϛ~틘'Wӄpix_~s}5v#U"fÔV+\ם8|p<{|_ /5d[wf$hZ fHp V~I= dS_Q>N@UO0nh`%2 'aV&"=E&~eK?5dF/rPK":.g9'\CKi9^爙q!&li Z %,eŪ3+\b?,!`^F djz=y=)]ưQ 8;²ςd ):aKƾWh&òc&VhYG,LW*u.޻sxB̘eS,$d+瑒qU5̊2WHCJ=ٯ(o"2 da*jX$ڸ=\p/k+;xO.d͋4νPAHѮ do(1 cNˠ\ʽac?( \^}, NraYa&ˏ3J ]~ &Bi@  @( {_ o)NnjqrvZ_Jr2OSiUmb 3X¢ItVuNw}5;orCk-.uW SqU͡gnQc»TYr@=uB^[%~ktqB>YRhJ+wJ/S+rc䒔^ 'ET&e q.St~57*1AFdy>ŬL6%^CV=ۉpx{-!Y),S]BUCgd܄r D@~{D2>6=8> endobj 419 0 obj [420 0 R] endobj 420 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2102 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 287.3 720.45 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 121.45 677.25 Tm 132 Tz /OPExtFont5 15 Tf (4.3.4 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 15 Tf 132 Tz 3 Tr 1 0 0 1 121.45 647.25 Tm 93 Tz /OPExtFont3 11 Tf (In order to demonstrate the effectiveness of our method, parameter estimation ) Tj 1 0 0 1 121.45 624.2 Tm 90 Tz (by forecast performance is applied to both one and two dimensional systems and ) Tj 1 0 0 1 121.2 601.149 Tm 92 Tz (results are compared with Least Squares estimates. Figure 4.4a shows the cost ) Tj 1 0 0 1 121.2 578.1 Tm 93 Tz (function, i.e. Ignorance score, based on probabilistic forecast at lead time 4 for ) Tj 1 0 0 1 121.2 555.1 Tm 95 Tz (the logistic map, where initial condition ensemble is formed by Inverse Noise. ) Tj 1 0 0 1 121.2 532.299 Tm 94 Tz (Results of different noise levels are plotted separately. When the noise level is ) Tj 1 0 0 1 121.2 509.5 Tm 90 Tz (relative large for example 1/8, the information contained in the forecast is unable ) Tj 1 0 0 1 121.2 486.199 Tm 91 Tz (to tell the difference between the parameter values. When the noise level is small ) Tj 1 0 0 1 121.45 462.899 Tm (enough, estimates obtained by looking at the Ignorance score of the probabilistic ) Tj 1 0 0 1 121.2 439.899 Tm 93 Tz (forecast well identifies the parameter values as the minimum ignorance occurs ) Tj 1 0 0 1 121.45 417.1 Tm 94 Tz (at the vertical line that marks the true parameter value. Figure 4.4b plots the ) Tj 1 0 0 1 121.2 393.8 Tm 96 Tz (Ignorance cost function of forecast at lead time 4 in the parameter space for ) Tj 1 0 0 1 121.2 370.75 Tm 93 Tz (the Henon map, same observations are used as Figure 4.2b. The low ignorance ) Tj 1 0 0 1 121.2 347.5 Tm 91 Tz (region \(black\) captures the true parameter values. Comparing with LS estimates ) Tj 1 0 0 1 121.45 324.45 Tm 88 Tz (\(Figure 4.2b\), using Ignorance as a cost function produces more consistent results. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 138 301.399 Tm 91 Tz (The forecast based parameter estimate results shown in Figure 4.4a and Fig-) Tj 1 0 0 1 120.7 278.1 Tm 95 Tz (ure 4.4b are based on the probabilistic forecast at lead time 4. The particular ) Tj 1 0 0 1 120.7 255.299 Tm 90 Tz (lead time was chosen because the cost functions at such lead time produce more ) Tj 1 0 0 1 121.2 232.049 Tm 92 Tz (consistent results. Figure 4.5 shows the forecast based parameter estimates for ) Tj 1 0 0 1 120.95 209 Tm 100 Tz (different lead times. Note there is a bias at short lead time. Also note that ) Tj 1 0 0 1 121.2 185.5 Tm 91 Tz (although estimates at longer lead time provides more consistent results, the cost ) Tj 1 0 0 1 120.7 162.45 Tm 89 Tz (function becomes less sharp as lead time gets larger. Examining graphs of several ) Tj 1 0 0 1 120.7 139.399 Tm 91 Tz (lead times \(Figure 4.5\), it was found that those of lead time 4 were consistent for ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 313.699 53.95 Tm 75 Tz (75 ) Tj ET EMC endstream endobj 421 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 422 0 obj <> stream 0 ,,M||b7!Ҩ5W/yeU$UoŒdkTs΄(0~$' Wr79l¨2vDձ?Tzpo},5$Ås8S`OӮkJ怼7 _~jۈcaSL+Px>5ԙI~$Ĭ_aU׀./q^b]E LaV<`zc] R|5y7GwHHo{':k!Ȅ0"VU@I*Mi;$u$u֮"MH?!Ntդ=LtWPF\>) B9k|PY<7I d硲J3'_Rgz0ڤY|R= hn>u|>iE$M{O/맠RȞ6tǯwG::] MHw O^j[Ȅ.33s퇮,&DkA-4]\d)i砎BIx}9z-a1ҳeV), U]+R8?Bc2H'2C+%ݔ Dsޜ.;v_^ӏX7^vQ> A)Wk?Ơ>xa`p7U,6G Šǚ+-c;=IrV̢zcU~]*O_G0iqhӲU7unY4m]eצ,B'xЄ!&#vۑXa%}iWbI"pCɐS/!h@‡R!im&rIS"[Ł3”ߍJS"mլX7/dއd[m_y%e`Vy^LϪaÂJk6/-`"Y!KT0r]*ܦ ‹ږ{q>},!=r2-~1$wmB4E& ʑk ;u>L벹ǢM$(N< S_X.Bc]n p3;{^~oCI?xO]!;(zw1񝮸hp0E}<(+J)T=FNqN$aSs}m!41svdބ#jnJb~^iȽ [}1+ž7X9Qe%/x"ՌbO}]O}D%}x9ˤw2i݊uV`e\86N'NC@ oY|R?][@=) Taw0ş iI PoQV=u_-iϓ;ir'?ǪG\S6QsG%GGܼTk>*`6fcZ?,!)LvQ(hϡ׊κ_Dgr;@$˾ ԾK;Qei/}|v2[#Mm ֆ&L2郈H_˅Z|ܔ@$( )|qЎaYnC8$ . OlhX^?] ; Ntf?❿x[zy{-zv[kAcassUSMq}W@@㯓 >>mif `/I3~l@ZЬwm"pjA> f|A c:^5T'6=C0U:i#Sܥ7}VҥzZPU5~t,mXmalgqc奷A;%BtcsJ׀ |tlt-F͋+bϹ@XQ%fsd4 r[r\~ _ZT~" D wh3mlv`ͭq ½`5퉊s&f}6E@ f@G xG]SJ:̈yIĦ5ӕimJ(Y28Ok WjCo3ɮ5%t`'Lv]f> C"yNۣG3*!o_ISLkiɐ\hڛs.j%UT( FJ4[k(<`40 y3{_*؁#q=x-IUu\52n_IȴR O(ͲׂXP+2\7g)}L1:ZBq%agB$ =F<8Ӟލ (i,ն]u}=tS/&i]z3M GQyI2|i'@g}bHU= 7F9r1w-ZK"MވXx=S]@\{UĔS\OF g=>Kb X/6yΐ렵}zeLsoN|JQTb۠X$_@F4TX\[B_0&J>rs&^1 ]U|NRsØjJs%**39.K.,0 gji}2ϕW'δ  [-N0k~O5<+VO(I.x%_:-#x@[5f9 c&ВtoŦ|^saY8Y㧋7 a3@PAml}(q*V$JJ&a9_L1\X2\}*/&bAL3HOseR5;__y6 ^g|,z]rPUf,4`ⴃO*wñXf]񊃨}J_EB=Tn>Jy@ٔ!y^l箧{#qYq1ֵʅӔncٌ\{dJ[+,w6ȁ]8)V'c#wNyd AE@(^ݿ>9,g72~$=kl_dO9*/A#@Yoe9z5$rLI':CgIί8;8z] |$>XOAo+0K}"5%lIϟTJ{B$(v)}N'2ҍN) d`ZY/;_79xs3a H"3pɟ*%FsaSTq sxQ Љ_Fr.(Mfw4ߏHqcxj ͗:j5XL2 qa3ӣ52]x`QI:wLg2m~Ucdžԗ]cG HLFKAC y6_2*1%$QCO)kj |](8_ASd\dz Tuw_}θHx PHK~-˷&%'k~S.neh{K-'],x+z8J(]Y=bv]ϹBO 836(!#_Z8?t6tGd%z'&='K0;4|'kA;==Ecͣz㩄ga9QX?CV9X)^ʆ>**:w Q+0GEr9{C v{ϴϸbwKoyJN;J% '#@&N4sj4&yonI9GʵHv49Cɠ n@_8{`ѰssC8{U3N'_;] ltP4EozƇ )NtgBc%\>4' ֔,L^%U-P awq]`vssh$mЦԴ/ !F` Qmz)Kz8z'/n|_"y mPؽR j,>D'U~R7$QK'0N9 g% )r74w>pˣώX1zѮu:Гץu GSg[^`ZPmZWn Gmk}+#v)丠*p.αk\,!-ô9.$31q"i?!A{vh/qwk /2km+ICNm`tUT]P!~ylfrLu1z&> c[<_9Qc j?#|=h$MѪ' %P@,B_p.J:pun'DgGdT,o΅"IKxd)K hP/nC qqS%Wl&) `;-8J-A" Fl)ٜp'HtFa8Y TRX=di_ ^?IENM >ʏG7]J̠R*'}ꭼcC+OQtQ3m _1@·i[2`ĘCF`B->+63>;Ghm!wF]SГZ anr_bu!r9r#2-qwY^OZ׎E B %vȔ"'I@>71oekĀ>>)*r.r\YfEڒK'jqϢH뺗I/QMNtaO b}[+3r oѠGwrݴ*+ݔe$$ zw7.PnjB: -pq iiJTD6S? VsA3_&hSQSO_Lɬ'.V~׌cEi Ok1rFͮcZp:??8C ̛ĢX(A>TNjJ`;@پ_[{7m =8o{t%f%Ӄ@c;Erۑ.F⬃Ї!)=tv@6ҪF%_=c\3i+T /AY껶RCy]I9O {o2Hb-%Q'E.?\L#P;mkݹiBuɴS5/ZW´O˳YXJ|ޒ n/GUV|b|TRbQ ҮeZ[ ܌as^r0lǡ戶研{Lw`L³7Spe3t]7A#_mghXG( {<Z50w$badC'gɃ#a\HiClX:s>0°6 cIg[4.R%e"`&]SPX1F޷0bZ:- pZƌ΅n ^{WUCqTYW ?;ݻLdg ޺7{N|^|S0"A4R[J PZ .:հ(t<Ҫ$hBC8vKsНK0rah$;_@x pwBdOGU5Da44= %ݼ I!3A^.iKCH}DPK~z*VI@1K ?(RDj>`q-Tol!O[S3'ԡ@lO=GbЧP{Xeѕ=2ŗ63o6}fWo'te[xU3Ǟ 2,+D Ƀ:Sѣ+IW)n8zHOy d%@l ^%k. conY)o9% NSq'!Oʉ08Zj#ߎ" c;s>21ْӀY`#F_L#_ubyff [#}w#ռyoB22 EPt0)ly{ n"nYTN⃩ d Y@qmcɆq@gfʥ{~i0ODTcˌG<:A5Ƃ,xhXZgCŞ^#=Nn<ƶFK01[Gn2X5#ҠhFu^v\w㗯$lw ڦQ̎mgذE(t,ujԚ5gDO:A@xxy7vL"V5^ʶI1룞!]@h4ڎ9x"NsQKa3r0~ :8/C2^ x.9k\U -M#$5ELS2i? endstream endobj 423 0 obj <> endobj 424 0 obj [425 0 R] endobj 425 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 621 0 0 839 0 0 cm /ImagePart_2103 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 357.6 668.1 Tm 79 Tz 3 Tr /OPExtFont3 11 Tf (0.35 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 79 Tz 3 Tr 1 0 0 1 357.35 606.7 Tm 81 Tz /OPExtFont11 9.5 Tf (b) Tj 1 0 0 1 363.35 606.7 Tm 78 Tz /OPExtFont3 11 Tf (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 78 Tz 3 Tr 1 0 0 1 357.85 545.25 Tm 79 Tz (0.25 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 79 Tz 3 Tr 1 0 0 1 373.699 536.85 Tm 75 Tz (1.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 75 Tz 3 Tr 1 0 0 1 431.5 537.1 Tm 74 Tz (1.4 ) Tj 1 0 0 1 435.1 527.5 Tm 79 Tz (a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 79 Tz 3 Tr 1 0 0 1 488.899 537.1 Tm 74 Tz (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 74 Tz 3 Tr 1 0 0 1 303.35 638.35 Tm 87 Tz /OPExtFont9 6.5 Tf (\(a\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 87 Tz 3 Tr 1 0 0 1 155.75 668.1 Tm 76 Tz /OPExtFont11 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 76 Tz 3 Tr 1 0 0 1 138.5 655.149 Tm 99 Tz /OPExtFont9 6.5 Tf () Tj 1 0 0 1 147.099 655.149 Tm 75 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 75 Tz 3 Tr 1 0 0 1 139.699 647.7 Tm 113 Tz /OPExtFont11 4 Tf (C, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 113 Tz 3 Tr 1 0 0 1 138.5 642.45 Tm 175 Tz /OPExtFont9 6.5 Tf ({) Tj 1 0 0 1 142.099 642.45 Tm 66 Tz (,) Tj 1 0 0 1 140.9 642.45 Tm 108 Tz (2 1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 108 Tz 3 Tr 1 0 0 1 138.699 633.1 Tm 87 Tz /OPExtFont9 9.5 Tf (a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 9.5 Tf 87 Tz 3 Tr 1 0 0 1 139.699 628.049 Tm 99 Tz /OPExtFont9 6.5 Tf (E) Tj 1 0 0 1 146.9 629.95 Tm 77 Tz (1.5 ) Tj 1 0 0 1 138.699 628.049 Tm 41 Tz (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 41 Tz 3 Tr 1 0 0 1 186.949 605.5 Tm 93 Tz (noise level=1/8 ) Tj 1 0 0 1 169.449 597.549 Tm 110 Tz ( noise level=1/16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 110 Tz 3 Tr 1 0 0 1 169.449 589.399 Tm 100 Tz () Tj 1 0 0 1 186.949 589.649 Tm 93 Tz (noise level=1/32 ) Tj 1 0 0 1 186.949 581.7 Tm (noise level=1/64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 93 Tz 3 Tr 1 0 0 1 169.449 573.549 Tm 100 Tz () Tj 1 0 0 1 186.949 573.549 Tm 94 Tz (noise level."' /128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 94 Tz 3 Tr 1 0 0 1 139.449 564.899 Tm 56 Tz /OPExtFont3 11 Tf (2 ) Tj 1 0 0 1 151.699 564.899 Tm 68 Tz /OPExtFont9 6.5 Tf (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 68 Tz 3 Tr 1 0 0 1 146.9 552.7 Tm 77 Tz (4.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 77 Tz 3 Tr 1 0 0 1 139.9 615.799 Tm 99 Tz (o) Tj 1 0 0 1 152.15 615.799 Tm 66 Tz (2 ) Tj 1 0 0 1 158.9 615.799 Tm 55 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 55 Tz 3 Tr 1 0 0 1 139.9 604.299 Tm 99 Tz /OPExtFont9 12 Tf (>) Tj ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 12 Tf 99 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 12 Tf 99 Tz 3 Tr 1 0 0 1 139.449 831.549 Tm 91 Tz ( ) Tj 1 0 0 1 147.099 604.299 Tm 74 Tz /OPExtFont9 6.5 Tf (2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 74 Tz 3 Tr 1 0 0 1 138.5 590.6 Tm 332 Tz (i) Tj 1 0 0 1 140.9 590.6 Tm 66 Tz (a) Tj 1 0 0 1 141.849 590.6 Tm 122 Tz (! 3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 122 Tz 3 Tr 1 0 0 1 139.449 578.1 Tm 80 Tz (`t'' 3.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 80 Tz 3 Tr 1 0 0 1 292.3 716.1 Tm 101 Tz /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 101 Tz 3 Tr 1 0 0 1 129.099 501.55 Tm 103 Tz /OPExtFont5 12.5 Tf (Figure 4.4: Parameter estimation based on ignorance score, 64-member initial ) Tj 1 0 0 1 129.349 487.899 Tm 98 Tz (condition ensemble is formed by inverse noise, the kernel parameter and blending ) Tj 1 0 0 1 129.099 474.199 Tm 99 Tz (parameter is trained based on 2048 forecasts and the empirical ignorance score is ) Tj 1 0 0 1 129.349 460.5 Tm 100 Tz (calculated base on another 2048 forecasts, the ignorance relative to climatology, ) Tj 1 0 0 1 129.099 446.85 Tm 102 Tz (i.e. 0 represents climatology, is plotted in the parameter space \(a\) Logistic Map ) Tj 1 0 0 1 129.099 433.399 Tm 105 Tz (with true parameter value a=1.85, results of different noise levels are plotted ) Tj 1 0 0 1 129.349 419.5 Tm 102 Tz (separately; \(b\) Henon Map with true parameter values a=1.4 and b=0.3, Noise ) Tj 1 0 0 1 129.349 405.3 Tm 96 Tz (level=0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 129.349 375.55 Tm 101 Tz (this particular example and so these are presented. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 145.9 353 Tm 107 Tz (The short lead time bias is due to the fact our initial condition ensemble ) Tj 1 0 0 1 129.349 330.449 Tm 106 Tz (does not contain the information of the model dynamics as explained in the ) Tj 1 0 0 1 129.349 307.649 Tm 98 Tz (following. The Logistic Map is a nonlinear chaotic map when a=1.85. A randomly ) Tj 1 0 0 1 129.349 285.1 Tm 99 Tz (observed state is expected to be on the attractor of the Logistic Map. It is almost ) Tj 1 0 0 1 129.349 262.5 Tm (always true that neither the observation itself \(in the case that observational noise ) Tj 1 0 0 1 129.349 239.95 Tm 98 Tz (exists\) nor the initial ensemble members formed by inverse noise lie on the model ) Tj 1 0 0 1 129.599 217.399 Tm 101 Tz (attractor. Using ensemble members not consistent with the long time dynamics ) Tj 1 0 0 1 129.349 194.35 Tm 107 Tz (cause the estimates to be biased. Figure 4.6 shows the dynamical consistent ) Tj 1 0 0 1 129.349 171.549 Tm 100 Tz (ensemble produces unbiased results at both short and long lead time. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 146.15 149.25 Tm 99 Tz (Producing dynamical consistent ensembles, however, can be extremely costly. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 319.449 63.1 Tm 73 Tz /OPExtFont3 11 Tf (76 ) Tj ET EMC endstream endobj 426 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 427 0 obj <> stream 0  ,,-YZZj`l/Pd>%7:*-w- = ΪESgW/yak&(<_O26/fu6dXPv@XV^uΡ=*,=wlRfV{J"b'9^\:_'SE2FV!/J' ߌ$y/ؕsWhX9h3U4|5kۛz=x9lI))8p<%s >!ӂk|$ef}ΟC>}\v#Mgl\ =|A D @+,̹yڌNN9>[:kS\a(-_Qۂ95Lr̯K P50TSuAh,Z盐tۡ:p0DYZ ;jYRXDl"`r)&;KUNU`<[b: Yޢn` r|hXry씙үyq*Z1a"BsM@\,YFԼ2l5HS_F(@oa]) liQ?6$;zS~[wn*97Zzf2+Y-\U i/ -UewBFTf3ķ*ȿcW9lс%˲R}ԮڠDsƖ9^S.&,3cZ&5-8*d7a|ϒGʈĖ;2x/#|f Hg,\vtl7ڄ37l%pJƨ8BynȈx!&42{'n ăڙ䟑-xPʐ{8t+ km?$OP[ &b̭,@œ#'&:&D, wfX(oe@7fX|q.(BL2 ЄϑhMX4]Gڐ:ѝ72%(?UWe}۲(HJ t7Jcϩ{~w"K~Xq]&yo=k7M$\րB qv}"*(EJIRǼ%7F"bE L*]4ffK.lM`r5  j{>⼷*?PȱE@.±Ĕ08)<;mf+ _u߾Du)'kKp[ WtY'~\z=C=޽'ބBjJ{^{DaK8kPtT̜.$lṽ #Hq,8+Q5dE+,c~/0_s bĀݦzyvQv^tWu0a%*`p2%8w[۷MOjX4ֽҢs8抖Ul=L.X7%Bdi<\CQ`*po,fNy1K"Q@.= )-0C blm_,K(vppS l|QV9Pq5IԒ-A|>-jVͼ&׹>=%9iɳ+͞Gt}<7|,I=O|Vb>(/iipW8jR#1+m=|wr`GHGGr2N umPh!tQ8u4d^\3ބwG6 xmКC9Ԩ4<5@z¶#$zAUِN/V"b,f4 7O(лfq\,KF{g.F[}!iSJ+qbBsɭ'_F颅fvnr_gT\}ʅ1VftɥJ4;繬'\w , 2g>Hye$DEQ6o2qS|f7@1vfeGqWkwON:@DC2,w~G;94dz2AAQ9y+?ؕ5N09ddY`3 KSۆCՌ, 㙍$! р: M^7$SC `ƀĉbsP X)2 D,SR0AEV7Q,, AK}ݵ\“08x9~}Wp,dXWVALXM6aNV 2mf[O>&:S;4?P3uI eit DdN#XmM>1OF"HqrV;(#߲AY9+q@_uW}SL^c%x{~j _G u{@a Sg庹Fjf.\s1яȍ ǶWDwAlF q1(w[j@ؤխ#](QB*@ps3sV%l$"AgqR%Jt2w܂XKư'fnؗt8&+xĖ5>ٻw=4Q"g!'P9U6ȮXSLiцnR3 Ը0'Yk]R\D!hZeE$v7}k2HW޵&}@(NqN9 @<5IaɐA)\w..{~xIS,i䐁JԾ6[ 9x:['!kJCm',OL gXP=u<ИgfҠOS4!,V)bz|ġ~eZ$ϋm "*W7us\wOcn 6Teص[}JWʔH< 7q2h{n@ALʋ><~unvSLNel싹6 I.tREUKi9 =.QoP#R>>\$1{ @D6>UcZo8 ;+z.\ Fb GFx5M~>˸߁^ކ?1z J.y>'/57ѱCfʰշɲ4)<.e;R -Mg$" H)mdGHU>aczI:+ igc0(깂avž1OceyVahP 괂QsB 0!sdD:WnT_|=E#ྪ>O8K-4.nvIEgW5Jć(CHP(Avlѯ,]J4!W>o "LQ<8K?\פ"ם! YBGnv>+/ p!=Ҋ^[" H m[ $R& JR3hlc#Ku@PBidf\Ɓpa1P{ K£]p`UesrQQD 7X{<[XTx i \'`Qb. 뢝}g,#yo [Sn9%*06ʖg )oO~H x^X2hX@g.Q}ro"$N7% Q}o[#;rul{@+$x^IJ[xqq/1Wc&ex1*_n% Z5 "fc4Ͳބ2Q0+cfm 6WgV-bbF@Y B+1 S:&^ BƘ"&&C?e5 fh[.ڠok AZ4G,i+&ٓZo( zLJHb"/Ⱥ@9-Tcs7^*zQiQ c;EKI "&6T;P`<§'9_&'W6vy(ٚg?rĤ ?H457E= -.盫cK?,*yzh1KP9M י`y=/cr=_=M҅Q>SѬ0@ %xӺ$럪kdTH~bC /v3)1ô`H m&8we2A|S6!S;UQG_l@fj*k|}f|Z&xX!ueK~Zii:*t/=>T#$xԒ A{#)\l+0H:mF^-}p:dh4A39^E].y$|0!%DZ)_GĒ2^0ZL{`q? {E`̣Ws?vndbد)I_'t1k̭I 8J/}U"ƕnǗg)m WDrS` rvCi"w]>!{|4O% ƗE߯]-o` DJk #K]vS l[*nIs,('XATM4\KԀ#hPT/_fRxއSdg˿`eG4؜LF [HB2+iQ SAf=I~sXjr}JlR^2Kޒ81#@Qu0r>`ߵJVP֒n~;IyN=RзqNJ~7x%> U߿׌tQ#Ũ.elbM'ׯ7$@6Sǭ20t(.zB@+W\kL_:38미UVf>0v9QwG}wg4gˠp2C7 ra=7n#q7G46+np9ESY qރ+Pc%n&Wy ea`eg3^0-n$oo\@vSIfgjeZY$? KR_nqQۀD@h-54ڒ^:c/SLٰL56D'_oIX dpX|j-MgW|>eo3꟦7|^QT2z.(qy\k.WjoC*M~a|Ϳ$:FSĩnA -w}_VУH).aQ2zVk[bENx(33vv$wVP& 9Y##,v* 1JR$uU5>W6Z8vǽ[ϑH̨l d\QNyTLSݳ Zl;LQvE.wߕ@畬jQ&4݂rdT ѮR9kCÓp="ˤ 6YX8ZwJΕbcR S*ք5vH5t1 ;&ܪ$\ VN)[~oY󿞷QaTPm:˙26{D瓤~dc<%/BhS#ar(f֑&=G—A== W2   ۈ'm-Q, 1&QE]R3x`(.D;#J݋U 5NCo}7 Qs}{I%-1U~ +U45͋øH!P)qưΰ'kU@ ? m;}t .@&"L6jTk) BGThWr옧#x8+lH$8v0$ppн~!ݻy/*s7koV&}W7o0: /X}wYƵٍa醞;oXX< w/V2LoJә!tTYgqn۹VXXT ~WüsZ"t|0=L *(|f1S$:ӑtn;C)z6_hYPMrf `0 /|6mlb{ICr7DO7]>ɰ<Љ܀6}*0Ѝ"WxVrJ 8=݃Sl$tsAgi*bQ?RVjKPi@(Dqu@ߩV''^p_ءw :03{$ L雮3rdG!8m2YPE{P jOʎ߿x#q'MɄO+/\MS]cWy+蚨ng(=XR3ew3'ZEb#AS6h@8NfF׏{ k~Ny .-ZYpp]_GtH 0X.s=e9,,^6F5p{&?fbQ=]o으]j0tvy2_J3"vgܱo_Hb8S(Wx 7IH$3 ] rmRj{ͰcvR6ޮոT?KT 5@j@7:IpR̟&b"0ylosHH73Aem G T}{g(^0wyܘɓ%&"QHt3t!Y z_0W[N`Nxnobn@3< [8}ү«\)<@wʔiLGI'dxuR5лSI? gY9͊2GHH.Өw]$VLLU.kiњ=PLDq_B²\tW w Qh^XL8g-jkVuoҕVN"i&u{2V牧Ov$307L :Ы"dH>O 1e%B(|e5wq;ãT\ ^_o04Fy)K5{3O0x+ЮDzTgAIXQ%2 n(hy{?q#h5^5)nz.{~JtKJBmNܷ[Y#JORWƪ̈́XjFr*sųk孆vv rn7 H42ϴm_\_w&6&IMFO[u%`p8Ak2]?@zWC˕/e?*b1Ԧc1[EL]Y=m#&&vAhnib+$@;d(<;R57dlAClX@gUBƁjTN%70w67C7h2iRwofikt )!)b' R&56RD9ZE{vԃ4.ǩw~z1P#0ǹnWzqds?+tdYZ/C tsmKQF,&PUHtPX,c74'飙sM }C"~˃nc^w sz&8d "8sD֐6ewN]Ͳғ3n*#YP=a{+`uw81D % <VJ2,&-`E=tfUaƷYW-b M]h]!qjMk,Co lܧ^DLWMXmN5Mn#YEtS3kU.co Չr` |yL'cVhǥh#0lg!$t8>̴f2*!)08׳ƒ-7j8֒<;n*nxFvF-_F>CH7^T鹓&k ?-%epYNc#Ni7S*XHck-+˕ceZȒM``*k)-BDapXRçZEˬ4"kC>W8~*5+uë& ?b;mz;79+9&|h(j.]ݘl,?-_ Va.dEX-eW4&!SD>Φfܠqay ˬ& ZfHB# d8#f*r@_1yd!_kAԅFwEª?X0 مE]53%:Flӥ,P={$qwwͶ*1̕$N<AI'CdTWvvÓQ NLW#$'m1r FE5 T0F/Zb QC^Ñ}D(ʨ9Y^rK5ѵn:9͘ARDL㈘FRn{q)]Qbn4b j@!.R%ݧRzCxy? D8ZOB)zap\c 3#$n dLO5@*G?Zt#)Ȑl˸w% 6E">\Hy' q*33%.w\DH3M])MhBTQִatǟ"VR5e0]&U AZL`Eyªӵ8t&~Sopb"'vAxR] *`ùEa"Ų'*hfÄsoք/o6-2ߒ۰!Ns!h&\MeR*Jͧ)TC9IN6Ki,SXH=ܧ+QrH0My E @*ah8E1l寅:.#FpL0ߘjQH ^+KmkHVY8B )<>;):5@q~[a [zfސ$ͣđha'iܢSA9O+λٝ@dSpSÜ?ƶ7eƵ7_CL7`Y> $Ih/A: 46>շ[o@> endobj 429 0 obj [430 0 R] endobj 430 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 621 0 0 839 0 0 cm /ImagePart_2104 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 265.699 535.399 Tm 79 Tz 3 Tr /OPExtFont9 6.5 Tf (1.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 79 Tz 3 Tr 1 0 0 1 291.6 535.149 Tm 90 Tz (1.95 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr 1 0 0 1 137.75 598.5 Tm 47 Tz /OPExtFont11 8 Tf (rs ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 8 Tf 47 Tz 3 Tr 1 0 0 1 150.25 593.5 Tm 89 Tz /OPExtFont9 6.5 Tf (_3 - ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 89 Tz 3 Tr 1 0 0 1 137.75 585.549 Tm 66 Tz (a, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 66 Tz 3 Tr 1 0 0 1 161.75 576.7 Tm 99 Tz (-) Tj 1 0 0 1 179.3 576.2 Tm 89 Tz (noise level=1 /8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 89 Tz 3 Tr 1 0 0 1 162 568.75 Tm 99 Tz (-) Tj 1 0 0 1 179.3 568.5 Tm 90 Tz (noise level=1 /16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr 1 0 0 1 162 560.6 Tm 99 Tz (-) Tj 1 0 0 1 179.3 560.35 Tm 90 Tz (noise level=1 /32 ) Tj 1 0 0 1 179.3 552.7 Tm 85 Tz (noise level=.1 ) Tj 1 0 0 1 214.8 552.899 Tm 81 Tz /OPExtFont11 6 Tf (/64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 81 Tz 3 Tr 1 0 0 1 162 544.75 Tm 99 Tz /OPExtFont9 6.5 Tf (-) Tj 1 0 0 1 179.3 544.5 Tm 89 Tz (noise level=1 /128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 89 Tz 3 Tr 1 0 0 1 150 540.45 Tm 115 Tz (-5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 115 Tz 3 Tr 1 0 0 1 154.8 535.899 Tm 85 Tz (1.7 ) Tj 1 0 0 1 162.5 535.899 Tm 999 Tz (\t) Tj 1 0 0 1 180.5 535.399 Tm 88 Tz (1.75 ) Tj 1 0 0 1 191.75 535.399 Tm 1013 Tz (\t) Tj 1 0 0 1 210 535.399 Tm 85 Tz (1.8 ) Tj 1 0 0 1 217.699 535.399 Tm 1038 Tz (\t) Tj 1 0 0 1 236.4 535.399 Tm 87 Tz (1.85 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 87 Tz 3 Tr 1 0 0 1 224.65 528.45 Tm 96 Tz (parameter a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 96 Tz 3 Tr 1 0 0 1 300 654.7 Tm 87 Tz (\(a\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 87 Tz 3 Tr 1 0 0 1 370.55 667.899 Tm 82 Tz (0 - ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 82 Tz 3 Tr 1 0 0 1 362.149 655.149 Tm 104 Tz (-0.5 ) Tj 1 0 0 1 375.6 654.899 Tm 80 Tz (\t) Tj 1 0 0 1 377.05 654.899 Tm 55 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 55 Tz 3 Tr 1 0 0 1 354.699 647.95 Tm 56 Tz /OPExtFont11 8 Tf (rn ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 8 Tf 56 Tz 3 Tr 1 0 0 1 381.1 580.75 Tm 99 Tz /OPExtFont9 6.5 Tf (-) Tj 1 0 0 1 398.399 580.75 Tm 88 Tz (noise level=1 /8 ) Tj 1 0 0 1 398.399 572.85 Tm 89 Tz (noise level=1 /16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 89 Tz 3 Tr 1 0 0 1 381.1 564.899 Tm 99 Tz (-) Tj 1 0 0 1 398.399 564.899 Tm 88 Tz (noise lever=1 /32 ) Tj 1 0 0 1 398.149 557 Tm 92 Tz (noise ) Tj 1 0 0 1 414.699 557 Tm 81 Tz /OPExtFont12 6.5 Tf (lever=1 ) Tj 1 0 0 1 433.899 557 Tm 90 Tz /OPExtFont9 6.5 Tf (/64 ) Tj 1 0 0 1 398.149 549.1 Tm 93 Tz (noise level=1/128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 93 Tz 3 Tr 1 0 0 1 366.949 540.2 Tm 126 Tz /OPExtFont1 6 Tf (-5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 6 Tf 126 Tz 3 Tr 1 0 0 1 371.5 535.149 Tm 109 Tz /OPExtFont9 6.5 Tf (17 ) Tj 1 0 0 1 379.449 535.149 Tm 999 Tz (\t) Tj 1 0 0 1 397.449 535.149 Tm 90 Tz (1.75 ) Tj 1 0 0 1 408.949 535.149 Tm 999 Tz (\t) Tj 1 0 0 1 426.949 534.899 Tm 88 Tz (1.8 ) Tj 1 0 0 1 434.899 534.899 Tm 999 Tz (\t) Tj 1 0 0 1 452.899 534.899 Tm 90 Tz (1.85 ) Tj 1 0 0 1 464.399 534.899 Tm 985 Tz (\t) Tj 1 0 0 1 482.149 534.7 Tm 85 Tz (1.9 ) Tj 1 0 0 1 489.85 534.7 Tm 1024 Tz (\t) Tj 1 0 0 1 508.3 534.899 Tm 103 Tz /OPExtFont9 5.5 Tf (1.95 ) Tj 1 0 0 1 519.35 534.899 Tm 1355 Tz (\t) Tj 1 0 0 1 540 534.7 Tm 73 Tz /OPExtFont9 6.5 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 73 Tz 3 Tr 1 0 0 1 441.35 527.95 Tm 97 Tz (parameter a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 97 Tz 3 Tr 1 0 0 1 512.649 646.049 Tm 87 Tz (\(b\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 87 Tz 3 Tr 1 0 0 1 354.699 590.85 Tm 110 Tz /OPExtFont12 6 Tf (2 ) Tj 1 0 0 1 366.949 590.85 Tm 116 Tz /OPExtFont9 6.5 Tf (-3 ) Tj 1 0 0 1 354.699 578.6 Tm 73 Tz /OPExtFont12 8.5 Tf (2 ) Tj 1 0 0 1 361.899 578.6 Tm 105 Tz /OPExtFont9 6.5 Tf (-3.5 ) Tj 1 0 0 1 354.699 565.899 Tm 81 Tz /OPExtFont9 7.5 Tf (g ) Tj 1 0 0 1 367.199 565.899 Tm 99 Tz /OPExtFont11 6 Tf (-4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 99 Tz 3 Tr 1 0 0 1 361.699 552.899 Tm 116 Tz /OPExtFont1 6 Tf (-4.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 6 Tf 116 Tz 3 Tr 1 0 0 1 153.849 668.6 Tm 120 Tz (0- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 6 Tf 120 Tz 3 Tr 1 0 0 1 145.199 604.75 Tm 102 Tz /OPExtFont9 6.5 Tf (-2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 102 Tz 3 Tr 1 0 0 1 137.75 579.1 Tm 110 Tz (c) Tj 1 0 0 1 137.75 579.1 Tm 138 Tz /OPExtFont10 6.5 Tf ( ) Tj 1 0 0 1 141.349 579.1 Tm 143 Tz ( -3.5 ) Tj 1 0 0 1 137.75 565.399 Tm 267 Tz (c -) Tj 1 0 0 1 153.599 565.399 Tm 104 Tz (4 ) Tj 1 0 0 1 156.699 565.399 Tm 67 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6.5 Tf 67 Tz 3 Tr 1 0 0 1 137.75 553.649 Tm 176 Tz /OPExtFont10 7.5 Tf (-) Tj 1 0 0 1 144.949 553.649 Tm 128 Tz /OPExtFont10 6.5 Tf (-4.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6.5 Tf 128 Tz 3 Tr 1 0 0 1 294.5 715.399 Tm 101 Tz /OPExtFont3 11 Tf (4.3 Forecast based parameter estimation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 101 Tz 3 Tr 1 0 0 1 153.349 506.6 Tm 80 Tz /OPExtFont9 6.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 80 Tz 3 Tr 1 0 0 1 144.699 493.899 Tm 107 Tz (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 107 Tz 3 Tr 1 0 0 1 136.3 490.05 Tm 106 Tz (S) Tj 1 0 0 1 140.65 490.05 Tm 80 Tz /OPExtFont10 6.5 Tf (.) Tj 1 0 0 1 140.65 490.05 Tm 128 Tz (; ) Tj 1 0 0 1 137.5 486.199 Tm 65 Tz /OPExtFont1 6 Tf (er\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 6 Tf 65 Tz 3 Tr 1 0 0 1 137.5 481.149 Tm 28 Tz /OPExtFont0 12.5 Tf (:1 ) Tj 1 0 0 1 141.099 481.149 Tm 204 Tz (\t) Tj 1 0 0 1 149.75 481.149 Tm 107 Tz /OPExtFont1 6 Tf (-1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 6 Tf 107 Tz 3 Tr 1 0 0 1 137.5 466.3 Tm 68 Tz /OPExtFont9 7.5 Tf (E ) Tj 1 0 0 1 144.699 468.199 Tm 105 Tz /OPExtFont9 6.5 Tf (-1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 105 Tz 3 Tr 1 0 0 1 137.5 454.05 Tm 46 Tz /OPExtFont3 13 Tf (o ) Tj 1 0 0 1 140.9 455.5 Tm 213 Tz (\t) Tj 1 0 0 1 149.75 455.5 Tm 116 Tz /OPExtFont9 6.5 Tf (-2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 116 Tz 3 Tr 1 0 0 1 137.5 446.85 Tm 58 Tz (a\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 58 Tz 3 Tr 1 0 0 1 144.5 442.5 Tm 107 Tz (-2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 107 Tz 3 Tr 1 0 0 1 136.099 434.6 Tm 63 Tz /OPExtFont3 13 Tf (a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 63 Tz 3 Tr 1 0 0 1 149.75 428.85 Tm 108 Tz /OPExtFont9 6.5 Tf (-3 ) Tj 1 0 0 1 137.3 416.6 Tm 77 Tz /OPExtFont12 8.5 Tf (2 ) Tj 1 0 0 1 144.5 416.6 Tm 107 Tz /OPExtFont9 6.5 Tf (-3.5 ) Tj 1 0 0 1 137.3 404.1 Tm 159 Tz (S -4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 159 Tz 3 Tr 1 0 0 1 144.699 391.149 Tm 103 Tz (-4.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 103 Tz 3 Tr 1 0 0 1 149.75 378.199 Tm 112 Tz (-5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 112 Tz 3 Tr 1 0 0 1 371.05 506.35 Tm 95 Tz /OPExtFont9 5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 95 Tz 3 Tr 1 0 0 1 364.1 493.649 Tm 87 Tz /OPExtFont9 6.5 Tf (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 87 Tz 3 Tr 1 0 0 1 356.649 489.55 Tm 111 Tz /OPExtFont12 5.5 Tf (a. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 5.5 Tf 111 Tz 3 Tr 1 0 0 1 355.449 480.899 Tm 132 Tz /OPExtFont9 6.5 Tf (2 ) Tj 1 0 0 1 360.25 480.899 Tm 438 Tz (\t) Tj 1 0 0 1 368.149 480.699 Tm 78 Tz (-1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 78 Tz 3 Tr 1 0 0 1 301.449 475.149 Tm 96 Tz /OPExtFont9 5 Tf (\(C\) ) Tj 1 0 0 1 308.149 474.899 Tm 2000 Tz (\t) Tj 1 0 0 1 355.699 474.699 Tm 146 Tz /OPExtFont12 6 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 146 Tz 3 Tr 1 0 0 1 363.85 468.199 Tm 108 Tz (-t.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 108 Tz 3 Tr 1 0 0 1 356.399 453.55 Tm 118 Tz (o ) Tj 1 0 0 1 360.25 453.55 Tm 526 Tz /OPExtFont2 6 Tf (\t) Tj 1 0 0 1 368.149 453.55 Tm 107 Tz /OPExtFont9 6 Tf (-2 ) Tj 1 0 0 1 373.899 453.55 Tm 65 Tz /OPExtFont9 5.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 65 Tz 3 Tr 1 0 0 1 356.149 446.35 Tm 89 Tz (to ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 89 Tz 3 Tr 1 0 0 1 356.649 442.3 Tm 107 Tz (o -2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 107 Tz 3 Tr 1 0 0 1 368.149 428.6 Tm 131 Tz (-) Tj 1 0 0 1 371.05 428.6 Tm 78 Tz (3 ) Tj 1 0 0 1 373.449 428.6 Tm 65 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 65 Tz 3 Tr 1 0 0 1 356.399 416.85 Tm 83 Tz /OPExtFont12 8.5 Tf (2 ) Tj 1 0 0 1 363.85 416.85 Tm 101 Tz /OPExtFont9 5.5 Tf (-3.5 ) Tj 1 0 0 1 356.399 410.35 Tm 110 Tz /OPExtFont12 6 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 110 Tz 3 Tr 1 0 0 1 356.399 403.899 Tm 121 Tz /OPExtFont9 5.5 Tf (c ) Tj 1 0 0 1 359.75 403.899 Tm 534 Tz (\t) Tj 1 0 0 1 367.899 403.899 Tm 108 Tz (-4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 108 Tz 3 Tr 1 0 0 1 356.399 398.85 Tm 75 Tz /OPExtFont11 6 Tf (rn ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 75 Tz 3 Tr 1 0 0 1 363.85 391.149 Tm 104 Tz /OPExtFont9 5.5 Tf (-4.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 104 Tz 3 Tr 1 0 0 1 520.299 477.8 Tm 90 Tz /OPExtFont9 6.5 Tf (\(d\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 90 Tz 3 Tr 1 0 0 1 185.5 435.8 Tm 93 Tz (noise level=1/8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 93 Tz 3 Tr 1 0 0 1 405.85 435.3 Tm 90 Tz /OPExtFont9 5.5 Tf (nolso leve1.1/B ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 90 Tz 3 Tr 1 0 0 1 167.5 427.899 Tm 121 Tz /OPExtFont9 6.5 Tf (- noise level=1/16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 121 Tz 3 Tr 1 0 0 1 388.3 428.35 Tm 116 Tz /OPExtFont9 5.5 Tf (--- noise revel-1/1B ) Tj 1 0 0 1 388.3 420.899 Tm 129 Tz (- noise level-1/32 ) Tj 1 0 0 1 405.85 413.699 Tm 91 Tz (noise leve1.1/64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 91 Tz 3 Tr 1 0 0 1 167.5 419.949 Tm 112 Tz /OPExtFont9 6.5 Tf (- noise leve1=1 /32 ) Tj 1 0 0 1 185.5 412.05 Tm 89 Tz (noise level=1 /64 ) Tj 1 0 0 1 185.5 404.1 Tm (noise leve1.1 /128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 89 Tz 3 Tr 1 0 0 1 388.3 406.75 Tm 127 Tz /OPExtFont9 5.5 Tf (- noise level-1/128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 127 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 127 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 127 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 127 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 127 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 127 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 127 Tz 3 Tr 1 0 0 1 154.099 373.399 Tm 105 Tz /OPExtFont9 6.5 Tf (17 ) Tj 1 0 0 1 161.75 377.949 Tm 1013 Tz (\t) Tj 1 0 0 1 180 373.399 Tm 87 Tz (1.75 ) Tj 1 0 0 1 191.05 373.399 Tm 1024 Tz (\t) Tj 1 0 0 1 209.5 373.399 Tm 82 Tz (1.8 ) Tj 1 0 0 1 216.949 373.149 Tm 1052 Tz (\t) Tj 1 0 0 1 235.9 373.399 Tm 87 Tz (1.85 ) Tj 1 0 0 1 246.949 373.399 Tm 1027 Tz (\t) Tj 1 0 0 1 265.449 373.399 Tm 82 Tz (1.9 ) Tj 1 0 0 1 272.899 373.399 Tm 1024 Tz (\t) Tj 1 0 0 1 291.35 373.149 Tm 87 Tz (1.95 ) Tj 1 0 0 1 302.399 377.949 Tm 2000 Tz (\t) Tj 1 0 0 1 375.85 373.899 Tm 86 Tz /OPExtFont9 5.5 Tf (7 ) Tj 1 0 0 1 378.5 373.899 Tm 1289 Tz (\t) Tj 1 0 0 1 398.149 373.899 Tm 89 Tz (1.75 ) Tj 1 0 0 1 407.75 373.899 Tm 1293 Tz (\t) Tj 1 0 0 1 427.449 373.899 Tm 81 Tz (1.8 ) Tj 1 0 0 1 433.699 373.899 Tm 1322 Tz (\t) Tj 1 0 0 1 453.85 373.899 Tm 93 Tz /OPExtFont9 5 Tf (1.85 ) Tj 1 0 0 1 462.949 373.899 Tm 1440 Tz (\t) Tj 1 0 0 1 482.899 373.399 Tm 86 Tz (1.9 ) Tj 1 0 0 1 488.899 373.399 Tm 1454 Tz (\t) Tj 1 0 0 1 509.05 373.399 Tm 71 Tz /OPExtFont9 6.5 Tf (1.95 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 71 Tz 3 Tr 1 0 0 1 223.9 366.449 Tm 92 Tz /OPExtFont11 6 Tf (parameter a ) Tj 1 0 0 1 258.25 370.149 Tm 2000 Tz (\t) Tj 1 0 0 1 441.1 366.899 Tm 97 Tz /OPExtFont9 6.5 Tf (parameter a ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 97 Tz 3 Tr 1 0 0 1 130.3 339.3 Tm 90 Tz /OPExtFont3 11 Tf (Figure 4.5: Following Figure 4.4a, Parameter estimation using ignorance for Lo-) Tj 1 0 0 1 129.849 325.399 Tm 93 Tz (gistic Map with alpha=1.85 ) Tj 1 0 0 1 271.699 325.149 Tm /OPExtFont5 13 Tf (\(a\) ) Tj 1 0 0 1 289.199 324.899 Tm /OPExtFont3 11 Tf (Lead time 1 forecast Ignorance\(b\) Lead time 2 ) Tj 1 0 0 1 129.849 311.5 Tm 94 Tz (forecast Ignorance \(c\) Lead time 4 forecast Ignorance \(d\) Lead time 6 forecast ) Tj 1 0 0 1 129.599 298.049 Tm 87 Tz (Ignorance. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 129.599 265.149 Tm 94 Tz (There are other data assimilation methods which can form informative initial ) Tj 1 0 0 1 129.849 242.6 Tm 88 Tz (ensemble, for example Indistinguishable States methods introduced in Chapter 3. ) Tj 1 0 0 1 129.599 220.049 Tm 92 Tz (Using such methods may produce more skillful forecasts which may also help ) Tj 1 0 0 1 129.849 197.25 Tm 90 Tz (distinguish different parameter values. Nevertheless, when it is costly to run the ) Tj 1 0 0 1 129.599 174.7 Tm (model, as with weather or climate models, Inverse Noise provides a much faster ) Tj 1 0 0 1 129.599 151.899 Tm 96 Tz (and cheaper way to form the ensemble. It is presented here to illustrate the ) Tj 1 0 0 1 129.349 129.299 Tm 91 Tz (methodology for estimating ) Tj 1 0 0 1 266.899 129.299 Tm 96 Tz /OPExtFont5 13 Tf (parameter ) Tj 1 0 0 1 320.149 129.1 Tm 89 Tz /OPExtFont3 11 Tf (in a nonlinear deterministic model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 318.949 62.6 Tm 79 Tz (77 ) Tj ET EMC endstream endobj 431 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 432 0 obj <> stream 0  ,,0  j]w>1[@| AROrN)%!mN0FI{1tلyLn(B΅aY|MPE:=v@uN|qwT{Mτ1`+RQNhn4 s+)QKSDrt@=qCy*P[fzM60tpXO_Rt}OYԒz=||أŀy7pUlrB# `9O' :&tyV]3s%;$3o*TsBq?X+mù;B55:6KpӍGOw۟E)<;ѝĢ~v7S%g eELnO7Pʭz%{ s';UKobR޲t _mgrsG[ڬ9!EC_}ƺ#nhm}Pei7[w/NᾪptL텎 Uk#TDG9Y(ZP&4e 5Uhu?@AIv Yz?\4|7L/ t{f7nI?'ކwulBBW>x7m*d bUZ 6D(Rd?Ki2D ZFt esLk]NiK9fhGښ(51לx]/D`5]zĆ@ KjcGNbΨG<37h;oK;8̍*z?q ro"Bf״`R֝!PM`VWߗ9lQ9w(z.Hw+ `m'"c;iQ 6(8UQbbz*库k;&;icR.C#$zwDlګ'Z M>\®*_SY#Z̴8coXw!|RUf};6ǽ\ỊOki`nRQepF6_3uKτqU}qFSr1\h=d)dےmf;kh4ĺ`>,2`u~ zC/)[כ4eeHtkL?C*dǞ4taK|RZPz@3*WcwV/v89Uxw|Df7}~-A =yv{ \ʡ[7gヒaGcEyBUQQVnX# 5? u >R()\}W+$!Ahr"DK\SLr̽3O~"~nܘzͨC#͏ ϶}CG6a{-zb/lJD-ҏnfo@2a'faFV^LEcdm0,:%=60š0‘ZO:%'L`JrO;|;n`YwxKC7]](5#cg '؍}RĤS⮓*N+"@܌n|YHyzמX'(5֥ vǂ`36E- ۣ?Ċ]ӄW&#]'X\ѩ\2Ptu5oA> ܷ=)X=$3n7).Zո銜=<d;$]>k4ʳݖ?10ѵY94]mѻ.ݷ!5ܱάׅ,-><aS[6KgH|wܲIy =r L{]"_dAu5Isn|CPߏR^ejI 6\~xe 1B֤Id]F^Ktx  \|FrwF <'1*V 0b7eQd!rL'+/BKN=Os; hGѸIRT퓑+uW+AXA}umN3T3bG*,ySQ4x^Ql,@[)ۨ?2n-nbsgLi9Ymig8-wf/8WΟRrĘDB %LMdli D>niO'Dswrz,g鲏(aOs~g7͹x :0Yih@ p3CYönf Re82U!!wvjr hcH(ůNLm !LFO;Tܧ̟7hEx̍0g ]$zX\M)b;#:M #lJعֶ2ͰB\C_&z:|{@fLpG8|||E^*ڝ'"NBz Rě E-rniV4z89cIH#Yj m4,sZBBXD%ƀi|y*"g3O8Rjۿi>ʴܐʮ0Dz-f0##ө. N%`"o t z<)6i(M4e:a[Ɔ!:J?t?Ӣdn܋gy'YmlܻdifhQݫE^b$BSǔ`T|Ӊ2 e[ڂehV9Ӧˊm^>[' xeg(ϓekvVӡHT]IpeqbυaMnսm_ZA#k*,l3շ 9z': weLm|vGֈzdהؼQUUStQ?sAbrWM¨C"`1 ALZoұ`hCF!sN̵<]s$@-$~_2{,;^p|,4-;֢"8>yHUx\rq^u DurZ da|YLŃN5F\ -IK,j^œ6#u㠂uSRCG;._jGZqC}*Jn6EԒ.q0B4vDVYQ?Lu&"fA7e&gml=ws"s g*ډvJ_4LhG=<,!,K~2D]b]fŚ\o`5̼vԬ\_ƋMD&d61rt%o"-5ve/Sۊ֍Q `kq-oo Yw\4f9an&# ZnhD5o\tw5.٘TOA`Z|68&̷3£>o i&# iOlI@mhPV 7kuFŗ<>RBղѸlܰt9bDO2˫֊;+UbP 3FvdƓ-7f9؈!iS׬;X-f+flR̬k48AĩL_4A|hvBMyNC$f&<4gT9f nM_}|gOlx*T0? yzU{ODzl![-R[{ w~PA?Sx]VA]7kp,el0:W7 pMEj?F3ڣObc='Sg rZ".NҼ k;L+:Z7=d+qw닷uvpcگҡE 6^niivz ?fNO ! ꀜ^M+Yΐ3PXY!ѥ" q$ne&[o6ZF j]Յ0e̯@МhKHi+RIu39n p%Ql3K] ?2e*@bQҘ]t1pQAHsE|Z0 5y,8ϲ۰0_7XAH>P_bjk_Zv5NIŶ3R ,6'Ȑ߀̂K,6΃jMgdZCfCP M}nm6uTze_jTRK]UfM4 zנ9 Kiw6 JCG7Ѣ xHcUgQU!'t俏VMe40ɦCW u%nnyEvk=LkaA0P>dT k Z,RaeaMRT8=J0-x'pߦ㷌ܑX3.-1t Ho0J}8esB ,%Ԯ 1G"b*EuB7sk{Ą;ViešT52KϥXZmF‹P[ek81`&\0{mP"i{]5KJa:Q2%){ȳ]d66P:B중-:h덬]uMuKLp|zYt+ H R#yv,?+hCD 6q6kpxA8u\T|"{'6^9jG֔dx!,4wҵTvq~G1V]WUh E*F'?EjDI@RR_\%n[X%_t`aUYV1=殳PH,'zHD9q}dXi(])nb51:  T޼އ?[D"Dho&~h܎ HZq-X9q6lj$+g~,p(oBq?a".O] 6DU+12 $Â}e(xy"#8^.&O0K{3e9; :e glޑ.m04n(мL&P i7#TecwNSA=9o).d3 b6;=U9".^ 7sz$KgUɽҷjGD 1MZ/h,>8͈~?UmF&񂆉>At3XM"5bPv˺y0 rvjSC/]J njx K=t\;^Y>9YYUXnxaQeWN]8_67.XǿH!w|q3S`.^RtnP}2kdFZ[4]TU8KDI𼏥&'r-s-y~ulUO;m"ҔCuv*lլf⛍J'PwP@c7CH"q2'hT~ V< (c {A'Wv%oz\N'ʬ2WBtX׎;_$&cʂ޼홦*VW x %#VE.Hq(F7!Ylhj!mq~z[]ăq+i^+N7 zۜU (J[ oضAWlbPՊpՏ{U̠6l6,#XV@YSv 5i\|c$QIaE+b'P_(+͙bKl5L=PYn'75|Yvj=RpxBy@8^\oTg2:/RKR1Y:T Beۼ;Ăc!k9q7Af1\;>*"ϋ4 PZ,4.|YpN_ X٥'Ӡ{PWRɱYKwP&w:(yHJe~kd#ԌoIuΐTAЃ4 4ǢԼ+jl݈_WQ+Oy־ 忷&҅)JU[J~ټ辁a-L3 Wy/wƫ PU=T#ڶIaú޹\wDz*a^A奐[ `hW}Ӧ=5>`bPI]0BymAr%VZѢy)s fdˈҌp_ŵo?0׭ =*͖2+Ñ!X>Q!\zPX}GslsF #s%O9>tPVV0 avL+pfĻJhF*'0>5͏UX4l-hFc谄qөSk6#*;^v$~_GZ.B[ DżN  CSEDզ1Rt?֒O U'8"DspVDaf"M S># H*lUhD5SDR41SqeKub,~xiB:Ӎ *DCFH1Ǔ~AgvETt*ūƈ{,+yj:jSN?xxG+yKr`4G_~L̮ot{1p4(.e.dL0 q"VnROɄ(&: bqhMdȌWZU/Ub,gy]6^+֗QNqwdTIyv2ڷu$\CC ws k2NЍJmڒF/ʅc{JX &TG6dUoD~-*¸ZqA)Q?4u92d~?!qe݃TNJ.._1. ũ$bDs6^\32 GAfh') ?f,u(#ܭ, e\i!  1q~¾S4+rkMjr՘ƶYjm۷jӼ4@tFVt)_BdI e5Ĝ0Q?CġvO`3UIa̤ğ<uVtڦ:Nm*8~UHC] vA`~kg"xjfe뢼7yqE?}F \Jմƨ$lϜ:]Y)i&&_t2Nh81>y-;P}.u[a +U(KHs &YxtDnڽkO$⫨76=JD%?Xa<= XLEgVp>i>Vq"AOÊjytd|hJ5TGNSeW`!6Q)lqw>Br ]ub[/ܺhuzӐi|-s,"!QO57[S/ [ eV2e7̄P7= 4ߞGNٹ{9 Qj AQ08׬ /UghC:OtY#ݴǰΧʂ4.}A6Gƫ6բSO$$-lܰ䆂ѳ5.´Ǖ/ݶ'Ʒ#/<N> UZ9<@@-7(s9ybfs۪cYFĖ6~][,_ l{EP3I+Υ3>=!ݴBׂճݰ6#ԲԥBQ$׳WҎV69:%l-͓|LbS>ߵ)LoG&zV3X]ЀjҘ+Omw!u  ěUDD .bK s_cP\f&9s˽sq\@>TdG'N kE4Io@j. ?1?`ޅYh(c6 ].Pbh:_ m`">ӻtapeQନqFL"ė(Qdi1 7b9 @8 Ra֣ٱSAH\KUTFyL[jc(?M4ѣؽ]E\6U =>Pqsj[֠,WKNO&&6 QD rum}C$\2FLµ5uS.v+Y]WPNS⍳m/ Z{>s1UQ+ʫpQ%Qv"T1KS !(ǜņ> $g]+0ё. `& žQvTXHaL!5Dxuh5^*S#n %:Z__[ TѷqW(s q~6e&+&w 3~fr=?O=is&a?,Ů>/!+gvJޫ,K5CdG4/3 />qqtTP Vwś|ӓҡ|4l} <忳X8?}\2Q_=$ܤLŲ97xDL_rq8NԐoWv`tkժ?tgO'*:;B[r<ܟLbt*K Tm5wd   Pq~oaIRw8)abI>[8Ҋ4*14lwcRDZ]rNt"B~8ABz&A}@Fetս7|m\^|k9_Tդاw5p r|t@BWϙO~e|PöJrynwDlBQ$Hs=B4Nn` Kb3fG jk8ErkǸ K㙴plXos2o>FB:"EotN -3>`"1E)a{6v0ռ? {E>enuTjdBEVp{Ok`p d,1Gi]~O+=~] *8\!$I%ٙLvPhkM' cS I{:Mاhm,n F)H}bl*&O x6 !ӷ&/H?fh*&FC7xsZdT-T{?regQgD`:Yՙb"sj5S1))(!9jɋu3Qžx3&~`=J|~ᾥ*eiJgiU'U@,hfu":rK|6XƓ[,GuG*gN zWN9kL'=!gYh*7z:3ecqN=~ w ~ώ*٭`u{bw XUzo8#?^pWI-2Ѧ6v-yJA{#3Xp:ۧ;AؘCdNt|6pnnb=UxY cAi du-m,J666A5HI^SݣU*J7]hVFx%Nhj>,ko sAYI?GbPs/˪\T1Rf]WPBd'%֋H 蕧?q MrvWn͍y*ɫ_ WS%\웒;|99T/8hC-v4U6avmXhkiz i o8t[vDŽu Ԋw琝e@r+w|j>0>B6e1[HR3)nRpȵO'˭DKxfⰲdqV&{JDع]@ʫQUNmU۠k|XnإŻιl"VS&,,ƅ4"%!RO-Cd*n2G$Gq+#aeKg0O2%﹌?B;7J{P#ɀcP3!4 Qp:*ָ9=wөw`6VxGNĽxupD=cX3se,~`:ve3O[V*5+{L-@u{r,@p'<,2 pL) XKm0&0F4Tu+!adZ A9H+ߋ߾hQQ ieCX(I [X'Ji¸'67˧bF@_䃞]2-ߡsSfܦ wW1Gr{TiguT[߯K'cES4 {gT:am" B6]z2)sЍb'̙|M뛏hwX0?Rch96XNe^0 ;w Wp_54}ʰy~8{R 검r/qi_zLt{%%&$9.V6]byxj [F)fĵz( e[fsle ^W D== 5;ccߠ?@-` ߖD\XűvaŜ&sdQ̿CUCGSgoN+r X_8)ɨ9ī>9eZ98K}tDi، ɾ'YVHe<-[[WN؁7xieɇ.kb=g "Џ.=+>tp=is@ 8{8U+xW(@,u$:aٱ% lmg0sٶ"׎~&J?%#Z[:Nߪn72!dQ{H됰d옆F\@볙4DiΖW8XMmlHh{#2Ҹ}J~/-ץݪj& N("6y_eM$ 6"m\H S -Bu-qy`^y]/M=P$_!E/> ڳՆ揰SCjf3$-f9谭,%ua9j<3m02;Ԋ2j9mIkڹ.t_Ux/Ec6꿿{#ܐ.Y 6+CzehFWPc8`4s%O4er)!1*% 74(Խe{T$l|SnSw(Rh[pLݐAoRWl0l#*Pj`.843_ L]Hk? m!)~q$rwR GtYW<U~^u&[$ @Öqz, )a̚y ْƞD/ëXdc;= ^-Y!܌hy_nBtn)#9ˮ AU{ҽY4khKOX4ɉgd/<ݾrPoGd <@jf.F*0X&+f~Lz|kMngulL׻>(Z`ؖmC@x4ZtF٭ߓHdj]h R NbYV`"/J83Ō:楖6 C,:SZ5fapra!G7ݴhGQjNs2痤-K:+a:i}}yv;Ny0Sec2Fo'R^auo2% Oovb ijB endstream endobj 433 0 obj <> endobj 434 0 obj [435 0 R] endobj 435 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 621 0 0 839 0 0 cm /ImagePart_2105 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 249.099 665.25 Tm 117 Tz 3 Tr /OPExtFont9 6.5 Tf (-- noise level=1/8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 117 Tz 3 Tr 1 0 0 1 249.099 657.299 Tm 99 Tz (-) Tj 1 0 0 1 266.899 657.299 Tm 89 Tz (noise level=1116 ) Tj 1 0 0 1 249.349 649.399 Tm 120 Tz (- noise level=1/32 ) Tj 1 0 0 1 266.899 641.5 Tm 93 Tz (noise level=1/64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 93 Tz 3 Tr 1 0 0 1 249.349 633.549 Tm 99 Tz (-) Tj 1 0 0 1 266.899 633.549 Tm 93 Tz (noise level=1/128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 93 Tz 3 Tr 1 0 0 1 465.6 593.7 Tm 99 Tz (-) Tj 1 0 0 1 483.1 593.7 Tm 91 Tz (noise level=1/8 ) Tj 1 0 0 1 465.6 585.799 Tm 118 Tz (- noise level=1/16 ) Tj 1 0 0 1 465.6 577.899 Tm 119 Tz (- noise level=1/32 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 119 Tz 3 Tr 1 0 0 1 483.1 569.95 Tm 91 Tz (noise level=1/64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 91 Tz 3 Tr 1 0 0 1 465.6 562.049 Tm 99 Tz (-) Tj 1 0 0 1 483.1 562.049 Tm 92 Tz (noise level=1/128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 92 Tz 3 Tr 1 0 0 1 176.4 715.399 Tm 108 Tz /OPExtFont3 10.5 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 108 Tz 3 Tr 1 0 0 1 125.299 500.85 Tm 98 Tz (Figure 4.6: Follow Figure 4.5, Parameter estimation using forecast Ignorance ) Tj 1 0 0 1 125.5 487.399 Tm 94 Tz (Score for logistic map with a=1.85, initial condition ensemble formed by dynam-) Tj 1 0 0 1 125.299 473.699 Tm 95 Tz (ical consistent ensemble, a\) based on lead time 1 forecast b\) based on lead time ) Tj 1 0 0 1 125.5 460.05 Tm 94 Tz (4 forecast. Note scale change on y axis from Figure 4.4a and 4.5. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 94 Tz 3 Tr 1 0 0 1 125.75 427.649 Tm 109 Tz /OPExtFont3 15.5 Tf (4.4 Parameter estimation by exploiting dynam-) Tj 1 0 0 1 167.3 393.1 Tm 103 Tz (ical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 103 Tz 3 Tr 1 0 0 1 125.299 359.5 Tm 96 Tz /OPExtFont3 10.5 Tf (In this section we introduce a second new parameter estimation method which ) Tj 1 0 0 1 125.75 336.899 Tm 98 Tz (aims to balance the information provided by the dynamic equations and that ) Tj 1 0 0 1 125.5 314.35 Tm 97 Tz (from the observations. We consider this method as a "geometric" approach as ) Tj 1 0 0 1 125.5 292.049 Tm 95 Tz (emphasis is placed on model trajectories and their distributions rather than on ) Tj 1 0 0 1 125.5 269.25 Tm 93 Tz (traditional summary test statistics using observations and forecasts at particular ) Tj 1 0 0 1 125.5 246.45 Tm (lead times. This study is made in cooperation with Milena C. Cuellar, Leonard A. ) Tj 1 0 0 1 125.75 223.649 Tm 92 Tz (Smith and Kevin Judd and some of the principal results are presented in \(20; 85\). ) Tj 1 0 0 1 142.3 201.1 Tm 98 Tz (For each parameter value, model trajectories and pseudo-orbits are firstly ) Tj 1 0 0 1 125.75 178.299 Tm 97 Tz (obtained by applying ISGD method upon the observations \(see chapter 3\), the ) Tj 1 0 0 1 125.75 155.7 Tm 92 Tz (parameter values are then evaluated upon how well the corresponding trajectories ) Tj 1 0 0 1 125.75 132.899 Tm 93 Tz (and pseudo-orbits mimic the observations. Instead of looking at only one statistic ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 93 Tz 3 Tr 1 0 0 1 315.6 62.85 Tm 77 Tz (78 ) Tj ET EMC endstream endobj 436 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 437 0 obj <> stream 0  ,,'ttj[ATj\X[V.z TCo۬OpXH|'7p^%OmK᷂gt!+w%<섀8 WyhG(J2A{L%l3K~'ZGQLCbvc= { ~Qٌn!3z2`>aA{v"d˝Pe\v|p@ `9&ԁKj$(ew&7YX#ʹ띿9JZU4?]E{"@u6\>lU{7k›9cg4,eN[t(LVׄfw|T WWoªC#5yb}>bb2hr7yr`^X Җξ=hhQ=OQYcXZ8lMv(ބJ3ʼ8+]:Z2Hk[E;F^]_{Kͧ;@8ؗtqyb+6BSBΟe@1*RQ(4wN9MogAE $1r]amM7)O/j[JR{wRP^QuDߙzvA u9o;6$+DdMLZ@pS*dVy@ PVץ@UcxIpW2Fq93+l`_5AR9Q5\ ȒS O0c $A$.B#Yi2\&"];>d\W3LNgZ%|QcUBFrN dWf~J†I恥؏#ztP5S:f(M淀68Lus/ԩ5@&̢=Qd*fZ"~h#RzlI #3Kbyɔ2A!u~v7JǝܾZΘ,p̉}i,RGaÒw)!=^us>=Kǰ}ŷ䰪cyܴӨb0BJq|'KD>EU= mmzk8nLqvsW~mtܫȦRe\a68ָܐl`đ;Sd9Ī4v=mq3#m?LvLɫ|;ǾKS7|\Z7,A U=[-Ćb1F &-7BOx!&@^{NWwRkṕ ٥IgkaP 8xpzp"74Qc6NHP$GQMbtޠ+40 &hɾ8݅H0 S"YKB g ;ƦÆ `9w$LRokIw#,ֵzQ+l\ $ۄ͏YI% JՐVLo,vp^6BS?"Ҏ ydg\jt_̒.ANvo{A2KAꅧ`'c2`:rTcNJ0=R%Η:lsMH &G u{PxyӼ , l\Gڋz~&~-|G!u̢៷mRB= G jt F Jwx,nx$Kh3HΠ:?95fb_pos' {:\JY2[e\ :|*!(ǫjҙз:,vbAn]Wg;*NijSR9qpC3Ԙ+S5IdMfinQHZdcy>Oڏ xpäҴ1uiI $9.cRkNjAOm \~ K͔fq˿RIpiƎE1}H%ký7?cQA=5u=duZvy5bMC*i,ŀNi-"A 9$֊nnC%Qȁyd싇7f RN'ޯN^;Pwm>a+\91~2.`f"$9!&Fˊyɻtgjհ!ԭz eKu;.n$.qx[5&Av#nYym㡲]QDX+XT =?> L($}A C3)0{9qy͒M3X;~ ﴻFTecdy>Յޤ@z2n#!=wǢB/Aw>썁KkRkʤ V}ɧɧI(6GBU$(3'4<KNf8ϰDѰF{c~.B91rnbp_%֭7oHk _ehLPf*j4,x/"zJx^i$&|xY&"V-:.En瘜ǞĶP Y,a`_Qmp5/ MF6ޠy`ˁ/"N.JuGoQ7P߈W6B!5M̯Ƞ &,=iV؁J$q)[CX)5N<KTсdW9}}0|{חe%V˙QtˮE~ȦW Bma.$)跻^xSrUGYTP!Iwr~ލhHPBtQ'#-ԩ-zR.T w-4iH2M =`YNr;@ \TO^PϢ@@;(|1NDǸ{O⮇m:22Mfү#^^|ُ"Mw 'uq=xhQ ;.!9O&~.d~u [0*d VqIs\1ub c$u6#8Yc_ /Zt} ZV.{iǻ~keJ-LDmF#Z\<ņY;_e`m|a3*n ,b":E1 p噓>V4MX֤؂ET S^0$O! ~^Wb/DhKsH$%Vm+b*Et=VCڢW<)~XeN_jWry vl@NZtRPX̹ư2HwU$oDjԕ\)X|*jX+ը0*5D^Ғdف_ T:gJ'lڪi)ޅVKogy8#u7p]Dґd. zGrT]" .PI C4ZztG/=Gs|q(&t7^/Fm>W'ռhZ (cRYT ԯtؐB>N䑹ԆD[~cbhWDCbX qϑ&O~x~R>rһ&L)Qob0|uFQ3 0al2y|lk?zpkxB,A zA)d<()*Xi)xW+&Ә1d?Ts O/OI0V?wt'p $U1LU; !{Z@g(G{9t 6>9& 8|/H-@X q|p\=#$f#G¾ 9{e+HJ_n0-?qCқ</u7FƆ],T RrF7D" [P , Ԩѭ$BC؀Z|[Ӯ!N.Nγ{Xm+w%Y2Xy'f[LyXV"DM͒Ru|{olIyDcO~pѹ—ˬ?x\7zA} ,z%KsL1ԥ8_ /e_2@?.%^7E{@zbuԓ؅>ZM:2Z]/Q-w11T\ 㛛6}#q. Y'ɉ)V;TNK`qr&dvmHE9 4# :Z0jyrI>X8J~W tPY:bLb #Mu nI颽=W7[*GduWpH`]9Q_R\c$~G x/u *! z4&cBsܨC9OPBfy:}zwV$RIlGnP Rߚk=} {kےM߉O)XzaCG.~ҹ`U2h8N4 qTჁ]v\q+`E3atoI_`\&4INCJ}-/9{N;";ൄz9 !Ύ(B:X!' ?"w1|TIYX!*6@Z7w5XzBȻa8x#a/aJps&^-;Fکj*ϫ4w\A/Vh% kXΓeHМ+{&ըMs+MMr=lb6黉f5AWRrUnSᅝ-9X Rՠ T?PÍK &,gZ+*0F6x'%Su_HbU)oaʠ됡|] P n:nP^EmNϋ07O 5ԣ3 4Wx 5n(0mޯRw'cb`` h}JG iQwJOS7>dk=!CX'oF?jWc5>{Bʿj`  d2žE17gW@#ZoKg&PJ%ɉt-h|ט`E8>s, %֙s&+۷Vv Y%N !r=xXD1]wnmfx>"Z޷99;&XdZYv_M޺0uz'^2*.ْsKsCĎD/:;{E@2 1׎B4,|sH'FE+#{"F[WA8>wyW3b-.4ÃR'Ü➶5c\$gNjm)Y}~pY4ބZԂ6m[L{?+b1p  r@u `c{8SXW,30P暗!8x=c^ Z\ eTBj5tIub%\uf#(rxujFGt<@z` c5HJU 47#-2J\ fH˫h^fW.E͟]g' PB<ViwAq\${RkH-D:,~#Zs mV pjEaAIbGRWU+ҼK\k6Xn3Ч F7x91k2n)hndqnllF,Y,c5|!vTbT:VF9T]{#KeZ o l9zȕE,`nBOL ^DdAZk" nJ 1V9BʭJ&bj-PF8bN. +|J}(mӃq 4h so ٮ ![z$[+N^˛@,JpK%(8vJU(dt5Im6ϴ ujD t\2\G&8y Vh +N'݌Zz`n<d10 Jc+(wsgct*#L``,\S/76=:u%.4ܸ(/Dn&#?ݰݱ6ٴ* bPTqnAT~WSf:ZĎ (^#>+׊DH*P/]tg1UČJ* ΑZ nZ#n V;ZyX>j.,bsN Eїc-a9zb0l;}wQTMY[8IIW'zy]DZIn.opMZqs;UX&EB y¶ - .N彸5zn* jkAj@K8:׏+9.Hz`J_Fi8xkG:hO>~︫ p4G\4*UWWdm֪B?|hG 'ٱvfxc+֦ i%pPziQ"ʎ&Kr!1ImE20bМI\$_s6sG<qSY{}jhD,u]HYqiq.|:2;d-}^G[ I NO{^819!R:6_D"𲢌{6=eζ*caDÒ0ØZ6Hz tdOrf`S"7hhB2؊@tbbҴ5oHK}p@{ѡ uM$(ĄF:HtƋ@IlK3֜(SǷIPGr`v4Lѓ:\ qdLQ4rV< T֗E $[g. h$O$.;$5C~zDL򮖪? '쟓|. [1Ó(œ@;Hi2$T㥣(.~ vgleZKZþ.S/[_:AhsTːv0"ag>`|)Q%DHn~2:`$EL`9y-8OC:Cq(+O$_FZ`V>yG]eNOx܂ZG^_'?j}h1x~mTz;D„DkYfxV$J$;̒&:wE ,%7ZuSo dYϒ?"4}oRr Ů,GvuzqH,| iŢ3VvG oFQ|%m* ZӼf|"\s`drqztk~L&nWqL)Y4+4w^{ 8t*@K֌2r:&6H$L&&._i(}RUw0|Xׁ8F=6zvsp[.5ԈJ(dcGPIVZUJ5ub}jPA~]fcAuH\ub/VxO2c9[Bmq16J|@nIxy’p/LF|.L]60u!k: %e.8}Mwun,36hV }K{QI(qik~{ஈ5{B*wڗp[ 4wtBL!_7ڋFP[D/ 1G!>BgJ*$}y/˷ㅳ,7\'rfB}\[l޼\T]wg!8)U_XH rN߅uh?^;ԺȝݾP5?Ebo$UmcCmL}qxh󘥡vPTqJ7 ވbved;(0=^bZ\5 !1 ;`BZ$*QiT)!@eP 9uj]?EbU(tɕnؘ]K\̽u\ \0ƎBn'v^xU6 ɧ'QF GlLxW<އH+a /L%5ùlxqe#Λ'#xhB=0 \Uu=ۛ(BnTw [jL,%%Ч[Zʔ4uZsk''R\gzYEJX"֯‹ė9kn.7KEQZF̃HI4w Qt~,*mBYh6nW/댦lI70 ohӥZa&OWN&#fvm*T:K[dg"E_vlBB?uĺ !OoH,6:R%Zx-eII:fڼMX7 KG=͑P:6#c|"_w(YK>%. ˆ0 dp)/܏u{\TKDHhn=y5_yK裙Xݐw}y)|7Y3d1F2D +)clk_:z>q/JK[P;K{]z,,JaU& m"|Z=}iP"RPh oIش#j)*mY9,~:'#9fAM׵m?SA/v3Gv6`$9ž=HcBMZɉK>Gk3ӷ_sn{i_m$B#?KZ'e޽: mE0|[kp~$$T;lx;Y^ME+WLEGVoW[+Ǹ =ZFK3'n^a dtšH@#gr8SeZAVbFQbn/&ڿGn3P&H|krTfki!>'OX̾P)NozarQCRK(ET &$)"W2B z|m;RեbJrPxX@݈/j8m9c\$SI%Mӭ$qTPA9 8N –g ^ D1!lU>YKH*y}D+ ^lgτr^ ]]20`~^D=q> b+)[Ô_+q8u1*CasG˿D{g h_5MLݳ^m endstream endobj 438 0 obj <> endobj 439 0 obj [440 0 R] endobj 440 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2106 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 175.9 719 Tm 105 Tz 3 Tr /OPExtFont3 11 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 123.599 676.049 Tm 92 Tz (or measurement, we measure i\) the consistency between model trajectories and ) Tj 1 0 0 1 123.599 653.25 Tm 93 Tz (observations by shadowing time; ii\) how well model pseudo-orbits approximate ) Tj 1 0 0 1 123.599 630.2 Tm 92 Tz (relevant trajectories by the mismatch error and iii\) the consistency between the ) Tj 1 0 0 1 123.349 607.399 Tm 94 Tz (implied noise distribution \(corresponding to the model pseudo-orbits\) and the ) Tj 1 0 0 1 123.349 584.35 Tm 88 Tz (noise model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 140.4 561.299 Tm 94 Tz (Within the perfect model scenario, there exists a parameter set \(for the dy-) Tj 1 0 0 1 123.349 538.299 Tm 93 Tz (namic model and the noise model\) which admits the true trajectory which did, ) Tj 1 0 0 1 123.099 515.25 Tm 91 Tz (in fact, generate the observed data. Our method is aiming to identify such set by ) Tj 1 0 0 1 123.099 492.199 Tm 90 Tz (exploiting dynamical coherence. Outside PMS the preferred cost function will un-) Tj 1 0 0 1 123.099 469.149 Tm (doubtedly depend upon the application; parameters which admit long shadowing ) Tj 1 0 0 1 123.099 445.899 Tm 91 Tz (times seem a good choice for forecast models. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 123.099 401.25 Tm 112 Tz /OPExtFont3 13 Tf (4.4.1 Shadowing time ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 112 Tz 3 Tr 1 0 0 1 122.9 370.5 Tm 94 Tz /OPExtFont3 11 Tf (Although superficially similar, the question of whether a model shadows a set ) Tj 1 0 0 1 122.9 347.5 Tm 95 Tz (of observations is a fundamentally different notion from the traditional ques-) Tj 1 0 0 1 122.9 324.45 Tm 93 Tz (tion of whether or not one mathematical system can shadow the trajectories of ) Tj 1 0 0 1 122.9 301.399 Tm 94 Tz (another \(26; 31; 33; 58; 77; 83\). Traditional shadowing \(77\) involves two well-) Tj 1 0 0 1 122.9 278.1 Tm 95 Tz (defined mathematical systems. Our ultimate interest here is between a set of ) Tj 1 0 0 1 122.9 255.1 Tm 93 Tz (observations and a proposed model. Given a segment of observations s) Tj 1 0 0 1 478.8 255.299 Tm 65 Tz /OPExtFont2 11 Tf (o) Tj 1 0 0 1 484.3 255.299 Tm 74 Tz /OPExtFont3 11 Tf (, ..., ) Tj 1 0 0 1 503.05 255.299 Tm 92 Tz /OPExtFont6 12 Tf (s) Tj 1 0 0 1 508.1 255.299 Tm 71 Tz /OPExtFont8 12 Tf (N) Tj 1 0 0 1 516.5 255.299 Tm 40 Tz /OPExtFont6 12 Tf (, ) Tj 1 0 0 1 122.65 232.049 Tm 92 Tz /OPExtFont3 11 Tf (we are interested whether there exists a model trajectory \(for a given parameter ) Tj 1 0 0 1 122.4 208.75 Tm 99 Tz (value\) x) Tj 1 0 0 1 163.9 208.75 Tm 65 Tz /OPExtFont2 11 Tf (0) Tj 1 0 0 1 169.699 208.75 Tm 82 Tz /OPExtFont3 11 Tf (, ..., x) Tj 1 0 0 1 195.349 208.75 Tm 84 Tz /OPExtFont2 11 Tf (N ) Tj 1 0 0 1 202.099 208.75 Tm 96 Tz /OPExtFont3 11 Tf ( that the residuals defined by the trajectory and the observa-) Tj 1 0 0 1 122.4 185.5 Tm 92 Tz (tions, i.e. si x) Tj 1 0 0 1 202.55 185.7 Tm 70 Tz /OPExtFont2 11 Tf (i) Tj 1 0 0 1 206.4 185.7 Tm 88 Tz /OPExtFont3 11 Tf (, i = 0, ..., ) Tj 1 0 0 1 255.349 185.5 Tm 111 Tz /OPExtFont6 12 Tf (N, ) Tj 1 0 0 1 272.649 185.5 Tm 90 Tz /OPExtFont3 11 Tf (are consistent with the observational noise model. ) Tj 1 0 0 1 122.4 162.45 Tm 93 Tz (For an observation s) Tj 1 0 0 1 226.55 162.45 Tm 58 Tz (o ) Tj 1 0 0 1 230.15 162.7 Tm 97 Tz ( at initial time t = 0, the corresponding shadowing time ) Tj 1 0 0 1 122.4 139.399 Tm 225 Tz (;) Tj 1 0 0 1 131.05 139.399 Tm 51 Tz /OPExtFont2 11 Tf (0 ) Tj 1 0 0 1 133.9 139.399 Tm 100 Tz /OPExtFont3 11 Tf ( is the largest ) Tj 1 0 0 1 212.9 139.399 Tm 128 Tz /OPExtFont6 12 Tf (K ) Tj 1 0 0 1 228.699 139.399 Tm 97 Tz /OPExtFont3 11 Tf (such that, there is some model state x) Tj 1 0 0 1 430.3 139.399 Tm 69 Tz /OPExtFont2 11 Tf (0) Tj 1 0 0 1 436.1 139.399 Tm 95 Tz /OPExtFont3 11 Tf (, the time series ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 95 Tz 3 Tr 1 0 0 1 315.1 52.75 Tm 77 Tz (79 ) Tj ET EMC endstream endobj 441 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 442 0 obj <> stream 0 ! ,,Ob7 BT}@Ѣ%z*\"T}YF-SEdIe!Bm?Hj*<%B}9 x!)V$$7ި$ ?9rq3ͫ$O\\Bm}#/` ?L]?NòA@_//BXE= T,6'8x7'_3`zVՁ(_\ 뎲T)HsL*P|)3v2,{ G{'K仅̲ 6y!OZ'ÿLy6jj ""x-xy0 ]nT﫩:znC $r;kA%j-1mIYb]IAːƟ!bXAYS\qؗG7_L5(Vz)32jz-7~kM[|̓h͚ن&BOGs [ݑ1J#xF]6On5r(6}g}f-B:sa)w4w=苑,(^| 1r&m9ɔ=:2$V@M?%Ŭ!#.=ܕ}؎לj7v,nR8W @h- *Gv_x MC*o,e-L6bJJ&NQMZ߬q{ hoٯf' :,QkMqRNBPfb_ތ5 ,gq Kvʲ$Dx?^K a!#m'(*Zo(Ml/JODb5,RHV; "rsk3;:E#0X[Шv:j?&'8| `4C<AN:-XR*^ v[Zeu\d,kW\L,UV.XДT`Δx<; obl w$_e {L}LMReSFp"8v6JaqNl>}(`Gﭮ Ȕb'Jq[rF$v*G. $Tr3c.D͊~|Ry bm>XGVAo^U{.lk1.7:s+!e4VGn%޴2"|[ ]P7go7e rx 6nt>C8'\ #ٔB+p¯ܟ cg謯h\(CH;l@VDcT9mg;v+s+'hBq UDF`W -̬ӓ;WkfZ&F *Mk_>![3 wGC\B1Yg/;xd5-N\vpJx2׈ 7=t0>Qա+/2r!f(9i; n~z$IbGI>x7Ց`:q⾭%c/L]e8v"$)N J_d8dPq]Yw &rSG篿<\mߓ4էZ!+n*<0S8wږ7gZLOɊvN}^LMLzGvk.u"M%lAHDvP>9݁( 0Z|qYbk:kɍԁeATda:K'_I!_OS BqkX/ގ٦y|vQC(ʠn_^xt #R2_ {%0Wt! Hz .ɅʽoX {Q9[ =`gJ?ZgfJ[kdV z0RΩnd/hdAyktF'@O;WE+(tMRLyy] F gp>8e(-BB3I%% jc`c(]ܱ$Ƨ D 0,lN jyME=W}/h3Nk g= "mb$QԺ?<=8jvnkL}G 0OXx쵎0Reny!%"4ܫ:)mVFv,L^˵!:e7SOf-m^ih!|g1ݵr>;rʱl<*(πݍz``o-^ _ Z"Qj"[OzB: CSh:vcC*w*gc]rv>īrg{yQ>YxfEuSvH n %XF /.rt]bi;<æI ->;]FhʚL,3uwl X+Cҙ\oev9 JǠ#p6 2fخGvfDA028S> dĎL%5rв9 6ҀcpR yph F!2jEM~ C]o'ksiNB}PP]ܘG _d7ER53 w=`X\! ?;\4|]sOܟk j{*[{{LٷJ:~LŅɆ[ncS,S6ZGgF!`)onVayA*K)MT 4= GPG2&t\ "%n~@v?\)Z{' !@1-NI?5%c|&1d9 ˲kŖ60w4{\EH!߭Z rR!DP|fM;xc_\JEYCDd'TLd fV$4 (#"C\W#u ^E6 VD;_lL9L2v v+~`O,g-2X|ȶ7Da ۃ^x/r@~P29crhK+]Vbڕ)u\e}UL5LU쓻#!ʟVS8|?zKdm[|lԡ07` wI+#1PѪJH66إ9-Ue3!+e% sf@ 7nn,'bX0*J )Η856~y}}zW,iyL1>d$ʁ{h^huG6UN=N ʤ z_c.Z:):z6*v-rUPx"nU Kc#wc $ETnC tef W&EKXMɎq/D9~Lu6O y.LíV.Ea3p<85G`8o=怇ULs0-s)୏}44 1JA@jǑS j۽Et{W*g=R޿y| .&LBBE&޷kD~\phlӀŸ{o6nm53e6(S'MJdO;{(q <{9V.s&=?c9өiU\[Jzyif2S! E<xXPyD'_X+KUXe^t0")؋0^ʉ}p];r+xi6YF#4oIVvkPuOI) Е8E59px ]`/:{{,,"lBßpсα}}햤lRn9XB:1d ]WWg\63SFl/nFBsá7@uk w DWl|bV\] 2H#x/]񷎙*kٯVkEΐ}\cE˹8GAF7D: 9# a Rڗ̒:-zNC 8r D.ۙhJ]ҝZ:"obHsuSS9$*|9o.Ru:>T M#HLJ$=,/мHl(tj/ͥؑ$cWm)x^ z۠TSFYh 5@_!}vVt~Lb-=B *&A_*|b6aKT\Ϝofby;l4ixb D1IT:X@5O|Myxfr鋐\<<'/[ý?%r:1fs]Uؿ#_իdJú~4d~SYX t4&ha<9\@* ]o45.pI݉{ מBYv(}_U.xC+q)&O>#I 9aǶ([Bw>,*`}DB_G0'LhZQj'jm1U~:5QF&rRIwպ\V O8 }7Gc%,A-!k;^#ު@7a3.y,pu7Zm4!\J'EmXɠj*ؓc_繤Ya7WM]7)A yEbୂu#b|Hϊo3G%y.ɳL4UzwK5H 0WdL LAN8k/hW51l=cYU^@_Dp8L< _)PW&::ڻFUzO%XelahX{{|9h!w1`p/|O}M5zLt(,Rcab5Ss'qfAw< U7^o̵E~r`Wm"؂¼{ډX֋%/~R ]^i=}4ŁM?x[@#œ%ON\R.̫O?bre?CLnd"5nO3 })"'R\N$/aU̡ZA $Iܮhnꗽr95/ǚ OƺwDT0i?`RLfnD \?G"# ?Wb mBBmDK(?Qt ?MGE \yZexA /iqaC%†5I*66Pʮt[2W+5vxp t ! 'Ã&f60+#ʯ<X\˾Y|""zohYa4)x:;NK3,L ~F hG:6 \T̽ 4.tXnͲBD2KjWlS _Jc"Z~T,G@E1fy4FDh 6!=k7 bqvr dH"+JG-Rs(?75N2//5V&H=7pr# (Bג)xq`6nNE۬y>?l`p"PjJѪ>FʞC*=lZJK_͍@mx6]/2ŀ }.=9S Ǫđ0bS0n.h*BM*r>@,ufZ=>8f? 0R_,5H -t8f~ DSS)o1(m2>G#ikcXY^M I{'ݻsȒGODSw@?(! /2u~SVL6gre [oݦlpyS[O ~deuNe WxY (sGMnY-z3rVo=_2?D3Lnݪ:t4fU6mǪ fK\wR9[XLh%.r`H-:nA8r?*b"6Ćqx\Y$sn{ºJ]L zus%l&\beggs.ci' z3Up4=Y>_cjxg26y^Aړ1@dpxCxДj A,ŲaM6{㎡o5\8 8 #iYYz-Ǖ:݃n[tv` IܱRicq $h'іQLTaSNj;Zk!297 9G9[)SVJmhO!!ۼV% j'u1-Ѕ4{O(8->y]i{k ͵ 4ݫ5Ơn`E.A ɋ tVLkjq[upKIVe @ Vv1 \{H=ʿ_uHllSʔ^cʂΛ R>8KIxHfʹ8C`xoo+j[g zgț`o_nU*(Onݡo}QeWmCxPk@-cy櫷N?ne`prٙQlf$a<r61ohH^Js_ q탵 ^< &6RG'>i$ VV1U]LT{wFm'r|̢RX}dvJ`7BS?Sƪ(q/H7ۙ x3Lf6"9X[Enhl*?NCcDpj@!nG紐bgʡ;DWݧhk)bJ1@DiPbr[Xn4HOi 0z$wtێ{^lSJ3Mydr7DIϺQaZm#  ,M󴝥 t2M ȸ%vp3q$@kcǬ P`3FOQƸO0@س[fPBviLn% ك[`XY] LvLڴc ӧm cأ`0QϷG&'kUkӊ ējCzb/'t[9·*ݎwĹ3 @14eC"j{tErg*콲w+m(>IlJn> *Ej3T6lX&Os AX` ɠ2|qZ^Vr=nn*T,48kj0~~`( /,OygAC kF#/kޜ.y rx=zHyHL[I͝9/4[ ϔ&KqN 5{ $$F `DMcW{rn rݠ8PYb:q5g̬߫t?H4M<N)l%8qmxT+_G,E{ܼ+*yE~0GF7=ƜvSuT\]EzbfiZ419 &.#$0Ћ0~ߊ9,h$`.yrͤ%Pezk~3dj1cE-w&xmNG%;Yu"ʹ zL`Hw&3]$O[-nwӳ1+$ Ub=Wp52L~)kH R8*:Ἤv&m|?UN$l*'Jm`B}Hj4:7L IpV&xx7 6N]_/!)A[WXdkǜĎ{$_/Bw"Û`ķ&n~DKojR9c~0WAk endstream endobj 443 0 obj <> endobj 444 0 obj [445 0 R] endobj 445 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2107 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 176.15 719.7 Tm 105 Tz 3 Tr /OPExtFont3 11 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 123.599 676.75 Tm 95 Tz (ri = si F\() Tj 1 0 0 1 183.849 676.75 Tm 65 Tz (\)) Tj 1 0 0 1 188.15 676.75 Tm 109 Tz (\(x) Tj 1 0 0 1 198.949 676.75 Tm 68 Tz /OPExtFont5 11 Tf (o) Tj 1 0 0 1 204.699 676.75 Tm 91 Tz /OPExtFont3 11 Tf (, a\), i = 0, ) Tj 1 0 0 1 255.099 676.75 Tm 116 Tz /OPExtFont6 12 Tf (...,K ) Tj 1 0 0 1 282.949 676.75 Tm 90 Tz /OPExtFont3 11 Tf (is consistent with the noise model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 140.9 653.7 Tm 92 Tz (In order to calculate the shadowing time, one must evaluate the consistency ) Tj 1 0 0 1 123.849 630.7 Tm 96 Tz (between a series of residuals and the noise model in some way. For uniform ) Tj 1 0 0 1 123.849 607.899 Tm 99 Tz (bounded noise this is straightforward: A series of residuals r) Tj 1 0 0 1 448.3 608.1 Tm 86 Tz /OPExtFont5 11 Tf (K ) Tj 1 0 0 1 455.3 608.1 Tm 88 Tz /OPExtFont3 11 Tf ( is consistent ) Tj 1 0 0 1 123.599 584.85 Tm 94 Tz (with the noise model when every residual is inside the bound. For unbounded ) Tj 1 0 0 1 123.599 562.049 Tm 90 Tz (noise model, for example Gaussian distribution, there are a variety of approaches ) Tj 1 0 0 1 123.849 539 Tm (to test whether a series points are drawn from the given distribution, for example ) Tj 1 0 0 1 124.299 515.95 Tm 96 Tz (Chi-Square test and Kolmogorov-Smirnov test. In our methodology we adopt ) Tj 1 0 0 1 124.299 492.699 Tm 94 Tz (a simple method based on threshold exceedance to do the test. Given that the ) Tj 1 0 0 1 123.599 469.649 Tm 89 Tz (noise model is unbounded, any observation is conceivable; we look for relevant \(9\) ) Tj 1 0 0 1 123.599 446.6 Tm (shadows within a certain probability bound. For purposes of illustration and sim-) Tj 1 0 0 1 123.599 423.55 Tm 91 Tz (plicity, we use the scalar to illustrate the procedure. We test the null hypothesis ) Tj 1 0 0 1 123.599 400.5 Tm 92 Tz (that the set of residuals \(r) Tj 1 0 0 1 252.5 400.5 Tm 85 Tz /OPExtFont5 11 Tf (i) Tj 1 0 0 1 256.3 400.5 Tm 84 Tz /OPExtFont3 11 Tf (, i = 0, 1, 2, ) Tj 1 0 0 1 325.899 400.5 Tm 114 Tz /OPExtFont6 12 Tf (K\) ) Tj 1 0 0 1 344.399 400.75 Tm 89 Tz /OPExtFont3 11 Tf (is consistent in distribution with in-) Tj 1 0 0 1 123.849 377.5 Tm 91 Tz (dependent draw from the noise distribution. The shadowing time is then defined ) Tj 1 0 0 1 123.849 353.699 Tm 93 Tz (to be the largest ) Tj 1 0 0 1 209.3 353.949 Tm 125 Tz /OPExtFont6 12 Tf (K ) Tj 1 0 0 1 223.9 354.199 Tm 92 Tz /OPExtFont3 11 Tf (that the null hypothesis is not rejected at the 99.9% signifi-) Tj 1 0 0 1 123.849 330.899 Tm (cant level. To accept the null hypothesis, we require both that the 90% isopleth ) Tj 1 0 0 1 123.599 307.899 Tm (of the residual distribution falls below the 99) Tj 1 0 0 1 347.75 308.1 Tm 57 Tz (t) Tj 1 0 0 1 350.899 308.35 Tm 92 Tz (h percentile of the distributions of ) Tj 1 0 0 1 123.599 284.6 Tm 90 Tz (90% isopleths given ) Tj 1 0 0 1 224.15 284.85 Tm 120 Tz /OPExtFont6 12 Tf (K ) Tj 1 0 0 1 238.3 285.1 Tm 90 Tz /OPExtFont3 11 Tf (draws from a Gaussian distribution, ) Tj 1 0 0 1 420 285.1 Tm 93 Tz /OPExtFont6 12 Tf (and ) Tj 1 0 0 1 440.399 285.299 Tm 91 Tz /OPExtFont3 11 Tf (that the median ) Tj 1 0 0 1 123.599 261.799 Tm 92 Tz (of the residual distribution falls below the corresponding 90) Tj 1 0 0 1 421.899 262.049 Tm 67 Tz (th ) Tj 1 0 0 1 429.6 262.299 Tm 94 Tz ( percentile for the ) Tj 1 0 0 1 123.599 238.5 Tm 95 Tz (median of the noise model \(Note: The thresholds will vary with the size of the ) Tj 1 0 0 1 123.599 215.5 Tm (data set and the noise model\). Together this implies that the chance rejection ) Tj 1 0 0 1 123.599 192.2 Tm 90 Tz (rate is 0.001, which will yield good results as long as the shadowing times we test ) Tj 1 0 0 1 123.599 168.899 Tm 91 Tz (are below 100 \(as they are in the results presented in section 4.4.3\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 140.4 146.1 Tm 93 Tz (For a given observation time, we are most interested in the trajectory which ) Tj 1 0 0 1 123.599 122.6 Tm 94 Tz (shadows the longest and is consistent with the observation made at that time. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 316.3 52.75 Tm 77 Tz (80 ) Tj ET EMC endstream endobj 446 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 447 0 obj <> stream 0 ! ,,b6gSOXÆkQTx{xpwIFH "Eɝ6.-gVSq' (G\=tZ3qEMUP夓zZ4mD J&+4D&yˡ7jF$e rgNΡ'&V5EЦ[LATC wk" CH~J"[;XD.T2O ES.;)i9.j2_vxb٩AvBr@>R! uov.R*[~?|2 kN;Zw*`exW-fKO\|BZry}4w(L0E(̈ v~{[1+pͮqSlUNN& N[ʝ(=%2y{{U!d)j,^b$.J۔l?=U`y˧hOg&,}Կ`*9B3'6-Ux"ij\LhD"οp,B-`j'ř.[NACPCe<6^t@z/x %/+ ^!K j0O:^% 30t Y%E dA!k*c~_wJB8O% ]H ǩ}%D>o$=ۧS:[f#U'Ϳ,_۩?'Ǝl֨|‚QӔ>!&6~<({{뵆?/H5~owNIdסϫ]?w6LqEy#fײ:dkHeq[?[] X44HKYts\7L;YΑ1a,F֪&ƐyVby4Nbn3}Ař&RKsyVDʬEGI a>$@=/`8[y?el]VKQOŇU'MY=`&LukbE|ٖ?vK{"M nqޔFq/J3 _56S\f@a) |m 2#4sFvarT$X2]b{Ot#W^65̧2L 9y3ܕrP60Ig5͇^ 3#h7eݷ 2(OK\UZԴ 58Ðd:T JlLΞB.$4ilSG/6Ft\QzpIϬ>SiRLBQywLPϣvA3SRi+BUAM2Nb x Zw6]*l)hj3$M*u'fȢ *Y8D;!f%"TBssT{WXШ&hS Bbˆ8 ,?դX9o&Zrk Rsv<;xm g\i~C45~ah{ jߦ0Bf d.:Qa ny ^ Rrc+ hy,MbJ_YPJMqQVSIXS`;$ bsc,%YEXf)綸oEd:,Y9S*{>2nh5U &֯HAE$"@6%0oqh8}},Z!wHh ((N?+E\KJ/$ylf7OI9Qӓ>;nM QemبZg}qۋ/i~@Z.68j|6*W,[8 =Ѡd)32IyJ<UPsfL&d8Ņ~ TG.9cjbUܻPO`ogGO#9JK@kLSMnh˙:s$=4]NpŲ]Ƞj*ۤq:AWqX:D+X?K sq>>o!^kѕ|!j"~Fa+:F,WC4h\gxÙEqeG}S Ie|:ݥ!ʔ($z,@Og8[)ɷ!s6YpL廀OS}1Z+Oْ"dFI >iTX7Sm w;zو帞$@liK7S¢HQ)E#<ֻ RkeB1) <:N`att9U5S X<{FkcHor7tƛmzיuذkn ĸ(N"QI4'V*`fTtד,QJnBS0J7_36.ThM߯zͮJ^e>Dž0{J/ڹδ.3+ݴʹY?\T۳eѷ!&Ǹ(9Uղ8ĸlópr=t$gʰ޳-ǾE`3ڛ:-1,N"Ñϻ<7ZJVm`e낏fZmZIm)PVH1qy; @qw~BP(…`3i̥nFwIle*_(IDN{QAN,~vY z}~)Vx<(ķ*cPЮot ,8ԇ}Rp"Dž$/;Ѿp#~m" U&); WC`]~!bc9*~ʞcEt=B,)qHBT i08<-uBL}* .2)oE“4SR$grܟ) wfr:1pd+$e\rğq@$ ؠ*֔xDSO%8 WČ J|]dg>].\ݨ$11sv4,@|,ð0e||>gb{ 9?̓uUɿ=vbЌ<Q}֙݀m:Kob PcpJ>:#`g 𡊥f !AږV-i0~|*r[& e m[(@+Y$jp25ȷVFAO/P1lD^OvZ* ry?(fJ3Q5ҸUY}/ng.֗A%USȊK†=>7zTP] ;!A;Il8d|=i~?XI+ܲ2lPNNo#;dcBۢZ o)NSZdi">7=Ӎ;Zm ckюu`8?P[Iqs`͈oON[_LMVa&_l߭0(W[pygž I/%iLfSxp$Ffdҥ86]A &m&%}ᶮ׈wpk6n0cȄ0iKNEsrNjePק*w=KXW٧wȶ>o) k^uӁzV7j? f! >s7B **sz6:6 J>m1'09I={GgHO]jۋFgQ\&ç޴#"w~S!qEۨ'VةQ?[V_k>[h-[Nvn~2,Y#{\Db b'`Dg}oc 1"at"" {˕>cp8psxW]@F UEy߇޹bW1/de4,crO%ݺ·ɹܤɸ(< ZQo7;RDbAo"郩)=odܛ=NAc%;kg 1mMF)CBDASFFr ul;`G- :fF`gͫJS pqXcWx\O56[NtxVXsElO-FSr 5`!laT$ K lqa2 pk@x"&f;Iڨ!TWX\ەz; k~!vj/',uNrO-W]!#-FC̈WBT`+KD(vaNP |tcdjqgY~#gAuDtHG<;cbO'fj m*rބnf̎J&_8;_+YzEe4Tl}S?biu_a/xcO߅򋤟2p4}B;}dɅvm2 uL0St,l+ 0[0IT;8.H,?TcQXYǧ}qo}њqO#&'Jii~Qj>ao</W))b*ES '︝掎S&^q~h^F +r c+挿DZ~8hNeᑓwzw-iu\'XρJA-n(#Jyhy?:P:*Z"B,}h>OzEF~v5cUʤ ᠾ,14>rRo5yBّ 9Rxz)O݃rtTgBb}H*c~KYNu ~5QJgo"(곶vB# xJv&axMV,@(zO&]Sn6?y=r̈·j~/4?o9,1Mskp <{;(]n>O%4ٱʲaڵ^sg+ٱ\02 N0&4>/ZE,δ]|btd\ V!l4ȟlfAдe{d' Ty F#M0еgA(㆏w̶ܦȿsS ūEײ[&ǵ/<<<ѝ8/ZǧnwVSgzc*pbS=w!M\St+hV J-LK cb9Vi-c37 LHr.QJQ׊!cONj{4̀"vc~A̒+ޛ:#I3?~SJmE Af 8Wk٫-FHDjɹkly̌=! ۘD*W HyB=5=Zu`n Z4Ir6VTP~dUsw|Bݓ-CY^QIz1٫X-bL!9wNtY*X&b8"4hn|!}ָg"5ogm&TV%sEUJCX|4+rc3Jfe0?Qa$NC(XO%skԜ!,"ZBuœt^LR>yB=lA+qBFY $x٦ԑOMǔ,U7ThIP~4d7 ؔ)zZD_ wZ`0V)en"" {cMS耾qvSHu^ۂHvI?>%ڬ'z,4ڀ((eߥ\>#f챫9엷ꂨ?+<O)[u A"%!B^4bkzggH@U!P2?'F#T Ҥl;"h0ێ<\O|䋦u,u<;Qaks8C>YdBH1]g0\7Su s_|L#oPQUhLEtѳ* 2o|F\PotVw FͲ-ư9NҰb̍KƉZDg _Vkljѡc)"Kys|Ax=ߞXA|sK}%4G^_}-jYgbĄM[ d: '큧6o]z4XNAJ`<B#-PCC(M K(\[vdF0sֈ]o̓󪕕|tG&o1V4-߂ߴ%r)Uߧ;1~N.zÑ.(l fh"bs_!npE] UjoQ )gJ\KaRu4./+kER`6 "Ms!-mz84&ED9_=o*RJK2 p*0f|nv^|oYuxCY@G}AOo]ǘoLBܲ/v߅15" h0&/n9؈ʳtqLMg$.&Srz^<}8&fLAqWANFr; gٸC/t&,gK,Fs7VеC_"\\!g]ANfkkG>ɨdm't*2 . @Ϋ+;3g|U?(ZOV 0?mBo5di@E7ZxXj3w6Ԋɮ *`[k8ϑjYGwyQ-T9-KNn|[( ﱟpQpTPDÚ2qMCRڤayaO,TU[PUSb^z jyYD' "Q;14Wdw9~<&b.r eAʛY9b"Eٓ1.LcuZ Bgc''qes ƣ 8.U,cfAGR`FR]NO23tHPDZlR;s"->5A& "<8{hҭ endstream endobj 448 0 obj <> endobj 449 0 obj [450 0 R] endobj 450 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 626 0 0 836 0 0 cm /ImagePart_2108 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 179.75 717.45 Tm 110 Tz 3 Tr /OPExtFont3 10.5 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 110 Tz 3 Tr 1 0 0 1 127.45 674.5 Tm 94 Tz /OPExtFont3 11 Tf (In practice we consider only a finite set of candidate trajectory segments. Call ) Tj 1 0 0 1 127.45 651.45 Tm 90 Tz (these candidates ) Tj 1 0 0 1 215.05 651.45 Tm 97 Tz /OPExtFont3 12.5 Tf (4, j = 1, ..., ) Tj 1 0 0 1 282.699 651.45 Tm 105 Tz /OPExtFont8 15 Tf (iv, ) Tj 1 0 0 1 301.199 651.45 Tm 93 Tz /OPExtFont3 11 Tf (where .AT, is the number of candidates \(the ) Tj 1 0 0 1 127.2 628.649 Tm 86 Tz (subscript ) Tj 1 0 0 1 176.15 628.649 Tm 81 Tz /OPExtFont6 12 Tf (c ) Tj 1 0 0 1 185.05 628.649 Tm 92 Tz /OPExtFont3 11 Tf (denotes candidate\). For each observation define the shadowing time ) Tj 1 0 0 1 127.2 605.85 Tm 136 Tz /OPExtFont4 7 Tf (T) Tj 1 0 0 1 132.25 605.85 Tm 104 Tz /OPExtFont6 7 Tf (s ) Tj 1 0 0 1 135.099 605.85 Tm 100 Tz /OPExtFont2 15 Tf ( = ) Tj 1 0 0 1 151.699 605.85 Tm 89 Tz /OPExtFont3 11 Tf (max) Tj 1 0 0 1 172.3 605.85 Tm 66 Tz (x ) Tj 1 0 0 1 176.4 605.85 Tm 141 Tz /OPExtFont4 7 Tf ( T) Tj 1 0 0 1 184.55 605.85 Tm 115 Tz /OPExtFont6 7 Tf (s ) Tj 1 0 0 1 187.699 605.85 Tm 92 Tz /OPExtFont3 11 Tf ( \(xi) Tj 1 0 0 1 199.9 605.85 Tm 59 Tz (c) Tj 1 0 0 1 204.25 605.6 Tm 88 Tz (\) where the maximum is taken over all candidates x) Tj 1 0 0 1 450.5 605.85 Tm 62 Tz (e ) Tj 1 0 0 1 454.1 605.85 Tm 86 Tz ( values tested. ) Tj 1 0 0 1 127.2 582.799 Tm 90 Tz (Instead of random sampling around the observations, we derive more useful can-) Tj 1 0 0 1 127.2 559.75 Tm 94 Tz (didates from relative pseudo-orbits. Following section 3.3, given a sequence of ) Tj 1 0 0 1 126.95 536.7 Tm 95 Tz (observations, a pseudo-orbit of the model can be derived by ISGD method. Of ) Tj 1 0 0 1 126.95 513.45 Tm 90 Tz (course the quality of the pseudo-orbit strongly depends on the parameter values, ) Tj 1 0 0 1 126.7 490.399 Tm 95 Tz (which also links the quality of the parameter value to the candidates used to ) Tj 1 0 0 1 126.95 467.6 Tm 91 Tz (calculate shadowing time. Points along a pseudo-orbit can be used as candidate ) Tj 1 0 0 1 126.7 444.55 Tm 93 Tz (initial conditions of trajectory segments. In the results presented below in sec-) Tj 1 0 0 1 126.7 421.5 Tm 91 Tz (tion 4.4.3, only three candidates per observation were tested: the corresponding ) Tj 1 0 0 1 126.7 398.5 Tm 93 Tz (point on the pseudo-orbit, the image of the previous point on the pseudo-orbit, ) Tj 1 0 0 1 126.7 375.199 Tm 91 Tz (and the point midway between these two. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 143.5 352.149 Tm 95 Tz (As for each observation s) Tj 1 0 0 1 273.6 352.149 Tm 63 Tz (t) Tj 1 0 0 1 277.699 351.899 Tm 96 Tz (, it has its corresponding shadowing time, for a ) Tj 1 0 0 1 126.5 328.899 Tm 97 Tz (segment of observations we have a distribution of shadowing time. Our idea ) Tj 1 0 0 1 126.25 306.1 Tm 95 Tz (is using the shadowing time distribution to estimate the parameter values by ) Tj 1 0 0 1 126.5 283.049 Tm 93 Tz (identifying the interest area in the parameter space. The parameter estimation ) Tj 1 0 0 1 126 259.75 Tm 91 Tz (method introduced in section 4.3 quantifies how well the dynamics of the model ) Tj 1 0 0 1 126.5 236.7 Tm 92 Tz (mimic the observations at a fixed lead time. The shadowing time distribution is ) Tj 1 0 0 1 126.5 213.7 Tm (a different flavour of quality statistic, quantifying the time scales over which the ) Tj 1 0 0 1 126.25 190.399 Tm (dynamics of the system reflect those of the data. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 318.5 51.2 Tm 73 Tz (81 ) Tj ET EMC endstream endobj 451 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 452 0 obj <> stream 0 3 ,,Дb6\U}(o[IB/dˍP !_)[r(q[T>rF{#qKfUTJ #LKtjg!vXi).mn5pH'jpؗ$)i,JΖ ay!O2)JcBq.}A,xiK&Ѹݱ|ANak-T]B-MP 9iY-xg<09r%3&Y^p5sj<Ŋ +ab•/Ktu _d֛IZ)o#4 ؁vv+w&MuF\)chu( EYNB+ q7KQANhf}z̃7N<;߲e*r6D. ]#"J)! ږ'B+_mJzz[~?e8`z\axͼ0t_[ػ9ҕj?,O Ґy&Fod _L]r=9iE_hW;ɻƃI1~ eLind;`y%x".m|wOZjH)H{2lڗ51wG8A/+!פ,05v|̳Ɠ^e3Fl 늵`s.\|H#m5v|'$ML½H43 <C ̖3K߮vTz0ՔS7ɮ$?>oH&ڊՁ&;'1mnzI M ,Uwc*HWB}b \0 # X'U4Q 7GUJ;ᄾc#ab+~*s[:$3X^LBK^jbu^ p+}z)$,injΰ27bR>\eg5V>{FtA| Bh3{*&lu*mX5 K7$ɴe)25``eHn?.^(:gQb4Yo2UR^yUkB D[+6/d9:QWT1&S v~h[us7~zJ 'EG`;XF)ہ .j5ŃVӡd dr; FP}RQ06 @>ˢfCS3C"¬ n#=Yp{܈cofņ $Zǃ*X^= +VԹjgAzxf4;dߦg|g'A;lwWs98J}Z$4 sX|:75$B'^NӑL_h/d3ꢲb9`4 j1-Z=xKo<#ȢꮟiƫL`AE̗sdY |٢N<- Ϋ&-(:sJU7GA3 /F5爖}^4ZXw%P&`JrJ*sJIR@vHݱ&L a' $5U39nyW¼ߧ>9-Te2غRwHw"^ ÑSME*俨>h7`>,UCbHg5D^/ׂ/M  M:  0Wr/oSQBU.Kg* P'0U*4: hE᢫IgbWW>{di'L# c]~NȊ7_,n' 4SN[Yv ye6mHJ]̆eN["G0ouU ÷ LQG8 dDբn{fͯ ^Ϳ4`{p_!"zӐ;#Jk!&MX cX=i '*qXƥ68:fn}( Ue"Ih;@yXG=:s-ˌ}쳫+PdRr;ɫ ٭F##\V1#kۢE=?d}szU̼e27*|Fv:%*Dzz8V2÷٩aծfy@w2߫e"tvlKGi`EXSLiRȾ6;Y5Y#H>3(m+G+!"wMP\ZnNv%dO5 5Rٵ43l$1fjqƵ(e|ۣi)Ų8JtMpyc!vq]"3ޡϊ 2x;_`/lzv7_oZ<ȝ6j9~H؅S8bbeŹ3im{g#6Ju|3Z71\ιehx_a)ΤdzKkrԨo䷱u|t`UvN*ai f$x4.ǃ#8I3 Nz|ϝ%!)}w d+L]Pgg.a00o`\hPw7z|GH߸>cVcEP(ZS@.Rb6E뉃tBQdTw ^\ͧG~`<(֛7v G 6|c;] $BOCvL{wBY1ZZ[.+8aXo/U޷㲧x84 ~`E31.53L39wr<8'j30V^߃oif(M>UdV n̿,dj((/'gMwC. kXj)m#,=$pKV!b$@fkgHQWrl\%̿`q:sϓ@~ڣMLçLf][.ԍx V&YAp7n"mq&z"` Ρ&YIOqm53KoN$^rZhwNTM7eߕahTi(Z]bn+L41}MS.G=hLr%qz230+i="w\q&8-6ڝR9=hW3LYsjf\?L9n)1=H1g>&(xH.'Ku?ԉXNahX*Tiʡp _^/׶ Kf&%Ҳ8B!^̤Q NNs Ol~B5n ~(d5R?c5Wf Wvr;{/Rʏ?^f9B?1.3S ގVY`ApҽfȚyePb8(qj/aNN-<{Q'Z\t$O>>kAdM5Qě ҅jm=$ `2T`F;OUY`ر]!U28Q.sz*B_OZ&#`p\V!YA7 B?&ɯyw6f~ w :xU-rB~ ܦ˩k{AR.uVXG499~;*Γs̙* 3ԈbW']2%öBSxF$1;2A ;Ugf@_:'SRȺ+єm3]..rNW.Z'y $M{4NZU'"2bN{|d]rEH8axI^F=jG~gƁ /.B;hl Ō];K=_ {9(߿,zzcADOw}&4{s)of7(g֓^dn 4_Lgi-(tOtȱ\Q]ˎ94qj-fG_~x03@d&}ޯ$ޣQP6swW[e*JɗTy4E{8-GemɠSy3tLf֫iNU)[\ xBE<ð]n9ECeG't>qZV˰`<wTݥgleQbéoDof.7LCF(iyZJn[+! eT"+z/VR .OW솷}|Ӑv;РRZc;J> p<%rhf&mA`mG<#$Μg~؇mEPq=0MdY| /^.Хs۵9čdFj)[@m8o=vj򷯰a7w^ell׮ߡ j]}F]b:?ڙ.(T {GF) (/J$D!V;Jrk1 |>1ٻ ډ;j\sPſ_K.cW?KpX׹dY0~wr&oh nLSkx'clLH-ASd+Yq Zf8/xya8?>r{Wo@|./#v%٥'¤C5oRM t|;7_tƇFŢ۳9-CW‹`5ವ/:K+f±1ʱʳ+2Ϫ`<|2p+_ϨoRh*B '߉Z7'-}lUJb܇kln/ bB**`g|Y+@ܨ=&𛡢$U (vBvYJoD Dɻ})IkD:y??fX.tzȻ{*SPU\bC 95ASAרʈ/Ōݰno_2pauG!MY+Sz*>* G7l5tyLrltOvp~ݣ }jGoVaUӾ5Lڷɵڷ=J0-ʙ5Fl찿$˶_ɓ:\0Hg'ƳHڊ0Գףδ7"ܛ'7dS?%1l0P°pE L*.CWMf&ڮ"h?2 pHn7:ZPS ÎPgB Gh<+5|Fem>\x3NvܼcM"C# ‰``&[hV0 &.NP  c 0=SHBo2+Y6f/r<s\:"AeE[A.8-\eiW.xvdrC d/20w<;C,hUQ_2)t?8[k94;-Rծq2[GBWf0>J| ,#k ^oe#(g%N'(K+J/"-/^$`4nM;O/DҦD+t&81a@󋸎~5 4Hi3yBhɓM0sLy bݛO=U⧹4tXu0 g$Wg],.V%sU?CY8,KU0r(3Ia+hn!D#d|hjFh-3 tҲͯ4D?D.c'-w=gTosVS6R "Ӧcfct-|M}=G]ȋGC@!7R9$lMc.t?_[.JK"n+YM,7 `QUd֋H2{w{a w/Nn : %7خ=^Ebm-}7Qt}dwk541l_JGgxKBk##66(y_g.d m9QC`h:@T ! S-#hיXI/ !#}axO}|33lbcnTjQ nyyWGE4hwU i."cuv7bng(n/+QCM6 "Z^͹ՂU ;hucϐ!';&<8w)* Ecgrϴ:+(KL/!?{[(5/JK/I$](}D:xcA*X'DDx*d#C@._О>NW[w9?r:8ٌCvp/=l#3 ЪhQ?LjߓwZeHw(StGh_pq#l]1rm_;ObzU2˓7|>Ͳ3o} DUS˔[Nese3 Eƌe86͍* eAp̧SʚMi-hMG=Yrɮ)馡;jYJ[Nh]fflj0}"uWՎ*5_L]< 'V-;ÞJ eUyw`|S "0K=WƫA񕺄9_6;gf[V戭dzg_s~B-͟w~o %9M3NrYM>K $7C)Ii9Hdgh+D=`S@|\R@'۰ts([xg~v'~Vz&P"n~f¯} A.ˣC>;l  FFƉJ٪tẘTJ:qbӤXeq@)!H%|1sD[4jh;-ibXQآ6(c}c{*V zbp~#c#t_ zQ.(Ye?~<Ezqk 󘣇͡ !4c9 G%@,j㟮xEjUdP/#FZͧ#暔dinFOJ( XN|7 hG__|3{*jRzDSG`qImR+d62zw9}(2* _?7:К1B*YJ̮j<_ON?.Z5QG:Z5}6ѿ␈"+^AD*2s*Q(-*'^=|?2Z7ICFt0r= Im B7HZݜ>>: > endobj 454 0 obj [455 0 R] endobj 455 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 625 0 0 836 0 0 cm /ImagePart_2109 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 180.5 717.45 Tm 110 Tz 3 Tr /OPExtFont3 10.5 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 110 Tz 3 Tr 1 0 0 1 127.9 674.5 Tm 109 Tz /OPExtFont3 13 Tf (4.4.2 Further insight of Pseudo-orbits ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 109 Tz 3 Tr 1 0 0 1 127.9 644 Tm 94 Tz /OPExtFont3 11 Tf (As the model pseudo-orbits obtained by the ISGD method strongly depend on ) Tj 1 0 0 1 127.7 620.95 Tm 91 Tz (the parameter values, the dynamical information contained in the pseudo-orbits ) Tj 1 0 0 1 127.9 597.899 Tm 90 Tz (can help highlight areas where the estimates can be considered as candidates for ) Tj 1 0 0 1 129.099 575.35 Tm 93 Tz ("good" estimations in the parameter space \(20\). In this section we extract such ) Tj 1 0 0 1 127.7 552.1 Tm 91 Tz (information by looking at the remaining mismatch error and the implied noise of ) Tj 1 0 0 1 127.45 529.049 Tm 90 Tz (the model pseudo-orbits. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 144.5 505.75 Tm (As the ISGD algorithm, introduced in Section 3.3, is iterated for a finite num-) Tj 1 0 0 1 127.45 482.949 Tm 94 Tz (ber of steps, the minimum of the mismatch cost function, i.e 0, is not reached ) Tj 1 0 0 1 127.7 459.899 Tm 92 Tz (and therefore a model pseudo-orbit is obtained instead of model trajectory. The ) Tj 1 0 0 1 127.2 436.899 Tm 97 Tz (remaining mismatch error after a fix number of iterations of the ISGD algo-) Tj 1 0 0 1 127.2 413.85 Tm 90 Tz (rithm indicates how well the model pseudo-orbit converges to a model trajectory. ) Tj 1 0 0 1 127.2 390.8 Tm 93 Tz (For each parameter value, the speed of convergence also indicates how easily a ) Tj 1 0 0 1 126.95 367.75 Tm 91 Tz (corresponding model trajectory can be found. Therefore the magnitude of the re-) Tj 1 0 0 1 127.2 344.699 Tm (maining mismatch as a quality of the model pseudo-orbit can be used to identify ) Tj 1 0 0 1 126.95 321.7 Tm 90 Tz (the interesting areas in the parameter space. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 144 298.649 Tm 93 Tz (As the model pseudo-orbit can be treated as the estimate of the true states ) Tj 1 0 0 1 126.5 275.35 Tm 92 Tz (in the model space, the quality of the pseudo-orbit can also be evaluated by the ) Tj 1 0 0 1 126.95 252.299 Tm (consistency of the corresponding implied noise \(defined in section 3.3\) distribu-) Tj 1 0 0 1 126.5 229.049 Tm (tion with the noise model. With finite ISGD iterations, it generally appears to be ) Tj 1 0 0 1 126.5 206 Tm (the case that the final pseudo-orbit obtained corresponding to the true parame-) Tj 1 0 0 1 126.5 182.95 Tm 90 Tz (ter values has an implied noise level no more than the true noise level, inasmuch ) Tj 1 0 0 1 126.5 159.7 Tm 94 Tz (as we initialise the ISGD algorithm with the observations and aim to explicitly ) Tj 1 0 0 1 126 136.649 Tm 95 Tz (minimise the mismatch cost function. The pseudo-orbit corresponding to the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 95 Tz 3 Tr 1 0 0 1 319.199 51.2 Tm 75 Tz (82 ) Tj ET EMC endstream endobj 456 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 457 0 obj <> stream 0 0 ,,cj8BtX{]' V :kr{, ^a<0b6ˉ46H,EDm{ufZwoOb )찼ʥ|hS%$/AO%f!.b5_(_ ACf8H7EWOpW% # yWrNCG4lZA}7-q)C[xW>|7fG WH8c,BRt wq}xfGxZ5RCX e%|'?F뚇V)D7Es32u3 $v[*;1|h!jpmLwܬ5Xel]t( +u{Bþ3ހd9 .&Q@Pk-TknrdsOOa9M#s(*շ5<7K{MPFa M i]]_zT¯ x #ѮrIr=+:XRyQa1Wcnȉ?QJ?3:$R0!) _e>0 mI~/Lݻ]07,.%y&HڼD;<0nAL‹G,w/j0x _*ş1"hJު6&J&7KM@GGU] "j0LKCwܣ>+mٿ?"*܏YA+~ I )pCo1ůAL-ݳI6ZXaY5i:r@֋"_p9n ф\f{׈F⍐1*"ApO"#wB 7`Hn29(;[uwrI@+ %X(F򽢕  LAbj_@%%2j2,wj +AHSח{XFB'oގ`/T%}^m T4AD,2zLn. !C}S3yKC2k>K\`stdeZap: W}kMSrj7GF9#:0O t$PѻBe8w؟#Cgy7\jHͤ(3l  @>T>n#S\C'8'd#䩋G͊U5Qɚ b9K*ꗶerEe4_"@. |yא%+vj_`E[l[v-I6H|C+ED'' XxZ7n6tQ/bڇNΥ34]ԟ >ͥj}ʩt5Q/೒Bd]9y6HSg@2JG GSU ௘bÆa:PX dPM(8sOg-QHle5(bW385upl\zo0<#=D_! e+6n^Fxx7M$ J_z41媐>34<^*xf1{./f+,ՏFv잝J]ikt }LRRM&?C5Ti⋿ةiU;*ܸ&R3%VȗTf 9X[-20' _f{l%X[*iEX:(@޸)XϗI\ 2! 3%) Lt,G$Uʍ n} f Mh~b&{M ,ݽ}t!;b3tYKPU@wɿUNl!#'EWAP'B̩N1XuGpf0!ۡ-+AMWCBl% ِ2" B}Hxf?62ZFas4CC;]0*ej ʞ H;>nǼW~44 `j{;,Ԣy R]y65T\`]B 3HƗB3P#;m灾qӒ5.0<?;:FDv 'Qlf{YfwnRk$Q%l.t=-\I.Sp~Թ4Ι~םnж{/dN()lagl8I$!bW  $lQXoxgQ#%!hʓhLo@\t.#P{1&<^ > ?:!c+932PȤt5!gBKVq]ۅ_mXZfe-qC'њ$W΃{jF B1}ZCr+֕nmtKlY: b`:10{/*QM:ک8>uuLlgeRkɌ5!RTJaYuHO*DO;4da$c]]̢ Wاr&;GXZ~] ۂ+h91]25>`v"XwkL 6QVoZt7"@#ȭǦ4dv6X6Osړ'#,:Jr8D 1 2߱,|; e> K6=*8ϧ]DxUs^DG~^z< ̭T(ax?>MJ(NU0jӖ le \' cv!ORzť]YxcD PpKvhd[gkVCz6̑NE%m݈ [glJ.~$+mAV.  E&hEE~6W8ݲ{fŇ6GMFt}Mf^(Xfk8CCp٦?d1Jw=.,'H,7FhѾVnۃec\_C *%|/P1ѕ1.Xyj=X$kr^G݊;`D^Œ?Ir8r2A/L͚<V3BA;/Jx }M}}YYqYva =7 Q|bv?,kג/zz7cZέ9"PaDWa]4?K/%4zPaBB;0WTR#=̥<Q9\:nj.ֲbN(]*OAAH-_Tamz PkNƊ/6@Pl H7S/s?}k K(%3͋N 6\?"|0ԫDT'ΣJjoZHh#-CY ߖF%4fk  0HGVlͺ=,co67KBR[+/_Nyt[rk#yr..I ?.q^]{-i]#d\bgnS^o{/sT7,50ZӋX)6l!&(g6MS0~ 4dB;!ܟ=' P5~$O ryu:"1ό $%ܰsI0e"AZQ?9REt ^܊&c=5_ K0ch}7nfYe d*F!^w.ى{]~0 }xʐ_ńgwR#׽9lMH~Leu#?e듦US]G@P0,R:\r5V 3{#وsf):.EDp.:'B}2$4WHwHČ~QCϬy/iUJTQ;@`Uh;=Ir_]@L=Vv{!S4oAH}N؍@ux>卖bdy3ƞD %J "xOj0/K ;%X@ЄO- JW}S8d˄]:;DZD)Y s13{~ OY^݂f#񻪍!q hSJѽUMh }9'"C_NkX43%)ˈ{>B/T\Mr}_N'ME 1INiWE!QBb'"6 q&Gi%ExbE,WTb\&;`,+2`jV޿&i kX hxWuk&Љ=H}{T7)NGPO12_8NSf L_nh!B08wbsz%>ٔ,D!@ܿ3W^%97(xٜ5#tvY c[g[Jq؁}]0{1NUV'TUK9n;pGp ~jft: VgR5%x<]EqC#լ!XafBSyp9~:o/FUh@ǰ^)%]b7}/!'4exZfTc4΍hĥBSTLpEçZ49ްʙ9,T[Vc`@TiX2E$,b $qOkMn7(v Acj+Z{sĂjajA"ZLNbwE|jYn:lH@l}X;zC~,{[25G.B)aZv]5NUqٔ5){ ,U(ˢ|J<Ɓq俫~aSv]֙?mXbm ӕnDN2#01f-*z}?4 o &mԲtӃWIA_?IB6~ .D.΍_4<X_?xX0[hc0Vv3Z/EfvL`ͧ6Sþga^\3kPƼ~-uM?ft k?6$/T&&!,y;~J"Wդ<6/DX^esg 4cR14هeXp!-(Ȣ1fڬC`:sÞMe+ssJڰ~n*ؠwڻPi*I ![m+{773 _I|G}G0WUM5B5|MX~`^VdZf3fԊj_2Y\<3и]*;Z"<[Vqr4o&7 :L.)m:=sHrudHH3-3؛(Z9:ONCx1Ҽ&>Oʱ$ϛ[$)!̱x(!/Eآﰭ2@s+䧕Ʊx' }3=5#I2s5}yQQycb5B|IrLH'KUҾ 1Ğ/D(~S?Au:ԂƛO&E@ZJe7Jl|!W^E5!?ãם joIx{ꁄܧٿ1K[瑃 PZj=,Io30|ՀL-rk/5Qb1"Tf_+^hycȣa!kkeo7 "c -[hSpP%t6$`_uVA$N 3Ensh>qڡOaksj.T1 " `:ahҰrtn}Ч΁򫣆"iRSM (J1x?}usgSFWY\ @7LY'ArT]6 pٍ̄Qc. tmh @3\M?kr+xKcEȀ='-"`Z;b?22.4gR&<:j* F4 HG""(@ꓥ[XCfǂ#j*f\ @l"ہltb;>{E[Gߡ?n7!yS"ZD`5V舡RR ZWo(_*0P1w gZ_ҕ0dXE,ֶ!!Fy/$/VYA&S3t ,Q0aIx>B=uIm(CL{r{^m͜v ,H'R] W"3+弿*"R($L zۚnص0:EM'd͔ʬJ Fs<:58Us2e*sO4c?{ E.݈$/УaGűY~_Z#}}ٓ49josR`0Ǭɳ0(ޟ+;"cGv#eHW7WJ:W4lfB4%H-,ibYx )ZAFaKcQ3iBs?Xb>i{y%J?x6m =v*k$A^''z[dvx7pdv֙)S'C:7 B!+?)e23Xݟ.Qeh-r=n$csz%UJ_c_J-j;ە_z3{- W6JCpn]ĥO=}.Ů 7Dnd93*240a17czZkZ(Ǭb= GD11י3%jE> endobj 459 0 obj [460 0 R] endobj 460 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2110 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 185.05 716.6 Tm 108 Tz 3 Tr /OPExtFont3 10.5 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 108 Tz 3 Tr 1 0 0 1 133.449 674.6 Tm 104 Tz /OPExtFont5 12.5 Tf (incorrect parameter values usually have an implied noise level larger than the ) Tj 1 0 0 1 133.699 652.049 Tm 98 Tz (true noise level as the implied noise has contributions from not only the observa-) Tj 1 0 0 1 133.699 629.5 Tm 101 Tz (tional uncertainty but also the inadequacy of the model dynamics caused by the ) Tj 1 0 0 1 133.449 606.899 Tm 102 Tz (incorrect parameter values. Figure 4.7 shows the standard deviation of implied ) Tj 1 0 0 1 133.449 584.35 Tm 103 Tz (noise changes as a function of number of ISGD iterations for Ikeda Map \(the ) Tj 1 0 0 1 133.699 562.049 Tm (ISGD algorithm is applied 1024 observations\). For the true parameter values, ) Tj 1 0 0 1 133.699 539.25 Tm (the implied noise level converges to the real noise level very fast. The implied ) Tj 1 0 0 1 133.449 516.899 Tm 99 Tz (noise level corresponding to the incorrect parameter values slowly converges to a ) Tj 1 0 0 1 133.449 494.35 Tm 100 Tz (relative larger noise level. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 259.449 462.199 Tm 170 Tz /OPExtFont9 4 Tf (u 0.83 ) Tj 1 0 0 1 259.449 456.199 Tm 154 Tz (u=0.825 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 154 Tz 3 Tr 1 0 0 1 210.699 456.199 Tm 155 Tz (0.026 ) Tj 1 0 0 1 210.699 443.949 Tm 158 Tz (0.025 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 158 Tz 3 Tr 1 0 0 1 202.8 431.699 Tm 140 Tz (3.1 0.024 ) Tj 1 0 0 1 201.349 419.949 Tm 170 Tz /OPExtFont9 3 Tf (-) Tj 1 0 0 1 202.55 419.949 Tm 178 Tz /OPExtFont9 4 Tf (o 0.023 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 178 Tz 3 Tr 1 0 0 1 201.349 407.949 Tm 90 Tz /OPExtFont5 12.5 Tf (g ) Tj 1 0 0 1 210.699 407.5 Tm 158 Tz /OPExtFont9 4 Tf (0.022 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 158 Tz 3 Tr 1 0 0 1 201.599 400.75 Tm 107 Tz (73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 107 Tz 3 Tr 1 0 0 1 210.699 395.5 Tm 146 Tz (0.021 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 146 Tz 3 Tr 1 0 0 1 210.699 371.5 Tm 155 Tz (0.019 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 155 Tz 3 Tr 1 0 0 1 210.699 359.5 Tm 158 Tz (0.018) Tj 1 0 0 1 226.8 359.5 Tm 139 Tz (0 ) Tj 1 0 0 1 230.15 360.8 Tm 2000 Tz (\t) Tj 1 0 0 1 274.3 355.649 Tm 151 Tz (500 ) Tj 1 0 0 1 284.399 359.149 Tm 2000 Tz (\t) Tj 1 0 0 1 323.75 355.899 Tm 148 Tz (1000 ) Tj 1 0 0 1 336.949 355.899 Tm 2000 Tz (\t) Tj 1 0 0 1 374.399 355.899 Tm 151 Tz (1500 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 151 Tz 3 Tr 1 0 0 1 296.649 350.85 Tm 158 Tz (number of ISGD itoralion6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 158 Tz 3 Tr 1 0 0 1 133.699 323 Tm 105 Tz /OPExtFont5 12.5 Tf (Figure 4.7: The standard deviation of implied noise as a function of number ) Tj 1 0 0 1 133.449 309.1 Tm 102 Tz (of ISGD iterations for Ikeda Map with true parameter value u=0.83, the black ) Tj 1 0 0 1 133.199 295.399 Tm 105 Tz (horizontal line denotes the noise level. The statistics for tests using different ) Tj 1 0 0 1 132.949 281.5 Tm 101 Tz (parameter values are plotted separately. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 133.449 225.299 Tm 108 Tz /OPExtFont3 13.5 Tf (4.4.3 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13.5 Tf 108 Tz 3 Tr 1 0 0 1 133.449 195.799 Tm 100 Tz /OPExtFont5 12.5 Tf (Panels in Figure 4.8 show the standard deviation of mismatch and implied noise ) Tj 1 0 0 1 133.449 172.75 Tm (and the isopleths of shadowing time in the parameter space for both Ikeda Map ) Tj 1 0 0 1 133.199 150.2 Tm 106 Tz (and Moore-Spiegel System, the true parameter value is denoted by a vertical ) Tj 1 0 0 1 133.199 127.649 Tm 101 Tz (line. These figures establish that our approach can be effective in 2-dimensional ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 424.8 355.899 Tm 154 Tz /OPExtFont9 4 Tf (2000) Tj 1 0 0 1 431.3 355.649 Tm 63 Tz (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 63 Tz 3 Tr 1 0 0 1 323.05 64.049 Tm 88 Tz /OPExtFont5 12.5 Tf (83 ) Tj ET EMC endstream endobj 461 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 462 0 obj <> stream 0 ! ,,"єjQqlv]-t.o:He:z*HeAIXa($z|nϬjɷ,WG M(ǐ[* xXp&~ͩoS@}VFp>jRe!Cbu1IJ" SJ[9;\8 ?oىIKWzFJMJgϘDʤ1y$勠4.jYxJAϡW\uv#V7Z xHo= ;pxk U)!7uvLh$[D, Pr5ccN N=Txe4l}5=P/-,ߖXX|T. *ʑZLZ8tTЋ`TN|Lg_DwE-zKC@^} #p,p#U沵7Yg-?+0d/RY^(B$\[T_z˱|} kNk;p֔ 0"T4Fy64nY*HQxBۻ@3S_-N'ۻК䐡>6xq˪pt8)R%{ʂP24.-?g+O2k9slv[-k?l7ﺽnu_@$}`i5D V "^/mHO")0>ڸTrʱ#/)Qp K w7uD齅j'0qi'(a:YOܝRgi'OOLw(rȣU'pjA=u!g)b`'r7İbP~\-%MxJVOj*,4&(Zk.+M 8ng>Ѩ&5VeY(݂T ڲVS @&4`PR^ ۝͓gFXZZV,筼u_]gnsiF@ >N[2(aOsz»Mu4I,e#jPo!֞9Xq灩-s ߏeL:Uj}Q1=Kgcj]R%6 QHZ$ÏPC*zXeKӖ_}}+.kd֮iAv%T.Y. |RiT{sj[E`U^ ! m8A2\\Rf^qMIaY´ٳuE M̊>نYQ8#e3,? )zX=4L*:*Pm[㝡 <aFU-rxsM~k센F(oY>NԨ+Ȉ݇ w&Z`'ህ(MA@JȪD 2Qť!LmƁ6H{kD [lTꅯ+i۰5!}q ee/"2@R C>-۰ɜh>GhU‰֢0A;ɲ00A+~f'4dyH #v5&I 0/n4w//YYRpt2ye[U=WlP{OV왦$B,CT,:+m7( iH0aEԑߍTKi'YYjφy!D (-%9JYbS.h3YWd|ψjJJH΄y8Q {҈i%Zx0Y7lf0lZJ^M]f~ɕN^?yU j\ N w`#rA-[p, 7(;UhhԄd\`ga%gSӦ̝uQS-m {2ƠE.HmIm"0Fv xG;`#[]0Pe[s^2Ƿ+̜lY<,k0m2^8tO*1HxMh -ȇչ#U*1ّzbH[ )]uZ)@,H}ߦ=NsK/6B [MiN.xDG=~$JmsAX3Dž7/S0J tkҡNjVB$.ݘK^M)qoZﱞ1잌dXծ+:Ev6(͎^W!"QktCU:, >hpڙ9[2[jbBiq7W9UE>/CjV0\a-ǹ*qyg_[*-_H;vHH[hp0&"GLdSSmgwz^NtsWĉoREl5: *5/CCQt6mYj٤n bfᔁ" E5p=8WXSIMH&KpDW+>L)@lpr'@t.0Uss: a$TF<[(e8vr}*JkI`]8p޷]s`BHMBG7LY"Q89fz՗*B{l=#1 NX@,q-3=&k}Tlu@Y|Єė/wI#?wQegC^|17~: j+*@0R##djcMPp>xoQQ˖j&G+l3 |&F 3J Ǒ-[_# \a6INt?x#nx鑙Sױ^~I^E^_}4 !7ڃE["*~lYҖZ`筀DVYh89K+0-U'*[ɤ]1r1_؄qo[tVHurnD#Hș*^b7˧9'κ#ꤢʃ\4} ֕8DpI[bx#xX*&|EVx%-!s8Si˚j5*ͪ 7xp,.nf~.MnW%1#"4gC,H$|4%Q/"t `z2G3l0vAvDy$o:221r-lgx͉``pV6wkI=C Iy~<`VuZvZ\/V.j^@'Bdi\0ln]8]~p =l8*Q޳(n1ݗ"eKFylA]BeV8|5; J &m'2Nj%ԇ !á.* _[DPfՐ.tL7=UDs0)o%8Q^z̃ Y- KsȽ3 J9ǽzBJL$%`39?{i}Pe͑w8pd4I@>ǮB.帿Sڰv?ʓ"ѶٕuK'5y?ذOV:WճҰաzZ:%t&־$mEx ^J\d+3nPwEv0Ũ|xmR?EG1 cyv咉{ӳC TB:G#eGi-yKb&mY5U:[~bпPhQj />Zm5i'-m DPΎ=P;0V̥J5? Ҥ{M90DO*6D=y@W)wA`Oz(J k p jIRZ9_iܶӹ0O=eE{edJun w{YBt] er7`MUj%ʇ;LbQ]rعXRP{s8vLayges7ql]+W!M)CzRyBUUn#ꇨ04y3f˪0{f7+vږn$.Q@Ta~s."t 5غ@lMT6 ^dq`)%)V)IUs./`K+l3$LJ4DN %-+&oe0;?N^ai0L!eN|-kgZc?ŰK[{T[hE3KoQ/9El) #;eD~7ȔI37v%շȀwYA "lBb #*qa2_vŧ>XӃX)¿܊gmB32uL]؞ZC5/ `Cj׸#>ͼ*( {3p}={Gx_dR Rz@6 zޝX._ vTL KuR8)b؅RiB0^ݫ& T:B2h.7G=ٝ5}4zv:;IIKyT7ئn=qwd8]fk5T \ZuD/(V\_D?dO&]uvπmm@2U `63ߑi]r^mڐTqj~S(HuUT3S{Po)#/{WU"<&4\RkfZ OD.S'dj)B {6BM#OSml%:nΡm|kӗ"]S{J5 {9٭Z-%sَKeYgƽcgBҲ`92%2 tuz|g7U p:~[v蠷)үoRw$B.zhe|%D}`1!4@8]PqHFLN4Vo 4 -W6*;`:cn8MR;V)/-__x_7?_zB"Qn4pȥvC`ڑvWׅ0gbB UHf{b+\w۪RkһցL͝dN$JdZ 4yu͛^fA*- :WO/MlI 5">\w)_-e6|]2wr{xhyRYvyv#O{Aw2*_TMU!6oFC_֏K|6kPVf\3F`%0'z?l_]|bC$yNAI¡mofJ#D]jf z;ey 2|˜~ޝh-~ n Ę1 a@m9|n,; eZr |z ԏ (?<&(TnRe"gG6J^a 3ܝ̈́h&$]rv"`9蛤A$kΙu_`ulvw 5v8\ɰ_3ZX##RLr"=EHK@Ƶ 0sBP!R1Y}86M"킓<$eE;fԪZ3x5~6jL~ J1\p:Zӥ~ igC[.)7: &>#U W-=& c@42]81bdn'˦U35/}ԮÔ7K>ܷ1|ݟ32.Cɡ'ٰ&b5X7(>')ܲ⊗ܱąv<,2~*7qdC1(|qȼ 0\ğCgp C' Jo;qRCv(1hVד :/c|W R9A3UȧХQohzV4Ѭ/V6.:<E;N?jy D"(Ϫè}H"]V# X@IY©x5J O'/X]&Y .dHkow!]zG-qo"<։8 3gcnYo,;ϩ0mbsx{M -5sJ"m5* QsP*YfG/mqC>ݧn_f@q#{esݼ"4;=7T qSPѽ֤0?6^ԫH/qARE#@#* ng| +)_ӕinLcB>1 (4٧D0H}fu4zO4gY x]AƔ=?R6YVbx4@!4[AA"g7N,Ԏ/vH B=wԪ?p}aG `DdtKBYe+i5#[†RCNcw 5z : $I̠F  ! (&k-MbX@_:4;6i%% .cD+4!@=U,ԫ@0Kf"yƔn&B~432I6ۉdPlQ,3r['sȔ[o%7]%ԯY|`5:lmV\BOHK~%c'z@fK S .TJ؀zkg ΪoIS33LaMO&OԼp:,P@E<ˢZ5cu/ şfЗM ]樤`ᶉg[4=zfhYŧQ$0kR%nJ`U-Gi%!,B_vχb{x|WVg }j-L:yQ/_S%)M06l+A7slt!6 eV[ 1l}శ^TX԰;?sR 恵G6Mz+۰,rx&ܼk?ch4`f\t(]p Mh9~B I?6ܺ8URtC-[tۢ NRګ:U Șh<[)4i7{gR&1"&|z2^4h܊8ǜ]Er4 L s}= ?]VIbBId#9r ?k0g;9^6pm%0zրV EMST-We&}eyą\bPe5@`')(xhg"wiҦ jCb4h<ъU'ח<:}.!ڍf쪿.}uX>]oW¿ ! [>ch+QJP,9@U]s1sֱV F12>'XHߨ^4vfs8òZC" <,PxkI,=٭{p>$rcJN#,r%)BLJ^BDOD |,g\ ෶C9&ɥƣM uh] 7"Č0u|L*{;=2mshhM(A^lĎ^#/3@ @P%sX#?}JXhUۻ(^.(BȠɑaVdi՜ 銴i-\pq۸9gcJ},z=28|+&\2rꫩ G#p!V[搘"V2^FDN[[>T "؉'ǗߝOqK4sMKAz:'dU{oV+EzдLD5pKdAzo980SK]LꄟA\wFA6$#/ .]$ KHO5 )ǿ<8JcR$¬2u}⽬p!­I+ rl䴗H1tZF|گ;_"P@I zbrp2ߒE+ц0S!SbkҤ55rPb洯h YTQ|䛶li@I`s^ GRY&t0][vv} Qٮd71ImFW6Q3 Sx (I<}S3h ۜe`91CQ4T>&BM% _&7|g<i/ 72z9 acz{WX.oǬS&ԙ`LdpYo{J"e[S3p. csī6Hx3 AU{gGapAj΍ݪ?)څ]<PȭIMDquQ~k/2CU5=kuc8J yihV3SfBI Zp@C5P Y|?}!f1BKPMvCJoRTɡvş*e%ƨ endstream endobj 463 0 obj <> endobj 464 0 obj [465 0 R] endobj 465 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2111 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 177.599 718.75 Tm 105 Tz 3 Tr /OPExtFont3 11 Tf (4.4 Parameter estimation by exploiting dynamical ) Tj 1 0 0 1 463.449 718.75 Tm 27 Tz (-) Tj 1 0 0 1 465.1 719 Tm 99 Tz (coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 125.299 675.549 Tm 91 Tz (chaotic maps, 3-dimensional chaotic flows. Before discussing these individually, ) Tj 1 0 0 1 125.049 652.5 Tm 89 Tz (note that in each case the vicinity of the true parameter value is clearly indicated. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 141.849 629.7 Tm 93 Tz (The distribution of shadowing time for several isopleths are shown for both ) Tj 1 0 0 1 125.299 606.7 Tm 97 Tz (the Ikeda system \(panel a\) and the Moore-Spiegel third order ODE \(panel d\) ) Tj 1 0 0 1 125.049 583.899 Tm 93 Tz (in Figure 4.8. The median and 90% contour provide good parameter estimates, ) Tj 1 0 0 1 125.049 560.85 Tm 95 Tz (while the 99% contour suffers from sampling effects. The choice of isopleth is ) Tj 1 0 0 1 125.049 537.799 Tm 90 Tz (not critical, although sampling noise will, of course, become an issue for extreme ) Tj 1 0 0 1 124.799 514.75 Tm 98 Tz (values of the distribution. Thresholds will vary with the size of the data set ) Tj 1 0 0 1 125.049 491.699 Tm 92 Tz (and the noise model; a simple bootstrap re-sampling approach can identify how ) Tj 1 0 0 1 125.049 468.899 Tm 93 Tz (high an isopleth can be robustly estimated. In addition to shadowing time, the ) Tj 1 0 0 1 125.049 445.649 Tm 95 Tz (vicinity of the true parameter value also provide small mismatch error \(panel ) Tj 1 0 0 1 125.75 422.6 Tm 93 Tz (\(b\) and \(e\)\) and their implied noise level is consistent with the true noise model ) Tj 1 0 0 1 125.75 399.55 Tm (\(panel \(c\) and \(f\)\). Note in Figure 4.8e, the true parameter does not provide the ) Tj 1 0 0 1 125.049 376.5 Tm 92 Tz (smallest mismatch error. As we mentioned in Section 4.4.2, the mismatch error ) Tj 1 0 0 1 125.049 353.25 Tm 93 Tz (is obtained by fixed number of iterations for each parameter value. It indicates ) Tj 1 0 0 1 125.049 330.199 Tm 96 Tz (how easily a corresponding model trajectory can be found. It is possible that ) Tj 1 0 0 1 125.049 307.399 Tm 92 Tz (for some parameter values other than the truth, it is easier for the pseudo-orbit ) Tj 1 0 0 1 125.049 284.1 Tm 94 Tz (to converge to a model trajectory under Gradient Descent. However the model ) Tj 1 0 0 1 124.799 260.85 Tm 95 Tz (trajectory may not consistent with the observations which can be testified by ) Tj 1 0 0 1 125.049 237.799 Tm 94 Tz (looking at the shadowing time distribution and implied noise distribution. We ) Tj 1 0 0 1 124.799 214.75 Tm (suggest looking at the distribution of shadowing time, the mismatch error and ) Tj 1 0 0 1 125.049 191.7 Tm 92 Tz (the distribution of implied noise together instead of looking at only one of them. ) Tj 1 0 0 1 125.5 168.7 Tm 95 Tz (Comparing with results shown in Figure 4.1\(b\) and Figure 4.2\(a\), our method ) Tj 1 0 0 1 125.049 145.149 Tm 89 Tz (outperforms least squares estimate approach significantly. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 142.099 122.1 Tm (Figure 4.9 shows the results for simultaneous estimation of the two parameter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 318.25 52.75 Tm 75 Tz (84 ) Tj ET EMC endstream endobj 466 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 467 0 obj <> stream 0 " ,,b6} Ft3u IIP@ۖG?[5~ڊoA%:dr96&'4Tl† ;6SdkEk$q Y fM ֣$YF܋5R) )؃Mtpbs7Yʄt! )Pӑ]%ȽBf;,\GiJ\軎Bo5+ޣ]V l"Gf) "ବEXx5yr~^zgOxybi))f'0=VBѦs(S-HLvP;/Ӷ&IH*$IisxH+zI7+LvSknKJ?tHR]Z<+qZIq9f [nF[!u5Ȥa"2eOu Tjb^Z~?k6[ KH\4> +"ʶİӬ&Ƃڐ SfLHSi=s2?il}{`{j^LV8*xZ8Kٖ d]EXIG9zuܙ%;N "P |MNF{|- \qTU;6nRy-wVzPu }i !UL!?rBvVAoan[yk]_OI8v ȁ_ZlWwN6)7 jMDAL}o B} ma i -Nlg+iX򂯪BM4@ZSi]rs̾dR>Bχ߽عّڸOMİ#jD4<.%' Ę ]5˔-t 9$FŇh_'4cLdx]Ô谙(ICPKVG ]nI1e}f!|?$wy,bx\5\\(V%vQvרS gpedvk%{ 㯦H$ɦiˢ!1M- RP8'&MMsuAzJ0S>3\+_ I`)F D700cYx/odx'Y7N(+n3!a9zE Zdm1f|YHP{?ۦ(yֳPtV5a(hR xIe4cN-%}OK?? ^?ӥ$9Aca!0|Z2GT-;zڽc!'I?(~$~ |Ȝ8SkGUްC2UʈӑxinR7c,_Bo_B>ll_xE`=$,P h]+SJiv $x*)>)7:ñQ']' eZSn[E2(Y!DDfd;ö:p 4Efw!.kTqհ؜^5QcCN,t>4 4F&B#LsKIu9"Ho HoFB2)SY3 :<.o](]z &$8*O@WS^a:yW ; $ \y]x|U'mXNKf⩈zc5Nm| ہcK$Bp{:#ߘ?z8 Tma`4jU J|b-@InB6۸bg+?Aiފy@֛. nI1C>pghzEٚ`x[7%UuYpU"ks |: :By:^aV#JR,F-w٪LU> Ҩ6ϹcIt7}oT* eu-~#+(PiSfS!1f;K^3C"tAdE7hO% w[yV/jw쳞VQ=pk(r[[ bfhE0C5qX hl)!2 Ydq D Jz5lk?i Ҋ>֔30ݿS?,6Й*+7%<)|[&Ljp4O P*NW`=[1z 2rIe-qʚ~UIA14qmw\pgUۺU=ΔOx7XjBa|}ZPWPRr%vk]ӝS0*"j@WJlrX'̤Jю+PB>v:ϣOJ$@=򇺢qyGM^Tz37*ʖǛʷEydrl  YzG:X͆{R}ڛ (&*CN@*2vB77iV!v&w@ա{!5Bm\ }8 vlz'(@6䎼ǝZ,2_ g~0 ɰ}Dڏ"D}ۤ=8HCm)$U􂧫bBoԬԷ؝<vB< Y^B˓Qr+uZ~%5՝ZdV|>r.|@w p@yN>!0{IZZ{L;@(F9{QM 9#WHd^Mڅ ?l;ƕuAk/:WXUE>ZIu\鍍^ uM3;|aQ,׀~il?Bv9 :A} 1(.K&y1[׎+e\Fn H-mr٨`$cdp}xNVkE)mԥJ}ɶCqZUyrcmwh}atmUS函CN̰-AUYmXkzmI֭%g$(ݢg=cȿI]ʘ=]mh xv-Â, 9iiX21?\DXe=kөoJture"j &K@~m~թuzM7ŋ~AuO>Nۖ\B wCY +XC^f is3@4Zة-Ý$J >a&K^sx( W,0e!D%F*œJY< 6/:wgvnz}"u+YKv-OhX£ <|.4CLa~ =xgjY$qN OQַ8W8t3#tp::ۀ48a*~{jǯL6HxWq9BfEJNߴ T߱d2+lcזQv^> ˔.=F  y̒24&3:o:I7Ѡ2m t=2"o 9ݞ<`8c{Ɵ'q֢\t-|pQ9EE5J=5ݰh˥h.;~)`-\"3nqdP5SgPHG²mR´5U|@>&z/'pA)5lLY1>s`My0!Q~Vӆ5#JbO~ kk{6PA~vƶikMxyV3َB2dj m|fL*;ĺKNc7cEpjri4<\<Ӌk|#f OCC1S-?i !rȎ휛Ի Ej#6]|特{{3z%\ґ欬! L X(2d'6߃v "lvD4Js#^US飬C($,If[ ik[W2ece}.0㪲r2eQ 6g{kSz ޺}q8UʜclRqFw'~}]9 W^̮5:ޓ1י l O#%9% "4S_G;fwKeށ{ S8d:LJj&j݃8ik%w;nv1 }6GA?<%jvӔAнð$j1`L\%06=dP_,<xlMH.~a,,jW#JVƒZ`}@K?Yϣ.8(9>0qShY𗥔|T_i);{]NI%ekIHҔE}с.]ڂurTtK>n>ޝhIݤyG$b88WTUX~Va " ijoi mMC5%h1\C3*̯&1EW %2I"' !Ks3D@0RSyl]_5 g!iK&mo-/hAor3vJq]Vm"FtoTӓߩ! UôÁ0_$z&5_ r{GZN#2Rء1fm˩F=#3_s>VBg:"ݳzTF淊SJ[@Ƨ  " ۈ&~~$I}fe* k? |>JuO8}Nzd4ś*ĮB%D] :FVlvu|?:`k՝;<}-`Ys~EwcnL%T+6c ZmO th9g=Z +󸟸)c9!O^d,11ʩEc &$Lw5;4Duqa4n=,xXl Mwdmj` 4XXgNMJ݂{, IqE Jƺt^NOJ3v?jBj6RٙPWb)ԍb}r*a\ 6 CM'׼*DǨsu}.L}UwNEfǨ ʡ%:eO]~M!ڽ$\yoHWbh&M%:; 8,->Ë)!Wy۴ձʾmHh3"[ʄ46{י豷ⶰ*˟<%peT>~u# T.J"6dzkRq[?lr+Hc=.`㙐5>V5EI]%-6k#(DӬP'V%`q]r Gjv FBHn8U @o֭LV%q/^8³h- ѐ$Qn,n!DE \Vz,( _aRX@yvװ?URrt֫VG}k>qy7NF+6lB?bPA0,ūc +bAT "|82)6IM,D:#4TnVJwMA@M8=T:sx,&EF& z,֜p ?PF+V(oƯlFF S:21}[ssÆƅ]9xA}h9SPJ&$Ƅ.,EXѓí&Emh.Z C${ǧ|g $][-p,i Յ~8l|@Ώ-7 Wj+۶Ӛ#V7^Rq>y\ ]nǸň%qIZuHRʾuܱsZs(9W" y79VW^^΂q+Qt˶'8Ĩæx1 15y;s ~!aʡ \󆉡éQ[6Ggan4W6>!$ٮ6{׭ͪS;̈́vB&ڭR6ʺ4-՚a8B:,=.<+#e(|aƃ՗4bBD>5ء7IR䵞EΥPJ?'\T9ӈՐj762 |}C&S' k>ǰ۶ȧf|-ڵ<+y盚+KTB`9q2EP`p0_6܋@9\d [{-z Zڪr}x}.o!DΠCD-L%jbr o}BQ_U lLCŎ(P`>Kqi/ЍkU 9 F`6H)]ݢ~d)f`VUFw85tcOnmr(HN{T`e50@H)wfƫtCˑ zC`OCFUjlǑq J~B}oxzlC96Ce=;<`A+32nOڱvpCAZДULM^= ۓ_8h +wkCd1xo(Kj,GJ:v>x!GAhnݤE~߮Y6qȽ_;|ϙs|"/ʼҊC?$;FW1r_6MT g >L -[CrT](;zgR4aBA֤g P~LR۵"}>y]!Crs)H ih8 Aë%`8mA~4yErFu2G}f],aBb Ge^^{XPwFی a3 DZ5'P!c/Ғ2L1X6AKݽ,I/k7"s0DLdz0׿ ;APvz}Īzּ {OwRp+ja([On9 Prc4>ƒ8(F+2J8tn,2}hUgj * Üɩ7YE?qFf5"7q9>T^QFV[w07"h-x5>D~j4|7 =au`'G^i8aG`8DJu9ѩ5G9f qϻ(Ó'7ab,z\?%W)d]:V޲׌.0chyG#}rIJ=..- ܪ8.@ ruJM[ QO9lOĊ+[!RhJ ؤ823^U9O~c qqEMs2Ye U,0VŠ W9so$AS*z` V.GqX7)~ٚ`9JLEqїE{&ۄF!yYHQf.zBr)n~#n`?čw;SMuLH:̽zAu+ 1掣x(7Z}ot.CZNc2K amAnUBWS g~C]!B+I$ZOlT~2']=!ˬ}P39DуIjq.5`lc}(vdCzJ}^xdI|JZ22Diz`EàҖԝQ=Z1l'3Fh:IcY;AqJ_>}B'\$l, R8n# kpYwQ<$4{] 0i/eh&qePZ3v {{luHqZRt%&)&'?+6K62 \@ >qƀղ3uegĺ (+WjÊU` Bz?V9z6 @ 툦]gIPDg7ZP_YnjIS,yDCf쟈cW2ke˽TQ-)wX- bN"7uCk;edAUNq)z0o+천'+#~zD泻m8d 4@G,FqCr,5(LX˚nQLdM!>EB!(I*9ou=axYx 1TN?fy.<&nALƻJW\IK!7!sv̭%u_,n_:t^a۲9rE R'c^O Mi+dN'~B,R4] FK9i7sG]\%0F"A$M3gz[εnD~X#oT^蒅!Qsu"[hF 9 }j^ (SŠ'!l& E"=!OZ_T0N)gld}I!]o;?njL endstream endobj 468 0 obj <> endobj 469 0 obj [470 0 R] endobj 470 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2112 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 152.15 487.649 Tm 99 Tz 3 Tr /OPExtFont9 4.5 Tf (3.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 99 Tz 3 Tr 1 0 0 1 156 473.5 Tm 105 Tz (3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 105 Tz 3 Tr 1 0 0 1 146.4 458.6 Tm 24 Tz /OPExtFont3 13.5 Tf (E ) Tj 1 0 0 1 152.15 458.6 Tm 103 Tz /OPExtFont9 4.5 Tf (2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 103 Tz 3 Tr 1 0 0 1 156 442.3 Tm 105 Tz (2 ) Tj 1 0 0 1 158.65 442.3 Tm 80 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 80 Tz 3 Tr 1 0 0 1 146.15 441.3 Tm 40 Tz /OPExtFont13 11 Tf (S ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11 Tf 40 Tz 3 Tr 1 0 0 1 152.9 429.8 Tm 91 Tz /OPExtFont9 4.5 Tf (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 91 Tz 3 Tr 1 0 0 1 152.4 401 Tm 99 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 99 Tz 3 Tr 1 0 0 1 185.5 699.299 Tm 115 Tz /OPExtFont5 12.5 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 115 Tz 3 Tr 1 0 0 1 353.75 345.1 Tm 88 Tz /OPExtFont9 4 Tf (1.053 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 88 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 88 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 88 Tz 3 Tr 1 0 0 1 465.85 343.399 Tm 139 Tz (MOM-Spiegel ) Tj 1 0 0 1 501.6 343.149 Tm 129 Tz /OPExtFont9 4.5 Tf (Sysied ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 129 Tz 3 Tr 1 0 0 1 353.75 330.449 Tm 100 Tz /OPExtFont9 4 Tf (0525 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 3 Tr 1 0 0 1 353.75 316.049 Tm 91 Tz (1.052 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 91 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 91 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 91 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 91 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 91 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 91 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 91 Tz 3 Tr 1 0 0 1 353.75 301.899 Tm 102 Tz (0515 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr 1 0 0 1 353.75 287.5 Tm 83 Tz (1.051 ) Tj 1 0 0 1 360.25 287.5 Tm 90 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 90 Tz 3 Tr 1 0 0 1 353.75 273.1 Tm 102 Tz (0505 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 102 Tz 3 Tr 1 0 0 1 354.949 258.2 Tm 68 Tz (O. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr 1 0 0 1 350.149 243.799 Tm (O. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 68 Tz 3 Tr 1 0 0 1 361.899 240.45 Tm 103 Tz (95 ) Tj 1 0 0 1 366.5 240.45 Tm 992 Tz (\t) Tj 1 0 0 1 377.5 240.45 Tm 103 Tz (96 ) Tj 1 0 0 1 382.1 240.45 Tm 1015 Tz (\t) Tj 1 0 0 1 393.35 240.45 Tm 107 Tz (97 ) Tj 1 0 0 1 398.149 240.45 Tm 974 Tz (\t) Tj 1 0 0 1 408.949 240.45 Tm 97 Tz (98 ) Tj 1 0 0 1 413.3 240.45 Tm 992 Tz (\t) Tj 1 0 0 1 424.3 240.45 Tm 107 Tz (99 ) Tj 1 0 0 1 429.1 240.45 Tm 934 Tz (\t) Tj 1 0 0 1 439.449 240.7 Tm 96 Tz (100 ) Tj 1 0 0 1 445.899 240.7 Tm 825 Tz (\t) Tj 1 0 0 1 455.05 240.7 Tm 86 Tz (101 ) Tj 1 0 0 1 460.8 240.7 Tm 911 Tz (\t) Tj 1 0 0 1 470.899 240.7 Tm 92 Tz (102 ) Tj 1 0 0 1 477.1 240.7 Tm 848 Tz (\t) Tj 1 0 0 1 486.5 240.7 Tm 92 Tz (103 ) Tj 1 0 0 1 492.699 240.7 Tm 825 Tz (\t) Tj 1 0 0 1 501.85 240.7 Tm 96 Tz (104 ) Tj 1 0 0 1 508.3 240.7 Tm 825 Tz (\t) Tj 1 0 0 1 517.45 240.7 Tm 96 Tz (105 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 96 Tz 3 Tr 1 0 0 1 134.4 206.1 Tm 112 Tz /OPExtFont5 12.5 Tf (Figure 4.8: Parameter estimations for Ikeda Map with u=0.83 and noise ) Tj 1 0 0 1 134.15 192.2 Tm 101 Tz (level=0.02; Moore-Spiegel System with R=100 and noise level=0.05, the results ) Tj 1 0 0 1 134.65 178.5 Tm 103 Tz (are calculated base on 1024 observations, \(a\) and \(d\) The median \(solid\), 90% ) Tj 1 0 0 1 135.099 165.1 Tm 99 Tz (\(dashed\) and 99% \(dash-dot\) shadowing isopleths; \(b\) and \(e\) standard deviation ) Tj 1 0 0 1 134.4 151.149 Tm (of the mismatch; \(c\) and \(1\) standard deviation of the implied noise, the horizon-) Tj 1 0 0 1 134.4 137.5 Tm 101 Tz (tal line denotes the real noise model. The vertical line represents the location of ) Tj 1 0 0 1 134.4 123.549 Tm 100 Tz (the unknown true parameter. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 324.25 46.5 Tm 85 Tz (85 ) Tj ET EMC endstream endobj 471 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 472 0 obj <> stream 0 " ,,2dV¼|"=tdKT^PLm8e)8k[QN;F"X!T㘷~Naslp@1װ7.^(d _+6:Bw3?.!WmК=f3h~QR/=Y dG8]{5KgL7sa5\]\n $zC [U2GӬ F9Un*'o|HufgkhBuEjZ әY ޞg}`\¢YH*dt5YmqxDv^cF'-Hmڭp蘭j7MۿgFe\TdKsξ/@Qh$:ak荡6+1*ꠙ<6njYMj Ƃ_萡#&h#33fuMvF]ȽC`^Dxwաnm٩Tg%MH#OY BnT?zy2GҭS'h;Q6O;9C,gǻHȸkx9,Eī8ɴ)%kƨBA~<?$c[dZCPWk}(OR-WSp\A*xNI_!FwЬ:Q(1?2 xߝ2; E܃F*a 앓cY@:TU1(f''Cԋܸ Rq8V?|J'.{D[8`mvvY 5X[rP Yg#aK"B@xes@ӂׂ߳n=.RxŴhk"Bf]$kh:m7e|%4'O!GvۯCSܧUAP,=9j? E.? L?㽔~I*'wl7^tʯ5emlk6 vw @'~>eUMD&}BPd`f+ZO/H05OAKU:8[H̳HӐuBtDKm_հR.\i̭q>޼3ɔc˩ϒ)yOOu-/'K?+O̮'t.yj}E$;YQ@h)-0#aVya*TD }qs뱠%hUwJ%%"͆-\f 1un$ -Z7VɕK]7t?&@2UOaxwjgVэ,4 Sr--q!ܩ_}X܎ qު.襫HT%V%ò0ؿdz&nU+UA_6YKE tG1ViQh&4 dkSʨE~+3A ֹ-0ٳ;Lp@ )?rhB'2"o#]>~jݗ)}W)b9t(v+tJB [gɦ<۰@"N>\Օ9=|3A]ѶrK޶sQ1d㣁ozުP}][KC2[!$İu)ģ3g.Uк@ȧ@quR*5cfZFuN ]\C UVu+ צg{=CdY27DuöPfv٢7y62J1Y^l<~jDW~bB JϾحB| HaYP")+4 }vlD NoN;~w[ yz-5$|i;<,unO/%5,9J֧ qK&c a&T{PjN@m#C<[N΋Y{(AױcS!B5 )JSb]^6Yj3,f H@7ނgy@luX2ϓ$H\6TQ3Hr緇?@b{Mim2/BNAcphֱNa/:*3pIMycV*ȁU<}x1$BH|pucX|sVv w@2uHc #SƄE[ o\FȟJV)uC SU$nh2?7pVV<'f}ZX, "^ؔ񂡑Nֶ8)#Ȭn%(v{d#i .<\QVc@so(_ΨFYJ4p HN)yό 9`M\ yX%8H~4W^C B WC@#q$N^ ҳRX}΋Rj)VZ5!U=G ]llzENG4ՁFZ4EߠǑӇQaڇL{ě ^u)xȟ;sRmVq#'"yNE? 0LqemQ0lHAaF8 hB ZI:a︉RXn ڇ.eN-;L`^ 葹1<֬R؉g^Ov9 }D.SƏ!k#&ni:Oh&DO!s=ĵEJ <}HLeCZi/ȁϜæZb>CR d 횋38)yx'L-4%FTӧ \i3=~v 8-oOXw|{q!'QWeKY'Wys@geј k?uWӁSBB\;&(PR9f\3M`iM*5WVCI<#w¹n2rh 7nA ES!QZ^+:=sB ,F淺}cbؠ24_w׊OI1]2IW4!Mb hfCצf௥^wl'.|F nMa 0v.華Q)o;kI{rR 9?Nqi$Qo;dFU#Ul@R^2"ŴJ}Fs'\}rL +:dk̦͕][ I|w-Kׅo?x cjgcv%F?lv?0: n1Ml.ަϘ )I -l좩AWM98f)+#S{z9s$O̍øMHjp٬h@y~IUqjH"#-R En4t0N3.3(M) )mgOmP$TDp˸HbKo!O Ž0n#(J'}7*)8yR˗SY+-ES-ƥF+E%q"ɟ@]>~,mZ߃1ǵU1j[PKS](;pF՚0>bփoC"B=}v?!Av O֙M`B2UeKZ 6֭،WtzɤM cYb˗HOtXx~&kƾ)1vW*^^^ީX a3vʭ~>^H/X>͌N#f24]"0t cjy6B4l"J۹Vlc۩†kbN pm2VJR5PC"镒+<-LMRŢY~MMd}l#dlMÔd>s:Ca$=#M|q =\3ШXp/4V/Fx[ Np0׶ ШGױylȏepMo| "k( ;0A3Z%=*p EiqEtId.اMPW ׆2ܿNQ72$3şg&1_p偘NDߢ^Q2 /%Q$̾RAȶzik<:$ 8IUte ӟ^haCxs!>_"=FAq $piHWfq z\R(I%ީhR„,D#<4:YaHSsrv/m$pH=D˳Q^ Pˁ=k7OMUOK!GL_CRkI$;rœtsJT::]u OE7m6? G!;?.ٛ4oz (W/uYIC?ZE>4&LzN>A @(4i">)뱫-ύ/1B<}*zʰY%~ ט(;^lZ.RBtyU)jjL ƾS|͍/)H7Dx7{HRjZ$δܸ Fjw@=03}tBՌQW.B4¶-A1Ł񈏓[f߷Mo^(6^JJsYO8`E,*NL,_Hka-I đuq֤2}ga}hݗ]HC&©ǿcF[q7iڨ 5xqQ'=[Χ:W_\g yBt}@oҏ~pb'S~ 5瑟ݔU}kY7.[0m| eJAǴO@&VNW gH̓ޮ|8U}or&UC]hŸD朗Ԉ9PZQְ1%i¦Azڐ\.tU-h}[i(޵Igc+` f옇Y]?D_:70ssev%d Bkx|o*,f q}-\_2OtAԸ:ZQ fVA$'n?JĄBzWQ?wU$&tӆ9`-4Ϧ (ot̹9hvP[P┶7Ng,H?ck{`p?$<}QW4kDSQ0uu(UnIs~K,{>R񰩳йoF&h-'$(Vʆ+{ѽP:ȱ"D1Wcmv_pX(B9G21Vp9:laB3P7; pR[uc*zP\˽~VE] qD&5fF}Itͽl>9V/Ub2W?j9% Zs`.x7l<)Hhql΃# KTuxG.S#I;&nPaUZGs;05kY`TIL.eף߇8^096DrC޹uá+F B>P3Z!EZ[GX&IWB12rh {%Kooa'Zuq9-ZǵYeCֱwbՊfpRwl̥$yBxG2}-;c큝qyb@m`:E{s׸*-egI}~\~jStf4L尥T'V,KKtn n1Y֏u% s5PH t?K]z1_*rwɴf(pz[Gr~2'hapvF UɳvR(Xݍe:28@AW-EFiFDm:wr`rIڜlm39 ݗ(29z~4P EJw l *f:4 (|_(V}-N]0PEc1K|qcٔ"=:2z|Jז{fYq&^DN{FL BξݪayZ_k/7WPb'_!hBbd6]'V>2~)XUcтUC(UKۼw%}x_J ~6F O {=}a>}qWxv"b TS6fdM_Dz*9MOle{:)fg$${g(C Ppt$lU ye>| U,=/կ TPˁXfW'Ӌ2`5:4]$rclk7!{ Ս/﹠._v5Ki\qkx ,b?MKf2(OF,.A R H $P9i>Аꍳ7XᆽxUg6ҦRx^'vY$@ 0=#z@G;{">\"I 6}}h + Je }ܑSXQ#sʻGUvEZ-S*G1z!,ϗ+( {Kh|)#60;0d@>uߚ&urc@-F~3=yם$JHc{I|vW ϥ^F$U]7006(9-Vݯ>"Va;:vWxau3;=f S*Cdc{@̜½O *4-g*CR]}0El]XzJP&ɥ-qPW &ݍfF  1~RR#Aarbb%|vN ) S oՂ[&,O@<!։%L'v*\͊  J%+wi-2럿FXSŻ6t*Rw ̋KgD7 0:'h@%<)Y?1QQIl_-ܑ o~EJ#"c}Qq n:ljmh'hn+SnIf\bDլ]0,ۏE/zթ!{1I}P- c &o ['N}GZF<4OuͨT\,qu}:MI~TAW(CClLS#շ+XS)i(R~ \k Q}b?O{H)ɠ:M=0xKdE,e]VPʒcӧ 'hRWg Mdg<0rM#~6-zu?>zSi|0Z*٣7YQ8M3Բnpj$zP=}uwL Ժ޿> GML /PJ^WV+yCmAl½4E;9RG-Tr;L$M&3ǯWoS(s/fKxnh6lZc>?,0]C4{,䐟!fU޻;"I+kMvjD% ,523CeEG9 Sn+ RUxW_C=АVǃ }YD8$%+HeRבiۤgPt @wˆ#"Ъv33 ''=,ozg=r5%y9hJ@y신$_]=SdD.#P@mԲVITvEj.1?x= TIw vx=y2(Ek6yu nK &`0Ώ;\> {x{6rAݒHx=]&N+mAQzѶ2zC :dov]~T 5s&1C;bnQF49\`Zr*$cUtG=2fS9 KTXMi Svv%N,n]tM*3ͨ[ǾNTL :]rg:^acBԮ">;yl=?D& fL|g!4sbq^ ,?ЫXC`GVn$CRLX6ҏ㽱ÁM@;!)Fu;)0Oe+LQ͵Pω+/fTxORԐ τD1F N%|Ej0-gK^{^w?LJ9UvhI y~R!9oh{|>_7CLt30auLr2.}W4c&ePrUV,!G J^%~ @xnyx.=ZcxYag|i2SՀ-R:ɆihJ^x4Koo4? n"k5x_!]2lh t{6t;O 1!xӜ)5/t6w2m{cѱ KƌCҐ5u~"~}~j=kim\k e:zʓٺ4w\k ӒL'͛U$^<;;oN~j#nY Tt  Ej<( !t'rcogzmTF(> .QsGz2I8> KBH&Y4xQw(Y;zkeAͿP(>[MOjnQ6w- N+N0Mߦ݌:<yb4S9m~"qFJEգO$? 徎OKwb>ˮXNE|%Ɵ7^c錅c*?泣ƤC+^Ns ~ dGׂ8H"w$9m$Q`r]=V3oAH ˌȑm:i `I+K:9W2fR,}q$Zip11K̲C;X`M {0.׉ۅ0O0!?*} 1ɮ7Jeݥؘii =Ω+b,t]V1 n53OH$I4ԠB (7cS;!iN.n>BLj*ɶʼnR]ÚƟ@' e1@{]yti|囪D\M;nǏh^\U&qmw|\c-ߠc\"aJ&|'yjP}B/,d QǒaIRL[A{--)xXb<uaoȁ#EoaoPo쥙AO1jH[;x|,QcҰAqCKDH}n;"1 [B$]W*m'C]|W,JAZWYQ #P'y){TϑwͻkZ^9Xxi{G9_ǻMdKRܜxF@!sg6-ok}VțfFIGd>'N5:^HxƷ-AZIߺ: vk6P7nxҞzg=]ORo C큿;dOxq2 #p<'i%[á4vF4Del%̴oY0N*E[_&B`U4hwThegԳ4@nHr' e}a+r8("iRhvuI+7Sx[ףweOb ϵ)(EoAysh- J),y b|&YTy-=l |;aa9+Nvj<Bn{]҈LQ)w"Q&H<~q4]BЛPu1&4eҠz3* rQNkORn%nQD0w((.ZM- 7"XT!HIamκR]15i|,+o+;K#it Wc {WοJ/0&.IܓuRXW ED>ڻSbg5!=fd+^n@G ˟VϰB!Aea0}9*e ֏g|\"tggoAV{ÒMRHdCU]>XmurE\LdӮX&-!`K g힢Qٜ/HD%j2gZʟZ0w*kt@,mE^cBw6u|u{ h*dn-<òp4TF5Ҏןorb'-a+TWy 3$m mdp'/!ԇ}\X O4'E"JLN_9PyKa(k9W-TrlUI;2Þ)*wl}y^e:.R |Ġ7u#I3?nPmgoݔ%Pdm@Ŏ AW_ # yR="Pv6V~5)ݗϡͲb_*B / B4}5cẺ}ePFBHBnQWu}_ogFwޞ\`/YYd&EMx*We0X߾BÁg =K TZ srZ!.6gqzI|)Gfj[rw-i ]e+CsgnN=AJNMn8;BW)QU`Sut d\5X8XTUT&k#-Pj}>秱մk(0Aaj$=]^k6컱獞*< czYr wN Z7z B1+X;lݝI0t5W~M0wj_Gs.~ĀVre"n7)886.ETAD2Sc2Ifv Rǁ''. maή N@.yROx$h?Ih&UW_֝M ΄*]O"YVbLVUN ].d}4Т_õEC](~BLM)wH"Q$n4@xOcSsqI @R#8s0MSOVRĘtm~} m@oIM)~xW5*(wXOѦ#fB­6* *oO5 8lSah5 Z 0(zvYA?%4neHVhBcwD R#%!Z"Mo,ɭ#J&V˸QM٦,X)%xP|CS4v-B0ޭ"8h.t\WXU a؀E4q2LnyKOC8}+KvbHՎ&u{c`R:Ų}?kz Y<d _yS<I_cf.lDyq3M47C&'XroV}Ԗ6D:JݪpJx E66Sw,o[R4r5A\P#=+۫}r2X E|'|.=̂MW Dk]BZIѱwօ0O_wf͏2dO^\ 1~s#1rynkjz3'N{`xF6ʫ{pRҜ5AŽ%lGMl:؛!:@-慓̅72#aҡY+wmO{ip'Pq-vݍ {JM 02SO8l3\P"C22^ګq~,z` j/UE %>$ s cP>{|VẰ <( CQ-DGA jEdH έ!` RVCMx1)?A!N(\,q\7̻Jv>O7:O>,Ns"/x{.ێ~B[i7dl:mHjV3쁿4>ߢe2y NG$jn!B*.YD41@]n@e+] +‚x %7ro^j tOl<0m2Mbŵ" ׄDO-(MdB ^@KTJe#/]_ la;+=֘Hz殒s~wE b4 \=L[W묝9YZoj)gpߜAIn^ma!/#ÍX 4#I+伃9,7Mra bnC6k8S(# N܁, qwc5 (Hxڵ:D,ng$hGZX)Hb^ Tstjjg O z@|B,Qx_ O|&1Iw6i4]xpMd7u^O[AX9 W/5pO endstream endobj 473 0 obj <> endobj 474 0 obj [475 0 R] endobj 475 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 623 0 0 840 0 0 cm /ImagePart_2113 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 179.05 720.25 Tm 105 Tz 3 Tr /OPExtFont3 11 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 126.5 677.5 Tm 90 Tz (values in the Henon Map, where the standard deviation of the mismatch and the ) Tj 1 0 0 1 126.5 654.5 Tm 94 Tz (implied noise level are shown in addition to the median of the shadowing time ) Tj 1 0 0 1 126.5 631.45 Tm 91 Tz (distribution and a cost-function based on the invariant measure \(after \(64\)\). The ) Tj 1 0 0 1 126.5 608.399 Tm 96 Tz (fine structure \("tongues"\) in panel \(c\) is due to sensitivity to the parameters, ) Tj 1 0 0 1 126.5 585.35 Tm 93 Tz (nevertheless its minima are in the relevant regions. Contrasting panels \(c\) and ) Tj 1 0 0 1 127.2 562.299 Tm 90 Tz (\(d\) of figure 4.9 reveals that shadowing times provide information complimentary ) Tj 1 0 0 1 126.25 539.5 Tm 95 Tz (to that obtained by estimating the invariant measure \(the ) Tj 1 0 0 1 426 539.5 Tm 120 Tz /OPExtFont8 8.5 Tf (CML ) Tj 1 0 0 1 453.1 539.5 Tm 107 Tz /OPExtFont3 11 Tf (of \(64\)\). The ) Tj 1 0 0 1 126.25 516.5 Tm 92 Tz (shadowing time distribution provide complimentary information quantifying the ) Tj 1 0 0 1 126.25 493.449 Tm 91 Tz (time scales on which the model dynamics reflects the observed behaviour. Com-) Tj 1 0 0 1 126 470.149 Tm 89 Tz (paring the results with Figure 4.2b, our method provides more consistent results. ) Tj 1 0 0 1 126.25 447.1 Tm (Statistics of the shadowing time distribution provide and unambiguous indication ) Tj 1 0 0 1 126.25 424.1 Tm 91 Tz (of the range of relevant parameter values. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 126 379.449 Tm 110 Tz /OPExtFont3 13 Tf (4.4.4 Application in partial observational case ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 110 Tz 3 Tr 1 0 0 1 125.75 348.699 Tm 90 Tz /OPExtFont3 11 Tf (Here we consider the case of parameter estimation in higher dimensional systems ) Tj 1 0 0 1 125.5 325.7 Tm 94 Tz (where the state vector is not completely observed, i.e. some components of the ) Tj 1 0 0 1 125.5 302.399 Tm 92 Tz (system are unobserved. In such case, i\) we firstly estimate the unobserved com-) Tj 1 0 0 1 125.5 279.6 Tm 93 Tz (ponents by simply random draw from the climatology of observed components. ) Tj 1 0 0 1 125.5 256.549 Tm 97 Tz (ii\) We then initialise the ISGD algorithm with the observed components and ) Tj 1 0 0 1 125.299 233.299 Tm 94 Tz (the estimates of the unobserved components. A pseudo-orbit is obtained after ) Tj 1 0 0 1 125.5 209.75 Tm 98 Tz (a small number of ISGD iterations. iii\) We then update the estimates of the ) Tj 1 0 0 1 125.299 186.7 Tm 94 Tz (unobserved components with the relative components of the pseudo-orbit. Re-) Tj 1 0 0 1 125.049 163.7 Tm 97 Tz (peating ii\) and iii\) several times in order to obtain an "good" estimates of the ) Tj 1 0 0 1 125.299 140.399 Tm 89 Tz (unobserved components. In the end we run a large number ISGD iterations to ob- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 318 53.299 Tm 77 Tz (86 ) Tj ET EMC endstream endobj 476 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 477 0 obj <> stream 0 $ ,,Ub6v~V)%KЙUhyE>jݒN.İ4"C8y6nTd=6@yjMF,;'Q-&>l>}4RURnTF=Y$Rτqt,Ij|v Ls;d%h k wPL١ 's\v5kb6n`⣌`>ʳ]"۰<×PFS*d!nEGSlN!BoTq>/MB :0 ?9e.o[qm;uƒBיt.-1>aԳ䲵.^i$ǝ_sЎдᄛ^2ԻTݍm<{ρ.o_ZPQ¶U>2]TeH3,.e31h)ıA9 -pWFEdbi%Ȯ3C੐@jABk@ӚϜQ9 ]E6<&:%~ Ԥ!hC^=KFskֺU눤3N,Z\9̄9¾s"5+,jqF#^8VCJH {ӾGwzgOY0#,Ts0^=m=HK.iv$ !Ɉ7#'Y)PNO(V LQf7VY;)#Mw&) |4 .{M'ٍهwKMMW&f&?O?fw·E 8q1~4u2h֏ ttEUɴAфZzt7W[Pw9-ȍƈx=rWCS<0V+BkMJ/RD܃ڭc@F=q3xWޙ L~6/>O&s/sOn) 2` cʳQCielgVd$ꁄw4M _ ē`nZCE{5J}<۫~@|b:Fס"c\Ƞt Q [%.W67<}=wI̊J7W~6qr lޖJQ=J eN܅KN޷Or˝;=ǖI1ŷ; D"T&̶E9~x;]QyyGxQۙǮaB4Q9A=eUt "<K4Ojl}JH6ToFkauu=%sOPZJٶ_aq`Q/*A%gAbVg˨vKKtP͂x+wl N%ͽ|O$B<#xǛ+ + _|Pv #L 8t%k\`lޣTInh-\`TXiXjUI|+^·Kwe*oKYSphuEN+ʧ2[pKU;Joi%.a #ԂnW?_?$MzB\V,RJ!݁2D0c GY%{~f\MLcu|4 jУ!!7 ҾL1edo[ H-HG`^5W_uRa pXz}dž8> OdדmC+W)x:7?8jޫԎ40;1tuF+A8ͨg6nNTƞlegQoh1d^n"h(AF&_^`6M2.ǡefw"V&:f尳{)E0U|fmޙ1GRy cOyUBn>Z'VH|9TX2|p Ui|5cAaI5?-}"!㾒Kh<{|+%Bl6%L/떕""#)e71WQ?Ȥ#!ݏxX\IY_k.aX}6T wy]4 44I0<ᳲ6G>ZdXkXe? FWq4o(XW|r>}kelZ7GP-]ռ5=:͆Wd#qYB,`V6 jҀޓ8.~,GDwYiX]g2oBn=kc}T%.lV=i# FK"wNGw8v_e+W2D$0/I E >>X2 vj x%GfA֠y*.MˏC &pyo]3ʣy- ː lyd,hiV2X4 t"sʟe2Mio/vGDUH4 6&(ʂKNK\Y,.'_}Zc!i=<4=6;Pa܂щk: I:i97D~GQb wzj =˹9uYY:C( "ѓń(9".f w$Ɖg|D B/?,m/I7%ʵdxq/#IH\DoLދ@w_o+!t:y{d]&z)pHpjv6 Qa~5Gtro dc# '/R"Sṗ6K3չ4nH{C_zq1z#?⌹ĝd;.zlDTіX %ߨ4w,OĽPdP~?y%i¢f4 ppScTHyZ3kIU1=#e$2Aq֗-dz*3zKQQ,mBёqG+xkFrm9ttH;u;Wp$(@Z:!2͘PΜK*}/³!|=DŽ<RQ~i!ʼnV,P0Ӣ`AjGr[ b3k*3L1 +Z 킌y†lv&cOWP:N|{rs>LzjYD*WKqEYuE=;$WUF8o !u/I ņ9wmg?s}]ki x# a"iԀ,)ik'=;A1ϣq=ԴXz5LZܿ霓nCk%WC/45 2 gv gvMXm?@Gn5kGx2Qzqwߘjm#wZL&0ǐH_7&N619ߏ](ݛd2˃ecQH2ՑGr닺5ZN ]ypI߅OI5,Kc8/δ%Fw(/'U 1bإ&_ńNɟ1z{0jz7i;CRE+&ce*Q"NMbYeh}~bH_ pg\ v%NHleO'8 mNQ3{1FAgdwm|;G9aBtw!'"r > =E,;K8rܰ]*hqv|HfJeO3DX{(-Y o)e A'YZ>]W]!;7stC7rb^@7 t<+a/nk" F!!']ם ;_WRYRk'!&sOoK+/'vV:;sxӂRxC'܅#>k߬۫2{(OԤƥf{3°[鸋T<a#ޱ4ɖ-TcLÓ7@0o9I_@Ƒ>X ԙB*#@4%U riTY%RVf+lkQ5tr$7hAz=',hQz s{?װ|Θ!@IVD?7{^As%Kx 5п)/g#wTM>Jpl+{:6 k"`&ݱ[I&tCc}P64?1&_ZEa6zGseY47;qJ~0ߝuRʳoVJ Ko5>;$YK"1:ApC/z4r>E޵Hl?~)BytrmShwu]G\E8wK%[iZc* $49z=lc_j3ae7eiu,Urϻn9ٳRְ»W:&:#ʱ_Ƽs!~ʡ"_JaPxf8E1vAqժO83wJIא͇ U # @6s&C3^3\|TsEM̼! j{9,oj2۬}(Q89ƹqj]L-eqJ1rBl^ K,mÂ$|[EiXi,MҾ^bA;?@}mnAsEh& Ajc*I!P3Z`o! ΞwH U͵Hr^+0^j8Cfw [zV5xɻ@,]v+O2Uī?I$5i'bVS+1J){/)r$vGi߼[j8^ 6SsU3з쳝)c^z0|E-YK5WkwݒJ|!05ymatI$㧐 ~]Bbt[@C$̿-ƍρXI䳩|ӾѶ8ױV<$a_F,;,5'>|k[Y%)mC Uӈ<_>'챑a]>vUD|A]#"7ĉSfpaг8udنEx.`X`MIrq8-'",l.MMwFaTx>6^ )"3>1@#~/H RNCO}òe+˝ŨQA>'#zɻ;jڼӱ+[9*N/ճ[6>jl.HVbA/ M|ĸ|F #ZPVW@hV$%3nzfbW4gP*"ӑ,qt.aU$5MB[F~"}@rf$`Hnz\07*صN=tIWEg?>& xՂ#w_S^՞J&`}yxyp~Cb⼹d?4iki"xk{`6KP m} z>ViuSB@IPdc`dwwz ~G W>-5W=&·9st=r#n'ndtj_?۲&mm%4JM ]}Tk/`lZRXZ oZ>L ( 2ڃ ex_+'ЈLDD oJ"Ck`l#ais_k tdi0">!p* 썢P/ 7í ^:]nN+8S`xي1O Ze-qc6Mc_Z)(Tǰ&,㨫Ї>,NٔM4>kr;5`C!4ur*xa 0|zЕ哵"!%7O1)|X*;x9t$ĕG"lB>zLQtgF>Gp@  vvv;.T`z{/QaY;[/)'3V1*6oS4D$H=9Rx/`ֆ1HO]<'ZK"<נc¸"S'o@ ÖgoH-/S4 nV{??nlBXnF ^⡆{_Ԁ ˝6 $i48UBg؁K yz7&"45pw?W8~m{f/Ü}$K4Nl2 a=Fib A2F?kӝrAHW-sZX(hv(mdKO2~I! tI#3We36կǓAyG5( f=7dB[FhZBrln֣ٜZb4":EoOh÷DS{dcJe .Ϝew6,"j=W M6#P4MCa8'$.P%[ڒQX7N@ыΪB:Vˑ0$4-66oA&QK!`m+3LdS˧M튰++Rgv}&'Y0d<~1CԖ'>Nhj+)J8zěAo-=Qݍ/m9y endstream endobj 478 0 obj <> endobj 479 0 obj [480 0 R] endobj 480 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 500 0 0 803 0 0 cm /ImagePart_2114 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 252.25 450.899 Tm 97 Tz 3 Tr /OPExtFont9 8 Tf (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 8 Tf 97 Tz 3 Tr 1 0 0 1 409.899 444.899 Tm 90 Tz (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 8 Tf 90 Tz 3 Tr 1 0 0 1 252.25 583.649 Tm 100 Tz (0.35 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 8 Tf 3 Tr 1 0 0 1 248.15 517.399 Tm 71 Tz /OPExtFont13 9.5 Tf (b ) Tj 1 0 0 1 252.25 517.399 Tm 118 Tz /OPExtFont9 8 Tf ( 0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 8 Tf 118 Tz 3 Tr 1 0 0 1 231.349 352.75 Tm 90 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 8 Tf 90 Tz 3 Tr 1 0 0 1 230.65 281.95 Tm 91 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 8 Tf 91 Tz 3 Tr 1 0 0 1 87.849 706.5 Tm 110 Tz /OPExtFont3 10.5 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 110 Tz 3 Tr 1 0 0 1 34.549 242.85 Tm 96 Tz (Figure ) Tj 1 0 0 1 71.5 242.85 Tm 91 Tz /OPExtFont3 11.5 Tf (4.9: Information from a pseudo-orbit determined via gradient descent ) Tj 1 0 0 1 34.549 228.899 Tm 89 Tz (applied to a 1024 observations of the flexion map with a noise level of 0.05. \(a\) ) Tj 1 0 0 1 34.299 214.75 Tm 86 Tz (standard deviation of the mismatch, \(b\) the implied noise level, \(c\) a cost function ) Tj 1 0 0 1 34.549 200.85 Tm 90 Tz (based on the model's invariant measure \(after Fig.4\(b\) of ref \(1) Tj 1 0 0 1 352.1 200.85 Tm 12 Tz (, ) Tj 1 0 0 1 352.55 200.85 Tm 122 Tz ( \(d\) median ) Tj 1 0 0 1 34.1 186.7 Tm 87 Tz (of shadowing time distribution. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 87 Tz 3 Tr 1 0 0 1 226.8 40.5 Tm 84 Tz /OPExtFont3 10.5 Tf (87 ) Tj ET EMC endstream endobj 481 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 482 0 obj <> stream 0& ,,#..jɲN'].]VcrZLoG%A髛Mh}O(90].`ȏ|/P ]DГ.֦q*, C:q&D#j Ңm`X(?K"lYW9h0D̺'{..ϝt1d}P0T `%Q}?S7 4EGM{.'};UeYߤ@D^A19@t@wu%l-=bYxn{\ mxtǍ/hTxGB킨ϗ3.6C_ +FlaKGI% ޾C&5z?|gAgF oS9rp3;C]}$Nx7@JE6e@IaEZN<3s7紈JOOzׅɾ{ǰ㚰^17oǾ@m$ e(E,yߺ-iK7Vfor^ۻ= x}w0"^kQ0 dnxHYG9Gh4/ujf[bPr.h+Ý2==:D+On$(?4zWy( O0ZmZE2W)ZQyeUp^M}F*v4Ou'˟VU#؊Tׁgqq( QoYf"p!Vl%6VU(֓] G4No uߪl;/9ڏCqi`'n8 R[gkk H KCOl .n%hr@_ۂJHH}hhC,UCYW?о/d@=5>~4A(?oș6s8@p׌5 c.ծ;̨M/#2XL[,Y9}*=23-Xj2AZ>f˪DJP?ZUO#n tq,v1F%Jvr[DcviV$2HÒgpOP"sܡZ8 ϶b ߟkzC5 b9Sxs,mc^Ē[ѽƨkh"lW ۅDo䛙sJ k5ozIΧP-ja]cvF#@PleFWgEx?Ѣ&*'Y"'2ľ,k64v E|s']1JuEɶm %lneK[R8%#g^\mow9-;иTwXxWO.N.< {#ˋ^6qZL.Ksi|HoS -^%ӈ*=T􋖙"L {: npL3 eW\Q(P?vuHd75P}[J}:6̿Ϗk%-.:1:\7͙K.gwCDOVÏc%5Ԫb8=e{98g_݀4sJu1,}Ob.s#%U_Y"U }ww vLd#17LShui@z^M闛 g)GҍN-Kᅣּf;tw&=ϟ2b*M?7/itʕ@=4ؤG?Vd]T])JђϫrZe򻗑ݛc7B>Se "٦ˀgl ٗ$}B-܇$qMS:EtPb}g1rvY%ΝX+\y&|P ,ߧBݎb 3Y[BD9B UH&WU}A:) q  rrI Z)h׮yKo*+,<]c u :!zuUFB`uR*8j ۪89'vj sWc'[ɲϛ$$೎|;;& N~G gbyI6TJxǘ 9q0wCI}&ⅱq?,[3C*,PZ^s(:ݞ~ ^:֎ռ9eރĬAjsj=p;7SˍVT 5Ӆ6o_GЬ#ʂewȿ VN)L~a,;&݀ 54MKz]|~Ol/V:&}SVXlg5]{[\?ZLh{ 1UPb%$l|acw3_Fm {xt,~W͛HNرcN)cBzs_gȘӔ'$]Yޏ ')L`3IRwΌQ)5+)7;YƨsZ,5R9#Y|@ISXl&hGEr?k gb;Z7/{27]7މ,O?ң;3ק#I虿6!4$+_AWF 54ݣйnd X.ݲUWEseP@7;;i:0610 lLH`D^NJ <f4;<]rkTB5@i#aXTC{l}m[lq_=jӈ{: yo ۈoB߱}/Nс ] fLCEb׎3RLd#Ef!OA-Dz>Ꮊ '?q\!%>=񰑆֠9._)}XY*%(aϸМ'+KIl}i&QIɗ,zTXXDڨ)R:fi7zkJhM Ӹ]^㪋.|zG K`ר/VM?Z5N`XpumAu `ᗯ ܵFxsld)]3*= a=V |@ʯ9M'zSFX&R9mKBtGEEA^ibXw5AL֥> ea{[ }ZJc+ kp+d_dW::bQEjɅm2}#jmpDWsESm^@|7E/t UUa}3Fx f;Mi|i5vNkO9*بgq_ul-[Z{ks!YDu=b2jXZ3OK|-8C:ʁY)a'դ`"6Jy_6}ap!j"74:/ǜV-{tP:?gea2i7³3V{BB Z`2!g/\r7y3+\B"[ +X#+=HI>x"%7$9'H:%cBtv$ԽSA'(!Ò(?̯xTYrGcq$&ISuigO, cJl0E*hRj61d*8xs^[0F<(Q(f\5 PWHf 5 VS+emʺbpOptIEH9]ɇ65"Gz iDLKzͿyNsWjV2ES!+THt3u Z\<}$jywJ4|mI ZY+Q3$wrgu]UW+a{^3ƍ-z {M'٤T{m߇D簿<j4fcO-$AIˋJ0y,#v›'WX]@i] o@-1jl#S3: apIcg-T?J<#M ul r*8Gr;O|OIV>+`SLm 4r bis/:!HZPPRfzZzM3+}c[ɬe aNn1[Arf4!#dUP_O+&lځG,(Em&z5wS(Q8n?~fdB5 BGS#FùRq)˅-Xo𐋐%xhܞ=ew]4F=z7uƫ/Et\ YNz4My3 } O˅9t9iߙ(]C]jtE`܈۷c|yeӍɤcby8uS[i:5ߑggv -F.L. *<T*\*A|ɩ>սr &Rb sSuD.W#%9#˂Xn^"pB8̊x [@b3wchz:\ΤCG}|LV%3U8挄.5<] %;=s%~3+m`s bܟ_|nqe{1"R@FZVje;;-([Q-i1|!(9ô&g$gT.gxPŴX#_ ƒvѝς xpd/cjY Jf-C3cxۗT Jz.in4̵TnP<֭^4*o=gUwn)=°̼mD@3qG-'o.&9M 5K z|,uNฆu{|!~_6lK4S՛  'T+|'T]"GhYH5Hĕ_kztDWet2yI~<,κ Lh5Q$s4ax8Ϥ=-"A+:}:BH +QxP)NPIwo[C\PUnW*سt,S KjtLubF !G{>xt629u.WAL $kf\cL6T$q-"7Ha V ϶QK?Ah}^_ýL3Zeqy{AS~5ТU26I"j2.tK"AʱK"(8NuUYv#3)Go  2" G zvsbh5pxLI.Gz= >9?&RGfUg;Qv`pQ `ھbY&-Kd!{9~ݖ8di+hQy@Ȱ :eNyOnh3xKƪƐ7\wcۊ!RwK&¨3H?';WLJ!K69ar,`dGI qć* >6_}58W,~38Dَ9@lNijY[`SVcr:( n&Y[ꛑ. 9"m;W;]gJ+W+@?]& b(Fݮ;|¦VѺbWؑ{^'m_jɍb #v̾eAL鋴EzV\z+,r:bEh?8A]΍E"Eq \_c!,l~a٘Q'AIߐA+|[Wo y+;E"S#j9m87u7[,C*>d7=:>$d.g3Go3& RǓ#G}_eks1'#K>{l[ӷv]qQa\vS#+čBtlwyjBȼ޶#/[iLm?㤯2ֻΕ:JUV @`Nj3wY@)9qCVK qJWxhw^„lhd^1>q{\{&ο7aG 3gwOycU D䫹MLQpqV3Kݼ0/_ 8~:``j39+(H|AҪ|b==H3P \j4G*|vZrP}b~Up4VZ?Iڿ5өW6; <;wKYzίUY!] g5*1l!M%FĵꎄCR-OB,0i dE3A" ȩʥqWovWxUnų~НsgݑrAf=>~SXw|4M~R>9)#״aWp6mY/' ĻR1)r!^Lυ"%eP|3JzQ6߇kV)'&?Ԁ 69J 3J3̓ڏ$4z8Y=dWJV\tvVzu.RKµXk^u6.ڗߌ?ݮoDt= & ?>0𫱚Кϛyxα*~'qcV sR_kwh3]7~ew"]InݿH]\*1 U1y˾a9c!K(vBHgwT9Pdf.`-V(&e`S,ʿ10 " AJ]Ozވ8Ж=Jvup W,\щ?tS`4I/-Z=Y[]i@zA\F< KKH: ݁nPK7Ũm8VP˸FY +{ H\^M?c@ A8l0Df;cte' 6 ='߭]qY4^()6b Q=k-:]]D{Tʺ1@53@a{l}y޿M6 4ʠb1@;EJinkwZV Q>.7ROCM=7j,k>dH=)ٝDtFENae\)MQfjɧO06ϥ;~G6Yƅ4kWјQq. |.^9Gվж Z$9d MWI}fTQ\ˊUúuQx0aTs`Xҡ&ߩ1=՛ \DcH=@YWvz0%Msj+48uX eh\MU҈] Y^oNj2u`zw bvCꎯs 79[O0hP % l%_}կMF(Hu_SV=mE)f܋=gݟ~ܺ!cH+5q uLRp(_]`_`<<d&lz TH4/V?xifE~i4+oRfs }S^& ZuGdcj3Z7=gYBiܵa(1.2˗/b8 e[ޝ 9R~|1ݹ*2< 8 fP0Q,̔s,j2<};F pNBϺV,ZWEWWƊ}Dߙx鏝r>Q*`t2iU+ê.(pYa ^GMһ/Ĵ|/Ǥhx,hi,C^Ѓ؅Ur@IuEǝꨭZ+9dsN/ n "BOaOת [lP5 l[/6Eҭ N/xa"R;R +T-*fsÎ yH޼Cf/KcuV3T]p tp/ endstream endobj 483 0 obj <> endobj 484 0 obj [485 0 R] endobj 485 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2115 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 219.099 298.049 Tm 91 Tz 3 Tr /OPExtFont9 5 Tf (Parameter F ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 91 Tz 3 Tr 1 0 0 1 149.3 476.35 Tm 85 Tz /OPExtFont9 4 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 85 Tz 3 Tr 1 0 0 1 151.449 472.75 Tm (9 ) Tj 1 0 0 1 153.349 472.75 Tm 1083 Tz (\t) Tj 1 0 0 1 165.349 472.75 Tm 103 Tz (9.2 ) Tj 1 0 0 1 171.099 472.75 Tm 911 Tz (\t) Tj 1 0 0 1 181.199 472.75 Tm 103 Tz (9.4 ) Tj 1 0 0 1 186.949 472.75 Tm 934 Tz (\t) Tj 1 0 0 1 197.3 472.75 Tm 94 Tz (9.6 ) Tj 1 0 0 1 202.55 472.75 Tm 952 Tz (\t) Tj 1 0 0 1 213.099 472.75 Tm 99 Tz (9.8 ) Tj 1 0 0 1 218.65 472.75 Tm 1037 Tz (\t) Tj 1 0 0 1 230.15 472.75 Tm 86 Tz (10 ) Tj 1 0 0 1 234 472.75 Tm 929 Tz (\t) Tj 1 0 0 1 244.3 472.75 Tm 95 Tz (10.2 ) Tj 1 0 0 1 251.75 472.75 Tm 758 Tz (\t) Tj 1 0 0 1 260.149 472.75 Tm 95 Tz (10.4 ) Tj 1 0 0 1 267.6 472.75 Tm 780 Tz (\t) Tj 1 0 0 1 276.25 472.75 Tm 92 Tz (10.6 ) Tj 1 0 0 1 283.449 472.75 Tm 780 Tz (\t) Tj 1 0 0 1 292.1 472.75 Tm 92 Tz (10.8 ) Tj 1 0 0 1 299.3 472.75 Tm 929 Tz (\t) Tj 1 0 0 1 309.6 472.75 Tm 69 Tz (11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 69 Tz 3 Tr 1 0 0 1 221.05 467.949 Tm 121 Tz (Pamela, F ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 121 Tz 3 Tr 1 0 0 1 168.5 584.6 Tm 156 Tz /OPExtFont9 3 Tf (\(9\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 156 Tz 3 Tr 1 0 0 1 149.3 601.399 Tm 96 Tz /OPExtFont9 4 Tf (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 96 Tz 3 Tr 1 0 0 1 146.15 586.049 Tm 95 Tz (3.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 95 Tz 3 Tr 1 0 0 1 140.9 554.6 Tm 43 Tz /OPExtFont3 10.5 Tf (e ) Tj 1 0 0 1 143.3 554.6 Tm 142 Tz /OPExtFont9 4 Tf ( 25 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 142 Tz 3 Tr 1 0 0 1 149.05 533.7 Tm 123 Tz /OPExtFont9 3.5 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 123 Tz 3 Tr 1 0 0 1 146.4 523.149 Tm 86 Tz /OPExtFont9 4 Tf (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 86 Tz 3 Tr 1 0 0 1 145.9 491.699 Tm 99 Tz (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 99 Tz 3 Tr 1 0 0 1 138.949 388.3 Tm 72 Tz /OPExtFont13 5.5 Tf (E ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 5.5 Tf 72 Tz 3 Tr 1 0 0 1 138 367.649 Tm 163 Tz /OPExtFont9 5 Tf (1 ) Tj 1 0 0 1 148.55 367.649 Tm 75 Tz /OPExtFont11 5 Tf (2 ) Tj 1 0 0 1 150.949 367.649 Tm 72 Tz /OPExtFont9 5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 72 Tz 3 Tr 1 0 0 1 144.5 324.45 Tm 86 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 86 Tz 3 Tr 1 0 0 1 144.699 428.1 Tm 98 Tz /OPExtFont9 6 Tf (as ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 98 Tz 3 Tr 1 0 0 1 144.699 393.55 Tm 89 Tz /OPExtFont9 5 Tf (2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 89 Tz 3 Tr 1 0 0 1 145.199 359 Tm 79 Tz (1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 79 Tz 3 Tr 1 0 0 1 159.349 315.1 Tm 20 Tz /OPExtFont9 4 Tf () Tj 1 0 0 1 160.55 315.1 Tm 68 Tz /OPExtFont9 5 Tf ( ) Tj 1 0 0 1 161.75 315.1 Tm 2000 Tz (\t) Tj 1 0 0 1 296.399 318.7 Tm 155 Tz (..... ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 155 Tz 3 Tr 1 0 0 1 148.3 307.399 Tm 79 Tz /OPExtFont11 5 Tf (o ) Tj 1 0 0 1 151.199 303.549 Tm 77 Tz /OPExtFont9 5 Tf (9 ) Tj 1 0 0 1 153.349 303.549 Tm 833 Tz (\t) Tj 1 0 0 1 164.9 303.549 Tm 89 Tz (9.2 ) Tj 1 0 0 1 171.099 303.549 Tm 711 Tz (\t) Tj 1 0 0 1 180.949 303.549 Tm 89 Tz /OPExtFont9 6 Tf (a4 ) Tj 1 0 0 1 186.949 303.549 Tm 592 Tz (\t) Tj 1 0 0 1 196.8 303.549 Tm 86 Tz /OPExtFont9 5 Tf (9.6 ) Tj 1 0 0 1 202.8 303.549 Tm 711 Tz (\t) Tj 1 0 0 1 212.65 303.549 Tm 86 Tz (9.8 ) Tj 1 0 0 1 218.65 303.549 Tm 797 Tz (\t) Tj 1 0 0 1 229.699 303.549 Tm 86 Tz (10 ) Tj 1 0 0 1 234.5 303.549 Tm 675 Tz (\t) Tj 1 0 0 1 243.849 303.549 Tm 86 Tz (10.2 ) Tj 1 0 0 1 252.25 303.549 Tm 537 Tz (\t) Tj 1 0 0 1 259.699 303.549 Tm 86 Tz (10.4 ) Tj 1 0 0 1 268.1 303.549 Tm 534 Tz (\t) Tj 1 0 0 1 275.5 303.549 Tm 86 Tz (10.6 ) Tj 1 0 0 1 283.899 303.549 Tm 537 Tz (\t) Tj 1 0 0 1 291.35 303.549 Tm 86 Tz (10.8 ) Tj 1 0 0 1 299.75 303.549 Tm 693 Tz (\t) Tj 1 0 0 1 309.35 303.549 Tm 64 Tz (11 ) Tj 1 0 0 1 312.949 303.549 Tm 2000 Tz (\t) Tj 1 0 0 1 355.899 307.399 Tm 72 Tz /OPExtFont11 5 Tf (o ) Tj 1 0 0 1 358.55 303.549 Tm 86 Tz /OPExtFont9 5 Tf (9 ) Tj 1 0 0 1 360.949 303.549 Tm 833 Tz (\t) Tj 1 0 0 1 372.5 303.549 Tm 86 Tz (9.2 ) Tj 1 0 0 1 378.5 303.549 Tm 707 Tz (\t) Tj 1 0 0 1 388.3 303.549 Tm 89 Tz (9.4 ) Tj 1 0 0 1 394.55 303.549 Tm 711 Tz (\t) Tj 1 0 0 1 404.399 303.549 Tm 82 Tz (9.6 ) Tj 1 0 0 1 410.149 303.549 Tm 729 Tz (\t) Tj 1 0 0 1 420.25 303.549 Tm 89 Tz (9.8 ) Tj 1 0 0 1 426.5 303.549 Tm 779 Tz (\t) Tj 1 0 0 1 437.3 303.549 Tm 81 Tz (10 ) Tj 1 0 0 1 441.85 303.549 Tm 675 Tz (\t) Tj 1 0 0 1 451.199 303.549 Tm 81 Tz (10.2 ) Tj 1 0 0 1 459.1 303.549 Tm 574 Tz (\t) Tj 1 0 0 1 467.05 303.549 Tm 83 Tz (10.4 ) Tj 1 0 0 1 475.199 303.549 Tm 555 Tz (\t) Tj 1 0 0 1 482.899 303.549 Tm 83 Tz (10.6 ) Tj 1 0 0 1 491.05 303.549 Tm 552 Tz (\t) Tj 1 0 0 1 498.699 303.549 Tm 84 Tz (10.8 ) Tj 1 0 0 1 506.899 303.549 Tm 693 Tz (\t) Tj 1 0 0 1 516.5 303.549 Tm 64 Tz (11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 64 Tz 3 Tr 1 0 0 1 148.55 410.85 Tm 86 Tz (3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 86 Tz 3 Tr 1 0 0 1 148.8 445.149 Tm 77 Tz (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 77 Tz 3 Tr 1 0 0 1 167.3 429.1 Tm 79 Tz /OPExtFont19 4.5 Tf (\(C\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 79 Tz 3 Tr 1 0 0 1 351.85 324.7 Tm 89 Tz /OPExtFont9 5 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 89 Tz 3 Tr 1 0 0 1 355.699 445.399 Tm 93 Tz (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 93 Tz 3 Tr 1 0 0 1 352.1 428.1 Tm 97 Tz /OPExtFont9 6 Tf (as ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 97 Tz 3 Tr 1 0 0 1 355.899 410.85 Tm 86 Tz /OPExtFont9 5 Tf (3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 86 Tz 3 Tr 1 0 0 1 352.1 393.55 Tm 89 Tz (2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 89 Tz 3 Tr 1 0 0 1 355.899 376.3 Tm 79 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 79 Tz 3 Tr 1 0 0 1 373.899 426.699 Tm 84 Tz /OPExtFont19 4.5 Tf (\(d\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 84 Tz 3 Tr 1 0 0 1 178.8 719 Tm 110 Tz /OPExtFont3 10.5 Tf (4.4 Parameter estimation by exploiting dynamical coherence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 110 Tz 3 Tr 1 0 0 1 126.5 675.799 Tm 97 Tz /OPExtFont5 13 Tf (taro the pseudo-orbit which is used to calculate the shadowing time distribution. ) Tj 1 0 0 1 126.5 653 Tm 98 Tz (In such cases the shadowing-time is determined without placing any constraints ) Tj 1 0 0 1 126 629.95 Tm 97 Tz (whatsoever on the value taken by the unobserved component\(s\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 125.75 266.6 Tm 101 Tz (Figure 4.10: Shadowing time isopleths as in Figure 4.8 for 8-D Lorenz96 with ) Tj 1 0 0 1 125.5 252.7 Tm 102 Tz (parameter F=10 given only partial observations, a\) the 8th component of the ) Tj 1 0 0 1 125.5 238.5 Tm 96 Tz (state vector is not observed; b\) none of the 2nd, 5th or 8th variables are observed ) Tj 1 0 0 1 125.75 224.6 Tm (only the other five components; c\) only 2nd, 5th or 8th variables are observed; d\) ) Tj 1 0 0 1 125.75 210.7 Tm 97 Tz (all the components of the state vector are observed. In this experiment the noise ) Tj 1 0 0 1 125.299 196.75 Tm (level is 0.2. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 142.3 163.899 Tm 96 Tz /OPExtFont3 10.5 Tf (Figure ) Tj 1 0 0 1 178.3 163.649 Tm 99 Tz /OPExtFont5 13 Tf (4.10 shows the result of the application in the 8-D Lorenz96 system. ) Tj 1 0 0 1 125.299 140.6 Tm 100 Tz (Panel \(d\) shows the isopleths for the 8 dimension Lorenz96 system with states ) Tj 1 0 0 1 125.049 117.299 Tm 99 Tz (fulled observed. It appears that our method provides good parameter estimates ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 318.25 52.299 Tm 86 Tz (88 ) Tj ET EMC endstream endobj 486 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 487 0 obj <> stream 0 ! ,,%o++j^7Ї;C/hg ZPqƿ(0hY[@M۩^;a˵Pl7hE뻲q73iݞqYG*4mԔaSЛs|;T1C <0L e+3KW$[{4}=_੯݇w]U݌$yؾkAt S孉9,V8ԥgI t 8~py}1琎ٛz:$"obg38y^fowg6APҶ MRW~ )=:1(hBr-TLf N`3}m7+1)RspJ/4;J?EF&Ld !_ts(@x[c=G&}=ժd6 ưb!2)nM} \KScgl s'R3kxF _<̛ytke(gY._U-:9`Wi ߋPpd *̖uM*Ƚ;#φ;d],Qz6Dy01|t/o\wa/(bg :ݠS>Yp-:а )Q>Y~yP ezpJߎE ̗N >Ƿ1юޓLjvX#ړʲ|0,S}lowZtµ3tyLp\4_6\}Ex ʠ9[zԩ.oĝnoŊDHkǷh^J[`m8H'"6Q[x+! PvɻC &:[EAI?{q`Lg_ ɂv9qwW yjˌWJx*Zp[c2cڹ0Fv$ 6BzMS vIgeI;W ` YF؏4IK*׷O(0Dy-]QḏG L S憬'vK Cqp]y;~?;hKes%D hB09xo; 4Fc ssXZ!Nh6&P#:M/h& NT,xSo S K4*nU~نRk MFNAf0,H NTzĴ55JB.rt<> mHT. ȏ#nie΂7AK4|l vW)9cZhوXғgl7D\j@޹q [A!qY_{ΌG*K :AuLHo?JE[p`7t߈><Z%j?L!uKNaGwk*,=A*n'< P I¸Iጲz9nAkc !a=@$\B g/oA} ̆]΍Vfr*()s2qң8MܛnmNLJfDm! fɱ$zˇԥ+_·l+තw&CĢ(@2Qq>-̵bܝʻ/ !ȧbb)H,㤮> i 10g?F-ǖ[Fs+&>~<7_1AGjUrRH!E@!3=)bGk1?f?@k:N{(>\J*5.2miaw*\+ ioͶ OJ:Úq:+j3iAPƊ<02I,] "*w˖ h,oP*vLTW<>M+;p+m?-GS9ve\%½%lҘ=6 `F.'=FfY|p)A"wFX3 L 9 |I!lUyFҀ &oMb9O~^9bˮfȋD]Wq8mC(0Rp ڀqearȗ銲8SG4~9S&ak/ۯ`Έj|ÊNKXטܓf,z3\?vkmZ"%́^'GnjW misߚbGHh70ZhLv4P K˜s7c]S%|r@B0&whG9!ywX96U1n:??VZV.X8S2鄌UgmIp?wTu60ә*Pc՘4+-G%꾱( M{VƙkRmc D?YK!X1X60%_407 EfVODĹ[.*,g$6egQIsA)/l?5RhEZŝ1@)aD#( HeF ,bvTSOajLŶp^~-]}eɵYRW_!^}q2)h@Ķ^Yb$DفQmS^z},S,C,^?* vpfa\(Aݰg, XVV]"Y~@L T^MHfp IHX9uSoJ oHc- ]qOЛY.VMY&/TT$fc#Sx$3n-}zq:@T_! 4-IFDr#UI&Ry o|*ݳl8YZ{J䨂;Y҅+a/?r& f2.`KRr">c `+?_|uC/(5f>hsVS,*W`R0Lo( sSO}Z7pq!ɗYosu>?@vol2Dl 'Y86:c#nco|bbVV/~Ӊ=RӃڞCf?01,b[eAK{xRڱhM8"XХ@YAhi@[U(S2\l@1yw uIEtL +q8!!jɸu?F&`^K)t99!~25|l搑c_k䉍 3eY7`LQ5EALsC#f? .aArD-IY9e/7C^QD]TV҅2`,@d4&۹BRa~CT( k *A_( =n+7L3b[e-J>Bj(`0k0.҅? (vڦj]CEAoUBI۔y0EBg?~*ꨓKWpLȞnvþ.46 ۅ@1v0Nl\C&\PA> 4h]T^(GUO|եl_IR6HRxnwL&K#.?YӜCxe 1u.zA-ݺuD_-l~e\0$C|&s-1Jڷq`ƒ3ujbz "Ko^{kR@ f} +;8=ёhhtM~'Ng/Jl_%Bmx/E댮 _۷z n0p+3ӿ2ղdb,:idÌ!Xv&#&f4#{jrJ6у<7[%@߭wnJ+_Tniv7 'J/ăµн A*L11Հ#KPj!6/U7tVAY*Hx&M;wnHmCx־s7Ts "ET9mi^Qyudv@heAqF|aF TIa?=bMn_S8)EG@ 7vBJS,)/pmdaɆɯ;Q2T'bg(`sϬݳ%L3woT9NxhLRsEss8dZ )Nɂ5"5V\dW|*t8b`RttfD#i?lе^v L$?uNwjě2̼ ox$so+ C #NB܆2|cNc@l\7\ǰWï M-& T4}F(hzG+~+C&s.N$ɨ0` ӈS8$^pr.;H~,ȷJV}&=CgdE3ǧ =13vBkaEPӜ[IvM]~x^hzx|N:V&c4xLs)Kwp`ڣn |e&n $~TU+ٖA"w8a\@BI@1\s]t}*_ F"IlJh.xwir5f Dy!07_=WT ҎQ` TΝgo~fkhXnfc:Tmx6I'v_ o{)Ɔ^Q@0`'O 6}à%!I;ឿ%9w':g`h*S`C6D/`j[.- wےS[M#jI?y.⑋ -"6TomVr2̶ꒂ̨"-݌=riO@F1u4FB}1.`"^UwKZ1H=]y#`WRf/957әQnD@~9 ,?&\SU/ aK].AU1*z K׌D܆4e)oqvt |*14ЃLD4NxZ.}*T/j> 0"ayP7z0. Qx;/qfnAsٯu+6{]LJs%[c :){g{-|l*cڠYeuQdXjqv㱝[_Kv^]y{8Gl"eV<0z8ݰ$ L6pNdIhd*'%Tm Cj2߶F\=1Il  簳h4>i[OH)T֓cRr :., Ĵ=iAgb`t, st'W~eT"ldNR )8XB.օv͓2ܵ-[m.҉V3:] \xx oǖsH̊8S/`"%ݱp/oFq5r,0Fsܾ[!T3V?/S$1eAFezQ /#WvW[6} X&$0(Y+s!z 6ذQ>cɼCj ii&asd:g@ B#~02݃Pv@;HPLRPW^l!~NG Y1`z< фrc1n/KX"Zh1Z{2\%O=T w"w 6 ֹvV(y rT6^*owvK$fY{ˉQ*$%24ݔt䓈n(cj<_s8D7 _d,4:@6^ݯEcC|?p!/:Sf1̺yE."PO:_⡣0l7W̉shRs/[q;r"ĉʫl%&GFBԓN8U] 0x}4"PѦ/mkjg}埣6oHD#Q5&ߵ+Јq)$ ULꨓiF5@lMN63$'^1[ _395 U5v)qu,@!)F=Ȍ!⪪#R\ݞuaYSv XLvv!xKvb >lxSK\qox]yF9Imb~!H/NFxij93~2 \1RYii 2amJܹgԞ5Wc y/+\uQY)CX´‹9 駾aj xH!<5htz(XT5Ql=ɱ豷|컇@؁clЗܫćwس3DѧQl LjD:M;, Џ;" ;QѡH@Z]ٝ" XҩZ1ʴ? ^WB}]Fi}_~6OQ:k-,m!GMsgQTaht`lٮfN!Y+V.ZlDsh/"!||0lj.8_'/M3oNPä#B=&/jфQY bgG xKH,"DHf︙m3׊Rv;/Hh IVjІrrS#0X[:EE /,>e՞jjH}Хpy[Wv.;{"x;0N2I@Df2yvVhYzn?Bp4Q2̿A$r,KA'WX(H>ei? M`/Vثr 7A:"}D\Lf F8$_dI~0\Ӿ0°0;S*E"Xk@IH;%s~?N m޹a=7lIU;"-po쏀urfDeA> Ve0f/!hx/`èa#:Pr.׆c5#ju)/ \;> ›v?cH|~? pSq9ufE:{ׂ͈jNxJ,NG"*~3E(O8L*Â?:ҡUFL:.SSWO3 Ublo[yip̾ۜCW0.0RU`ٓӁ!k p4!7#*!VCHm9)V"SJC AGⷍ'.כI\;quv7nAh$[׏%c:B&|V^"y;pYYU7dbL1c&8KqC]'=Cm Aۥa|4\0QIC!+fK@3rҐ/k&]^;uf ]h: 7JsN@3]M/[a6#p Hl;yN1#f$MM>}eEs`Up1qiDd1HuȮiqYBNU.NOR'K aO@ЫgJxQk\3!aZKKq`d9|I*!bLXleu4I۱؄/f1V}{^ P50('t~T_W%: [zκqFT[l֌#lV f, 5Y0`uLh%]]@c۳ɠ7Ɍ`ڤXNǍh, =1TUUp?L1)`&K,/4R ecuqV~\]{ sázbVBEfR=剎 燺-}I!cvu& Ao+Bk4[jz0e"U>w a0+h`ͮ +֕Q6ZtaA)L$c,N ˞fc(7H1u;C "rngLA\XS6sتz_8eb)']t[֊`%ME L2ԅY+yށ"fP=?ph&hC+E)cajGm#&:z-n}k)%d`{ yrMǴzN6Ëm=.ZQ@ Jot9$ )DY/l̂ xm38ס6ތ T]rsp5^R'S瀎gE=(yGfM|M׳$Qc pPx7yٍ/J-s$xu/LˍrM#bЂs?ngͻʜߏ:rsJ|ckv"xO%⸝ 1u*gfP#tJ6sK)wyFMq[k'm>}gR2˪`*D_pa)` ZYi-#a>ʱʮ4V@)p7#ս407ɪ?<ƒ5ozUvff}ׯp3o4rE7|870՘'EC@f*QğD..eC weg R\#0Ӵi+UFˏ[FvIB+YgܼH!df1n1r]NmQϺ,->^8FJ ިy 3SӀh-HC{ƒ"k,?)M+OKd:xD@DF*͔V\F\6H8ed$FŢ@tJ4WH% (ۓY ҰB~ >$U G-|y^ OѴ% G98%h"? 1 ?۫1fʲMLc)~I˒n#Fv}Ϫ3321zsaC̓@L.쐜 0!><ѝo8"kh:kW!5$ตzzJX p޸k*DƋ>_Hl?*rӝ`ÔYWG;'J;8)mw͎ZOZW>?m׼{G􄠔k0#.l}6td@p?5+!__*VDGn RZp$yoNΧc y'27V}8x$v` O(bC<<%p@!o}$gvGXGS\r1夔:i4piQ7P4jꩶHWȲtE%^'8NIvlѥTUXrNǰ 0 |sR꣌aJ $*dBpQa >x-;m_%Ǒ 4\;aWhxNVK앻~gaf׍#h$̽ᖅ3|N׍xsXso܉t047)q$jKw ctgLӱ KCSjӁSS\4 4PIl LԈU3 ʹ١H4b.4L~5 :]W?tt1l,N7ȥ!V4t~@yiWJmŽLߔ?Q<h;Qv&->ba?htw{5)2T+?'L.6vɠq xr<r@'!-իYAɪ^JU?MZ}Q+gѴ2{vUBB- *g Jދ(7\\D vӨ/: >R=G IZ5U*J87#H(X}+n endstream endobj 488 0 obj <> endobj 489 0 obj [490 0 R] endobj 490 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 840 0 0 cm /ImagePart_2116 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 424.55 719.299 Tm 105 Tz 3 Tr /OPExtFont3 11 Tf (4.5 Outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 105 Tz 3 Tr 1 0 0 1 126.5 676.1 Tm 90 Tz (in the higher dimensional model case. In panel \(a\) seven of the eight components ) Tj 1 0 0 1 126.5 653.049 Tm 99 Tz (of the state vector are observed, in panel \(b\) 5 of the eight components are ) Tj 1 0 0 1 126.5 630.25 Tm 98 Tz (observed and in panel \(c\) only 3 components are observed. In all cases, the ) Tj 1 0 0 1 126.5 607.2 Tm 95 Tz (correct parameter values are well indicated although the length of shadowing ) Tj 1 0 0 1 126.5 584.149 Tm 89 Tz (time decreases as less components are observed. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 126.5 532.1 Tm 127 Tz /OPExtFont5 18 Tf (4.5 Outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 18 Tf 127 Tz 3 Tr 1 0 0 1 126.25 497.5 Tm 93 Tz /OPExtFont3 11 Tf (Large forecast-verification archives and lower observational noise level contain ) Tj 1 0 0 1 126.25 474.5 Tm 96 Tz (more information and thus yield better parameter estimates when the model ) Tj 1 0 0 1 125.75 451.449 Tm 89 Tz (structure is perfect. When the model class does not admit on empirically adequate ) Tj 1 0 0 1 126 428.649 Tm 95 Tz (model, the notation of a "true" parameter value is lost. It is important to note ) Tj 1 0 0 1 126.25 405.35 Tm 91 Tz (that even if the true parameter values are unknown, they are well defined within ) Tj 1 0 0 1 126 382.1 Tm 89 Tz (PMS; the question of defining optimal parameter values when the model structure ) Tj 1 0 0 1 125.75 358.8 Tm 91 Tz (is imperfect is more complex. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 143.05 336.25 Tm 90 Tz (The experiment of forming probabilistic forecast to estimate parameter values ) Tj 1 0 0 1 125.75 312.95 Tm 92 Tz (is also useful at identifying "best" parameter in an imperfect model if a notation ) Tj 1 0 0 1 126 289.899 Tm 91 Tz (of best is defined as best forecast performance at certain lead time. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 143.05 266.649 Tm 95 Tz (The geometric approach using shadowing time and additional statistics of ) Tj 1 0 0 1 125.75 243.35 Tm 96 Tz (the pseudo-orbit is also useful to identify parameter values which can mimic ) Tj 1 0 0 1 125.75 220.299 Tm 94 Tz (the dynamics, quantify the time scales on which they can shadow and extract ) Tj 1 0 0 1 125.75 197.5 Tm 93 Tz (information for improving the model class itself. Even in systems as unwieldily ) Tj 1 0 0 1 125.75 174.25 Tm 89 Tz (as multi-million-dimensional operational climate models, variations in parameters ) Tj 1 0 0 1 125.75 150.95 Tm 91 Tz (over the relevant range of uncertainties yield demonstrably nonlinear effects \(87\) ) Tj 1 0 0 1 125.75 127.7 Tm (in the most basic summary statistics \(i.e. climate sensitivity\). The ISGD methods ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 318.699 52.799 Tm 77 Tz (89 ) Tj ET EMC endstream endobj 491 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 492 0 obj <> stream 0 ! ,,IIb7!nj4΅7U$s|4Y1t;":a 3PZ kM[OziMUo;9~V #RyqYTؤ%@$Oe]Cx~Ö .SeCIg_cD1lCT<\BIe%;/ݩ5 7! pmcu3Bj{|φ'>F;=Kk^,cw7f=[͙r`0.*| ;PK(>J5rYiƱQ-5Á؏m( PެTM@ZY WO#0%׿ֿ72.=6 !y[`"xKUt֢a8^0#$]gzËJٌdۋFcc-Q({ R Hs/jHzrfM2Fsӫ2`NGaE_MaA&7u*wg,)+Dj{;r-/͋W#1`CzUލְe fb5XCټ|*K=lE7=ɋY$\v`6ڏ:HuDb{zL8 qU5rZ~>7%d>j:˪Ỹơ{kO\;Ա4c6 yܭ3=p$ʛ03ki}a!I>S'׿Fni5΀/N [F|Dl8߀V}u7ákkܪ@:)Bb*z+W%v=a Vx#ND㦒i}C&{O>o5 d׿I.kFOJWjf7j7>D@[3؍$P9Y{X3( .)ٻA` ?/^+Y7n)Ys:i]4X"LI_EChcNz5SRAqܰ,: ysrIecI%[]Lc=K";!#@twqO\EۉA~xPLW(;+ICY%vO?t RHO{҅hр :>>7. \O.]ᄡ"Kb;Tpy 9dGe |k\|ءI$[\QZKrt$0r_XD ឥv-ӰI5Qq,D4x7. C|C$eV%,x7ؾVj3؎&P` ذuIǿo37e+3hnǸ'Xz?U.:*C1˩h,n/m6k/rOdP-|E5!$D+zb]ڐ૔x}4Mn.B+Œħѩ Hr]+P1݂ϳI[9xOc Qm;}Updv=Sv%jA6M@pkɎZkm(UddՉ?8S:#3+zcɭP"=ICIoX\%*P3ɕgO˅o3(Aé0.E (v؂`ܲ #p$EFu,Z(1cZ"Nbxvb2Vlkаd~0D6S2Ɗ"z.T J6Ԕ&jNd&Q#7(5呒Vy} 0,J,S):@eD/8ΛpKfݒkXishSx Fsh $R]-8N-*mpb9708VGQy1}G5k(L& c3ED^b VT#'V1Ȓ;+#^͍G}φ_Dpi\ @H$s.oYʵ}MYb1{2 XGp0kr+ DzŠ`hY.KD9qYZ+Ymgwz#IΨ :wN7KtN>]oso/)$3XņnuޤE(HGU8_%ܲbJ6V88@jW=t*GWhZox{'AuTV7Jm!Lb`-EL@|\g_o0b@GSbvp)9_Evy_B.ֵm(BrjXLpKaMG*PdBSpǥҳV.W=')@m?& ]\m4 r a[+6䧟_(ּ*LGAЗMx oE9:ib(!-{ztԪ(5`}oLuLϢWle1&3ֳҷT2o(RM}VRz՝;>{\ޜ Y\yj+d.*S]!T(E#W>ҭ7XF|>\Y"?2{%ஔV2PV+ ;FzheUV h;82_Yb"Y4d,! [$'-җR]jG}DKz'[(]rVO$ ?|6e35M'Arz`/:4mkȯ478 {ZR{ J/^Nܥ5 3Ma0+G8h¤3z%j)}tRp_mj! ,(ֽ,SbA?s "Uyj'McQW7(Ū6 q9؂졅j|>ssIR_o8i삛gWSO 6"R᫋=>[|.?$lh//J;XE[NL <@\~}?`|B5 `)pE+1Jn28>sb$ 1QFvR{Rзۉ Ϭ5/ 8Vę6өhj(5YnK䚎ˑc×V0Oǟ0H,gQ ;jп@|:(嘦"lCAi!榆lC'wes*a(+Uru$+ϥs߹Sy[}vL#SڊR!p<ϝ@~%I;'`)fqƘ`1c5\.$*t܁œt?dr5z0+1\'oJL?ɟ)Ucr|LUuw餞3'PQ*߮dq`<Gp>[&:OVˤkm"Kǀ@~VM) Ǟ6$|և9)ĞD Nntm_㫹s͡hDb 3ۗ$??WC͍&Q]hXXfǗ  < ! ]%} qm.˓) I"s"TG>:#:H?Li6q*MWO{ꈉq,^ߧsK|^~ylG`xeA :'^@ wc8Dv1MSM&'{f,rqʡSpRx |tS4aV'ʹ7^D+D-;~g=V-#iÒDMĔNv㎔/}&ӊ3p1k@02i(m(r/߶x@"D̴ nuҘ*V38Y 2@o148Vc0F x^d&2HsglXP'i0k{-j0oF ]# 翐i8X1r2DP sObtJFa߫8Ԁ??.@*&]dx,nȎȞäCL"#"5/+#[Blb{YToI+\L.X2#G87|Tp\pc9q$H'lT_v#DvY@dHz Wg8QL9QȆG )H 4-Is2Q/I+aQ έ4D=r[Ҩ%ʺg9Aɽ5%Ę6ͥs(-kv,|tQ81Ճ4 3,{ fr4#YVTWa٬x3/d\?=؈vsT#/x/aYJOw~T 8s\\$`n3Q 0]V~6k๼ډW̏zZ A_̩X7d h }o;"x𥻏"ۈ^TY0xS+k։6<[,KsIG|%t|#aP :qݳj0ױj<6+b8Y5-,EEѝW/Ieꋌ!X7P8‰a^78ߗ&/aBtMwbuN I(0 jJuY;FVR:,TS21H1t ӲB,F }~Q$K!οGowC&>Vz !&x%mFh'4 wb嘦:ss15=kKIw,Vg"iTLzڳ  Rr&?"(0Dy@Ξtq'{(cz!aw.1G-fe+dԕ1»?˽ە_6Dp=R(lS{2*( 0h-6ԍ8KG\ Xı]z_q{| (qq1O%LXΒOn s*$p 43i y!(&H%lX_16} B t*U3ie&j)K6/ q}(?*Q%ߗme @{lC2aU u+׃*(2pLX+O4CY{m /%wO1[ S0H"uNvY/mxq3>ӈNՅ.\cٷsI/`Iap-62> }*IN W[ |FFwk^!l2X_mbBAiJs,K l4#yi:e#,"f5.IHniyT]Tk-؎3yN03x֭$q ?Ax= S6 vV%2.%/,i6ÄJo"è5ll Qk)G_k^{ΑkxMI4WI\jNtG-ϘTsFb/C,|3obapn5;Vl:[K?BZ<d(x!Q~솢M>Pƒvо/ECGv`H;f,I`~E uhBwpL>B3 _CLfypΙ~SEOYqU E7D<23P32] ETe3=)ԁJpF=̱FyjW q1Q^GԽxxd0\z*2H5/ƂP=% AvF^ T8Di>>qш ^ ^C vm4^kao endstream endobj 493 0 obj <> endobj 494 0 obj [495 0 R] endobj 495 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 623 0 0 836 0 0 cm /ImagePart_2117 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 433.199 717.45 Tm 3 Tr /OPExtFont3 11 Tf (4.6 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 125.75 674.25 Tm 93 Tz (have been used on models of this level of complication \(51\). Outside PMS there ) Tj 1 0 0 1 125.75 651.2 Tm 90 Tz (may be no single optimal parameters, of course, but even in this case shadowing ) Tj 1 0 0 1 125.75 628.399 Tm 92 Tz (times have the advantage of providing information on likely lead times at which ) Tj 1 0 0 1 126 605.6 Tm 93 Tz (a forecast will have utility. Timescales on which the dynamics of the model are ) Tj 1 0 0 1 126 582.549 Tm 90 Tz (consistent with the noise model and the observations can be of use in setting the ) Tj 1 0 0 1 125.5 559.5 Tm 88 Tz (window of observations to be used, and the effectiveness of, variational approaches ) Tj 1 0 0 1 125.75 536.25 Tm 92 Tz (to data assimilation \(51\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 125.75 484.149 Tm 109 Tz /OPExtFont3 16 Tf (4.6 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 16 Tf 109 Tz 3 Tr 1 0 0 1 125.75 449.85 Tm 93 Tz /OPExtFont3 11 Tf (In this chapter, we considered the problem of estimating the parameter values ) Tj 1 0 0 1 125.75 426.8 Tm 97 Tz (of the model in the perfect model scenario. Traditional linear method, Least ) Tj 1 0 0 1 125.75 403.5 Tm 89 Tz (Squares estimates, is unable to produce consistent results due to the fact that the ) Tj 1 0 0 1 125.5 380.5 Tm 90 Tz (assumption of Independent Normal Distributed\(IND\) forecast does not hold when ) Tj 1 0 0 1 125.5 357.449 Tm 91 Tz (the model is nonlinear. To address the shortcomings of traditional methods, two ) Tj 1 0 0 1 125.5 334.399 Tm 92 Tz (new alternative approaches, Forecast Based estimates and Dynamical Coherent ) Tj 1 0 0 1 125.299 311.1 Tm 90 Tz (estimates, are introduced in this chapter. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 142.55 288.1 Tm 91 Tz (For Forecast Based estimates, we estimate the parameter values based upon ) Tj 1 0 0 1 125.299 264.799 Tm 99 Tz (the probabilistic skill of the model as a function of parameter values. This ) Tj 1 0 0 1 125.049 241.5 Tm 94 Tz (straightforward procedure has been shown to yield good parameter estimation ) Tj 1 0 0 1 125.049 218.5 Tm 89 Tz (in several chaotic maps. Forecast based estimation using Inverse Noise ensembles ) Tj 1 0 0 1 125.049 195.7 Tm 93 Tz (is straightforward to implement and relatively computationally inexpensive. We ) Tj 1 0 0 1 125.049 172.399 Tm 90 Tz (have shown that it can suffer biases when the ensemble is not distributed consis-) Tj 1 0 0 1 125.049 149.35 Tm 95 Tz (tently with respect to the models long term dynamics \(invariant measure\). We ) Tj 1 0 0 1 125.049 126.1 Tm 91 Tz (have also shown that, for addition computational investment to sample a perfect ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 318 50.95 Tm 77 Tz (90 ) Tj ET EMC endstream endobj 496 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 497 0 obj <> stream 0 $ ,,DDV8=X.92CnվsjqO"*Vr2pcʪU8 Ml̃ϰq,5iLK`QT#?ɡ(<_3^T!ؿ/Nb-l4XwPj Oy3Ubб,7Q軎_ XN=.@y(oJ3;Ӿfkj*Y*, dgFex5Ŕ)+ 3mhNlȋfA3_4 ^MxڧF.J, =Y 7@RBЯq[::FB)xOo°>RD_6:uCJFNNjǃf+6GM o^}/1p:%!]VWYR &y*j%['_=ukD4CRD=ǥ"Q"zX|ꆕIY{)aq4*ru/yH>:}oL|nZ; M  vn+&N.803xkF䒻j;fիbH0=5 %gJ+zDʊG ydqC a0CU ]5e&e{=᜵S ^OG}S$)P(yR9I 3VEg] ] ;%.(CTA.8y3ZCe:''Ӏ|Atf(&(Jim!jJ"ќ8r6sbJ{OQSԣq;a4rt$%tLfzi9;@IJ";U8g8juʣzXaXoN䌋´Cs:'R[Օp#At 5bu)9DÝ9zPP A. H E'jk E y~tvGKQ{CBpZ_,4't RxP1)ޔ{J@:fakeyiҘsrj\ Iػ/Kj>Պ,'eK25ij#"k׫b67~ձ3>"s³ܴ5\ߌ(EAo bFFnTm7ȗ&HjtO .+_Uvt@._^и͟p?@#xɁONEsuIG?SH .V+V!7N=떗Ѵ9(T4!0)Md =G[zE$uz֛t0| h g-}4xy]DlwtAj5(K]+`(uEy,؀t˭Mk)o&tu WtIK2Mlnq$?Ki+w#<ɔfCtxUeitu-VIo r+6ۀ7kC%S97qܰ8ñǵ%͇OR]()j}̈́ʸ.^)vEAʱǴl񛴡v=¹j>Ͽiʰ"<6jlb 8 ٲkwlz˪f|@Ɩ+(wf.x+F.YИ#7Tr%b<%5t>edxja ×±MtQFʃDt₼|4u d) 1j](j/U`\ui"xv'J.*G=(ʅS\*%N]3!qxV1G-ty_s^OPgywV֟mxb{DpSz g[[Hy`7՗I1_hVlmggC_  z $ n r{_)/l9f3J:CtwAd9okHT[;(d-("ʰBo+ɕ"0.pXwx׊:D je6:SMZEA;3^> 8%X(:Ro UL`a Qx7Wz39Z!yYxo@P9Iof?nm+=*ZIx.^#|ro&T]}g.)y#!5J ,4eS; ~mGر'0v^|qz)ߘ7RBjsg7utOP潧TV W>R쑹\8k5(CD  P`0t<_rJs"MUh?9 yc5qݣ ]4ɕ:2ׁPRMW;:w2y]w7f4r΂՟+˿FЁFӜ@YAt;]e:R й_~YEiO'2fkgrGZTx֦~J.t{y7dÉs˜uvH_,8:"kD gDhεCybJ }9ych*=eCuljEQ9aw^ @zN)ds&'ߘ?5sVnR*Y6A '(rp!=)Ԡ'iM0Ul:$5ħ]ޖ9Q'D3 $o1\.oImU5K.(j󲲵Ԇ{u4`B,=,Z6}awT|xv9Y4q#jvԗ _n:~YJt4MKM!QN=d57yv׌!\b@-Sy.}{!$sr}ˎ B,s:`6uv>ZxTÒ`@paj.(r(n+M_AeqsY!U rugcI3o7 Iw[Uhs=L]oOFGMlc"iB;Y)ws~m1!l 0"zI8iu 7t^q\2j酦A(ܹNp{* |48q őy[%8]ӉƤQ=-Y|DQzkvb k }Ric;~P=%Hw^**S݀+H>-fщzL67J`p_Z Hز·Hr8d}^Sz'#>$g'u0@ErM RyE[p11Q|5OZZ.%36IjrvҤlpg ;tv:* ew< ~iHگFZrRz"7td /X#BTPiJbw%@zJ|VZ%QQ$);2&zP*UlZƒdQ m۝d2E@}dtaxdc֌6+B"z8Pcħg~x& &C@ ӈRxGv*6C~cIt8'ʮabg12"͓t lreN{pyڊ(Dg?*[T))JHOTD8SIJ'5@z5@[L,Ta[>>B?ߠQp$eX5\w sہ9F)yi'(s{jJJȁmjMZ8]@F0F_KC,^ÈC}'D2_r^k5lv1C իB+]#Di@AP0"Xa&jƆ`y̹~`΅NlVQۅ<[I5Q@ҏY]tށ,%@qT&R]s~{|;"+CS/T4^ppC66>S-F/mc͐wg5RkF'-f~:C?AHR4Loc}+ ]C5$0# _,|()HV$4Z,hT3W6~k%NO#՝t!JC?em+ vay4%4KZGM-ލf1ŮB?jQDj]qhF)QٵNNgH h],dgUMH(uc%HLmp ?&yi]E /y\"E53Ww5-^3htLi[,鷙e dX.G 2铓& l:qvz3Av/nZܪvGTDߖB/|E$.;)^KDLs1o~ܗ}LρB;dQ dC̤WU+8̈́P 8:0гBo_3i~SiyS>;_<Ǫ6 JbUgfnV^"|]+j7:)yA3o?AP 1MpQK5./G [Yћ!vfb8>N| 7kwdzN :?}o" a!Q/Qa@5n^F endstream endobj 498 0 obj <> endobj 499 0 obj [500 0 R] endobj 500 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 600 0 0 836 0 0 cm /ImagePart_2118 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 411.85 717.45 Tm 99 Tz 3 Tr /OPExtFont3 11 Tf (4.6 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 104.15 674.7 Tm 89 Tz (ensemble this bias can be removed. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 121.2 651.45 Tm 93 Tz (Dynamical Coherent estimates is presented which focuses on the geometry ) Tj 1 0 0 1 104.15 628.899 Tm 92 Tz (of trajectories of the model rather than the forecast performance at a given lead ) Tj 1 0 0 1 104.15 606.1 Tm 90 Tz (time. We estimate the parameter values based upon i\) the ability of model trajec-) Tj 1 0 0 1 103.9 582.799 Tm 92 Tz (tories to shadow by looking the shadowing time distribution; ii\) how well model ) Tj 1 0 0 1 103.9 559.75 Tm 89 Tz (pseudo-orbits approximate relevant trajectories by measuring the mismatch error ) Tj 1 0 0 1 103.9 536.7 Tm 91 Tz (of the pseudo-orbits; iii\) the consistency of the distribution of implied-noise with ) Tj 1 0 0 1 103.7 513.7 Tm (the noise model. ISGD method is applied to obtain candidates with longer shad-) Tj 1 0 0 1 103.7 490.649 Tm 96 Tz (owing time and the model pseudo-orbit. The technique is illustrated for both ) Tj 1 0 0 1 103.45 467.85 Tm 92 Tz (flows and maps, applied in 1, 2, 3 and 18 dimensional dynamical systems, and ) Tj 1 0 0 1 103.45 444.55 Tm 89 Tz (shown to be effective in a case of incomplete observation where some components ) Tj 1 0 0 1 103.45 421.5 Tm 92 Tz (of the state are not observed at all. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 120.7 398.5 Tm 95 Tz (Outside PMS, although the optimal estimates of the parameter is not well ) Tj 1 0 0 1 103.2 375.449 Tm 90 Tz (defined, we suggest our approaches may still be able to produce robust results. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 295.449 51.45 Tm 72 Tz (91 ) Tj ET EMC endstream endobj 501 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 502 0 obj <> stream 0 ,,b6|-\LS.z3nh??N1i&{Rq,s@R`oG+ǣڝqޏ  t"Lד|:hyQk>E<|yxNm r#6)/,M$fr]dtGaN>pL()}"a 'ז#;fPeQfvyP >&Vƞ@=82Rr+(-`nYӬDcoZA tv{ p#S5ƲomyikQ뷒>ߓ b$کDI5Zym%ÌYMcrA)h&!Ϳ!h3]TF֙"Io,q= PN]!4dFKUc/`Zc9Br*y4|wڊ~E ،HkH@ "sn{Eέ9LD_"ZRxoȢx߭|!hr]9]h^gIq ( }H`~dn|m㱴\! O.*))>E3uێ7H5.>}e=pOW$dm~LOG'v^@`Paw@&({]q*K7vHŗo, /@Yg ^ɇowL-yBVZ5[eDZO)LR[ ã8)>@_MK;kE_ޏAf?Շ>)}٪C>~z Dŀ[qA༱ LJ2Ν+?%Q+4¼dz } +Leuq6G0jGN-zC@WDπT$'I]XpY-t FBϖz9rBuz|en (Zȇ7FD|fNOFnݴ ҅GHIoChqުdǩ3G|ﭩ9׏g͵ } "fJok{(O~TI?wl1XܿTN:LvS#/!a&UTP8mاM+s_)tAN#|joƮ-EwO[Nu Avr~/ހ=ŹJE'N9{ 8ffd?l%b[=2PZ>S/AIx/}֐R$&*wSG?׾Y +xKVᖹ|7ͿSO G2HykpɍBtrd)RH7gO$FQAyəp_G{h.t) N͚Щ\8ZFS}Ut#?Id^sE=l\iki y%35 Zx+('3Umo& rnH{b_彍0&yK֝Y/883Z+"eD}\Q_iq[$vd_ X~{M1k>97 zPBg#^}Cް%5[p$x+@Dj[ADvyc,rήBlJ$|=T7K+f<&8s/Z&_<_ZkQ{'8KphkPk⌍m!E'3b݄3Ga8cAbArvpV"Zy"0q{'/]y&Jn <|LMHWakIf/HΣA C`dSꉦ e0Q &M<%ac(|UàvqW܏3ecqcr2`סGRy@*2mLV2`ʆIl# dN`!`4] I#Yjb)Υl,:o./.QT%l$`4i&B?7IQf̻s"5a H%/?ȪNv 湍ߊ궒R(;.5p¼:Xڪz-#;?ľ&ڟWQ61xJZZU$,ƘQVd؟Zy|yDlvʳ+G{D0Z @Vi'2tm}-]q#6KD*v.KFG+ruCc7A&\b_Xd![U%L^f \u> +ȁ&ܳ$P_"KCn4>QqȔg6Zl]Oh.hU82= ?Ff,mG<LD&X$z_1\5!צ ~qJ 8ێgȉ1ܑᒎ>Wfy'KSs%6_Q? endstream endobj 503 0 obj <> endobj 504 0 obj [505 0 R] endobj 505 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 605 0 0 837 0 0 cm /ImagePart_2119 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 108.95 579.95 Tm 105 Tz 3 Tr /OPExtFont3 22.5 Tf (Chapter 5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 105 Tz 3 Tr 1 0 0 1 108.25 513.25 Tm 108 Tz (Nowcasting Outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 108 Tz 3 Tr 1 0 0 1 107.299 451.55 Tm 90 Tz /OPExtFont3 11 Tf (When forecasting real systems, for example the Earth's atmosphere as in weather ) Tj 1 0 0 1 107.299 428.5 Tm 94 Tz (forecasting, there is no reason to believe that a perfect model exists. Generally ) Tj 1 0 0 1 107.299 405.5 Tm 93 Tz (the model class from which the particular model equations are drawn does not ) Tj 1 0 0 1 107.299 382.449 Tm 94 Tz (contain a process that is able to generated the data. In this case we are in the ) Tj 1 0 0 1 107.299 359.399 Tm 95 Tz (Imperfect Model Scenario \(IPMS\), and it is crucial to distinguish the model\(s\) ) Tj 1 0 0 1 107.049 336.1 Tm 91 Tz (from the system which generated the data. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 124.299 313.1 Tm 92 Tz (In the Perfect Model Scenario, given the infinite CPU power, one may be able ) Tj 1 0 0 1 107.049 289.799 Tm 91 Tz (to form a perfect ensemble \(80\), whose members are drawn from the same distri-) Tj 1 0 0 1 107.049 266.75 Tm 92 Tz (bution as the system state. In the IPMS, however, such a perfect ensemble does ) Tj 1 0 0 1 107.049 243.7 Tm 93 Tz (not exist. Any ensemble data assimilation scheme is expected to result with an ) Tj 1 0 0 1 107.049 220.45 Tm 91 Tz (probabilistically unreliable state estimation. This chapter is concerned with how ) Tj 1 0 0 1 106.799 197.399 Tm (to forecast the current state using ensemble methods given the observations and ) Tj 1 0 0 1 106.799 174.1 Tm 90 Tz (imperfect model. In the IPMS, model state space and the system state are usually ) Tj 1 0 0 1 106.799 151.299 Tm 91 Tz (different. In this chapter we are aiming to estimate the initial states of the model ) Tj 1 0 0 1 106.799 128.049 Tm (for the purpose of forecasting. In this case not only the observational uncertainty ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 300 51.7 Tm 75 Tz (92 ) Tj ET EMC endstream endobj 506 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 507 0 obj <> stream 0 ,,[& ̽ѠƛQE{QLzn n*XBoRnvl'!fO$[S,xKi^uKdCE޺+8ۿ[4D!5"(iY[`|X2(J yz57sv,N }_̛1rg:>:glv`|sf+3h8dT+r>>RE+k{]qn֎W M ^5uE"Pu sԂ 2roAx@^OSkPOLe$uAHƥ'=qª(11sbhiQc5d^>pnG3ibT=y]Ep'@cSGe8um2doUa["uȎ=ou2OJ8Ja =fX]?\TfFxnjZR|,=e&i6 O%1o `s:囆KCg4w0 =? Ҏ&YN9]B6RY%2.'̖z?f|6)|wU1)L'2P"~|j!'(ҴkEek5Sw(t-s_**4Y4H1?6S8YL!t*U/x$q5o2#߲l)]e~uQk^ 'wڭ*b".CIV²A< Vo:;CYE]Ƨ_ް0Bi&95|3SN扛m+Z2sIU*Y5T6}LSCz$WCA$􊐎~&y6;0%B! HK#SQo)> &7iQ2[kћ` Nrk{t1ެ {%ha GshngI`KzPt84̅) k8Qhka 0u 1i>.!w8YҋUyž8,GÉ~H4ζ/Q  $&j7/GƬ_$g3/ 1Lǔ%yJ?6$aFF:ʬW_e>6|5HH{8Z)d@7d+ Θ 8/ܪ>23[*0ؘ<4yxgL(C~ mJĞl#gM)X|"SgN?t!Fvr)R3dL@0kD-VT:) MB0yҲ @AQ\{V8X-^.W[HeX-qPGiވ{M};!k\. fNF&,{1*ϩctPn(\/u1hLSQ:`׍S JSBlZtݥ%1IM9q;A ¨ήxD+*qo㿤1ßv;|RgwNkPkˉ$$n,+m+[6^Ex_?PIKĉv M@r2gb6@$1mQZ:H "xzYYQ%-gg낓'i\T&}^o:X'+|icjs(ǐ۟vՓV ]Cl*<0 zB4M:W=(wn&@wG@mV]+,L|y .7^پ{]#U>"%$q?$U>*f/ټ"ǰ°ճ[$O$3՟3-4ۓfU (E2_>g]C4v#JzK>amHK-&F" xu{/Q!훍aC|"%heG)z痛2Ŕ//uuUڦ5ܘb 3T֑pB}fOV3|Ycr6U8t&b\>90d/۰hlG!άہ&1<Ň[#Mf 2?4ך\*tP5 w!O]"C)Mmw&A9Pݫ>ҳr<6]7Gǫ>>uctȚK= aLL4>G#LRR +tZ%Yz,\%Rn@JdNԌHiL~D۾UEM `ᄞquʸbGNf\2G.gbay_~C;^|Qhb%)gm0:wZ.&Gԕ_fqWbQrؓx./OQLMEY2{eeۅs?3W` QbdBظ>\+, H@y\a$[f+1XSɽ!~jĚ[ǏI h$(!L^ftvx ^|}܈='* },{d>/ <[ڑ@N!5G_H)0D"/c4:macFS]y'SH44tMAn޲R1P {# X؜R#>/qjLo[KKtw.KOWêt{4X\6oǮtzh%ay(&NA:>TNiVD!7}Ф'',12@1|W㚭޿t(_/eB 61)ks+bWyE1Jr̢4B&„̹ܧ2$' >`5&_ͬcJQ#"/ȑs&p%$Uwa*xjVMªms.Qݽo ơl(o qFsGgN̉? cXX4/lJeN%.6Pa7 Y*w gREW@7Re_k0I! +ʸNe-K85Cu[ &ձ=1FLY8=ʫY U#,s`9-yLz~f6 \MJqr`7]3CtB׃| :,J^ص?;5ֱ :ۏ o/s}?IH* U"~Rr7&W=X^u,ޙ"aA;@jC1$@o'Waڭ,O55Il ]mLpqFU\3+?50\l7e oEsJPOd}> J;:lnqblp8n?e{r "\?gGÉO㤋O:;Mn#%sUOMvP?pU$"wo%d9 ˒[l8/vpDF&ؚ;~I 9 PO^|+(-rt26(P!`JqI&]F+deye#*.Pd·t`l€m҃0N!P_0['tM׮?wyBh{W]_7UK%QyIC݇f'M$>ܚC&,ڈ~ZY:1Jt&YLM)K:QѐIJ)ԲtqK͂%[TŸHVl Y2ڼ{3e jWCGE οf#ϒp[N=+ƟgYɋRImw!C)#Z/h:r-n;I OI؋`r3fLR|RUM7 "o؊ kG`F^H_BVwO "u75 =!7!,.8VWf/:&bc]*$lg>x5ܪ\'ĴνꝴKÒo֐aԓ6 Im9:rJ;y1jU*C}~6atE0,'g'Q^ 5WzX-Yc,A׀?)X} <" |fJC]_u#>^_;LAyM!^Rض2un rieyL,?ة5o# 衺DX[{@aWؖ hiO@^Ȓ-]zg{ 3A3HG^*#@3)U6 R*_$yl4ޗs?%Tޭ5P@4Zh 9_+Ώ- \fˠѫ!; f굁ӞHf,?Fɭ^I> endobj 509 0 obj [510 0 R] endobj 510 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 607 0 0 837 0 0 cm /ImagePart_2120 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 108.95 675.25 Tm 90 Tz 3 Tr /OPExtFont3 11 Tf (but also the model inadequacy need to be considered when an ensemble of initial ) Tj 1 0 0 1 109.2 652.2 Tm 89 Tz (conditions is constructed. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 126 629.399 Tm 97 Tz (In the Imperfect Model Scenario, methods assuming the model is perfect ) Tj 1 0 0 1 108.95 606.35 Tm 93 Tz (may be inapplicable and in any event they would seem unlikely to produce the ) Tj 1 0 0 1 108.95 583.299 Tm 92 Tz (optimal results. It is almost certain that no trajectory of the model is consistent ) Tj 1 0 0 1 108.7 560.049 Tm 95 Tz (with an infinite series of observations \(50\), thus there is no consistent way to ) Tj 1 0 0 1 108.95 537.25 Tm 93 Tz (estimate the model states using trajectories. There are pseudo-orbits, however, ) Tj 1 0 0 1 108.7 513.95 Tm 89 Tz (that are consistent with observations and these can be used to estimate the model ) Tj 1 0 0 1 108.95 491.149 Tm 92 Tz (state \(50\). In this chapter we applying the same ISGD algorithm as discussed in ) Tj 1 0 0 1 108.95 468.1 Tm 91 Tz (previous chapter, but with a new stopping criteria to find relevant pseudo-orbits ) Tj 1 0 0 1 108.95 444.85 Tm 92 Tz (outside PMS. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 125.5 421.8 Tm (The Imperfect Model Scenario is defined and two system-model pairs are set ) Tj 1 0 0 1 108.7 399 Tm 89 Tz (up in Section 5.1. Section 5.2 discusses various Indistinguishable States methods ) Tj 1 0 0 1 108.7 375.949 Tm 90 Tz (of finding a pseudo-orbit and demonstrates that our new methodology, i.e. apply-) Tj 1 0 0 1 108.7 352.899 Tm (ing the ISGD method with certain stopping criteria, can find better pseudo-orbits. ) Tj 1 0 0 1 108.95 329.649 Tm 93 Tz (Other method, such as Weakly Constraint 4DVAR, is discussed and compared ) Tj 1 0 0 1 108.5 306.6 Tm 91 Tz (with our method in Section 5.3. Results of comparing the pseudo-orbit produced ) Tj 1 0 0 1 108.7 283.1 Tm 93 Tz (by ISGD method and WC4DVAR method are presented in Section 5.5.1. This is ) Tj 1 0 0 1 108.5 260.299 Tm 92 Tz (the first time IS methods and the WC4DVAR method are compared in the IMPS. ) Tj 1 0 0 1 108.7 237.25 Tm 91 Tz (Methods of forming the ensemble based on the pseudo-orbits are introduced and ) Tj 1 0 0 1 108.7 213.95 Tm 87 Tz (discussed in Section 5.4 and the results of nowcasting is presented in Section 5.5.2. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 301.899 51.5 Tm 74 Tz (93 ) Tj ET EMC endstream endobj 511 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 512 0 obj <> stream 0 ,,R11b73&͇mX^lږ.RE!:)1p@Q3$udy F8rG^ҝ\FtpF]7y zVsA6Cm Bsc27ÿ@U2Q+˘ԏ&]=vk;@c\=wTJ{"Ju.S872 G@7kDAEĴg޽ WZͩ|W C"B0B<_nf< eO$je/<$GUO^%GHڅ.Q =~̷!0 -AN?JfO9A[+ĵ/1Zdʃ9yg$ $XOD,Yg7˲Y;* "4k9= (^PLzwPw* g)PǑGgϺ4z&|iJ Lrѹ'ַՓ#I!:]c Ӊ 9{gx…?hWfe7'>>x%Y|oژNRmɫ* ʯ )γs<60D!94=&?f 2@pPWd PԎD#Eѷo@Ӳf¸N5 QCc&r_ks H*g)`>EE2p1CjP?#|NY/p{el@͟~GwDWD=bhzlkt>s6#r)d+ 1s?Pt K*phwJa u׃At5һ(c~L o_ "+@QAA:m;5FlBG 4 \ .NYu? Ѵg}jլ*Dl[kl 8gBo_ =տ߷(1!ςak9yn\`R)h4tNSOn{H 9fޗ`7̩#s9vt'H 2O7](MkV`SۭX{e:ȳvyؾp)Mdi!A;|y Dq{JgBRRs.~2G.T3R[\N2E6HْJxNT^<2Cii,!#˧4 .āhet!!aBi.]1sS5́d>srOמ=ޞ丵rA _DỎU;C > cxa>__G־ |֏xMsYXETEbUrU{[8aͷ\çfY/{]e.×p?ťm[HζCl?"i02b{Q67nEnaVɍSձ?{/V&ǃcJ+edO2 fLl(-:Rl ^~Y;)&4 ?2hj^39>~/_7#8Dzщ!- qTulMQRf֨yQ59#@0?̴^: fODv6퓣ܼ(nV8) Aas)*v<ԺXS.g硱rWW" p2[Ϙ)eH1&ry(~?nͲ{^`"&^DD(J HZ{(s_9COοٚc&{ k RVmXUk2- YiCSw Y;@_4 ruǹ#Ν)Ma"soLB&kjU [> ˩!ܱ#"׳۔F0𰨄,^868)ܸ?2<j[/`wÎ[ezhxJ^D2WA߀e{ο>((㰭Ԇ>DZ>2z&*%2蝊#j<ɳvj(2l:2sX8eQצAg=7> w`Xf;I/^w-K*aCC^R̤tM2O糐ɷ{BfG~;Ne$}69o.I&m Lf8p jkNab C`jAn͕Pr:0u؂`=dь6`h ^i]&;bqMax'Y?aÑU)Լ@2ѤͰy=/7CmI| MKxAz|i I̗DpYwu˚RAWK0icqJ#ZO3.hv Q>h\HJjэI |$ Njk^+&w6|C3ƁܰڸIuʔ>SŲմ׿ݜ³16[ۨ<8\JrEq!S Cbm@Df~C@ǝOnE͋Eu$ƒh8ozb`~+Vv Ku,GȚBVK؁}Fi}v<s|aL DuhTt-~:;P)%*} ktT Gm3F]^d:B*W2Eg=Ԇ!A|m|z{ҊXj_VI>/R6,)Ezj eSkiϷBe2;(:8 V9ZyXkHr$޷"@d5@5-M=re!*''#ܢVo9Pw$?2-Ǐk.H]l-z^al ﴮq l=ev&C= BQc b8zjc۩z32?p`b14-6ryWBԹW5$82ch8ISr9"X'дj+lPPf8/)a[ ,} ߜX*s>!R¾c s[r`qUCynJ0:DlfhcgZ٢6IW]kc˄kA]7Bkb  'R~v):GS LK7I/2j߾ʏeiTU5Zԡ"F]CS*E_n$uuevb^4F, kE%ǞVGX$ r{P|%$OTu؆Of0q;+v&p6̴MRV!Vd1Id |1a])3yW`l4?.0ϥ`jP8O[Bes Yv L,oseq_4aLdC6_@SkL$væp/b<`Id $'y^HL)\.K?)ܟ!cqSݖ* {mys?e=D"%~9nFx$ "7le<$Sl4|Db=t8ڸܒ~CE;rnع fCxnmG.$ϓ!"Hm0l>3>C-"/^$ &,JG ~1WiscN`ʏ*$~hcКZpU{&)yѵ_7KEFt,oErEP]\O݋،PַK5<$z &%j:%_A!S;CwU0\P5? Td{\3˜B6(]^E=KUOiPǹ8&Nrl "e&R0 cG{/_(GB.ԆxW}mԃhY ]wӼkxj2p0~-l+afD\KR2)++\2*Q.Ƭ^-,;9 0- liUxm?čRą܊C+K@]7u݂vj'X#%c^V~8a [zxO-PMjCُ߶# FT twD帝*2u SFS$7"P'˹8r1TXOx GiBTъㅀ`CsoIziB00=$8) Fk12׹2A/ e 3C&o5>:^Tz>H NbL`n2gTqK$EN]B.!y^^eJ-Z#'gl8%4Uۚgfas-C8*?ƈ < 4P|r;N0T;S6XiĶc©Ӵp]Md!Exoy~/~gj#m#󜭬he DWGpw<]yV ,oOOVb}˳|$uK2r8; ٚwg{[ omk,!sTK\~ "xϗs54!Cs:AHȐVO$:<\  }UT#r q]1 6uHj5lްcYCz@ƥbEJ\N 'Q~L(c]Q{%ݓ]8)J,@A=uK4ýKM+}5%/@WCԥ~sIcl ՠ$HN1ʠ,<Չ朚$wWX#SP#|{+P^k:0YoW?cC $ķ _lB[R8-.VS ʀ<{N_^CZJ7Y>g˜M }Y;Nfwö};/qĜj[6. 2~ ASh!=V/ݪ^'وG.c D[$\!zlٴ-dwx[L9/T^d06k|_;xA[bDK1ayn1-F%߃ [SaSڧ!=waK.?"^[a=Le R"+gWk`g 5ރ򦚒M&Y@0e ݑlJdm'-F44![Xd gO|@ swJTdڨ\[蒼 ^k 0U6 Փ9ytBpߢzbߦ(==9AV> Fz~P;:xMB; xQNOK5"KJcڋ^l%㕫[-X vugf8U8Uv endstream endobj 513 0 obj <> endobj 514 0 obj [515 0 R] endobj 515 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 610 0 0 837 0 0 cm /ImagePart_2121 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 341.75 718.7 Tm 106 Tz 3 Tr /OPExtFont3 11 Tf (5.1 Imperfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 106 Tz 3 Tr 1 0 0 1 114.5 675.95 Tm 127 Tz /OPExtFont2 16.5 Tf (5.1 Imperfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 16.5 Tf 127 Tz 3 Tr 1 0 0 1 113.75 641.649 Tm 96 Tz /OPExtFont3 11 Tf (Outside pure mathematics, the perfect model scenario is a fiction. Arguably, ) Tj 1 0 0 1 113.5 618.85 Tm 92 Tz (there is no perfect model for any physical dynamical system \(50\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 130.3 595.299 Tm 94 Tz (In the Imperfect Model Scenario \(IPMS\), we define a nonlinear system with ) Tj 1 0 0 1 113.299 572.5 Tm 95 Tz (state space Wh, the evolution operator of the system is ) Tj 1 0 0 1 401.3 572.5 Tm 104 Tz /OPExtFont4 11.5 Tf (F, ) Tj 1 0 0 1 418.3 572.5 Tm 92 Tz /OPExtFont3 11 Tf (i.e. 5c) Tj 1 0 0 1 448.1 572.299 Tm 95 Tz /OPExtFont5 11 Tf (t+i ) Tj 1 0 0 1 460.55 571.1 Tm 117 Tz /OPExtFont3 11 Tf ( = E\(Rt\) ) Tj 1 0 0 1 113.049 549.7 Tm 92 Tz (where ic) Tj 1 0 0 1 154.099 549.5 Tm 81 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 156.699 549.5 Tm 101 Tz /OPExtFont3 11 Tf ( E Rth is the state of the system. An observation s) Tj 1 0 0 1 431.05 549.5 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 433.699 549.5 Tm 100 Tz /OPExtFont3 11 Tf ( of the system ) Tj 1 0 0 1 113.299 526.7 Tm 85 Tz (state "X) Tj 1 0 0 1 149.05 526.2 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 151.449 526.45 Tm 104 Tz /OPExtFont3 11 Tf ( at time ) Tj 1 0 0 1 199.9 526.7 Tm 129 Tz /OPExtFont6 10 Tf (t ) Tj 1 0 0 1 209.05 526.45 Tm 96 Tz /OPExtFont3 11 Tf (is defined by s) Tj 1 0 0 1 284.149 525.95 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 286.8 525.95 Tm 119 Tz /OPExtFont3 11 Tf ( = h\(R) Tj 1 0 0 1 325.199 525.95 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 329.3 526.2 Tm 108 Tz /OPExtFont3 11 Tf (\) m where st E 0, m represents ) Tj 1 0 0 1 113.049 503.649 Tm 91 Tz (the observational noise, in this thesis we assume ) Tj 1 0 0 1 360.699 503.399 Tm 84 Tz /OPExtFont2 7.5 Tf (T) Tj 1 0 0 1 364.55 503.399 Tm 153 Tz /OPExtFont5 7.5 Tf (it ) Tj 1 0 0 1 370.55 503.399 Tm 98 Tz /OPExtFont3 11 Tf ( are IID distributed; h\(.\) is ) Tj 1 0 0 1 112.799 480.35 Tm 94 Tz (the observation operator, which projects the system state into the observation ) Tj 1 0 0 1 112.799 457.3 Tm 92 Tz (space 0. For simplicity, we take ) Tj 1 0 0 1 274.1 457.1 Tm 116 Tz /OPExtFont6 10 Tf (h\(.\) ) Tj 1 0 0 1 295.699 457.1 Tm 92 Tz /OPExtFont3 11 Tf (to be the identity. Consider a model, which ) Tj 1 0 0 1 112.799 434.05 Tm 91 Tz (represents the system approximately, with the form x) Tj 1 0 0 1 374.899 433.8 Tm 84 Tz /OPExtFont5 11 Tf (t+) Tj 1 0 0 1 384.699 433.8 Tm 106 Tz /OPExtFont3 11 Tf (1 = F\(x) Tj 1 0 0 1 423.85 433.8 Tm 89 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 427.899 433.8 Tm 94 Tz /OPExtFont3 11 Tf (\), where xt E M, ) Tj 1 0 0 1 112.799 411.25 Tm 91 Tz (M is the model state space. Assume the system state x can also be projected into ) Tj 1 0 0 1 112.549 388.199 Tm 94 Tz (the model state space by a projection operator ) Tj 1 0 0 1 353.3 388.199 Tm 112 Tz /OPExtFont6 10 Tf (g\(\), ) Tj 1 0 0 1 378.5 388.199 Tm 114 Tz /OPExtFont3 11 Tf (i.e. x = ) Tj 1 0 0 1 424.55 388.199 Tm 97 Tz /OPExtFont6 10 Tf (g\(51\). ) Tj 1 0 0 1 456.25 388.199 Tm 90 Tz /OPExtFont3 11 Tf (In general, ) Tj 1 0 0 1 112.549 365.149 Tm 96 Tz (we don't know the property of this projection operator, we don't know even if ) Tj 1 0 0 1 112.549 342.1 Tm (5"c exists. We are just going to assume that it maps the states of the system ) Tj 1 0 0 1 112.549 318.85 Tm 93 Tz (into somehow relevant states in the model. For the purposes of illustration and ) Tj 1 0 0 1 112.299 295.549 Tm 88 Tz (simplicity, unless otherwise stated, we assume ) Tj 1 0 0 1 337.449 295.549 Tm 116 Tz /OPExtFont6 10 Tf (g\(.\) ) Tj 1 0 0 1 358.3 295.549 Tm 91 Tz /OPExtFont3 11 Tf (is one-to-one identity. A better ) Tj 1 0 0 1 112.299 272.5 Tm (understanding of ) Tj 1 0 0 1 201.099 272.5 Tm 110 Tz /OPExtFont6 10 Tf (g\(\) ) Tj 1 0 0 1 223.699 272.5 Tm 95 Tz /OPExtFont3 11 Tf (is beyond the scope of this thesis but it is an important ) Tj 1 0 0 1 112.099 249.5 Tm 93 Tz (point for additional work. Our aim is to estimate the current state of the model ) Tj 1 0 0 1 112.099 226.45 Tm 104 Tz (x) Tj 1 0 0 1 118.799 226.45 Tm 64 Tz /OPExtFont5 11 Tf (o ) Tj 1 0 0 1 122.4 226.45 Tm 91 Tz /OPExtFont3 11 Tf ( given the previous and current observations s) Tj 1 0 0 1 352.1 225.95 Tm 81 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 356.399 225.95 Tm 90 Tz /OPExtFont3 11 Tf (, t = ) Tj 1 0 0 1 380.399 225.95 Tm 81 Tz /OPExtFont5 14 Tf (n + 1, ..., ) Tj 1 0 0 1 434.899 226.2 Tm 71 Tz /OPExtFont3 11 Tf (0. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 71 Tz 3 Tr 1 0 0 1 129.099 203.149 Tm 89 Tz (In the imperfect model scenario, the model is inadequate. Following Smith and ) Tj 1 0 0 1 112.299 179.899 Tm 91 Tz (Judd \(2004\), two types of model inadequacy are investigated. One is structurally ) Tj 1 0 0 1 112.099 156.85 Tm 90 Tz (incorrect model inadequacy, the other is ignored subspace model inadequacy. For ) Tj 1 0 0 1 111.849 133.549 Tm 91 Tz (each type of model inadequacy, an example is given, where both the true system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 305.05 51.95 Tm 75 Tz (94 ) Tj ET EMC endstream endobj 516 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 517 0 obj <> stream 0 ,,rrb6PchI#s|>IxO# VP}ZhF뾄!܆H9Q*IðP`!?dVByAdQ.ۉI0\m+{T{jM[4N/q"Q!};7S\SdwNT1K9|Iw#PER$yL8 ySPތ84*m7D#5Uq$cV@Z5q66e=Ere( Zɫ:蹬U(Q>L P3Vy)Խ=Ozw8_; &^s_;vsۂ>B%$ ^t ,)E_FNv;93f攃ЦC@V.*#5[k=~\.[薾Ttbb/ah[| { 0wSk>dNNFVrRp(;˩TЗ|8ʫ>" jōX ECqO4WNڔjεlHchi;-Dtx{cǭ`Q)$O'Y1QoO]{7IR:bAf.v)lus_@P#{7YGB~k0VhiWA#X- @t8inj[ĕJ!X$q7[N"Se^->,K೧1ۇ,ԕ37ړ8q&zRJ{™?6o:\D!f owPu ïM7[:K@j ӌ *n ^xa=p$YBpSFr2? n z9P K5I[(k/Xpz" o1Ǻ5M/8/rdT:!̸v6*8{K35מw#"|?UtH>t(̵Lȉ)7L"|i!t"ܼȉEPΒZFo>Nwy7R"{04Z.jk 4GdQiS1[!rSp`Bv>=>ӖEo.>&7;}sx@ӌ^ caZ36KHL|Vh?e'Xh h3`>Ѷ1{C77(ij*{ɫՎ'uU Yz9EQT_]̻}[N.!/c~/nab|X!E] ƕ!NusZ3ug\{^ o8W4F"NM%^XVᗶO-?2c0b =킶w~(b÷Ѕu~o/z ?OWm=] 2S-pZ1R$Ed7,@1kt 0Q w<4 iDO#@.S_}XأY}twDZX><)4[)ݾ{1*N^([JaVdMJywu\)TW|{z[B }Л?]ѫ](Wb16/yR4K p[.EP0Y½{CJ4 M[ EH:j@K@NJ0pTCX孅@py"ͰJرTJ("23߻Q;4 p$ۙa[ΜS.OPW`(ELbTJg'wŸAg=,_YJO_+<%[w樟iG֞FQAg*b5Q{o&e i5nh qs*dDOq՚DFЎz916 #<_E zg C,zl!݂ڴ%F4TE[r-a~e{a-+s$~}oa|_@(l(5!CzBU:h9'E>tN`>S ŒAt@,%!t?assO߆oe9w)y}68"h}w=,K?ϊ3հ)>nհ&<ׁ͍MrA7ÜL5M!G|gt,+n$8huat'kj]c).w}Y棼%8g{n-WF[x{zWűN݅]ƘD&%\cܼwmh"S-Jڜ0'*]bOYf`ڳd'lev^( uu!ؕe>~-}FҒk6§C)BȏK';%bzU) 9@EHXD1(iY`E8tS_XihhϤMm .)Gq=}rHjQ B+FuR tH &݋{kj3o,(RI..lXG\zӀ0H?*z k{;R3I?ynf}L^CrD" @v*AMckI ;EwgTiSL/p{ioVA%͝c=MK'j7B*@IgCn= tm?'|_d6zhKQP$3$j=qw)ZԎTxIxFV&hM >6L{`X"ynjb_שJ8ZPYp0\$#E6HVXw-wϖ;80ln{^,3'ܮ=\P&)}]c:Y,~Վ{ }"d!k-aFv*)&17IQ;2l9,zXłWZOym]|-& IPB$}PC Tt,< ع̆ԈI XQ~O"Ȁq!:;u J[z`>ٶı=eҫ upM+tPWl IsEHjw׫؍V0R<P3' *p 6lfR.`Ư,Eɢ+Kݑ24+īJj<2fs_"Ԗb]w9ZB>=߱TS2ĺr7~e١.[ݨLc*C{= .)>;*HAs$kBbeWە bl_()ġn#zɿ֥|P͞o d Pԟ#ooq`/X4T4s\2$ ?"?BcVYEvxfC?wa"CHށ 英)/-_es3JZ 3qR#8ZEkvٛ'1][ |jd6, լtWzE"k'+*'`B0)U[Ztd;_qI"] ނڥ}]fQ<&LP9guj{`eVk׆ȿj 6hk`AE6#'(6Xv.5?gAAp榌WHU#2O0"`$ZcrMAi ')xYj& eR/%Yt޿;avr2N!Lf U~]7_40gBI s|,b#yN[\|!%R,>ec\uL]̈}9)$18'rҜB3맰LZFqĄ@5a{J/"}}%0ϖ"$DMIԘ)"H! .R^ŐgO#Wy=C5zP(H"`:1[ȕB.C(b=w HiVS[ gqf8R œnCW.ܴnӍJ3vd %,ܾYM%{iGܳ~dinqTNQ͢-8k驟!Uo%.y]^L<¼A|3Fpoex0= l ~uϛ?~;(U$Ao.lX.{uTBKe%$un!ǯL.3&}N2N{&J]-.^]#Q,kĆvNlqT, 5Ui[{:66e8_ഴw^La U] Uaq AKtQ#ed ~D|BoC`c>§j/|] myEXE:n:{*A!oDIZJs+EiQzKP"),\̷e.sFO">v^OWUuJM.l6m&MhpqTg@ YMloژ(^/*@beJ.3icwٶʹO(2"qg@|$}a 3r s.䠶#:kW9z:(gę!xуoMin) eQ^cĢC,}>4Ϛz |}hoNm2zP<֜<0-MR1<0$7K`p$$LuhQDWpYlu;/4b_nPڔeDty5NEl !6@hN$ؠp?1cE0fyְ \,?TEkÐ n&ג#@Xb‡+S.˨lB5}Iz[X[1*SliNUNHCD(HTN]* %ƅm ]wE$Sml(Kxخyѐ<Ƴ:c10tƶltBYݚ'z(l='3[fl/M[6!ށEB:PBqBYІ+_>xx&bUyj`>Ȯ;0m}Ǧ &΁NKs6*?͖yИAX:Yع@) ᩼Ke5u1^"X aJF 6[#0Q[}:O{EV?SΠ: jlyl\J9\w"5Dm732@4d[g~dJlS8= &;eW DoMFݧBܾ4^ p]]zb#.B'(U)/I"[Ѭvt>eى7=+=!dѹ4Ѵ洱5ڳ7|E¬nx$4ҶݘQ"(%Ȣ%u9ȹo-<`y7?4LW2qiWM F*J} eɤ3h'/h̴VvBYpl"YݟSJ!QȪ:]f_1=(4\SW),2j xة:El@]o> endobj 519 0 obj [520 0 R] endobj 520 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 837 0 0 cm /ImagePart_2122 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 342.949 718.2 Tm 125 Tz 3 Tr /OPExtFont5 10.5 Tf (5.1 ) Tj 1 0 0 1 363.35 717.95 Tm 107 Tz /OPExtFont3 11 Tf (Imperfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 115.7 675.25 Tm 98 Tz /OPExtFont5 13 Tf (and a class of models are listed. These model-system pairs are used to construct ) Tj 1 0 0 1 115.7 651.95 Tm 97 Tz (and compare the state estimation methods in the following sections. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 132.5 616.45 Tm 103 Tz ( Structurally inadequacy ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 103 Tz 3 Tr 1 0 0 1 143.5 588.85 Tm 97 Tz (This type of model inadequacy appears where the system dynamics are not ) Tj 1 0 0 1 143.75 566.049 Tm 103 Tz (known in detail and its mathematical structure is different from that of ) Tj 1 0 0 1 143.5 543 Tm 101 Tz (the model. Here we use the Ikeda Map and truncated Ikeda model as an ) Tj 1 0 0 1 143.75 519.7 Tm 98 Tz (example of this case \(50\). The Ikeda system is a two dimensional map \(see ) Tj 1 0 0 1 143.5 496.699 Tm 96 Tz (section 2.4\), ) Tj 1 0 0 1 206.9 496.449 Tm 77 Tz /OPExtFont6 15 Tf (P : ) Tj 1 0 0 1 255.599 496.699 Tm 100 Tz /OPExtFont5 13 Tf (W. The mathematical functions of the system are: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 0 837 Tm 30 Tz (\t) Tj 1 0 0 1 239.05 454.449 Tm 92 Tz (x) Tj 1 0 0 1 245.3 454.449 Tm 51 Tz /OPExtFont2 13 Tf (Th+1 ) Tj 1 0 0 1 259.899 454.449 Tm 140 Tz /OPExtFont5 13 Tf ( = + ) Tj 1 0 0 1 296.399 454.699 Tm 92 Tz /OPExtFont8 13 Tf (u\(x, ) Tj 1 0 0 1 321.35 454.899 Tm 97 Tz /OPExtFont5 13 Tf (cos y, sin 0\) ) Tj 1 0 0 1 394.8 454.899 Tm 2000 Tz (\t) Tj 1 0 0 1 488.399 454.899 Tm 92 Tz (\(5.1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 257.05 427.1 Tm 104 Tz /OPExtFont5 10.5 Tf (Yn+i = ) Tj 1 0 0 1 293.75 428.05 Tm 108 Tz /OPExtFont4 10.5 Tf (u\(x) Tj 1 0 0 1 310.55 428.5 Tm 63 Tz (r) Tj 1 0 0 1 313.199 428.5 Tm 68 Tz (, ) Tj 1 0 0 1 318.25 428.75 Tm 93 Tz /OPExtFont5 13 Tf (sin ) Tj 1 0 0 1 334.1 428.5 Tm 74 Tz /OPExtFont8 13 Tf (0 ) Tj 1 0 0 1 342 428.3 Tm 88 Tz /OPExtFont5 13 Tf (+ ) Tj 1 0 0 1 349.699 428.3 Tm 509 Tz (\t) Tj 1 0 0 1 366.25 428.5 Tm 84 Tz (cos ) Tj 1 0 0 1 383.3 427.3 Tm 96 Tz /OPExtFont8 13 Tf (0\), ) Tj 1 0 0 1 395.3 427.1 Tm 2000 Tz (\t) Tj 1 0 0 1 488.399 429.25 Tm 92 Tz /OPExtFont5 13 Tf (\(5.2\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 143.3 386.3 Tm 93 Tz (where ) Tj 1 0 0 1 177.099 386.3 Tm 85 Tz /OPExtFont8 13 Tf (0 = 13 ) Tj 1 0 0 1 224.4 386.5 Tm 102 Tz /OPExtFont5 13 Tf (a/\(1 + x) Tj 1 0 0 1 268.55 386.5 Tm 73 Tz /OPExtFont2 13 Tf (n) Tj 1 0 0 1 269.05 386.5 Tm 55 Tz /OPExtFont5 13 Tf (2 ) Tj 1 0 0 1 272.399 386.5 Tm 110 Tz ( + y) Tj 1 0 0 1 295.199 386.5 Tm 33 Tz /OPExtFont2 13 Tf (Th) Tj 1 0 0 1 295.899 386.5 Tm 55 Tz /OPExtFont5 13 Tf (2) Tj 1 0 0 1 301.199 386.75 Tm 105 Tz (\) and the parameter values used are a = ) Tj 1 0 0 1 143.3 363 Tm 93 Tz (6, 3 ) Tj 1 0 0 1 165.349 363 Tm 78 Tz /OPExtFont6 15 Tf (= ) Tj 1 0 0 1 178.8 363.25 Tm 99 Tz /OPExtFont5 13 Tf (0.4, -y = 1, u = 0.83. The imperfect model ) Tj 1 0 0 1 396.5 363.5 Tm 109 Tz /OPExtFont8 13 Tf (F ) Tj 1 0 0 1 409.899 363.699 Tm 100 Tz /OPExtFont5 13 Tf (is obtained by using ) Tj 1 0 0 1 143.05 340.199 Tm 98 Tz (the truncated polynomial to replace the trigonometric function in ) Tj 1 0 0 1 470.899 340.699 Tm 87 Tz /OPExtFont6 15 Tf (F, ) Tj 1 0 0 1 486.949 340.449 Tm 92 Tz /OPExtFont5 13 Tf (i.e. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 213.599 270.1 Tm 85 Tz (cos ) Tj 1 0 0 1 230.9 270.1 Tm 78 Tz /OPExtFont8 13 Tf (0 ) Tj 1 0 0 1 239.5 270.1 Tm 92 Tz /OPExtFont5 13 Tf (= cos\(w ) Tj 1 0 0 1 281.3 270.1 Tm 111 Tz /OPExtFont9 9 Tf (+ 7r\) ) Tj 1 0 0 1 302.149 270.1 Tm 1540 Tz (\t) Tj 1 0 0 1 340.55 270.1 Tm 93 Tz /OPExtFont8 13 Tf (+ w) Tj 1 0 0 1 358.8 270.1 Tm 49 Tz /OPExtFont7 13 Tf (3) Tj 1 0 0 1 363.85 270.35 Tm 73 Tz /OPExtFont8 13 Tf (/6 ) Tj 1 0 0 1 388.55 270.35 Tm 111 Tz /OPExtFont5 13 Tf (2/120 ) Tj 1 0 0 1 422.899 270.35 Tm 2000 Tz (\t) Tj 1 0 0 1 488.649 270.1 Tm 93 Tz (\(5.3\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 223.699 244.2 Tm 90 Tz (sin 0 = sin\(w + 7r\) ) Tj 1 0 0 1 309.6 244.2 Tm 1447 Tz (\t) Tj 1 0 0 1 356.649 249 Tm 76 Tz /OPExtFont2 13 Tf (w) Tj 1 0 0 1 364.55 249 Tm 74 Tz /OPExtFont5 13 Tf (2/) Tj 1 0 0 1 375.35 249 Tm 135 Tz /OPExtFont2 13 Tf (2 w) Tj 1 0 0 1 402 249.25 Tm 76 Tz /OPExtFont5 13 Tf (4/) Tj 1 0 0 1 412.8 249.25 Tm 79 Tz /OPExtFont2 13 Tf (24 ) Tj 1 0 0 1 423.1 252.95 Tm 2000 Tz /OPExtFont5 13 Tf (\t) Tj 1 0 0 1 488.649 244.45 Tm 93 Tz (\(5.4\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 142.8 196.899 Tm 97 Tz (where the change of variable to w was suggested by Judd and Smith \(2004\) ) Tj 1 0 0 1 143.05 173.649 Tm 92 Tz (since ) Tj 1 0 0 1 170.4 173.649 Tm 74 Tz /OPExtFont8 13 Tf (0 ) Tj 1 0 0 1 179.05 173.899 Tm 94 Tz /OPExtFont5 13 Tf (has the approximate range 1 to 5.5, and ) Tj 1 0 0 1 396.25 174.1 Tm 113 Tz /OPExtFont3 7.5 Tf (-7V ) Tj 1 0 0 1 414.699 174.1 Tm 96 Tz /OPExtFont5 13 Tf (is conveniently near ) Tj 1 0 0 1 143.05 150.85 Tm 99 Tz (the middle of this range. In this case, the model state and the system state ) Tj 1 0 0 1 142.8 127.549 Tm (share the same state space. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 307.699 51.25 Tm 84 Tz (95 ) Tj ET EMC endstream endobj 521 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 522 0 obj <> stream 0 ,,NNb6jY$JwE>0;:ϰѻ<otR' /" dw~ qk]tחe^iZ\'hՉ:OFq>Yr0>7$+ōP|qӉ=1!~ߠpyZ7W%/T,~)҆F M`nA'ܐ >qJ~g\lJB@ #.R f~1`LiscnK͎5zh%0g ogdQIv3 /E{ P=ukgnrr $ip;`0}|ڪJO7T-% fO+ xjUŲӗu2Igy?rqqݱPJRnSuF2{Be=o*I2tn#md3g4JW t^`aFU/U|#HT:gu_d<J[OgqCZvv(ef^Ha~cpd'U*#᝻8gƚFCS lY0~h#2[ljMcoB\ .w~ eN],XVS700"&cA23bƨ{YvWqё|4JA dNU7wF 6jw_=٫N^ &,]'D0Y.B1+ p o:oV Rv3oG%#iа(ֈDdfB݁GGGS nH`^^JH9?_ Qu8{bz5J Bsj/΂O5Ѐ=^!t߮#(2DOj2qGZ;9fqvgfgT&Fj/Xmw 0H1 ֦5_S?n+j@E\v 9ĕ4 <ٰ!oS6{_?Aǐ: ?Z}ه!P[p̫6<]i1w?D䎀u'"$Ln$o=4lT‷AO} $7e[rN){uC#48€w<~9n|҂K,^ ]N75JRcCã:Pd_xuG~C"ewKDk]B;FvCmCſ%ZUW&$VƭÏbz7YN[gd,0ib4+?ӇUv=FqD3v!9Q!fsnKh 5\-I.|礰ϯP:I]m9$Ud\~)_ł$Qm-L9rfҔ= -Hr޷^g%oyǨ1gvx̦rĞ>4u,,c/Y@i(zh0r|rHd//F eל %$寃ޔ5֑FY|$δSy#ϕ5RH(Mr95hOҝ[]UīG02z$]40ZĨђݠ}%v/ ٧c6f>g"&ܷ_#c0g:dѨ7Qw"}JBz"4N=o;z= xctalz ?tQXu)_`ݐgbE`Okv4vGqQ`h~#T1.bUo*62N9$V-i-kr1sБ;e&U Iy:p'{)O Ii1uƁxh}j!όz19qaKrP ]ሩ,L:OJM7O *]!d4 bH"|ҡ.Vc7Ƥ ^nEZlhuo"~48U|+xnǕ杬=:k58XT @7ɝZ:c3Ws /&P ~q)-n4X-sar82&]v69;SPJij}']KyS:29.g19B4]Gk27PTAZcnwRש7$e,.t&9 'j*53pVȝ8, h3޶TQf>#]<,!cBadHα0[xRQ1>8#峾-3ٰP8f@P?Z.A oOkX$Q/k2| Y ԓc*ߌpѤ,5j &olrK9Kfv* {.'?S3g&iqx(x{ SҹW8 Л§$xmtQl#i-rj~Mxb/.g?Hw:2XbU>&3y]azn*Rrц +iUM ]&ğH RW#uZY0gC)'õ@闧v\אPQDEW|ssM`1sq~DI; {S$ۤ"왈If?v07P2k4g\dJFzCHRX.ОJ*KTaA0G8Wzy ^$bP 3p4 ƛ9%@fg>=E0Nf룞VU7&Dn-U!GNQ&(fG`:7>Ž ](=-NeQpǃVĀp'JYwJ %[ϩ?)Ol$Q vmX95w} f?=t㼄ԺI LnE،)=Ů{/7h-kdZUcUZ ȓOʏ呐.sYmZ$K*3D`ф \kc0}`~mrڰm rQqu(Rs?+Qn_$Ӷu'2$AOڏZ}UӷG&+Myh>1% Ź}W$EQ|w ꎃhGvDξ"h<І ߫2=h')OK>LX\b:Β# BjF\tJF㪜1]Ge~0zzAXl^ ^}\Lk*vrGnGy6朗$W ҩ'mXO|"Pj#+JjM@ȊX^|+RmOm4BE  d,͑:_ZQ#um`y);L kjMo/%NZ y~`{Yk&egT9iE][!'H .hw١@v y=Vì~l}4 FG1 E YR74w!!æ`i%e|.tni$6($ SA jnx^R"Xt8Z'}o%>A$kWs9Vwhݺkk q)JŰ/2r@S&K)TVתAOLJ;HCmZhvroxյ]^L>93<['1SءjK- M)-7>R.f7~r\Yhfə.KF(99n`&qù{o>> pe wMT˸,OҾa鉤FAw Y1>c=e!ȸԒ5~fAc : @*^􌛃jOsd w}^ x5Z=ŰkEQXtȟ/y F \C>r\r?;7EcG`i򢵵&-oq5he"^q\x3_ӐОY공oΚ&|šR? ItQq%֋G`(Ai:g!FbSU ǧLHυha,| aT^yLEF`+]kGt*ZKߞUՉ&"^i\<˫z& [~b&1n5_#ѕ'pmPxh$mH:e j jY_N2|iD}*ɗOGl}Gw\}Ak澑]r+ow:^8n (8`LOWᑧοmBĬ0+q1Ɂ8{CۢؔDr\VSgoqqW2!6mi5 uo]$c$g'de97Th,\;bĆ [?em|߲?^Z{7ǕppO@+[|qZd5|<ݣr8 MߔuY QQL÷mB 2.,'VpA\!v ܆s̕7+X,}B<{xC"R)jJdb:MR@x'y@ى~\'B,MB+7Y!34Bu?eSD:E$zN:fļ gH]V`e筐 bFNk69EM#a Zу}0xkk0լUZm^3ke l],Z`9T?5Cd5M&,ͮjÒ¶wArhʡ`ǧ6UP¨ncL~Ѕ!M^Cf5'Q!|юAId={ ,e c?MnŔf_94z^A] mL0 5Б58Yc;2nON8ı1<<Z:^pA=)(}dN2AtmΖ9\# endstream endobj 523 0 obj <> endobj 524 0 obj [525 0 R] endobj 525 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 612 0 0 837 0 0 cm /ImagePart_2123 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 343.899 718.2 Tm 126 Tz 3 Tr /OPExtFont2 11 Tf (5.1 Imperfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 126 Tz 3 Tr 1 0 0 1 145.199 675.25 Tm 97 Tz /OPExtFont5 13 Tf (Generally, the truncated Ikeda model is a good approximation to the Ikeda ) Tj 1 0 0 1 144.699 652.2 Tm (system. The model error is relevantly small but space correlated. Figure 5.1 ) Tj 1 0 0 1 145.449 629.149 Tm (\(following Figure 1 of \(51\)\)\) shows the one-step forecast error between the ) Tj 1 0 0 1 144.5 606.35 Tm 98 Tz (Ikeda system and the truncated Ikeda model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 161.75 568.7 Tm 52 Tz /OPExtFont2 11 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 52 Tz 3 Tr 1 0 0 1 153.099 528.6 Tm 111 Tz /OPExtFont3 7.5 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 111 Tz 3 Tr 1 0 0 1 161.3 488.75 Tm 94 Tz /OPExtFont13 8.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 8.5 Tf 94 Tz 3 Tr 1 0 0 1 147.599 448.449 Tm 125 Tz /OPExtFont3 7.5 Tf (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 125 Tz 3 Tr 1 0 0 1 155.5 408.85 Tm 97 Tz /OPExtFont2 11 Tf (-1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 97 Tz 3 Tr 1 0 0 1 147.349 368.75 Tm 125 Tz /OPExtFont3 7.5 Tf (-1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 125 Tz 3 Tr 1 0 0 1 156.699 362.3 Tm (-0 2 ) Tj 1 0 0 1 175.199 362.05 Tm 1124 Tz (\t) Tj 1 0 0 1 202.099 362.05 Tm 97 Tz (0 ) Tj 1 0 0 1 206.65 362.05 Tm 1103 Tz (\t) Tj 1 0 0 1 233.05 362.05 Tm 110 Tz (0.2 ) Tj 1 0 0 1 246 362.05 Tm 932 Tz (\t) Tj 1 0 0 1 268.3 362.05 Tm 112 Tz (0.4 ) Tj 1 0 0 1 281.5 362.05 Tm 934 Tz (\t) Tj 1 0 0 1 303.85 362.05 Tm 108 Tz (0.6 ) Tj 1 0 0 1 316.55 362.05 Tm 942 Tz (\t) Tj 1 0 0 1 339.1 362.05 Tm 109 Tz (0.8 ) Tj 1 0 0 1 351.85 362.05 Tm 1132 Tz (\t) Tj 1 0 0 1 378.949 362.05 Tm 56 Tz (1 ) Tj 1 0 0 1 381.6 367.8 Tm 1203 Tz (\t) Tj 1 0 0 1 410.399 362.05 Tm 104 Tz (1.2 ) Tj 1 0 0 1 422.649 362.05 Tm 952 Tz (\t) Tj 1 0 0 1 445.449 362.05 Tm 106 Tz (1.4 ) Tj 1 0 0 1 457.899 367.8 Tm 963 Tz (\t) Tj 1 0 0 1 480.949 362.05 Tm 102 Tz (1.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 102 Tz 3 Tr 1 0 0 1 115.9 320.049 Tm 97 Tz /OPExtFont5 13 Tf (Figure 5.1: The one-step prediction errors for the truncated Ikeda map. The lines ) Tj 1 0 0 1 115.45 306.1 Tm 98 Tz (show the prediction error for 512 points by linking the prediction to the target. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 132.5 252.35 Tm ( Ignored-subspace model inadequacy ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 143.75 224.049 Tm 100 Tz (This type of model inadequacy appears where some component\(s\) of the ) Tj 1 0 0 1 143.5 201 Tm 102 Tz (system dynamics is\(are\) unknown, unobservable, or not included in the ) Tj 1 0 0 1 143.75 177.7 Tm 107 Tz (model. In this case, the system state space and model state space are ) Tj 1 0 0 1 143.75 154.899 Tm 91 Tz (different. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 143.75 126.6 Tm 99 Tz (Here we use the Lorenz96 flows \(63\) as an example of this case. We treat ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 307.899 51.5 Tm 85 Tz (96 ) Tj ET EMC endstream endobj 526 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 527 0 obj <> stream 0 ,,5b7 ,#9ـ\˸{ނ~hu.A&!pYBNa i< nIjJ5qЗٛf|[T4Uj :@3=Ya%FF wU*EtH:J|ϷrZ b吐E{^WB/{:%'/>]azb{㸔^tW9~ZTXLH1n c{7e8'cFæ L,>qf}܃_ܾeC輸TĽTx"4\-(R`ɚ'TH_Vsax'B鉷ב>ʆ"yW s(s%\Gm0n^Wςe jI1fۂҚaaCsmhoݍ fc `9sSGs9e5DR'Yڬ@Ј1y:Qɏom\Y \T2֐CL4ZH[fbW3ZLXP_(t5VF/?g]tT&NџRcmo`ݏ׮n_98L%9517҂~(Ud}nƳ⋿3Z;ǖ Pë3WCV1XG1@y /nHrBk5pljԠ=VH/@ݸ"7 K|qrB|jzB"(n2Һ]ɋ|lȪ+ڱDJgt%lP}9Y9q1%e[) ;.:\ Z]oP?t>EXɘw zPX)\"@cq?I89׎sât:.te0>R ^2ƃ9 x70Z>7ac98f>n43{tNd.I6i{b|DG>^&KqsvBi]mLR=Tc|zT70m. f3o|?V .ő j,O18aѰD͍iqMhtݮQۇr6Ddc:7!f:E[h740xGN5G OPa% %aԯ֫Cn'finNͬ'ZNd> T5/:@|bHya%ÕRK 1l*"ڎsiO'i2o5Nyuv~1]\,h;1EtezW3Ԯpfw~(':SEBuՊ$*:}7I\y!ͯ =+N߯\l~gXd{ )xZ)~r 1k2pe; N悺aF^lZ@#;k_aGA(:PEYC:PΒf<שӢ h^ H/oO25)/sT B ,~/s}C!giֈ) SWP D~%x{*5=ZNO_ܕkd9ti"Jb #blsU!HvfZkl؟z ?(% H.6}UUŇ%iZ-#܏{lTR=ޠ(llR-@j]n[Kp~lv¾e9cdr-?$#m{v *BHZ[:?;7,`M*bB!ƿ3!Mѭ4*yʜF3 +[6uBeÚ*8 &IbS"I# ΢2 mdX!Zl] :km?>y;d. kij*pPʯĿeD4V>C #Ī˰3.ڱGm6K3r#W2>+>ޠ.ٰ> gbYRg'diQ_$qX@`%vB݈& )Vҥg=<}&*<Ebs+t2>pw-_~$QVMXUJ戠F/fO#2\z-jզސVi8>?yzDYFT2 1$U`tW]p,lP (iS&[$i9E^cs^Vߛ4xfz@LުX=RyO<@#^F"1ps(M WX4Г$A"Z|LoxM!I7Q Cb{D^$,eZO۾=]g"4[7 jI.ϛ˪delc$wRP34e$B?`c1)I0YT'R8TB9Qͼu}aM2s?iO sl~шUj<%A( ]6TUuG g]#E͊ʝ2TSce .hZg?ݩo'}EXcAgP>$В<ّ;Nb^k$E}8V/.U .W0wM* #Kۇ([OY6F2mN⤊*ԬÚZ}{Nzմˉ {޷@a{,Jl޶ԟddo5z4QaaCYQfOgRX\n/FzFRdtdxLO7i pc8ѕsI_-cP䮒A`xŸIh gCo|z >ٌ(C$ť'cX7JnyzzuEM1jU.EЬׯFv̄'t n=ҔhE'(HM HL>_mn7;(x\kei;aFk";]A#1͌q_ ; M2#ЈxER3,\X6duZ:0HX*ߙm취}F72.Upl^pBDU>by b=]L.pe{NA^)2;3t2%|*(v_SulSlUM/ Ij!Wk6 rCʋquz'Ir^BiX9ĝɰmo%ρ%6\yvFn,`;YI;sWj%t@%r%aB{mӯ[̅9wd Ȩ}tԑg7ٖХdU1eK(&3(C]\vAv*!򆀠JrӺur vnH bq lyѤ\3N]X>C#F-rgBTDr#S6fu!(e-vDW5]X884l$G9qp9FykIWFǴhX^PFu%^0U8> xᦳ2e@A'h p]ws WE.ݩy욈p"}^pb;j3G펽Uv[}}w=@-&8»$57s4~8$(҇1VXmkٗ75 3_&ss"(ȷa@O ؀nЮ-Qle>CE.a#_;-CвUwuJ\ V 0F8tibF#jtɋ+:Vqn0rG)gye!L/> `2@ yDMڶ1?v*R,q0.(LS}_=3q'E⠐p5 젻޵3]fZo!>Jz-hZR6#Ve2E2lPN. t0Фcp`^onmxDλJM^0ɲph\^8ad~C mIӶf(382");@$p0x#* |-M>66ӝ0Ј\Ljw"A2󳢰崥9dWBx1jqgBXZRݜV;3mL(LԉQi r 0S O+mnNxV.zq-eoRd w\yr]Bt4/meQR釿v0v\a`\hrV)CZS/3-/;U_frkT1CXTka5^Rm[3"fÔķ_ma$rH5A@$aE1gf?~`"[)HotM4NiM]B gĺWg"8}aO1äƂ+e&܁9X$`bmR7c'9WZe(OrgU}dnZ{=igssBχ@KVW4N"vIOe!OUW&\@83*Y?vE y]JG7ৗ ؍OsylG=fv aQ 0xPk $F~9CF K~h e2T'I&#b_Ou ~I-vh!ζݫwMr>m<2KЃ7yizpؿhfo:Ά#۴eHeXyXBA=.7 LfxEWG9٭| }@x$~=ԛdTjZ*"H\1=@[:}_#mk> endobj 529 0 obj [530 0 R] endobj 530 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 837 0 0 cm /ImagePart_2124 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 0 837 Tm 36 Tz 3 Tr /OPExtFont6 11 Tf (\t) Tj 1 0 0 1 390.949 566.049 Tm 104 Tz (h ) Tj 1 0 0 1 412.55 566.049 Tm 392 Tz (\t) Tj 1 0 0 1 423.35 566.049 Tm 36 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 36 Tz 3 Tr 1 0 0 1 194.15 566.5 Tm 111 Tz (dx) Tj 1 0 0 1 206.4 566.5 Tm 70 Tz (i ) Tj 1 0 0 1 208.55 566.5 Tm 2000 Tz (\t) Tj 1 0 0 1 397.449 566.299 Tm 79 Tz (x) Tj 1 0 0 1 402.5 566.299 Tm 88 Tz (c ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 88 Tz 3 Tr 1 0 0 1 197.05 550.7 Tm 133 Tz (dt = ) Tj 1 0 0 1 222 557.399 Tm 2000 Tz (\t) Tj 1 0 0 1 288.949 558.1 Tm 127 Tz (xi_ixi+i xi F ) Tj 1 0 0 1 396.699 551.149 Tm 97 Tz /OPExtFont8 11 Tf (b ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 11 Tf 97 Tz 3 Tr 1 0 0 1 411.1 545.649 Tm 95 Tz /OPExtFont6 11 Tf (J-1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 95 Tz 3 Tr 1 0 0 1 0 837 Tm 36 Tz (\t) Tj 1 0 0 1 215.05 531 Tm 104 Tz (dy) Tj 1 0 0 1 225.849 531 Tm 146 Tz /OPExtFont8 11 Tf (j) Tj 1 0 0 1 229.699 531.25 Tm 43 Tz /OPExtFont6 11 Tf (,) Tj 1 0 0 1 231.599 531.25 Tm 95 Tz /OPExtFont8 11 Tf (i ) Tj 1 0 0 1 234 531.25 Tm 2000 Tz /OPExtFont6 11 Tf (\t) Tj 1 0 0 1 416.899 531 Tm 100 Tz (h) Tj 1 0 0 1 422.649 531 Tm 86 Tz /OPExtFont8 11 Tf (u) Tj 1 0 0 1 427.699 531 Tm 93 Tz /OPExtFont6 11 Tf (e ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 93 Tz 3 Tr 1 0 0 1 239.5 520.45 Tm 103 Tz (= ) Tj 1 0 0 1 247.199 520.45 Tm 2000 Tz (\t) Tj 1 0 0 1 329.75 520.2 Tm 107 Tz (Yi+2,i\) cYjo: ) Tj 1 0 0 1 391.699 520.2 Tm 889 Tz (\t) Tj 1 0 0 1 416.149 520.2 Tm 189 Tz ('x ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 189 Tz 3 Tr 1 0 0 1 0 837 Tm 36 Tz (\t) Tj 1 0 0 1 220.099 515.399 Tm 109 Tz (dt ) Tj 1 0 0 1 229.449 515.399 Tm 2000 Tz (\t) Tj 1 0 0 1 422.149 515.399 Tm 79 Tz (b ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 79 Tz 3 Tr 1 0 0 1 489.1 559.1 Tm 92 Tz /OPExtFont5 13 Tf (\(5.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 489.1 523.299 Tm (\(5.6\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 343.699 717.7 Tm 102 Tz (5.1 ) Tj 1 0 0 1 364.3 717.7 Tm 115 Tz /OPExtFont5 12.5 Tf (Imperfect Model Scenario ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 115 Tz 3 Tr 1 0 0 1 144 674.5 Tm 104 Tz /OPExtFont5 13 Tf (the Lorenz96 model II as the system that generates the data \(details of ) Tj 1 0 0 1 144 651.5 Tm 97 Tz (Lorenz96 models can be found in section 2.4\). The mathematical functions ) Tj 1 0 0 1 144 628.45 Tm 98 Tz (of the system are ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 143.75 476.5 Tm 109 Tz (for i = 1, n. The system used in our experiments containing n = 18 ) Tj 1 0 0 1 143.75 453.25 Tm 102 Tz (variables x) Tj 1 0 0 1 199.199 453.25 Tm 47 Tz (1) Tj 1 0 0 1 204.25 453.25 Tm 89 Tz (, ..., ) Tj 1 0 0 1 229.449 451.55 Tm 96 Tz (is ) Tj 1 0 0 1 236.9 453.25 Tm 104 Tz ( with cyclic boundary conditions \(where x) Tj 1 0 0 1 456.25 453.5 Tm 80 Tz (ni ) Tj 1 0 0 1 470.899 453.5 Tm 131 Tz ( = x) Tj 1 0 0 1 499.899 453.5 Tm 43 Tz (1) Tj 1 0 0 1 504.25 453.5 Tm 94 Tz (\). ) Tj 1 0 0 1 143.75 430.199 Tm 97 Tz (Like the large scale variables x) Tj 1 0 0 1 292.55 430.199 Tm 80 Tz (i) Tj 1 0 0 1 296.649 430.199 Tm 105 Tz (, the small-scale variables have the cyclic ) Tj 1 0 0 1 143.5 407.149 Tm 104 Tz (boundary conditions as well\(that is y) Tj 1 0 0 1 334.55 407.149 Tm 77 Tz (m+i) Tj 1 0 0 1 351.85 407.149 Tm 51 Tz (,) Tj 1 0 0 1 353.75 407.149 Tm 80 Tz (i ) Tj 1 0 0 1 356.149 407.149 Tm 130 Tz ( = y) Tj 1 0 0 1 382.55 407.149 Tm 112 Tz (i) Tj 1 0 0 1 386.649 407.149 Tm 42 Tz (,) Tj 1 0 0 1 388.8 407.149 Tm 83 Tz (i+i) Tj 1 0 0 1 402.5 407.149 Tm 102 Tz (\) \(in our experiments ) Tj 1 0 0 1 143.5 383.899 Tm 97 Tz (m = 5\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 143.5 356.05 Tm 95 Tz (The Lorenz96 model I is treated as the imperfect model \(details of Lorenz96 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 143.5 333 Tm 98 Tz (models can be found in section 2.4\). From the mathematical function ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 228 270.6 Tm 108 Tz /OPExtFont6 11 Tf (dx) Tj 1 0 0 1 239.75 270.85 Tm 95 Tz /OPExtFont8 11 Tf (i ) Tj 1 0 0 1 242.15 270.85 Tm 36 Tz /OPExtFont6 11 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 36 Tz 3 Tr 1 0 0 1 230.65 262.899 Tm 112 Tz (dt = xi_2xi_1 + x) Tj 1 0 0 1 328.8 262.899 Tm 95 Tz /OPExtFont8 11 Tf (i) Tj 1 0 0 1 332.149 262.899 Tm 91 Tz /OPExtFont6 11 Tf (_) Tj 1 0 0 1 338.649 262.899 Tm 105 Tz /OPExtFont8 11 Tf (i) Tj 1 0 0 1 342.699 262.899 Tm 119 Tz /OPExtFont6 11 Tf (x) Tj 1 0 0 1 348.949 262.899 Tm 101 Tz /OPExtFont8 11 Tf (i+i ) Tj 1 0 0 1 361.449 262.899 Tm 107 Tz /OPExtFont6 11 Tf ( x) Tj 1 0 0 1 383.75 262.899 Tm 85 Tz /OPExtFont8 11 Tf (i ) Tj 1 0 0 1 385.899 262.899 Tm 117 Tz /OPExtFont6 11 Tf ( + F ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11 Tf 117 Tz 3 Tr 1 0 0 1 489.35 262.899 Tm 93 Tz /OPExtFont5 13 Tf (\(5.7\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 143.3 215.649 Tm 97 Tz (one can see that the small dynamical variables ) Tj 1 0 0 1 369.35 215.649 Tm 117 Tz /OPExtFont6 11 Tf (y ) Tj 1 0 0 1 378.25 215.649 Tm 96 Tz /OPExtFont5 13 Tf (in the system equation \( 5.5 ) Tj 1 0 0 1 143.5 192.6 Tm 100 Tz (& 5.6\) are not included in the Lorenz96 model I. The magnitude of error ) Tj 1 0 0 1 143.3 169.549 Tm 96 Tz (made by the imperfect model depends on the coupling parameter ) Tj 1 0 0 1 464.899 169.549 Tm 94 Tz /OPExtFont6 11 Tf (/i) Tj 1 0 0 1 470.899 169.549 Tm 78 Tz /OPExtFont8 11 Tf (x ) Tj 1 0 0 1 475.199 169.549 Tm 91 Tz /OPExtFont6 11 Tf ( ,h) Tj 1 0 0 1 485.75 169.549 Tm 105 Tz /OPExtFont8 11 Tf (y ) Tj 1 0 0 1 489.6 169.549 Tm 100 Tz /OPExtFont5 13 Tf ( and ) Tj 1 0 0 1 143.3 146.5 Tm 95 Tz (in our experiments we set both fi) Tj 1 0 0 1 303.6 146.5 Tm 68 Tz (x ) Tj 1 0 0 1 307.699 146.5 Tm 99 Tz ( and b) Tj 1 0 0 1 339.35 146.5 Tm 75 Tz (y ) Tj 1 0 0 1 343.449 146.5 Tm 98 Tz ( to be ) Tj 1 0 0 1 376.55 146.5 Tm 75 Tz /OPExtFont5 12.5 Tf (1. ) Tj 1 0 0 1 389.5 146.5 Tm 96 Tz /OPExtFont5 13 Tf (In this system and model ) Tj 1 0 0 1 143.05 123.25 Tm 98 Tz (pair setting, the model state space and the system state space are different. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 307.899 51.25 Tm 87 Tz (97 ) Tj ET EMC endstream endobj 531 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 532 0 obj <> stream 0 ,,||b7 \H!a//sJ>xxN&d.ٌVs kʑ!"0(SG;,ےsmˊ p {߀ljKGT",|.rk[Saѕ؊ͼl:0D*i㥡y%^H|s5]qDcعlXz[aeWBOΙ6R ]^^NC]F}O$bOPv#c:?\bd*AT (CX1h~e类H-XJ3z=wǣ-࠵6 "Z;3&B٠["%mcc.FsD."oJZ},@c|ľ ^Jp&3 kfB .=`[h9pFL,ܦe8 ?W妯7M]Xl~$'ɭҪpPcNJtkS|PN^ꮭ6_8#1f&"~+>:6?\eScGɰ `$2n[5p*]'-1,aIȰg_6^/}vLC<1EZyCH'ש.v|4Pj Hm.rIV o6n`aCF>6Bǯk\h)$JȦ# ^ؕ! >6#'"F >z]Kmz@EodLG3EC?\wBmu-ڊR]W\A{z,$.DSDԖz·6WOd%_3JZko~lyޥ ^rZ4(i78Mӝ*Lӊ~Vokz[ƣ箴}7"Yi6Jj{ObnthYte%x8 VGWXJLY!X5,x O_=]t5b*]ly#ٸpx\ۤșnvGכBH^?3(0sH! dxUw(rvq!hX0:sU`Kz7G۵۠zڌ+!n=59je":KHdqUV/(NDK`8!K b>z>{.Priʐp bE@'8">]GuCOYJBm(sW D)Z\\ DM:ޓ Wns此RLTm=&&lgr?˛jEp8^+ o9$Z ' [aKZ*8h=혐9s0̴{ik;?UU_3@<̿B3hwQ [; eqX DdGH!)]_F‘-1! #mgw UCvC(dp*F 80ݜ6*ZfxLm?!ŔA vC3ce*(Q IN"y)̉.0lU,H mS !>x?t@GA,? C;фv\݉(y,voH^#E8. SS=Ek*K#j%Jo9֖% A7l\023Iw)3M~co{Z<Ud2 ȰUH]X3=mp8uZHFHf%n}|mq!X[uvwDC T/52b6 LUmsa ¼]A-3RԤשQ\H5}ߺN9…l#k Q˅eLlDWԁ\sDB!M%eUYe2ϭj&Az\xMd"GH^ %%gx hV*Ƿz;-{+U~yGhݿ X< [_t}fv}m(D.;X<W 0H4|Ixluy$hk jBkբq*r/C{b@ؘO=@|0,:^g5va,ռ}r{]Ǎ)Lb?+$z88vpC&fW3=@er4թc~4Y?o-9UZQ fU5 {8Xe.{*n||qh^):˽N$tH¤~cwAHOf;^=tuu.괄MNAЏ8ogz\ |XeBLn@쀟'NI HՕ4.w@7c&!Mhomp W-&-B'jXaX=盰_>4A_pUQ%= E:lœE@7pe Cmkq;s۵J952CD/07’fmgQpÀAͩ?9OD۟"n\շ_tΉvj%6nIGS4 GuMAD~It k+{]Eb(ȡ*5# ~iީ^ˈ}͂!8@E2wg)P[;hDVXWTr(n2AOwIT{S_m#eZD/ z >䟾Iy91렁fCuUуh$Qbr {t~16)\ XCxwa  X7%}cnDj”o`fMuz<.Dz'PX"~q.U16yf{=Sϋ¶A00pk!5X Uw:0z} ]6w_mʲNu01|(]maW $Yśl퇦n ^a.\3+KTa/>cP8=,_iQᗄ XF0 ӛ uKuF11E/@3za 4)P Ӈ~bHc S_PzL\ؔI8ܫQ <Ωo͖̘a _I8M(5Ғ0( q+RG#QY^iI;j 2#ViatZmmwΐ*ARt)*J(֌-RT?8 }<7߁jRu-! S3lCGAޏ`(bҐlnl :q* q%]TWj2jX|6ìp(N4NNGEx00C #$@78x;b;{cF H@iΥ(Ye`uLx>~( 7l̫o8(5-+ =ŘrY4'N/bdwg%R{ TlUzJT S1TP2_gF7S Eu!oi  F Sk݇lGi ` l)[pRߦѵ4i 󑄊tQtaƔ aquha9*ͱRϑ"d-Q,  ,͑Xvku(a:SЁVz CmND*7PƑ0"4 .{L5ؽP8 vDA"Dйvy%]'Ilh<"A$ .QԳn_d@nCiGM'[,?j릏 E_>> 3/L<ZIwDVl,Y0MDq !cBu]2E/4ba7Xr?+ڙawyx\3rP'GfU˫C),:*$1l*BWL nl1P7ޫ0H)e ΄$rE%  BoMStĥuҝɥXɆo2o{0ՁuE1ʐ)č"ѽO oE9[%|]ңIʦ2Z2X̥>./v㴘Yq!T %fx.Ʌ~6z p ()bX4_}b@mRΈI0 Km wͻrf4=L PI鈡7Qyba(O>x#iD n4/F&(V倹jg椇& c768מ((ҁ5-'ODq6=]PID|XT*k1e<`jVm3UWV:,OC$!d dCxu֩B5ZϋD T%o[a(VR! hlmX/Cf tX6D&9 V |e@SU #g$}a"jaƧ}>.1DS#K6p+II-3&gBn ṡrh k>%`}k(ltr(_-DT^ P9pI׉'t[ "_\?E)lh4>q74A='05$dfFj-㼫MXYԓyfYw]pYo)Z_x_%)r: }Ikb@',/یV(ZPLnнѢw,`B#ڎG `FT#uYowWF--BRt=fgMbJظ7X@^By5ޯGpnP{/NcU1S~kGVLE!ԘVE63`mL^)f1@㭑p?lg8 ̆ibͤp)i|flؼ֩6݅6¨vyqe`1"C,miTK N {ဖ ψdQU(~+Ē\XnW;" 2 "tؔOTnRFq/#!NLڜ9t59Nv4>!?.Aqӝ&2*ԙʫNߺڳ#(԰;T0ud@Cnh 5a_Ao~Qr CP7d}z =yR%:Ӭ/`,h{s~U¥WKyR4֩șpW/v$1TC#Ut'H^o.C |BS5KcK򧙶/byj: Nsއũ-vQ@r3FsX})M:gAz `VaRf~zv030(Dq {lČgs}W7FdVɇ"QGfJK[-(:T 3[>HgR 5Tj=8ߤZp?)Hf\J#-z~.ӡ j+H8l"fn1)?uKgӕ>G"LUa3wh0EgC5$h\2W"p ^,|~?w !IBQf1:vxO"CQd{εé(pyO=Ig"C* A[ 42>c=/a,EH )oTm<2b+B1,Tp8{PHSVbtSH(vs]Rw+ٳܙ$ȳԵ҅VՃɳn)O:+%.ٸ)D(۰> endobj 534 0 obj [535 0 R] endobj 535 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 609 0 0 837 0 0 cm /ImagePart_2125 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 371.75 719.149 Tm 98 Tz 3 Tr /OPExtFont3 10 Tf (5.2 ) Tj 1 0 0 1 392.399 718.899 Tm 112 Tz /OPExtFont5 13 Tf (IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 114.95 675.5 Tm 131 Tz /OPExtFont2 16.5 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 16.5 Tf 131 Tz 3 Tr 1 0 0 1 114.5 635.649 Tm 110 Tz /OPExtFont3 13 Tf (5.2.1 Assuming the model is perfect when it is not ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 110 Tz 3 Tr 1 0 0 1 113.75 605.399 Tm 103 Tz /OPExtFont5 13 Tf (What will happen if one ignores the model inadequacy and assumes that the ) Tj 1 0 0 1 114 582.6 Tm 96 Tz (model is perfect. Here we investigate whether this would degrade state estimation ) Tj 1 0 0 1 114.25 559.299 Tm 100 Tz (of the nonlinear system. And if so, how do the results from the perfect model ) Tj 1 0 0 1 114 536.299 Tm 97 Tz (scenario, as shown in chapter 3, change when applied to imperfect models? ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 130.8 513.25 Tm 98 Tz (In the Perfect Model Scenario, there are a set of indistinguishable states H\(i) Tj 1 0 0 1 503.05 513.5 Tm 22 Tz /OPExtFont3 13 Tf (.) Tj 1 0 0 1 505.699 513.7 Tm 63 Tz /OPExtFont5 13 Tf (\) ) Tj 1 0 0 1 114 490.199 Tm 98 Tz (that can not be distinguished from the system state ) Tj 1 0 0 1 370.1 490.449 Tm 52 Tz /OPExtFont6 10.5 Tf (53 ) Tj 1 0 0 1 380.399 490.449 Tm 97 Tz /OPExtFont5 12.5 Tf (\(48\). ) Tj 1 0 0 1 407.75 490.449 Tm 95 Tz /OPExtFont5 13 Tf (In IPMS, however, it ) Tj 1 0 0 1 114 467.149 Tm 98 Tz (is not necessary that IHI\(i.\) contains states other than itself. Even for the state ) Tj 1 0 0 1 503.5 467.399 Tm 39 Tz /OPExtFont6 10.5 Tf (FC ) Tj 1 0 0 1 114 444.1 Tm 97 Tz /OPExtFont5 13 Tf (itself, the projection ) Tj 1 0 0 1 216.699 448.449 Tm 68 Tz /OPExtFont3 13 Tf (i) Tj 1 0 0 1 224.4 444.35 Tm 97 Tz /OPExtFont5 13 Tf (of the system trajectory defined by x into the model space ) Tj 1 0 0 1 114 421.1 Tm 103 Tz (is not a trajectory of the model, which means no state of model is consistent ) Tj 1 0 0 1 113.75 397.8 Tm 101 Tz (with the observations. This situation can arise even when the model trajectory ) Tj 1 0 0 1 114 374.75 Tm 100 Tz (remains in proximity to \(the observed part of\) the system trajectory \(50\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 130.8 351.949 Tm (If we ignore the model inadequacy and apply the ISGD algorithm to find ) Tj 1 0 0 1 504.5 352.199 Tm 98 Tz /OPExtFont5 12.5 Tf (a ) Tj 1 0 0 1 113.75 328.899 Tm 103 Tz /OPExtFont5 13 Tf (model trajectory, we will find that the minimisation converges very slowly to ) Tj 1 0 0 1 113.75 305.649 Tm 99 Tz (zero when the window length is very long, which implies no model trajectory is ) Tj 1 0 0 1 115.2 282.35 Tm 103 Tz ("close" to the observations. In the results shown in 5.2.5, the results of state ) Tj 1 0 0 1 114 259.549 Tm 98 Tz (estimation by applying ISGD algorithm to minimise the mismatch degrade after ) Tj 1 0 0 1 114 235.799 Tm (certain iterations of gradient descent. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 114.25 191.399 Tm 117 Tz /OPExtFont3 13 Tf (5.2.2 Model error ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 117 Tz 3 Tr 1 0 0 1 114 160.899 Tm 95 Tz /OPExtFont5 13 Tf (In this chapter we will consider the point-wise model error to be Sc) Tj 1 0 0 1 433.199 160.7 Tm 32 Tz /OPExtFont3 13 Tf (-) Tj 1 0 0 1 436.1 160.7 Tm 68 Tz /OPExtFont5 13 Tf (ri+) Tj 1 0 0 1 448.3 160.7 Tm 97 Tz (i F\(i) Tj 1 0 0 1 484.1 160.7 Tm 68 Tz (n) Tj 1 0 0 1 490.1 160.899 Tm 106 Tz (\). It ) Tj 1 0 0 1 113.75 137.649 Tm 99 Tz (might be reasonable to assume the observational noise is IID distributed. But it ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 129.849 117 Tm 95 Tz /OPExtFont3 9 Tf (lassume the projection is one-to-one identity ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9 Tf 95 Tz 3 Tr 1 0 0 1 306.699 52.2 Tm 87 Tz /OPExtFont5 13 Tf (98 ) Tj ET EMC endstream endobj 536 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 537 0 obj <> stream 0 ,,WEb +o{-0}=jIɪtƪ K.=9bPב} - d斿D+s;vE1f$) ĒG7ܤ7;ȍ~yGvL!LsmXA;W]9{X8ϓ۾ֻ]gB~> n뚶%PB芗ܼS#,Zwcg2Ї%^\^R/Lj`M^™Elrho=CvpTPwT^XNX[)0Kt۲f<( TH)v:1y ^( X@6'?H^E=֕bOS:Vʔ=Ulƈ‘ *{HA Rľ3L['· }2gDrF/}'Qoæpkc-,!5)&mԧΐmTtA)mtvƼQG[Yo8iSߤY^䎵?Q} T0au؅pXx@Džp zs}l/Q{B='QS+l6H LS\!g6{45kq!z) 08)TA*_d)'Ԣ?ei̺S}~iVt x7E/:s;ا\5t\G e,/O]uEʗJ{ڕKKwsYUt|`+ǯA I`,x}I0["W~{`Ҿ%2AG^hEz|GīmE8MZpM]oH޷dFxi' $\v#њBVkAfpr6zccÓz J*h(& ZS5f2 ]l7BS #yї7 yg㊣q ;t{\4 !S</n_:85 S~$o+͜*m״po${-aN 7ώ7듂B~"~l>Oȓ:QJ` kE,G-[ʐ,\{:T7$ERm)c f{_G$05ӽT:Tgm$߰T qG#F>Le^:r3&(,LIv!*~ şU޷ L;'jCCPr*a-r5ע)|_GIoyY:A$!"G#c&; IqV,N Cl/I˱lzt5@1rޟN{9)S&GJY8ed^nWv&sQي:< a! O寰sJ 6CGeD}yTK9/L!`Qw;VƟ|"~=hysi:||OW!d]ld{hIg  );&J7),/C7Z 1༟5Hg9)$Q\ ۋP20+L@ 3…O+E${Z>C0yJz.x{BVU]7wY@'. v L ǨGJN&Ic,>$X Z}wm 䲷`N;8?x֓Xeqay],%QusBn:E#-s17C 9Nħ9Se.-f!JDqcr[yb舢 ߽?cmNg6nVf}9 ڲ[/=C{#8yFt\fT!_znrd"[y1%_`qv߰ b/zd47+gsyOom+?؆^8\'3㛖ٍJl%ׁfR ز B>ĺ$GQA7N3!G t:':]W]k &SҨ+ >01;.kJ74g2Z:] AJV6]%K+xEO×PQ0^5&·o+`i6tAdWgɏN&qR- L)2qp*T$ry}_2w=bRѠQqEmX  IXwhf` pV-ǎ Z'JY[g1!gQإA *[n'䦱`.cP%FPjm帐.A16؋AjJqLx?k|ǤpLjeJcE$ɐ5>$ƚSYr&d hatjO.' BT0&`Fj&F:mRV{7 =|` ȕxLmz;3aRGHJI|Co#+T(66cm_T J !:ݲOfJ+w(,biH8`:W:*mӺ U+lI1Fv^ $.u,@!`꟱K͓ TU/5}XEW!nÍ/NVl;IA╪sdf3v%2H #gfa&(ֽl}[?UQIUYۋ-jQa8?S(8#wۗBz.\]JRh֮WF[eNzi,% "w#֝!` ?1iX)9KZBlA8(f~K-YG,8<⮏qeKUP}T|z%SӔJC񴽣Jlҹ9wI;}^u"Yai~cczA9gJB Yfylk`9p4\F9nc8㥦nei8p8.Ֆ>\anE_k$uXlC^ƐMNu n"&=w}z^#BEAYl8;YndZ ܂p;W(.% ,Y7XO; 0v?shm3aQI ?&Mxߠ[ɹNbˍ9[-!k 4R߱ ~$ OC0Lwnڐųhn=JXi'+Ѵ b}jq+}$gn $8TKSRfBr] (jfI@/0*['0О1wJJ&\z! j8^ EeaDܕL( Ƀ8ckKxd~ǟL7uCrٯFFn|,c؟+.ս 7x?vg=&X9kMRrog]&F2Q%nJ biDXEw!X e=Nw͑-ZVѥ.FyVX)$9&{8^#-24G/{٬8[vԲg}Jik֥€tKĕ pGu5;w77Hm/݈&xX 1AyU= <54sBNL vnUFpFQB\L|ē T'hVw~(PZh!ÝM=jOJ& {"yVcf*`jra)6W[9`=U^:F#.X$+~=̯ 'jr<W) xt ˱ci9L"*rG#uQtSFE`/[9U!˱#=dʯmFdlV$e5 WlI 3 6笣5[Cgs =b=uȁ!aG C, QezV3$f@Tɦ%Zi.*Q_T huG fڳ;bdP5h.x:Gqn{XV1J0@p5^R ƒN{䖸#kfmµ[ŇdR$1\W_(E 7: hя| "ZHTAH)8#Ǟda$rhj o1h~!=%I@&@dQMq>dOmg=Zf3f~-2%Vf8&׶ ɒ=>c%vS،7)b[I1(hOk4/)BKDI񐅸z0tB1EMŧ cbIWYnM5+&7v 9pnW8&R'!ZG"~ .㥖p@@U^!kc~!3P)E)  Lq6͞02:2:R+d%,\݅y?KUc8`8ӣo5t%ڽ?7]w *>pE \780=.3)y{cG3kg 5.e'Oдh6A^J2{x}xa!wS rZv.dN,ҀՏ:j\|,ژ|\l45Vf D#ܐGDB4v aGŀ߲…ٕn"<6G}Hgw(P9 gQ4Ġ_+Y9n ̸9|ж5B=k{7Oh?lƧ̓OJ_bs;sD%21u-̰1l+ xݕ'Tl_4J~0 vQ J(j1E QM(np^liq4HN+d ɲ')gSCj;<X#4]$PaH?dnȼ_ޯ>zv-o$tQYJ}C#uRyoJQ>fYS%[Z Sp@GWχ@ 5^,`n4pW6&0TE_Y4̎?OѿH lr%\#qZbթށ|q7ck)i8eF3V*5dвq}۾G\jC"]vDP+EfIﻻ},øD\-d`$3-Sqv5Ł Ǵ2:bUrEj JjS 'YL<MaI`-'Lp$,g{[?c`MI)Zx|@}Wk}diR0=Pl:/*"`FV2|CuS/ uNSXpQ]Syx&C;{}zwm u~#,HBtPf~ԌrSQ$wquTnh=RW/8lZ69A %9w^sҐ.UPPmD7n\(ETat5w ȕr0}׀HWtr Ŀ"ʈa h~"} r{^*p~ 0k N)-_\~8MV 9ןkC625@ )8=xpl.E~ e\=D:ɭaկ`lCs4e endstream endobj 538 0 obj <> endobj 539 0 obj [540 0 R] endobj 540 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 608 0 0 836 0 0 cm /ImagePart_2126 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 372.699 717.899 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 114.7 674.95 Tm 96 Tz (is almost certain that the model error of a nonlinear model is not IID distributed. ) Tj 1 0 0 1 114.95 651.899 Tm 99 Tz (For example in Figure 5.1, the model error between the truncated Ikeda model ) Tj 1 0 0 1 114.95 628.899 Tm 98 Tz (and Ikeda system is spatially correlated; there are regions where the model error ) Tj 1 0 0 1 114.7 606.1 Tm (is small and regions where it is not. Understanding the distribution of the model ) Tj 1 0 0 1 114.95 583.049 Tm 99 Tz (error aids in model development. If systematic model errors are identified, one ) Tj 1 0 0 1 114.7 560 Tm 98 Tz (can improve the model by correcting some of the errors. In this chapter, we are ) Tj 1 0 0 1 114.7 536.95 Tm 97 Tz (less interested in improving the model than in how to obtain states of the model ) Tj 1 0 0 1 114.5 513.899 Tm 96 Tz (for initial conditions which, for insistence, serve the purpose of forecast given the ) Tj 1 0 0 1 114.25 490.899 Tm 100 Tz (imperfect model. Therefore, we assume that the model we use to approximate ) Tj 1 0 0 1 114.25 467.85 Tm 102 Tz (the system is the best model one can achieve and the model errors have been ) Tj 1 0 0 1 114.25 444.8 Tm 97 Tz (reduced to the minimum given the available information. In the later section, we ) Tj 1 0 0 1 114.25 421.75 Tm (will discuss how the information about the model error can also help to improve ) Tj 1 0 0 1 114 398.949 Tm 99 Tz (the quality of estimates of future states. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 130.8 375.699 Tm 98 Tz (In the IPMS, to estimate the current state of the model, one need to account ) Tj 1 0 0 1 114 352.649 Tm 100 Tz (the uncertainty from both observational noise and model inadequacy. Without ) Tj 1 0 0 1 114 329.6 Tm (the observational noise, the model error can be derived from the observations ) Tj 1 0 0 1 113.75 306.799 Tm 101 Tz (directly. In the presence of observational noise, compounding of model error ) Tj 1 0 0 1 113.75 283.5 Tm 103 Tz (and observational noise prevent us identifying either of them precisely. Such ) Tj 1 0 0 1 113.5 260.25 Tm 101 Tz (unsolvable problem also causes the state estimation more or less biased in the ) Tj 1 0 0 1 113.5 236.95 Tm 95 Tz (IPMS. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 113.5 192.299 Tm 113 Tz /OPExtFont3 13 Tf (5.2.3 Pseudo-orbit ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 113 Tz 3 Tr 1 0 0 1 113.5 161.85 Tm 99 Tz /OPExtFont5 13 Tf (Since no state of the model has a trajectory consistent with an infinite sequence ) Tj 1 0 0 1 113.049 138.549 Tm 101 Tz (of observations of the system in the IPMS, any model trajectory must eventu- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 101 Tz 3 Tr 1 0 0 1 305.75 51.899 Tm 86 Tz (99 ) Tj ET EMC endstream endobj 541 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 542 0 obj <> stream 0 ,,UU.12 "jh̀+;MR@כG("ێapR/o͢Lp㘘TrqLU<6ZPp%#{3Id^SkʒXXV2nE,J .AJ)U@V϶=5%˘Sv^bf} )@ SPen ›@}JwfrM^T{1 "'ڇ '\nԣq[#>J<;/Qky*NPxC%P|? Jqc BO3 ^{uv< nvKȚ:1+3dMxz!; AyDPO8fAwxǢyr`; .jo'eV>9;<c4b05XH?T{DjesƸՑ)Ne4l$ȝz}sW֜"qo(ɇ $h3?\&S=t ۺv/~hݙR)&uj|BYgmtt %Ӽ =i םɌotestJ4{Qpj>c6z}B=y,-ϴC2 CrQ gF^.60rK$IU?r&0ez@AJdMM  ë@y@)*l5A_8wY 1<^>dR;yDSU:[+SigSOJvIM۠X6GL٧^լ]X.DN 2Jf7{+_>4a P@h/N ҆xœmQ>' + ަB XC]N)@ܓU?}xhFzs HuS[rv:^ͻD1!YH7Hݐz>~2`T+-X躽pXz/'sJ(QSwd0$tb-63_?MnZ(ReCY!^XqL&iԛGTII^{"W>kDjA1C)Whl$#:nV5z q):ެph"a+ȯ; `6-鞦v劜8k 讕N,N#^IqZ9u:r?1OYVgzz^s7a ]}^N2d1'ov Mȩϫv DzC;௃L ˖Ut}ޝ[~|Ѐ'L V9R I).ubędi[1h`6'E΃`.h(E>3ޏlˠiPv0B@"nt0\[f΅{᨝VCS4\Aޣ␧P.bǝBH31ѐ$ RߡKB77qʒ ZGv]EI)"#Xvk wj mIG `:88ׄ獖5|M7@m1:Ԣl-,薛Y7\s9ݸY1/e $(=Fhfu5xC|:P*#[Aچ uR%dW$B+gnՋi*]339: #سK['Su5B=|=B_yH)W)?Yb˫X[F"5RP3¿ 4%k2%TX&X P}GjMYreSŊD[K|t/2 E|bߪPu_R8T( d8` @er)5c@zŀ3Y+mmYO.TF',Hj; z4cƗkjsqRx"\ze乓!oo%<}lLJ5-;U:>dާUh8IxMh}ܸO:\LB`^p|W^7{}7,bƿҡ2RG-Fc5dhY+'J+D4 n|M 1y/yuN4G?~M Zo>P_B4Jxg}͎.YAdtG** &B-5݌֮(mhK`49-?/pjb6_{"b2{\RO/ _%wl>n)!)!<Cÿ\Eip+-qpnfԤ" yuP.@Q?G"t6uLзܴр}Z4 J>,fM#+[BݵP;[6$pWWhdĿQ:%1AǤ B -|DF}H";[ya v3H#U#③]WL + Mѡ;%bZ#E*1)ppOHSuA^i c Y@%Qjg̩ e@"AxFn)nhSҵq{!sJ ,zeG΁3.dD+^>qk|`N./\ߧ,7Oh(++֜"z䐐]z[G֫7 ҄ztM7l8O~n/[ ʋ)=k`GߤvOF.AI"LBR rl4[THztbGXԦEhPg1:pnD|][[ЋzrNEjZzbs8dYK #9J{fo2}@Lp:B V3{ZeM—a6ƼGo)cl暂ȱ՘GN qFJIiPK YTD+u'5/?)d/,q18  [B3gf((YGR.`HF%KĜR? nͼZ8L<`TËQw nbmPQ ZJɛF˞w[(^ɳʆ0Zy,@Yln }YllG>ɖP<:RhZ=IJb>JC۟0+q,3cיѱldpx$ /UR3Ϻ #Ari-]w"/GDn3l 76/8*~69,NNVRjeF.u&΋}Y LTo樍Flj+Q4} Im 6֎&C!p w*Yu;ij?(J7=ޏb4z]@Svd;E &SC7x.)# 9ORQȢlۨ[| ~։c}Pqf:Dp@ZcBL֗x+(LT:uD@ 5F.Vhՙ_W)X w|nb!LWwKSdɉF\AK|z5ETFj̡N ~swep7`7fGu.2Мu]9RW_ֆf9+Zw^UTrF[h0PQaE s%o^fC&kхުYL;d73@(5p1f4mVebņ&k9M "J;Xp ĸԍLUik\.ꑉb>9;"?gHjBA t ,zH*K;[ .\%I]ڥ4yoV"ɘ8Z8"׳5PC;o=:ڊ_Nzl±+ =jzau{bIcجѢԠ15;6!gIAE7o`R=?x-ņs8gغ[MpIfOA$e }EP$dષ3LNJ8Ud s T =ڻewޝFPZ<&> ,t^GW,j>_S,wMU8iٷ+ rK$Aq׿oߧc1ņu[WdZj(݂joVrڑFTmf>z 3,h#SzQh9k\FwןK`+8^mTI!,k9ȽjODU6hA% ir2z^>gn2)DXI"yhٜ\9ly U|\E$O6Pګj'Oh 4 '.7eM-/XvKXuv hb;R}A5*N3``xA+1 6D51AOoXf7RᔽVeCٜ;2h]t3Yww<@Ty+ٿ*nVRWw1GT+(kRR&^P!߀:*eŠ RTk3ʾ[Y{p2g9Z5z5?Чsi5z&Diy 'm!١ŲUf;o_gs2o(dk&lyDr#3^C1mCu3#VÜx~orH`&B "`RLJ4 K[*z6?GBeSu0DkȆ1 tmùLĞ=nvYU4F47J#Ba$H>10M2 Ǖ@ZFYGlTCLa!.l XXG9p,F҉Dy{Kr>uN6Rp;!vA@@%z\󮛩U7LQ qYhN)F&5 3 Dž>qUfJ;L(F_|LZ(;ǶayYfn\x2@W$Q:+^ -F˼zVq~M|K6)eJ^A <^ Hrʵx@殼~zRoJ.輱"HI>jtNilA-F=мyGzBw餌bgVEjrVeFA:#)bJ/+$HP=ugL^߹"D[! 9BV'nW}d\?Ck,BkM,ȎdF:}hJUoNn$lGHOlsBc[D4G͛s8u34v^XqDSl(_ҕI4D޳OڎoXp)qV*t lqS]ÿ%x^Ӯ} a7e@6!CL;&!R⚣z[S1|FB 3lN[y-;k%?ihrqGCd@@,I[7+Sz̥ԙp"TeK}B Ǔl9B%sEvdZi cr. |f 9]}LB$lj<, j#G1A)\ %7݌ rBZ_\6BtM搅2r{H-E8(#'԰D7n NSAob-āV[7{iSiac=Ns;^E ,&:&P؀?u9|0=]w|UP#_5j[I߭~vqnmeqDO7꤫*CQ<>Es4z8mLtEݱ8?Qq_)1?ΎG.vXk)K{Bi(l]y_Q}nCdێIpuÁ }'k8 ɉHN\}4F`:W rm3lVHQ> endobj 544 0 obj [545 0 R] endobj 545 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 609 0 0 837 0 0 cm /ImagePart_2127 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 372.25 718.45 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 114.95 675.5 Tm 92 Tz (ally be unable to maintain consistency between the observations and the model ) Tj 1 0 0 1 114.95 652.7 Tm 93 Tz (dynamics. There are pseudo-orbits, however, that are consistent with observa-) Tj 1 0 0 1 114.7 629.899 Tm (tions and these can be used to provide better estimates of the projection of the ) Tj 1 0 0 1 114.25 606.85 Tm 90 Tz (system state. ) Tj 1 0 0 1 188.9 606.85 Tm 98 Tz /OPExtFont6 12 Tf (Pseudo-orbits ) Tj 1 0 0 1 261.6 606.85 Tm 95 Tz /OPExtFont3 11 Tf (\(50\) are sequences of states of the model x) Tj 1 0 0 1 480.5 606.85 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 482.899 606.85 Tm 100 Tz /OPExtFont3 11 Tf ( that ) Tj 1 0 0 1 114.7 583.799 Tm 97 Tz (at each step differ from trajectories of the model, that is, x) Tj 1 0 0 1 420.949 583.799 Tm 78 Tz /OPExtFont5 11 Tf (t+1 ) Tj 1 0 0 1 433.199 583.799 Tm 204 Tz /OPExtFont3 11 Tf ( F\(x) Tj 1 0 0 1 474 583.799 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 478.1 583.799 Tm 110 Tz /OPExtFont3 11 Tf (\) We ) Tj 1 0 0 1 114.5 560.75 Tm 95 Tz (define the imperfection error of the pseudo-orbit x) Tj 1 0 0 1 371.3 560.75 Tm 67 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 373.449 560.5 Tm 99 Tz /OPExtFont3 11 Tf ( to be co) Tj 1 0 0 1 420 560.299 Tm 67 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 422.149 559.799 Tm 106 Tz /OPExtFont3 11 Tf ( = xt+i F\(xt\) ) Tj 1 0 0 1 114.5 537.7 Tm 92 Tz (Note the imperfection error does not necessarily correspond to the model error, ) Tj 1 0 0 1 114.25 514.7 Tm 94 Tz (however the projection of a system trajectory ) Tj 1 0 0 1 347.5 514.7 Tm 35 Tz (1 ) Tj 1 0 0 1 349.899 514.7 Tm 94 Tz ( in the model state space forms ) Tj 1 0 0 1 114.5 491.649 Tm 95 Tz (a pseudo-orbit of the model where the imperfection error is exactly the model ) Tj 1 0 0 1 114.25 468.6 Tm 97 Tz (error in the model state space. Recall that in the PMS, there are a set of in-) Tj 1 0 0 1 114.25 445.55 Tm 92 Tz (distinguishable states Eff\(x\) of the system state ) Tj 1 0 0 1 353.3 445.55 Tm 101 Tz /OPExtFont6 12 Tf (x. ) Tj 1 0 0 1 370.1 445.55 Tm 90 Tz /OPExtFont3 11 Tf (Each indistinguishable state ) Tj 1 0 0 1 114.25 422.3 Tm 94 Tz (defines a system trajectory that consistent with both the observations and the ) Tj 1 0 0 1 113.75 399.25 Tm 93 Tz (system dynamics. In the IPMS, the system trajectories are pseudo-orbits of the ) Tj 1 0 0 1 113.75 376.449 Tm 91 Tz (model in the model space and these "true pseudo-orbits" are consistent with the ) Tj 1 0 0 1 114 353.149 Tm 93 Tz (observations and the model dynamics and most important the imperfection er-) Tj 1 0 0 1 114 330.1 Tm 91 Tz (ror reflects the model error exactly. Unfortunately, such desirable pseudo-orbits ) Tj 1 0 0 1 113.75 307.1 Tm 94 Tz (cannot be found in the Imperfect Model Scenario, because of the confounding ) Tj 1 0 0 1 113.5 283.799 Tm (between observational noise and model error. One can, however, find relevant ) Tj 1 0 0 1 114.25 260.75 Tm 92 Tz (\(useful\) pseudo-orbits of the model that are consistent with observational noise ) Tj 1 0 0 1 113.75 237.7 Tm 95 Tz (and the imperfection error of those pseudo-orbits can be treated as estimates ) Tj 1 0 0 1 113.5 214.7 Tm 94 Tz (of the model error or at least provide some information about the model error. ) Tj 1 0 0 1 113.5 191.399 Tm 92 Tz (Methods, adopted based on ISGD method, of finding relevant pseudo-orbits are ) Tj 1 0 0 1 113.299 168.1 Tm 90 Tz (introduced and discussed in the next two sections. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 129.349 149.899 Tm 95 Tz /OPExtFont3 9 Tf ('assume the system states are one-to-one identically projected onto the model space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9 Tf 95 Tz 3 Tr 1 0 0 1 303.6 52.45 Tm 76 Tz /OPExtFont3 11 Tf (100 ) Tj ET EMC endstream endobj 546 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 547 0 obj <> stream 0 ,,gb7 ^᰼t;c>CDIPd=YiCmn8Mgi|$ KL,e{7:I^w%@rV7r =yEd\b횷_!]]5^"b(f{vM]u{BVS7<^YoȱzϨ !H|-Stx2M`F3tFCCAM*V {l*HTΤy8N=}y+ͿMj߀6(SxR0 &#(}}B ~lA&ILlp'C0|16zNW$HNw by܎ESZ9?SB+.eMP(B>Q8ڵ灾;,*<6SY%,A뱽۵1VO}ŝ]e6_"V-pƱXD-3sdl 9migD\pHd8ω0U=Hƌ>a2uTi,RuR,z {EEn( tzsDn(ԮCWMkQD̓g#ٴ磩"n)'D! KhˢS9_Xqp*,b1܄e{\=Ox/0x8x@N#`!-h)Da&P}2w@>1~ I KXLAzKe"#O[Eu G;fZ¦r+vUrv%zO"ۍk`Vl,- ճQ*ș&z劎grJQ$Uu3\c82KI J{b`dh`{?Whoن)tCTEqTΆԂ]t8_dp w{}հ%/I |Z׌vߚjtw&Gfoسo9?3`M3WrǟI.Z1~Ɩ™u"5"rZwHgOXuP\"J#F-qJ7nbz,_}'q9R<3U*M(sW);n>.o)3iq>"k2v}Ab%ܙYDұ`MM;J ozXl?b(ȝA|)$eVkge A |`[Pb> ㇿZZ"Nwcq ".=ƪrBM&֑~RI,KG$R34:21f$=xeq(יּrv^c﫶4+$5%* tU ގ2=DfCZ}tjM0:B-*0ȀfvhZ`:qG.tp|>$-pD{]VQaS bѾFEL*c}SRi;Yc ڀ# TwTm=~*`GL^ɨ ao\{A (*ۏwxg7h*,9{jU7Q^ѮݵO1(Brf`S{ a1y#Ulɭ3X>NrbguX+>x;N'(Jt2I c uRpm zU[XO9]KQXiX?LMZ9=w["=7_vM(:=~Jb~r0h z`G' S5xշhwjɣ {t儶ÒzeCs$P'K8Ǭ| 7PW6ݖmOrp`&G9vC]t__a5zhcȷYK L:H, {}|Ͻ>??zW}Jn>&jB'\oh8ϜF?3H]U8ZڜG۞ FꡫF]iĭHGހ.*]rɕ˙BdbRnQ>gvws6P7HSIxIeWkWO;x1~w"6k CP'4#AdWˍn~ZM*a3hB2N&-Y&Af@~Vrޮ^uOf[516TP_]G&Z51Aa S`Zg)kN:Na1]I3S5lX7ʂN;MYp| Q]VTgߌ­UAOl~yN-`hM6Q(RJ$I).WQJlD;vXd@\KqUpK/ݵk.uc.4/}|qGy^a˙^ oM)eF1Bԟ@CѥX=>':cm}N>EQQXy^EU:/|ُgNU6JN-O6 4BUW65#A8oS), s(SNYQ :?p:>Q*Q:=rWiE-U)gD4qMHkW%l_G.; l'm+2/)'W ֑Eh ZC {dxufZ+_# OYh?pe|[v-2Jz%7ˁ [ p!$֍"SPdM[{ Pp}YP3 .QM.Z]Ca=&EiCLa&MhtPNq_V2=NPS> bܰWc2wހ%f8Ұ앚#` BM|0bjxq+k D&| /VO_nHhR[U ҙ'Z1~]!ߠ4{rT3_Όȩ=y6&SDLػ5EᱍG%1y$Z2t&ecWcUSNo->C5#d%\8oHluӱP Zu_eLdX2CYQ% 8=!a3[;enh.߫#n!#9r6h"^p;3[ՒEj ar]d~VV 3х!h(p^Q魑+8@b`^}+>лDUsد`_؎6E2 0 > Kp3ΤzMdBGMTgʺgǂ!{xպB}3sӏ4.XZߕcGxN w_BI} 8~Εb!M#_h?0Hh֧}``Y$sZPa4:.ҽjQ,k9M4H7oSx^\KK>*{eٜ}h'C 2׿ %I.сp3=͢rq -U0G9B+cXR/LaTE>Bɯ kvA 2Sm}Y1+[/[YMDru/+t&LbMt"hs Nn/q/;*&#<s;@'=$ Eq=%t~v@,q"=Լ"/8nXBI7; ދ/n rЙo^)5 Vo!W8ޭfMsK,l7SOq;4@CVqV)>1hZT >^B#ʴU T\nY¡s7^le}Ѻ',ZEVfwڥE|A"mg;9Oe5X# $H ,!SZñi˟6q<#É>Ӝ.XЊ Ѣ $XtLDy> i G.9?hď%picͫ4l9qad+蔃:(h| 6]Bۻd>ebDI(pd}%:|QOK-NdoI| *׽X [ 8R;_đ/f*DD&8o=Ds5>{,+l i:`fgV1r|ˮ[D ʕ,ڮGu"_]Xs"y WRky`" c/aU05Wjb%qIƀADq , U.{oOuQ1`y OցUCkz @էL.*m#v҂rVS`Cö+dP$x]۩Re]Kt8.jq7BF^Q/<ۚaq@ MZ6 |Tv>i6GA,6=1XrƐky?ᕢv NEO|/6i]2 kA25/9a7\0ե{SL-|EDPn"Pϲ m)[𒲥p3oN yLPWYLj9~h/CSy".N:6lv\;kBB|)$SYV/Q[&|jlQ^ "¹98i/Nm\,[MԎ}^FN2Nz"C=w M\m%۾\] ܉ؐ6-r"IN%MʂhEH_aSJe(SdmeLK4[D2=XۚY\=uJY< |pg8tn;̶d3_3f2ZngfX-msi 96xKFޢX›]ː&uhk*YLVZu3]1f[.NqW"t43zݘ$tkQ5Sj'j)eZ`0 ^_d*te4QB["iݜ!2EX4z;N#_ ۝4Y>sr(w$7YtT;˭`et {{L \N%&A4d!ԠB1YJf~"4-@ÛS`;<[#ؽ&}ǸP%E%pE B kJfRpQ'5eY|1q%YE  U Z|;Sڜg  _l%[P1ӁP] j/ߓE߼pǯ'F1) ujA}-Y= v#&7ǭ,+h$Ɣ";7Y=u5R6ߘT`W^s_)6|PkkB2bl ' Hܻ!`(SOSg1 *~GFQ&&S$GYoE:fn,$>cׅ'oV(Jr=.n o];ގdo`}.˾Gݱ.P]fg;)En}kmNbG˩wCYn]Kk.{ \F% "F|7kCC{^-o5e>d͋n~m*t&߈0v ?*uS(yyPcP[7m8bpa'ԦzQdÐ́f'vynwb8 `+ZeWMiLJbQ}c0Kqy O%_Is-=.>AƗ8YL Iw9|3qޣsrC=<6x]XA{7F^>zs&\5-5`8}VI`]uer> ش'|uRRNMC/e]xRÃp3'AV󖣹L}JuSi@'V#KG3εìdG 4v5d!HC/|m*I]j(6 dLV,ÌK82gŀvl? 3!3(Hу|;ٴ 5퓯9If~$ְICjM'g¨&?`';æ>_ֱ5^|U *se'Y{A"'{"uE}3gdqc@b&V셋U6ڝ(@ mdwAapu~Big"{kr&nm#?}m 5WC|Zfp#(g42)ژ: v ˌEEkUd;tj[ j7J\e%~>KK^&ܡrLׄ6L SyߣgA_hLʑz@]-JۺRBaq-Շ/50.O5פ6`IOi+yM,3sݡBD'qai#BzdXʊJv%ap)pr6ɶ5@beR])bF `L94^߄')9Sc:I#kG+x߿q5oálM9"M~΄!-b6ύ (qpS\2bzZࡳ8'p7  S?d$79!Q(v& c 4μ?YVG#r:c1@ +v(U\X0`W^pKP|nfZUP. ҭt F0VM]v nkCmE6mDBbj.Wi%{ۡU+T/: K~0I d NȜB #0eQNt3El3xIЏWlK~}U<?,ڔAЯ$|#TAg;]OdZ8 TM$Q/`RQjEiy);Ư%ի+~[[M9/=tKDHG:&z1t"eT>#^Ize|z$;]p[:|W=7A;oO|/R rVgZ[8> endobj 549 0 obj [550 0 R] endobj 550 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 611 0 0 839 0 0 cm /ImagePart_2128 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 373.199 720.7 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 115.45 677.5 Tm 126 Tz /OPExtFont2 14 Tf (5.2.4 Adjusted ISGD method in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 14 Tf 126 Tz 3 Tr 1 0 0 1 115.2 647.25 Tm 97 Tz /OPExtFont5 13 Tf (Judd and Smith \(2004\) introduced a method of finding relevant pseudo-orbits by ) Tj 1 0 0 1 114.95 624.2 Tm 95 Tz (adjusting the ISGD method to include the model imperfection. A brief description ) Tj 1 0 0 1 114.95 601.149 Tm 94 Tz (of this method is given here in order to introduce and compare with a new method ) Tj 1 0 0 1 114.7 578.1 Tm 98 Tz (introduced in the next section. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 131.5 554.85 Tm 100 Tz (Similar to the ISGD method introduced in section 3.3, Following Judd and ) Tj 1 0 0 1 114.95 532.049 Tm 101 Tz (Smith \(2004\), Gradient Descent algorithm is applied to minimise the adjusted ) Tj 1 0 0 1 114.5 509.25 Tm 104 Tz (mismatch error by including the model imperfection error term. For a finite ) Tj 1 0 0 1 114.5 485.949 Tm 94 Tz (sequence of observations, ) Tj 1 0 0 1 240.949 485.949 Tm 68 Tz /OPExtFont3 10 Tf (S) Tj 1 0 0 1 246 485.949 Tm 91 Tz /OPExtFont5 10 Tf (t) Tj 1 0 0 1 250.3 485.949 Tm 53 Tz /OPExtFont3 10 Tf (, ) Tj 1 0 0 1 254.65 485.949 Tm 99 Tz /OPExtFont6 12 Tf (t = N +1, ..., 1, ) Tj 1 0 0 1 350.899 485.949 Tm 95 Tz /OPExtFont5 13 Tf (0, we define the ) Tj 1 0 0 1 431.75 486.199 Tm 101 Tz /OPExtFont6 12 Tf (adjust mismatch ) Tj 1 0 0 1 115.45 462.699 Tm 96 Tz (error ) Tj 1 0 0 1 144.25 462.699 Tm /OPExtFont5 13 Tf (for a sequence of pseudo-orbit z) Tj 1 0 0 1 301.699 462.699 Tm 68 Tz (t ) Tj 1 0 0 1 304.3 462.699 Tm 102 Tz ( to be ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 102 Tz 3 Tr 1 0 0 1 235.9 397.649 Tm 106 Tz /OPExtFont3 10 Tf (e) Tj 1 0 0 1 241.9 397.649 Tm 91 Tz /OPExtFont5 10 Tf (t ) Tj 1 0 0 1 244.55 396.699 Tm 125 Tz /OPExtFont3 10 Tf ( = zt+i ) Tj 1 0 0 1 286.8 396.199 Tm 239 Tz /OPExtFont3 3 Tf ( ) Tj 1 0 0 1 297.6 397.399 Tm 97 Tz /OPExtFont3 10 Tf (wt) Tj 1 0 0 1 309.35 395.949 Tm 200 Tz /OPExtFont3 3 Tf (-) Tj 1 0 0 1 311.75 395.949 Tm 55 Tz /OPExtFont3 10 Tf (F1 ) Tj 1 0 0 1 323.3 395.949 Tm 246 Tz /OPExtFont3 3 Tf ( ) Tj 1 0 0 1 334.3 395.699 Tm 126 Tz /OPExtFont3 10 Tf (F\(zi\) ) Tj 1 0 0 1 359.75 395.5 Tm 2000 Tz (\t) Tj 1 0 0 1 488.649 397.399 Tm 92 Tz /OPExtFont5 13 Tf (\(5.8\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 114.25 355.149 Tm 88 Tz (where co) Tj 1 0 0 1 155.3 355.149 Tm 75 Tz (t ) Tj 1 0 0 1 158.15 355.149 Tm 98 Tz ( is the imperfection error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 131.3 331.899 Tm 96 Tz (Define the implied noise, 5 to be the difference between the pseudo-orbit and ) Tj 1 0 0 1 114 308.6 Tm 97 Tz (the observations, i.e. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 273.35 243.299 Tm 98 Tz (St = s) Tj 1 0 0 1 303.35 243.299 Tm 70 Tz (t ) Tj 1 0 0 1 306 243.299 Tm 79 Tz ( z) Tj 1 0 0 1 326.649 243.299 Tm 70 Tz (t) Tj 1 0 0 1 330.699 243.299 Tm 51 Tz (. ) Tj 1 0 0 1 332.149 248.35 Tm 2000 Tz (\t) Tj 1 0 0 1 489.1 243.1 Tm 93 Tz (\(5.9\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 114 200.6 Tm 98 Tz (Hence fore, the mismatch equation 5.8 can be written as ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 205.449 133.399 Tm 106 Tz /OPExtFont5 11 Tf (et =1 st+i ) Tj 1 0 0 1 251.05 133.399 Tm 1805 Tz (\t) Tj 1 0 0 1 300.699 133.649 Tm 82 Tz (cot+1 ) Tj 1 0 0 1 322.1 133.649 Tm 574 Tz (\t) Tj 1 0 0 1 337.899 133.649 Tm 125 Tz /OPExtFont8 12 Tf (F\(st ) Tj 1 0 0 1 362.899 133.649 Tm 109 Tz /OPExtFont5 11 Tf ( \(50 ) Tj 1 0 0 1 399.85 133.649 Tm 2000 Tz (\t) Tj 1 0 0 1 483.6 135.1 Tm 109 Tz (\(5.10\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11 Tf 109 Tz 3 Tr 1 0 0 1 305.05 52.5 Tm 82 Tz /OPExtFont5 13 Tf (101 ) Tj ET EMC endstream endobj 551 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 552 0 obj <> stream 0 ,,||b6`P?# _$7Fߔ_kIlXғ\R,x&KRA>c@w0s2Bj0#WL Wv5YሁBt'4{6@8Pj_EwMT Mlb_BuamyDRG;ҭT& 'bm}LiB`Qy ȫD##OUVDy4t-m'ߞxƹ4 BG;ɯ@gH4;*{}qZ\/R(pT*=Y>Gl?T5LLQStl)ҖsUɃ]` %nvӼtÎn]b/tNY$*Lڌ.!tge>4J͚OMyMjփ32A>/A+yG};D"QM roOnDti5C)&h!*ӌQx'69 ˡ:f C¸*SfS!6x9PF!~ ^ a`{_+xCهn3Qj[ Ѡ*|K8Z&#ut {WRˌWr5Q^e2iD#^U@TEzi-@ydX`&|\FGG~4Jw\:3hv8T%7=`,(gb=' ſ5yQ; bbYU.e/B_ >צ#2)鳧٣ͼӲձceʌe :>pل%?'{̆c/x5|$96xxJj1&)$!=Б|>;;ǫ/>Ȱ,٫z_v)R7z=iu9}W 꼭/ vAo0@Omggmٗ:=(<0v<+vt ߤz,a®S<򥙀bn2kk0 nqA&0 ȨTaf/OhR.^$~&Eb6Ǎ_9[dskrG$TV&~̫TAFJ;7bYSz9Rƈ ,"yM?DJ`}r(>81A[pUJ5grkY!wTfzLco ]&8"(L I]WG?x3i5ZNxa1qJX17j!0\P5\cLC hWUPp7@S sLe^glTTц.7>& AVnP!},kd*qI$Xg/x|}ͽwK ? ][EC]Kab8+Y?6˼kCpGx`įer&qXMlڎAp8cʬ 0V]1".X<,M3Ͱ^NAfi4G }2xGƖ$poTX>HPͧU!@~sħQa)ݗSCJxb'skzecϪgLK|BO`!FAy|vٳ-7s8s}|޶f"ϣ `2SVhAOb,W.GDG/ + ~Uc(;(^}NuJeKPX AA1Tm45Ӄ%g8jʊL߮旋HƓ v֏&}sY$SEh?:_NzB"q9 x(nccuE܍f]ėź`+B;\aMz /+>+m]',!FYWBuvJ qh<;ȃTںjח~*N}[t7܌Ҿw^#Mj1NY]CO3~}T4ԊDAtb%߉.zbSwbHT>\ִّj5̀ʨ*$Ɇ/X[rٚOlh>w<'&J+D4<J$vdu 3_䚶ym "a1}[3N}D)H02uTnW-XquJ h6)pss`"X~8֤ $a&`-I60ߏOYn]P)D[LwX6dC=e+v ݷ? BPmMvϬ6 =S̏dEA1.<*%3۞/doY!E"0z[ٹbusQMCh4lFA~}mIy &b7=3d\%A4kS3[}ZXH*J^=QRIx< [R?^٥VBIyѵ }՛{5卾 ߺLZD쯸C?e~ esIq *w<prTtJ]AQh(b ]'ˈ' 92,<M$/ x\̸d@?堑tHW׀,}`j -QGxlە*,0#}Wx$љ2?X#ժA0?"⣽FGi MH=aM));gk:)O:0@/lp=_ 7b+Oo%R2XHru{\#yQvSȍ>GkbZ lj9׵Ax혜W;8-(5{} f'A YϽ9C$iN'fW*7-RΣ&j[wĻgEzc6|R,w *LіX(_4dmoϋY?%bSq>>s?9߾l9&d1ܧC3ޡ=<ΉYJEOόqLa}ʍu_@уk Rhy"œa*Pb]QMg[DݞAME&֙.{ɶuT Ykv(@`:=>E |c/nP@fUkͿ)l]W'TlUI`Na\"2N/r@MQz̍z4`r~q6˰իz'^jA ܛ|Uz2G|EzwՏ$ӊ8HwPPrŨVa)[%K&/ 7[uvu0Nۭb,&i%ORZ nu9/) 5'k! !L8iO)\5:&nJ;'C[Im:GYYͧcvp*IA˄.\.1Tpb` HG7Fǖ &h&/o}b3aOͭ$i׍ccF(JGA,?9Ȋ3颁B[w2P䎺7|T&&GqQxFQn󯎏Zg UOz,v$@<&RT1ıC}E*'g#2;\s]s8s׊mh"&ck'WAF{|r.L=|T,̏moEnL"6pHp`K1ٕz$P%܃Pq&:$K]fnT o{vPa9:W)3B$p4AI~/﷢\` Vb1;dӻiju;W!A̺$,< 7{6{W? Fp2gvDLGP2_}*gibCeP^N a{@-heޔnz D:7] ٿ1nDMߌS9K% :s-'تnx1=X'W*bStv؁? 6_ySA^s! >o)rnr3EtAi6[jgLwp_PWil~C NUW[@lfTעa' rдN*} Ֆ|iq|jЊS]GXi E@!A 9 =M)m9ʑgC^g-@#(6SےӗaRiWǡR"/,%[j'KFѻ*vnbAS?wX pWr4Cƽ,kjtM~{Bq#:ȶ1"ui_!3<`6y쑿[5ڛmjeX;̗3Q/<©gsVɆ E1wI ȁH.|/)%h.NecN2iYL"+ܟ3浛p[:ܗ4tJ؝]O\gfm?oC` o8bBTl|S}ZIpn0&ODv|*Y >k*o$F hpW.٧QrDgb#2:<"HdaIƝ5SMӋ;DΘrzFL y~\iN#^P\HqYd" ߩcGYkp|0DApobHB7:g*<2PaO2ޯQ<x>Ĵj3tϣٷdޤuo-C`zɲsL[]{移v;wY?5WJ^@T aVgR|tG^_$B'\m]ZɄΆ`0 : %On|p5ޭ:qڠL; ]gdimf1aX z[Qn<)$ fYr U'|m÷.ţ%}I84n,`]Gyƶr5u׃KĔ#458iRƶ:/a\WX^1!,Lˮr~v. ylL_v{SlU`2-!H݇r1b)F]@-MZѷhEO]\s!XBhvF؃Pqv\@Bqn)|}UU;.Y^SJkP䅎yHB 8#uRF{bro`2Z6PBBd%VF\ttA31u}5LYA^=t54e.}pٟ<&b&R4[4b\s- 4_qX-/lxfSX oE|;)•'!g9D cBsYZ 8/2| _3t D Yn)(S+Պ $G0VzhUƊ5VG`U7RժZ:)8&Il Am\,j>CJ9g;x ?sgESWqRuVT"f rW\\,-mJTb<\?L|^6n7DHB:ȕg&V~ uueI-@ent{tlJ1N,!tR3B{>V圉$TVl[t xn뒦!Ehf,St)}'_цV1q(ю |_PT'g;f ,7s2毲$B[Mҁ$ϔˡ|޻ڱ66α¼!6IUoߎսDbI]߭R pQlkQ^~ -bP`D 'txs+sq\n2Iz3 þ|Ǻ}v:[@WwrSo-'9"Ig$I>i'ʌ;<"\xsB0/[`'ޘ 7h-7)Oh`'Zk{CKk8ʖ439f6ޓ0 0 Ss+kvU87]6O;2īVX J~VM3-WolpM`LMt4jRCA[tXjl, J(ΰ i4j(zN9;(T5C&]+&k`*=\әu#4\I)kwYB&|&5U 3_ »{E_VԣCp,{! ̓XxPP\)Sʷ5G/df^pM?:!a@0l5ڒ3˓L˖f [}Ka'3a< U,OJ^@yk.4k uЊl^i endstream endobj 553 0 obj <> endobj 554 0 obj [555 0 R] endobj 555 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 604 0 0 839 0 0 cm /ImagePart_2129 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 370.3 719.7 Tm 117 Tz 3 Tr /OPExtFont5 12.5 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 117 Tz 3 Tr 1 0 0 1 112.549 676.75 Tm 92 Tz /OPExtFont3 11 Tf (Consider cost function CM\(\(5, w\), where ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 317.5 626.1 Tm 87 Tz /OPExtFont11 6.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6.5 Tf 87 Tz 3 Tr 1 0 0 1 243.349 611.7 Tm 104 Tz /OPExtFont4 12 Tf (CM\(6,w\) = ) Tj 1 0 0 1 313.199 609.299 Tm 320 Tz (\t) Tj 1 0 0 1 324.699 609.299 Tm 234 Tz ( ) Tj 1 0 0 1 333.1 609.299 Tm 109 Tz /OPExtFont4 8.5 Tf (et ) Tj 1 0 0 1 345.35 609.549 Tm 86 Tz /OPExtFont3 11 Tf (et, ) Tj 1 0 0 1 356.899 616.899 Tm 2000 Tz (\t) Tj 1 0 0 1 479.5 611.7 Tm 97 Tz /OPExtFont5 12.5 Tf (\(5.11\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 307.899 598.299 Tm 135 Tz /OPExtFont4 8.5 Tf (t=-N ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 8.5 Tf 135 Tz 3 Tr 1 0 0 1 111.849 568.299 Tm 92 Tz /OPExtFont3 11 Tf (is defined in order to find relevant pseudo-orbit by GD algorithm. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 128.65 545.5 Tm 93 Tz (Following Judd and Smith \(2004\), one can find a pseudo-orbit from the se-) Tj 1 0 0 1 111.849 522.45 Tm 91 Tz (quence of observations by applying Gradient Descent to minimise the cost func-) Tj 1 0 0 1 111.599 498.899 Tm 89 Tz (tion ) Tj 1 0 0 1 135.349 498.899 Tm 117 Tz /OPExtFont8 12.5 Tf (CM\(o, ) Tj 1 0 0 1 171.849 498.899 Tm 102 Tz /OPExtFont5 12.5 Tf (w\). ) Tj 1 0 0 1 194.65 498.899 Tm 92 Tz /OPExtFont3 11 Tf (It is necessarily that ) Tj 1 0 0 1 300.699 498.899 Tm 111 Tz /OPExtFont8 12.5 Tf (CM\(6, ) Tj 1 0 0 1 337.199 498.899 Tm 94 Tz /OPExtFont5 12.5 Tf (w\) ) Tj 1 0 0 1 354.5 498.899 Tm /OPExtFont3 11 Tf (attains a minimum of zero. To ) Tj 1 0 0 1 111.599 475.649 Tm 96 Tz (solve the minimisation by gradient descent, one need to solve the differential ) Tj 1 0 0 1 111.599 452.85 Tm 87 Tz (equations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 334.55 395.25 Tm 78 Tz /OPExtFont4 14.5 Tf (aL ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 14.5 Tf 78 Tz 3 Tr 1 0 0 1 271.699 387.55 Tm 239 Tz /OPExtFont7 3 Tf ( ) Tj 1 0 0 1 278.899 387.55 Tm 2000 Tz (\t) Tj 1 0 0 1 324.949 387.55 Tm 256 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont7 3 Tf 256 Tz 3 Tr 1 0 0 1 282.5 379.399 Tm 62 Tz /OPExtFont4 14.5 Tf (ab) Tj 1 0 0 1 293.05 379.399 Tm 25 Tz (- ) Tj 1 0 0 1 294.25 379.399 Tm 935 Tz (\t) Tj 1 0 0 1 334.8 379.399 Tm 59 Tz (aw ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 14.5 Tf 59 Tz 3 Tr 1 0 0 1 480 387.8 Tm 97 Tz /OPExtFont5 12.5 Tf (\(5.12\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 111.099 345.1 Tm 91 Tz /OPExtFont3 11 Tf (to compute the asymptotic values of \(\(5, ) Tj 1 0 0 1 311.05 345.3 Tm 98 Tz /OPExtFont5 12.5 Tf (w\) ) Tj 1 0 0 1 328.3 345.3 Tm 92 Tz /OPExtFont3 11 Tf (by initialising the cost function with ) Tj 1 0 0 1 111.349 322.299 Tm 100 Tz (both 8 and w equal to 0. The resulting values of S and ) Tj 1 0 0 1 411.1 322.299 Tm 95 Tz /OPExtFont5 12.5 Tf (w ) Tj 1 0 0 1 424.8 322.299 Tm 93 Tz /OPExtFont3 11 Tf (defines a certain ) Tj 1 0 0 1 111.099 298.75 Tm 88 Tz (pseudo-orbit. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 127.9 275.7 Tm 89 Tz (Ignoring the model inadequacy, one may attempt to minimise ) Tj 1 0 0 1 427.449 275.7 Tm 117 Tz /OPExtFont8 12.5 Tf (CM\(o, ) Tj 1 0 0 1 464.149 275.7 Tm 88 Tz /OPExtFont3 11 Tf (0\), which ) Tj 1 0 0 1 111.349 252.7 Tm 92 Tz (equals to applying the ISGD method \(see Section 3.3.2\) to look for model trajec-) Tj 1 0 0 1 110.9 229.149 Tm 95 Tz (tory assuming that the model is perfect. Although the cost function ) Tj 1 0 0 1 461.5 229.149 Tm 112 Tz /OPExtFont8 12.5 Tf (CM\(5, ) Tj 1 0 0 1 498.699 229.149 Tm 83 Tz /OPExtFont3 11 Tf (0\) ) Tj 1 0 0 1 111.349 205.899 Tm 90 Tz (always has the minimum of zero regardless the model is perfect or not, the model ) Tj 1 0 0 1 110.9 182.85 Tm 94 Tz (trajectory obtained when ) Tj 1 0 0 1 242.65 182.85 Tm 111 Tz /OPExtFont8 12.5 Tf (CM\(6, ) Tj 1 0 0 1 279.6 182.85 Tm 95 Tz /OPExtFont3 11 Tf (0\) reaches 0, is expected to be far away from ) Tj 1 0 0 1 110.9 159.799 Tm 93 Tz (the true states and be inconsistent with the observations as long as ) Tj 1 0 0 1 457.899 159.549 Tm 111 Tz /OPExtFont4 12 Tf (N ) Tj 1 0 0 1 472.3 159.549 Tm 92 Tz /OPExtFont3 11 Tf (is large ) Tj 1 0 0 1 110.9 136.5 Tm 85 Tz (enough. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 302.149 52.049 Tm 87 Tz /OPExtFont5 12.5 Tf (102 ) Tj ET EMC endstream endobj 556 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 557 0 obj <> stream 0 ,,--eبbo+GhsO[]loɵuF}n4By[:qV&φ:*hd&_;}Ů 7Ł(11D5ɔo{6cTJPﻰ7bnj|$1S0"H5dǫ,=ŹwR*zʌw2xRžaL?$adk29G z긖&(B.7#cm e+ce}Q TU{6& w~8 8e2o~蠲X ;ԠU@2=TփF%\E_~֮کVnqỉX¡CۿqB:q {2nK MP> Ջ2|ThDQ1CxuP #b$0J[TZRIMkG\9XJ[~\Q+pBg8ReVed:ZK1E&F~n qeAmܜIy8-إkO#dcr@6UwLN se,Yy\4!WL*7dIU&QeM(^j!oJAEa|WBa[l(K?'M,Kx}wv60v])dJOM.QrwwutE3@' *wA,,P) &su,4U+-q( >! Sn5&TPc[/%( ]~Wu ,a^aS2LƝ=.\b]#6G_l>徱N<^+8 ,x;(X516M_*%9B}ˁ0­D vA</ ?ǰB?JNǟcI{ 6@YC"hE5i:OqeM ?OԊC¸n[()U%dV !EX&xx:%RI@YLA)=V8ɃS1 Hzf5} t fKZwۜC tkM -AKh ?jС(\V ) $3;HWz' QaGB]7NFlxEt, AK[O7Ѡ\ f,zR {PEg 0<>YQw9h/#ȝMY?Xbg\Z,߀"rI!: ]̗X1c_5Ϸb M $mcJi7U#z-va+r୲Ep_c,Ql~~,T?,-?>fHF~f+0Ug"jB T}&xW"UYJ?xd@GTV~ -7>Z@~Y[wi0󆿘6?h]yD'Q_jc-M!!p(TCy /)(Igv|m5'j]n= @q=#+{^iH`^mӥ~QrEuTGLX/g{%RBrf|kW쟮7v%rX7ADs(64po$֐򢦨> Qb(#m!_~t zU eZ|)6 Q{9kӵhztk+1|'ca[ye.{CyscV^\_2j &yğ}8""\7z8;)eZBNWKJ$3l+WofMu4!*&?Ӣ ˂x9‚MmWxYĭbD &Z'5EiCSo~Hw%>h/|vyCt~jO(~bĺ>G crZF8$(ZԐ@&͸ǁRƧ四t@?wT RayKr")ɥ[@VsHju{yIPԯ׵4v)+c `жOM iH,OOL:hk.a3]P_6 bv D:f jxFpTpLH!8aw%Έ\r{e1 Xn:U,[zwkDcp^}RTs"'Y\nB 7p\ FL?㸎4 'BdAY񃃨G%a;BCr]K V c[7hŸV=.}r<8ʧI n(:LTc3MKq5/+pC((@JHa}2 'E&2 ڌLSFh-{<9xty K8$-Ǝ{뉉8{>\h0bptyV41M2Ցs>D|U)r?m`6 ; "!{L l[ ៅI_tp_ fDѾdǹ\L͋įhBt G,h>Zsҫs_H&H\HZAEbA|+b"tIZee* |pOlT*f`HJ7"hp|JVYw2 HћSךy$&7pޝ"")O.*h(#O$6M37ɒDΝM=,Yލmh[hBdP&lː!ϮPqTJ90kT{Efɑi[j8 \tV*QX>ON>pƳr0Nݸp1heQ.4[y 2gz_{=m}*f7!0(هag?}٢W=HLvT}ɘI6v`l'_@HERQTOZ %7nSǁXbKKMAtXS͞/Ɣ. >JSOc2IHtS-AޙXʑg 䅲C.d^Ҩ̯vs ڿOOΪ4>˦:ٺ؄ϙlᒱb}['&qe>a1]}꽊zƾ0.3LCm\L)"_u,@v .jyBNN,lK"\X|΢ɴj㕀HL%-zQpO"<#72} 囇N糗.nҪzFf=]ݽx\.EQ4@$N?w4 IaI3|< f3;¹ahM¼{R:ǐ.˸o Y.ݾgT'&upn:>HWI,Yc%besUZ{v5s $y7Y,1x-;r6Xءm!E5-=&<,+αeQV>q:=<А^a;NApTօN&D:[ ,h~^I )pqzjc-G* l'Y;]; eu)u@! HuK¶ ĦFt; +?"8,7ݧosL y֓SNEX/8SxGdO/ [")Z+@{0iR^&u&6 cBr}3Qna::'idYMs*q*rP/Yxs& Xij/e(z~b t WMnȝ?d.K%ƒ}ٟ\]~ Τ$^!  F A4n*4^&)b rB R%N 8Dv4oz)z@pA| ϊHO{Ѐ[!^Y=EA4ֺR)*'D@}zx(2_xTX>ճ+#DžMݵ4j<6¡euۣQUGFCM YHL)"xt,6ngB,z0 >W/+=yxj s1{3uM/Qix'dȵk}èMW+v^LOxY-3I1Ҩk xc"*Ζ~bsxɉ> $7۱AY$Oϰ[:?%ͷX;?c"[2,5ѕQ%ný0!#'i=9α$^3ҳ([QT!(U(n9LUr;ٽ?zAvVPNƪ>ܵX?0>0(;}(/Ӯ,Ķ(9&εطʶyb.<D7ۆӈ)$Д5 z~HBB8dg 꿃D #T*R0L/6۬>C}.ܚ&w͋O8ə)=SldcB֮J4_Fj%t b P/gm5JZ} I\Tq@$!dT͹ Tgfk~MhNOͧ\7 K-gv G?fcPNwK>:a qcQ~e5W|MȒ|W;kBM伔ϲ;>?W9yDF{k\r&KQ +<'yO]5uN"< 4iJ,Ng*vEә%RMG.+.' ٹ7{'>!$sqQCٶ_9ZN%87"J%䂛gK# ՜ěˬ\ك*w2$]3 hd:`Fyt.y1*Ff--qKXl&|؝ivne0ѵo%R巶ZEAH}-ky@d^ա|/Q&#YŐ6(Pay'NA3԰VC A䅾)JIa͇5@/Ҍ.y \~:MtHnho*Ey`@b*("OqMҘ- $dŦ =Jb URPǤ_CYqn@ :>\lBg23,MyNg0h!mz^T5"qxY̹/Da_Kfl#렴wKj]Z@& !w,0ۖ)cAy =_wB *cso? r(ՕG_ &OYhn;JN=BĴ=H_wu@aQ,+P0(>%fzA])ۢ 0wBt#d(/oM2b8z'D"^jauU!,t!~ }>fHF>!CKV aCduUD3e4Lһ\*0nLn0V;wPӛFbU=~OuQeϛa@@yca?Vh2Z Mw> endobj 559 0 obj [560 0 R] endobj 560 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 604 0 0 838 0 0 cm /ImagePart_2130 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 371.5 720.149 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 130.3 676.95 Tm 102 Tz (Recall that the relevant pseudo-orbits we are looking for are those consis-) Tj 1 0 0 1 113.299 653.899 Tm 98 Tz (tent with the observations and their corresponding imperfection errors contains ) Tj 1 0 0 1 113.5 630.899 Tm 101 Tz (information about the model error or somehow reflects the model error. The ) Tj 1 0 0 1 113.5 607.85 Tm 96 Tz (implied noise ) Tj 1 0 0 1 183.599 607.85 Tm 88 Tz /OPExtFont6 12 Tf (6 ) Tj 1 0 0 1 194.15 608.1 Tm 93 Tz /OPExtFont3 11 Tf (provides an estimate of the observational noise and the imper-) Tj 1 0 0 1 113.299 585.049 Tm 92 Tz (fection error w provides an estimate of the model ) Tj 1 0 0 1 361.699 585.049 Tm 97 Tz /OPExtFont5 13 Tf (error. In order to improve the ) Tj 1 0 0 1 113.049 561.75 Tm 95 Tz (method and find ) Tj 1 0 0 1 198.25 561.75 Tm 93 Tz /OPExtFont6 12.5 Tf (better ) Tj 1 0 0 1 228 562 Tm 96 Tz /OPExtFont5 13 Tf (pseudo-orbits, we measure the quality of the pseudo-orbit ) Tj 1 0 0 1 113.049 538.7 Tm 99 Tz (by looking at the RMS distance between pseudo-orbit and the projection of the ) Tj 1 0 0 1 113.049 515.7 Tm 98 Tz (true trajectory of the system and testing the statistical consistency both between ) Tj 1 0 0 1 113.049 492.649 Tm (the implied noise and the observation noise and between the imperfection error ) Tj 1 0 0 1 113.5 469.6 Tm 104 Tz (and the model error. We are aware that when the ) Tj 1 0 0 1 377.05 469.6 Tm 92 Tz /OPExtFont3 11 Tf (system is nonlinear, linear ) Tj 1 0 0 1 112.799 446.3 Tm 87 Tz (measurement ) Tj 1 0 0 1 182.4 446.55 Tm 103 Tz /OPExtFont5 13 Tf (like RMS has systematic bias \(64\) \(see Chapter 4\). The distance ) Tj 1 0 0 1 112.799 423.3 Tm 98 Tz (between the pseudo-orbit and the true states may not reflect forecast skill in the ) Tj 1 0 0 1 113.049 400.25 Tm (Imperfect Model Scenario. We only use this measurement as a diagnostic tool to ) Tj 1 0 0 1 112.799 376.949 Tm (help explain how to construct a better method to locate relevant pseudo-orbit. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 129.599 353.699 Tm 100 Tz (We investigate the quality of the pseudo-orbits generated by minimising the ) Tj 1 0 0 1 112.799 330.649 Tm 96 Tz (cost function ) Tj 1 0 0 1 181.9 330.649 Tm 108 Tz /OPExtFont6 12 Tf (CM\(5, ) Tj 1 0 0 1 218.9 330.899 Tm 101 Tz /OPExtFont5 13 Tf (0\) and CM\(S, w\) in both Ikeda and Lorenz96 system and ) Tj 1 0 0 1 112.549 307.6 Tm 97 Tz (model pairs experiments. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 119.049 281.45 Tm 91 Tz /OPExtFont3 11 Tf (Cost function ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 196.8 281.899 Tm 87 Tz /OPExtFont5 13 Tf (No. of GD runs ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 281.3 280.95 Tm 94 Tz /OPExtFont6 12 Tf (CM\(O, ) Tj 1 0 0 1 316.3 280.95 Tm 60 Tz /OPExtFont5 13 Tf (\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 60 Tz 3 Tr 1 0 0 1 334.1 281.45 Tm 97 Tz (std of ) Tj 1 0 0 1 366.25 281.45 Tm 45 Tz /OPExtFont3 11 Tf (\(5) Tj 1 0 0 1 370.8 281.45 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 373.449 281.45 Tm 28 Tz /OPExtFont3 11 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 28 Tz 3 Tr 1 0 0 1 385.899 281.45 Tm 85 Tz (std of co) Tj 1 0 0 1 424.8 281.45 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 427.449 281.45 Tm 28 Tz /OPExtFont3 11 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 28 Tz 3 Tr 1 0 0 1 439.899 281.45 Tm 89 Tz (RMS ) Tj 1 0 0 1 466.55 281.7 Tm 90 Tz /OPExtFont5 13 Tf (distance ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 128.65 267.049 Tm 64 Tz (C./14) Tj 1 0 0 1 147.849 267.049 Tm 23 Tz /OPExtFont3 13 Tf (-) Tj 1 0 0 1 150.5 266.799 Tm 91 Tz /OPExtFont5 13 Tf (\(6, 0\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 222.25 267.049 Tm 88 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 289.199 267.049 Tm 90 Tz (0.025 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 341.75 267.049 Tm (0.051 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 404.649 267.049 Tm 74 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 74 Tz 3 Tr 1 0 0 1 456.5 267.049 Tm 92 Tz (0.0154 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 127.2 252.649 Tm 95 Tz (CM\(S, co\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 225.849 252.649 Tm 84 Tz (128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 84 Tz 3 Tr 1 0 0 1 286.3 252.649 Tm 91 Tz (0.0002 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 341.5 252.649 Tm 93 Tz (0.037 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 397.449 252.649 Tm 91 Tz (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 459.35 252.649 Tm (0.012 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 112.549 229.35 Tm 100 Tz (Table 5.1: Statistics of the pseudo-orbits obtained by minimising the ) Tj 1 0 0 1 461.3 229.35 Tm 87 Tz /OPExtFont3 11 Tf (cost ) Tj 1 0 0 1 485.05 229.35 Tm 90 Tz /OPExtFont5 13 Tf (func-) Tj 1 0 0 1 112.299 215.2 Tm 105 Tz (tion CM\(6, 0\) and ) Tj 1 0 0 1 213.599 215.2 Tm 72 Tz /OPExtFont6 12 Tf (C114) Tj 1 0 0 1 232.3 215.2 Tm 37 Tz /OPExtFont4 12 Tf (-) Tj 1 0 0 1 235.199 215.2 Tm 92 Tz /OPExtFont6 12 Tf (\(6, ) Tj 1 0 0 1 250.3 215.2 Tm 102 Tz /OPExtFont5 13 Tf (w\) for the experiment of Ikeda system-model pair. ) Tj 1 0 0 1 112.549 201.5 Tm 97 Tz (Minimisations are applied upon 4096 observations, the noise level is 0.05 and the ) Tj 1 0 0 1 112.299 187.35 Tm 98 Tz (sample standard deviation of the model error is 0.018. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 129.349 150.649 Tm 101 Tz (From Table 5.1 and ) Tj 1 0 0 1 236.15 150.649 Tm 97 Tz /OPExtFont3 11 Tf (5.2 one can see that firstly in both experiments, it is ) Tj 1 0 0 1 112.099 127.35 Tm 90 Tz (much more difficult ) Tj 1 0 0 1 212.15 127.35 Tm 96 Tz /OPExtFont5 13 Tf (to minimise ) Tj 1 0 0 1 274.3 127.35 Tm 109 Tz /OPExtFont6 12 Tf (CM\(S, ) Tj 1 0 0 1 311.3 127.35 Tm 100 Tz /OPExtFont5 13 Tf (0\) than ) Tj 1 0 0 1 351.6 127.35 Tm 108 Tz /OPExtFont6 12 Tf (CM\(S, ) Tj 1 0 0 1 388.1 127.35 Tm 99 Tz /OPExtFont5 13 Tf (w\) and the cost function ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 303.6 52 Tm 84 Tz (103 ) Tj ET EMC endstream endobj 561 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 562 0 obj <> stream 0 ,,b7!͚eO#}6yesIQ~;^@{z$ eRرoG{} *:t49Ksjj0O# ׍\kdRPF#΍ܒvm^umESȝ<իqP'sp'I: ,-@F1Q3y _X0Äb+9([{G["A*v6, M|rhJg*[R&[-J_Miڢ;Ɋ겦@n֧Q~d bN9K/vn;Ti37evRq^] 4(+n]'xĮX0BZfwz5[Hq6j?yk _}usLI?1mHԖ+'FGξDOܟ0zjmZ~=5֫(À,G3XbZ/`ͽCGŵVz;ٽ_w[ p&K9 ed?fWZo0 8Y~WI^kAzz= 9e0qx#sWA=I L9`}4nV%Al+ʼv4ofi+}wg-؃6VIA}_ ;\ q%dk rBJOv)Y$\F@0gC-&V{-]ʙAڨx: c|>"ێ^ȂN >Wqkksfp24?B1bj_Ob]Tn \N74&MdctcS[*r9! 9s; h(!Z1ϒֈ\x';ыog )X>bUH \ 52q1\B}퉳\50ފ@ܑ /x(\>1`WJ_7{\Puh` :rJ^,o}Ѓwga >3I0%bbY8wŠn˧g%2kiZq -|ĠMI .;I-wBv(Ha V3.6qQI_.(].l%'2*\̍;EqҨ2.g?+6>p b?FDM*LGthBd ,aL*Rx(=ζ5@7s=w'saJôHt%ɘ؜&n)$Hj:Z1wq2O8%2(.+Tny]=c.u80{%!U3"kyx?|g88Aֶ:g06976{I^,khރ% )%dH  sຮW$݂..[7wfHqJ~6 ϲX@ԏŒ%3ZYYg1p[e*^)43keXey߀@i:aݻx34wYŽ-zߊ%&G< .@P͉{tgځ>ԏk$Z;]_|V ,.Q74 G(M餄waXZI3Rp; ?âWn7!Wz6熠8Fil{-JEYd&;!76i$l[6j^]p<(rРnyX̶7-x'F.D<ƜTR.a݉j@E:ϭ]tƓK5X9Q౗k11 ;pW#;e:N#kB j"O[I]WNC& ??(Pv" b@~\Dvʩt*rUt8*bGV| Un 'UD^ hZFϩ}<9р"߫'Ì6͗DlS3x_TM,W!_)}N=NY`0{a~OSY*/jk˭Ls0b=1]Gzl3t.Q2O\Pv)Y_Rd شWxm`mVlv{ !>劇r=-Έ!'&7"ЌDϱ77(⍎ʳ8Ը?+;v&c˱b>˽<A _"xr";EECk&%٥Yx>o_q:5(ɀ =([V&/i%mzMob(>Q:oƢɎKC67x 7=lAZUbMvk '<F>k3}QcPHo e8AL`q<û}7cϬ7GyO\D€2GV+Ϡ~&?g<RW;b{|Lٜf/E@/8"] G,P!/gPSsm `V{MӨ- n "^Tĵc ޕ<_L5X+д,CqBT fYJ䶂ؗ+{wogrpO ha9?|HXW}ޚͷ]cV _ԗa]P1+;c2y{@_=&j2K}6\B5l_H69t}Au+i!/rhzYzl4u5|d|Ɗ8.1l_e'%\ïvr8L93ny$-ĈeSǗZhT عykY/ ~I?c(`];''C\!/^N@Ө&Qju.ӹy;)emJ 5ub;UPR@jYt՞EU{BvRA↑9)*4\[d̑;Del %!vܶ0Cވl&18}q"4h,Uʝ _"717p\G?Yý`Wo^LKoE1LK<+Jרk_MnA4ڰwA_'r):`mykP̦IA1)6Jq&|"GdA{X|N#fҢM<ǴrmߛU/&C6A=Nz'j ! $p4Xm=NPEȝo}8n|}cr'h:Khb/Z{,uax┎:z rPt|4M+K~:.$0wCOcf9uL]}T`BR~],(6' m>~h@(Y[,ȡ Cz|6  u cKm>W=Ȇmt۳b[:вލw+O4䐯fjy@9DWB  @Y8i8g8]7EH7!f1vf6YG֤G!cc yR!2D^[j!Mľ]LlBq`9"P߉s, &Ff.P`=ˋ;,d5]lY=pQPi1Qsn;2qJc+H7. IImv'Hm$4=C0xz4fe"]1@U"7[KQBҘ|ROFix3f9-3g/#lqh^umuY]NcS(6:ڌ~5JދںnR@Jx3P)Eƹd?v%P.Ao 2IGvV4{*:CK~Jb<# S$TĔ&E:,lx9Z tA _CND ˒#"Y;eicMO[Uih?߭n  aN:2c$g"0Aݳ]4:Fc$*W50RFCg(nʰ/kYQ 0i6eq("lU ^a ?a HT Ξ?T]2X8NW*/~ l1H3թw df]T i`b5 ]1_iQl]M! t+oH!QQv&!7+\g_̄թvWrϰ" # lI*/)I/^®FBX{֋AK8iߓ6CG_ -l'ț eʜHJ/ q 0e] +ivUݙ5b.LιeR3oyjKaKM %/2<=-H6$J9Qz $b~Vq ʻ>|nka>܂j]4BS|$l%$?Y kw~fÝ|X O>!Z7TJ5a6 텕f8~L']ܐ*8&~?P%ܶݡ2^Yv?pp&-E&̈AmƮ WA-_4v$:3 WNeK?wNNAS`p !t. Kk u   7u( T# +/6 ,DJ[ԇV5ki@p"ˁSHZgn WJ+OFX8lur=@L",H"CWG͜qfsX?ɭt[Us`JNً3y٨9  6 TYSNVzJ[[ے3ʘUTg/o ;٤BdKRK Զz@P|}"Dflօ1M+ӛ\#ttc@_ܫ`|bvW56A|$F&GKar#I=L盼Xo y-b4a4u)h%CG` ^Bi-  7z} bGsÐSlvzn}jkqCG}[@Z%3CcsX9VO|ЕSPُzNOl\ۨkRfakgDԭ IZj~K035 @8E&эP>3屴՗$|f,*j5ttK7W;e |]1/P Qw; h.BJ=Z.|W3p1;((iц t~I!WHbZc;X#rid svA9 NX]8Yik9\wL =]MO@+o*uvب ` CXRҽqX$Çկ}B^&xzbG_,2Cu(lAdN]7䴄G1 ̓Ӻ^=3r\j)[Π=WSz z;\>SM"+IWs@EQ\~Q7x;ܞ>fpԺ;)> ˷8~}.};Gn'駍d{&Lw tnw7؛Eu}$ֆ չkCX3c_m`;=r1YC+^hDr !s$l#۶ <-bh|uM:ӥl A.)/ Hy,.zWfbۍrhLFl^`9ML o†* jG%6M3Um({qjKC5N3'PJ+ GX'8@5x!= '_.rBF:ʓ`0cJ61ʠ Plarί`|b{CuS-%@d ʹ%X,h@CŁ [gzwj Sۂz(m,]v3p$K?XYHb27.cۢ=Ih#ť?U( $1Ed'?f? #:ٿO Kzebx/""#f9'9 ӼqSa;PPH+M$\ 0ubp>6|\j>SƂ+ r*qwN^M~`;*Xpt;B?/7Ci4n*tAZwi:]XލgC~2Ձf}1(@` Pr, m"-Hx3eY|jniDΛ=v Y)D\c. і>> endobj 564 0 obj [565 0 R] endobj 565 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 605 0 0 839 0 0 cm /ImagePart_2131 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 371.75 720.45 Tm 117 Tz 3 Tr /OPExtFont5 12.5 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 117 Tz 3 Tr 1 0 0 1 119.5 678.7 Tm 95 Tz /OPExtFont5 13 Tf (Cost function ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 197.3 678.7 Tm 87 Tz (No. of GD runs ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 281.75 678.7 Tm 113 Tz /OPExtFont8 12 Tf (CM\(5,-\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 12 Tf 113 Tz 3 Tr 1 0 0 1 334.1 678.7 Tm 96 Tz /OPExtFont5 13 Tf (std of 5) Tj 1 0 0 1 370.8 678.7 Tm 48 Tz /OPExtFont3 13 Tf (t ) Tj 1 0 0 1 373.199 678.7 Tm 30 Tz /OPExtFont5 13 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr 1 0 0 1 385.699 678.7 Tm 94 Tz (std of w) Tj 1 0 0 1 424.55 678.7 Tm 48 Tz /OPExtFont3 13 Tf (t ) Tj 1 0 0 1 426.949 678.7 Tm 30 Tz /OPExtFont5 13 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr 1 0 0 1 439.449 678.7 Tm 91 Tz (RMS distance ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 129.349 664.5 Tm 114 Tz /OPExtFont8 12 Tf (CM\(S, ) Tj 1 0 0 1 166.099 664.5 Tm 85 Tz /OPExtFont5 13 Tf (0\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 85 Tz 3 Tr 1 0 0 1 222 664.299 Tm 90 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 292.1 664.299 Tm 89 Tz (0.11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 344.899 664.299 Tm 88 Tz (1.69 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 404.399 664.299 Tm 74 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 74 Tz 3 Tr 1 0 0 1 462.25 664.299 Tm 88 Tz (1.38 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 127.7 650.1 Tm 102 Tz (CM\(6, w\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 102 Tz 3 Tr 1 0 0 1 225.849 650.1 Tm 85 Tz (128 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 85 Tz 3 Tr 1 0 0 1 286.55 649.899 Tm 90 Tz (0.0006 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 344.649 649.899 Tm 89 Tz (0.63 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 397.199 650.1 Tm (0.46 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 461.75 650.1 Tm (0.52 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 113.299 627.1 Tm 95 Tz (Table 5.2: Statistics of the pseudo-orbits obtained by minimising the cost function ) Tj 1 0 0 1 113.5 613.149 Tm 104 Tz /OPExtFont8 12 Tf (CM\(c5, ) Tj 1 0 0 1 150.25 613.149 Tm 98 Tz /OPExtFont5 13 Tf (0\) and ) Tj 1 0 0 1 185.5 613.149 Tm 122 Tz /OPExtFont8 12 Tf (CM\(S,co\) ) Tj 1 0 0 1 238.8 613.149 Tm 96 Tz /OPExtFont5 13 Tf (for the experiment of Lorenz96 system and model pair. ) Tj 1 0 0 1 113.049 599.5 Tm 99 Tz (The length of the sequence of observations is 102.4 time unit and the sampling ) Tj 1 0 0 1 113.049 585.549 Tm (rate is 0.025 time unit. The noise level is 1 and the sample standard deviation of ) Tj 1 0 0 1 112.799 571.649 Tm 97 Tz (the model error is 0.25. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 113.299 540.45 Tm 100 Tz (CM\(o, 0\) does not appear to converge to zero. Secondly for both methods the ) Tj 1 0 0 1 112.549 517.399 Tm 98 Tz (standard deviations of the implied noise and the imperfection error are very dif-) Tj 1 0 0 1 112.549 494.35 Tm 101 Tz (ferent from that of the observational noise and the model error \(We are aware ) Tj 1 0 0 1 112.549 471.3 Tm (that neither the model error nor the imperfection error is IID, there are infor-) Tj 1 0 0 1 112.799 448.3 Tm 99 Tz (mation of them beyond the second moment of their distribution. For simplicity ) Tj 1 0 0 1 112.549 425 Tm 100 Tz (we use the standard deviation, as a diagnostic tool, to test consistency between ) Tj 1 0 0 1 112.299 401.699 Tm 98 Tz (imperfection error and model error\). The pseudo-orbit generated by minimising ) Tj 1 0 0 1 112.549 378.699 Tm 115 Tz /OPExtFont8 12 Tf (CM\(S, ) Tj 1 0 0 1 149.5 378.699 Tm 100 Tz /OPExtFont5 13 Tf (0\) stays too far away from the observations as the standard deviation of ) Tj 1 0 0 1 112.099 355.649 Tm 97 Tz (implied noise is much larger than that of the observational noise, which indicates ) Tj 1 0 0 1 112.099 332.6 Tm 101 Tz (that the pseudo-orbit obtained by minimising ) Tj 1 0 0 1 348.699 332.6 Tm 115 Tz /OPExtFont8 12 Tf (CM\(S, ) Tj 1 0 0 1 385.449 332.35 Tm 102 Tz /OPExtFont5 13 Tf (0\) is not consistent with ) Tj 1 0 0 1 112.099 309.299 Tm 99 Tz (observations. While the pseudo-orbit generated by ) Tj 1 0 0 1 369.35 309.299 Tm 116 Tz /OPExtFont8 12 Tf (CM\(5, w\) ) Tj 1 0 0 1 422.649 309.299 Tm 99 Tz /OPExtFont5 13 Tf (seems to stay too ) Tj 1 0 0 1 112.299 286.049 Tm 100 Tz (close to the observations according to the standard deviation of implied noise. ) Tj 1 0 0 1 112.099 262.75 Tm 98 Tz (The standard deviation of the imperfection error is larger than that of the model ) Tj 1 0 0 1 112.099 239.5 Tm 102 Tz (error between the system and the model which indicates that the model error ) Tj 1 0 0 1 111.849 216.2 Tm (is over-estimated by the imperfection error. From the RMS distance between ) Tj 1 0 0 1 111.599 192.899 Tm 101 Tz (pseudo-orbit and true states in table 5.1 & 5.2, minimising ) Tj 1 0 0 1 411.85 192.899 Tm 123 Tz /OPExtFont8 12 Tf (CM\(o, ) Tj 1 0 0 1 448.55 192.899 Tm 98 Tz /OPExtFont5 13 Tf (w\) produces ) Tj 1 0 0 1 111.599 169.649 Tm 101 Tz (pseudo-orbit closer to the truth. But apparently this method doesn't tackle the ) Tj 1 0 0 1 111.349 146.35 Tm 99 Tz (problem of confounding between observational error and model error very well ) Tj 1 0 0 1 111.349 123.1 Tm 103 Tz (as neither the implied noise is a good estimate of observational noise nor the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 103 Tz 3 Tr 1 0 0 1 302.649 51.549 Tm 86 Tz (104 ) Tj ET EMC endstream endobj 566 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 567 0 obj <> stream 0 ,,yyjhjl> q ¬~CaB@3 g~dG{s ١S@yot69nK+>pb՞sZrc[ת0V^9 ©'mQKBwYufD lG:ȊXvA`s^Jp<8zF?1&8ljo|Оo>c{Uv'e,FlFMcΎr~ߚ[N/C NA" [燀Vt傜a^H l7 Y3'P<Yު.])Y ɨ^!xCmֲyx !m{>#{xj4Wi>z9;.'RVUo~ [H57.%U23AP` M֘X\/MG}%>cg1.khJx. 5F.qy#$CA~̺ٗ}hej1bsVҏ&쯶⤤Vh;nl,}䟥>􇨺XQʛ;hEiU%a XҍP˸X-n[Agش/ok^Ш?WHۣ6V{5oe`Q; 7J;ak=(^PCKWl>ϫ*\]9d^͙Ҥm-U)*ތ.ǷiH}$FcQ%v+~V9qz*L#lGf?%f(NN}Hh}FHݣb3$S `2+bJfzS6ob\8  4@'#)CLd:jslw^-Vm {||wr{ 7}i4e UkcM6ghPGK~i0'g7jVLZ-JM{?sS Et B'kL !5i#Ze4LqCTR笚9yd Ctx6Jt5 =J۷O8GvΧשQcCxvнb<"MZ(^_8E HGd f/ nEJӔjoir8E_uf7.R^ΟqF "d}aMX#wH(V [;*R1~D.NVO}Y?Q֬g=k/m̰>g/p64õ1G<RԪNvIic *rML;[_ R{Pl?rG6d&?Ły ))vOF5Pz&)Y}~2%c緻Z J mjRG԰^|BiAP!̄hvU%Gɔ7p%mMƯB/'hDuOh2|bYU5SJ&ALX~P]$`_lTOɶLSXLۏɳ"o,2 $L?P?5>4f 7%җF9oHMa>̯$v 4nTsPC;zGnbQ_jhCH>k-lY:` XiHhU ɫ(DBqϞJ^ gLE1Z,(7Le':xBitafͶ%If HR~=ڥ‡vɬEbzD0JmQe;TeVNooY]mi4M J&r?b\qshGe"\8id"3\!Y8X]S7N@*JIJ{A,<6'B5Iwdr<[pa2ѲBN S{pxfbV/(r&B 6Ï\&ɀ. 8\]c[AC= LervF#QYyY b#U3&g}c)8^EGt!r-6˜'?q@O}!b'88|p/TdG**~ qK/E_-mt@0WlR.j$\h0d6lbޒgwLa.O}0#6ewz6-gݻKW4QAk)R;Ɉ,D<'ƆoS%;h(6`&웓@n/uC9qcZya Sɫy>*xF)Ǯ8&Qn~_0\8%{)SkpwK!:U)=foCKkWѼ "@.nGQ{*'0L#[Tp~Z l忛M θ:4 xـŅ3J}-$F ?IrcG*J:D#EwW e*4Jû?_Ts'1[ݽoiXgCbCžI۩֏BݗohL2kpVLv Rs=Ċ3mtnjlh˵ݱӯfJQg(_RE,鬐fI1'.y% g|fwǠ%k<+0Nu,xWLo[k~pA!DL7퇚= !^[&'=2 mL=wnXuuql:*\ˑ)TT)ܡ^j- %d*u+0sBY8ˌpAm˄\c@~Vyef-^w`L_V=C;k`O'1e#n5ܼ͆a"Ͷ},ckmZA񳳦ѩK<sJ cy+Pk2`5pVSk:@YJ3&NIosoV|pm.;ܓqg7쎢- sw{Q;w\gg,̭2 L:=?; w`t`;V駅iF$u r\IZ]^r/vʡp?Ibï @➣eWC?*۫5)|8d؊~dX!uT..qLr>ӺyFN.9'+[ ɞUd<3?h?$V!12%*]$6^<-%lzł^@绕v.2?`'8T2W\W?s'%:PI4h lGxrG5* ]WaIFՖɮb\ώ`!"?/}i}(lhu(ۖڥn"YUOo[39H[(qD vrR򔈾7֚Ce's[Kp4OФ #VIj{Xf]ҺW5LW' ^Dx?V*2$w|03wJFX~!(֘;e+{0=5Ζ\qpP](.upkiJԓⳝb5mmw֨ǗӰOg@vI5'6%N^CF69N inl5̗w_o۩ЅY U԰4᭍_8ugWzfݐm2b2)pȇ-1a!w݈>5 ?N%ےLW!r bByon0+꺞%9Jk5ti不dbu=f YcQ}WV@? W `DE^1ډ4'gw/G,<1iR9 g!0h;.D";R)< g7.X7v{ mu0{*BYj>QL/(] ]1;JXwHt1pJsy"";s\ɪb7Ymte=nxl/1R N`x$x+ʶ>ͲϰQ森3{/r;&z2":{#\.ǻu8ܧ3R0-ۗ>y,Q-vķɮfVP?@vV`L Ry 5oØ\OٟYdZʽٖnUjS,y"'D P *\V _ìȦV+RMQ'\l+/G>5Vzf* !Y>X43_w8꩕@ 3= T{!(n&S߭T|o!: HT|<+5Yb{R= ^ c_ngT@T$rVȆH f!83w.VΜmqGVw`>)xt)(FNmTjB(ה-?(2H "n?Acģ,qOf<B)|0 FbB&\P4JAna w YI|3 Dy|TZWc`hy1.,9ri]=dR"YA\&d ־.4:Fso6.vP|W'׉zZ2F @јٍh'!y9mN8  鳑c/ۥmB0#}e(H$u--MDM 62q5E7":wG.̗ ݑ– gbMadpgPa`4O Ju~d|'Qx̆\ֵ# ÆZ`Ģ}ޘyhZYyy"il?Wis`;(X$K #i`$:Tmf(FDQ$k*zEi*27fh0wTr7Rޛ \9569,yak<&rMo\`;(̋Sйd>pv] Lis(BnqSXfe&|0(%ytW(<#ܻF TB,:HIy ^3c1j/$[@7Іjsl70d5?;Cj[BnJ!ԷL 鸓ka##am7f:.+{+PLAV)n.BL3e\/Ug[-[VM*4#QAG4 N]I ׁYCQdy ŏw4 ~N xyD &sm:1F&ztn pO(1>2ٳ3䤼7f׀HV/ل'!єK;^ύŜuTZU96)&KG*ֲ*վ,cժ!O@qlOd * m'fNmr'<" N\1m:3MGЖ(~j9),7+YG؉r* Lw-[E{'> W/AzcM[ &;Qb/ &ȈӞ2>`QF֭S/n3( #o;cYֺXjS_.;(quol-k餫\{o-$j;ԝvc{,/*B !'% @3ϩ5_ !63GtBmS奢j1 畵{UZ{%OKwh3EU|}y;IB\9 'jck3a3{OWLGЕ&UJB 1ͷi '0W|r;r8bRdž}KU;J솢wee^ޘ)/Yڀ#H 9.JlTh8-h1tПI t+0Cv D-j)$6A>GR Px|0gӞ4GG-mCBc'-eEZxpw +ƈ/Jyko!_y$]P9P;5rFJ6hJO0+_֬U5t{(jY5LCE$z=ņ~wB/vWƨ^sQTʊ vN&4#EQGii b}  jC*a;`$5<{#[DŽ! v2*@:cL&!-w,Di76ujx|ūw?PDgR:UX+) ڂTVLxEPtE ַo62֏ǜ tKX'6VK7Pv 7J>-< -5:[ rf_;%LBDe9RWUv8 :$JWiRT>R${Lm /d[U^ģ ,xC\dqke g8eSH,Yf耝f/[1" 466/Oz\mvن,:YB ygY q螦ʹYɩБgULgOE8kRٵLFRͼ'VJf,DW%}TfHݛmB +T CR(>XNWJ(U:&ݍsjo kHH.VrN vn !z&Ą4ҢȄ86bs'f!eOD i].65eRZwgC!߾TR!q(y?-nc6bXU tVƛ$f#v7ui-wyܺWEl)@ )Ëu( ̉MV'0F1jxcRNnJ)Q.C ~u rY(Lf,Ea#x8=g) Vz^g^94P̮J?t3'OoW} ;|o_d߈.[c6LLu8M7BJ6RBs+ *ie 'nǧ0#V>峦2"m|(,''$=2"4xl6zffYnݿ endstream endobj 568 0 obj <> endobj 569 0 obj [570 0 R] endobj 570 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 607 0 0 840 0 0 cm /ImagePart_2132 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 373.449 720.7 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 114.95 677.75 Tm 91 Tz (imperfection error is a good estimate of model error which may indicate that the ) Tj 1 0 0 1 115.2 654.7 Tm (estimates of the model states are highly biased. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 115.2 610.299 Tm 113 Tz /OPExtFont3 13 Tf (5.2.5 ISGD with stopping criteria ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 113 Tz 3 Tr 1 0 0 1 114.95 579.6 Tm 95 Tz /OPExtFont3 11 Tf (The GD method introduced by Judd and Smith \(2004\) is unable to produce a ) Tj 1 0 0 1 114.95 556.549 Tm (desirable estimation of the projection of the system state as the implied noise ) Tj 1 0 0 1 114.95 533.5 Tm 94 Tz (and imperfection error of the relevant pseudo-orbit are not consistent with the ) Tj 1 0 0 1 114.5 510.5 Tm 93 Tz (observational noise and model error. Confounding between observational noise ) Tj 1 0 0 1 114.7 487.449 Tm 95 Tz (and model error makes it impossible to produce pseudo-orbits whose implied ) Tj 1 0 0 1 114.5 464.399 Tm 93 Tz (noise and imperfection error are consistent with observational noise and model ) Tj 1 0 0 1 114.25 441.1 Tm 94 Tz (error respectively. We found that applying the ISGD method with proper stop-) Tj 1 0 0 1 114.25 417.85 Tm 92 Tz (ping criteria can, however, reduce such inconsistency and obtain less bias state ) Tj 1 0 0 1 114.5 394.8 Tm 88 Tz (estimation results. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 131.3 371.75 Tm 91 Tz (As we mentioned in the previous section, applying the ISGD method is equiv-) Tj 1 0 0 1 114.25 348.699 Tm 89 Tz (alent to minimise ) Tj 1 0 0 1 201.849 348.699 Tm 109 Tz /OPExtFont6 12 Tf (CM\(6, ) Tj 1 0 0 1 238.8 348.699 Tm 90 Tz /OPExtFont3 11 Tf (0\) cost function, i.e. the mismatch cost function defined ) Tj 1 0 0 1 113.75 325.7 Tm 94 Tz (in Section 3.12 and Equation 5.11 are the same. Examples shown in previous ) Tj 1 0 0 1 113.75 302.149 Tm 93 Tz (section demonstrate that the minimisation does not converge to zero easily and ) Tj 1 0 0 1 113.75 278.899 Tm 90 Tz (the pseudo-orbit produced eventually is not consistent with the observations and ) Tj 1 0 0 1 113.5 255.85 Tm 92 Tz (stays farther away from the true pseudo-orbit than even the observations. When ) Tj 1 0 0 1 113.75 232.799 Tm 88 Tz (the ) Tj 1 0 0 1 132.699 232.799 Tm 89 Tz /OPExtFont6 12 Tf (C./V/\(6, ) Tj 1 0 0 1 169.699 232.799 Tm 90 Tz /OPExtFont3 11 Tf (0\) is greater than zero after finite iterations of GD, the mismatch error ) Tj 1 0 0 1 114 209.5 Tm 92 Tz (e) Tj 1 0 0 1 120 209.5 Tm 70 Tz /OPExtFont2 11 Tf (t ) Tj 1 0 0 1 122.15 209.5 Tm 92 Tz /OPExtFont3 11 Tf ( is actually the imperfection error. In other words, minimising the ) Tj 1 0 0 1 453.35 209.299 Tm 109 Tz /OPExtFont6 12 Tf (CM\(S, ) Tj 1 0 0 1 490.3 209.299 Tm 90 Tz /OPExtFont3 11 Tf (0\) is ) Tj 1 0 0 1 113.75 186 Tm 91 Tz (actually minimising the imperfection error. If the imperfection error goes to zero, ) Tj 1 0 0 1 113.5 162.95 Tm 96 Tz (the pseudo-orbit becomes a model trajectory. Since we treat the imperfection ) Tj 1 0 0 1 113.5 139.45 Tm 92 Tz (error as the estimate of the model error which is known to exist when the model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 304.55 52.299 Tm 76 Tz (105 ) Tj ET EMC endstream endobj 571 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 572 0 obj <> stream 0 ,,}}b7!͔K^+k3.v1Zk+3j5t '8#yQ}Kq)ߪ՛Jۚ2הDc9z O!vЌ?c 1.m> m~٨!fJno O54ҊKEهk Dٱcؑ[$IRy" . Xk.:(1{rP|R rY4hm P Gi2uJNy}4M9|EeΛsGsy"΀Xv;K!_7dF4'Ã)B- :]mCO;7 (l (D~+9UhU~@ V tx+iR}2 RN l27$K-g1]ˤK||A&B& 7x`܋fc+q/Ga)|w{nScŖIVĨ[DH!,5%;W>#|LU @>X1RŸNxĽ{?ԏVkس E*uh;[Nׇ/V9#H:0+nl"- GfQhu~%5]FÊ/C]$7-jݜWH;G8F5%;uV>h96Tsc+]td4 Jtvd,0vu|cu'1VxG"@EԹ;/#dMu](J)?=1#+ܕ8^d5m)Z$-H*pTh-Ak"6晲XaxVC![$ŧ&2441@ЗԲo޾}Pjm #tܞB+g$n"鸴ͨӇ>t0žۊŽ~ p4[7ЅԁRuqYM2 x&=eRXp6*2F}9]2Su98qço߉߽1D;i_SSHb|KFtx CLRmeGa!rYن MW>:4z33 Ks|[C3 +mP%XMILQ1İx M$Xq~3hu\*YH) QdGa,xw2j;86 CkfBϟP+Sm'YIvy̜qrv.S=zҩ׉.J#iJFoV_3/NWJ1FK$eS(p]@)_59]Thj(BRe}+{>9X!.poY!)7y0 LKjX, ?aH(hB: Q\u{}> ,M&:Lxᰨ5~=DŽ@Գ.wܿĶmBDWFTә0Mغ_=8Vu qU#r{ME?vOTF~"DD#!#&aØޢqFO60Α5Y6JĿKAo/fɬ?8fk;b?n'gq dtWPia=6bA %^IW ^4ŀ7IFQ5BR<(/) _+Ǟӱ$@"Iv/ ;;"snr| M|Vh;[X_X_Vº]d6 +TyH0cT;;俼RG)?𑠸ҟa'ǵAdzpF#>//BO~a+t_fsW(g#I&c!f҃0Y>h2mbFIT_ȭ)0e.XS ' NM1AgӰ+!Q8NkZpYd@nj4 i2LY&lwV ~∖:m~zu uzje^UۅRӣs@6=8~NACY`ݜJGHZ({m}7 : >'&ll."G 0ٶv- jhK'aXQgv5ӶwTMPG&4ky,GGEl_ "cW>r, tߡCIL'vR4“I@ ~ed:rM̎, ~c7CXlB$يPowWCˠLa_$e(LhGTؖ ϝsiN~C9cWT)D%BlIexےmI @՘:J\Zqh6fcqiw%gN|33ե#h]"C=Y 9+k-o+C|wԀ?KA8 3 ,'.l+? xs{=]M=5>K/q=܅YSJP?&Q;cq"eL!{X: ( .9ѻ͢h/VR"Y 2?ldF7G3~2_tI` +[&@sVkoaV%T]L터/OD7R53?kP~ Cp^?@Kڎw0uw]UZC3s}{).q4$%[g;.ajxϷ ӽ)hAvZ5 ԀлxRZ|/$6ː1"oa{]gTG| ~ <_1e[J|{(14\k&E1^T{okf '!(:1MN * X9<3 [fU+íNJKgch RJU)LTÞm@1y0} HS%#nfc$o77GC@[V>:%|ѱہߖ=4˳*<5hK`Wޟj92S N v{B{e@E #߭ݭQȉ]p}ҕvt%{Aɢ@g 5ɏV[@I/3_\zoul" (}tP/dt@sXu M[رqo.h~7Ɠ ̢W XHZ+DΉ)*Y",HʟHԭA:Q|m]ްegMz?fBQ8!]ȾK`AAع06rO0L-oX !n}vI qn [V;b'1[9~ј%uC]Կ&zZ.5P<{wTBm)羧k'_S?kՈ,gc=Be? f153RyY,FR'6yL'=?j:/q' KZT]ڶA˗Q-D\G8 .wCf6>mצO銠gȠ.Ne*zS@đR;sRှ5Ĥe D m7yk%,*O!DruDdH8 3񝛺ۻ%QfgPȴ 7VcsB[VH{=sO6+  ()a3Qox.cHl|GLA_C-j䫝f$x! ! ֗eVww&´סenփ+QG: ; B+h{m˽+nQ&T0IPIZք = PU>  ,w:\b Tz&vAs!ŝ8,UdA XlӒV{\ dXCF $ME}l^Z쑬)V-,sgXs2 !\;ރᇇyOԟɟyǂPjSDKa8JSrCqxz40DDy#r9ʫIu>"%q ulmn\Sϑas74%#m.vZ*+  J] y?zS@Z)A,ilbVjDp:U4G# =\"-ZKiۥ6I$HUFzWw큷 `P2+j-X;0"%7;:ij玞&\f׈^1ؚx1On%@-B끴x, )9O}mȌCS,2X1S!]W[.D7+(:\Vݎe]D;Av̧8hg^YG93EE 9c)Gmt:iC6Q{ϞT0+!ԑ{e ɱ~YsAkQQ?uQT9b0g.~n!t aUr,OIÁR/)8پ(3(}0$@ KH8{Ët4QyJڽo`Be +-I]OiJO0ތY.J|,me+FÒy.7/Ė @#/~׍i0Zz0{$3W#ٔ`'U 5%)Pp_܀}sad)~cqo9؟/bR\T%| 8*!B=b\1jjcݞM(znr Qv\dt[;_]_ٵ| hdW*})Qv1Y8UzbH k:]_v%u˔#*(9P&RNp5AA!zXknj⢐h]E!y>u5+0?F |'kM*opoCTZK**`X#Q>( ]s9{!tg1BFDn@-*ӱ1X] &-2Zp\(7Rǘdkoi$r,RDQ ؀#}.+mj2:^П|ϡ_JR`x !B?Cy58O-Un"m\%J^8a3%n +C ,ҿܿKaLW}lvi{`ԟTd[i^Z8Xo8Cje0֮C֯ BA]( (ZFf*Uf xL^9.-yuU$P(SXA/J2m錦BUn),ƳOhQވ2wwuLxI>:BgTc}%ˈC,>2`dibKS]nAj0V bꞔS>NZAF!Jyx~$B}6FlRd tY2ebݦq3WcڭMg@d>6B#+Ädx0d_H>Yv8c0oTNu)^t]]hUI/Cx3MhmFr΁T5XRCqˀv KcA @ݧݗǰSB /Jfe.MJaT?1{)d {3P 24 }[κK/ޔRW$ԯt7,EVTK,8cӘ8#/5B72 j-.@Fҳ/֛NbUc:=}MnȑIK<38Hz20w4)2DK֐I5B;sЀyi~3A_'rMN$q$6TJd]QAD\$=,jJ z_xlZ͸q&nvo& Oĥ ,~\JMd!{\J ծ@颳ʍtauv-P{Wz]˝Od3(<G2Zƌ<]-%Eft7~NS>CA p.RWx9cUG645fh}^SKfSWTs*oې !Cy-k"+„%uNDQ#yHXx[fiY|1=?s39ӻ5a #ZTdV{AeMCGqKl5\~ - d;sr; P$&s5˼OeH6w6~J;;O\9f)<(<]'ט)'7T7ﺟ ̓GS"2? &dMt' m:pѪy졔b[l㪴&lXN1k@O endstream endobj 573 0 obj <> endobj 574 0 obj [575 0 R] endobj 575 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 603 0 0 839 0 0 cm /ImagePart_2133 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 371.75 720.45 Tm 117 Tz 3 Tr /OPExtFont5 12.5 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 117 Tz 3 Tr 1 0 0 1 113.299 677.25 Tm 93 Tz /OPExtFont3 11 Tf (is imperfect. Our purpose is not minimising the imperfection error but produc-) Tj 1 0 0 1 113.049 654.45 Tm 94 Tz (ing better or more consistent estimate of the model error. Figure ) Tj 1 0 0 1 442.8 654.45 Tm /OPExtFont5 12.5 Tf (5.2 ) Tj 1 0 0 1 460.8 654.45 Tm 88 Tz /OPExtFont3 11 Tf (shows the ) Tj 1 0 0 1 112.799 631.649 Tm 95 Tz (statistics of pseudo-orbit changes as a function of the number of iterations of ) Tj 1 0 0 1 113.5 608.6 Tm 92 Tz (Gradient Descent minimising mismatch cost function ) Tj 1 0 0 1 385.449 608.6 Tm 108 Tz /OPExtFont6 12 Tf (CM\(S, ) Tj 1 0 0 1 422.149 608.6 Tm 96 Tz /OPExtFont3 11 Tf (0\) in both higher ) Tj 1 0 0 1 113.299 585.299 Tm 91 Tz (dimensional Lorenz96 system-model pair experiment and low dimensional Ikeda ) Tj 1 0 0 1 112.799 562.299 Tm 92 Tz (system-model pair experiment \(Details of the experiments are list in Appendix B ) Tj 1 0 0 1 112.799 539.5 Tm 90 Tz (Table B.6. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 129.599 516.2 Tm 92 Tz (Figure 5.2 shows that as the Gradient Descent minimisation iterates further ) Tj 1 0 0 1 113.049 493.149 Tm 93 Tz (and further, the standard deviation of implied noise is getting larger and larger ) Tj 1 0 0 1 112.549 469.899 Tm 92 Tz (which indicates that the pseudo-orbit is moving farther away from the observa-) Tj 1 0 0 1 112.799 446.85 Tm 91 Tz (tions. By comparing the standard deviation of implied noise with that of the real ) Tj 1 0 0 1 112.549 423.55 Tm 94 Tz (noise model, we found that at the beginning of the minimisation, the observa-) Tj 1 0 0 1 112.299 400.5 Tm 92 Tz (tional noise is underestimated by the implied noise since the pseudo-orbit stays ) Tj 1 0 0 1 112.299 377.5 Tm (too close to the observations. This makes sense because the minimisation algo-) Tj 1 0 0 1 112.299 354.199 Tm 90 Tz (rithm is initialised at the observations. As the minimisation proceeds, the implied ) Tj 1 0 0 1 112.099 331.149 Tm (noise becomes more consistent with the observational noise and the pseudo-orbit ) Tj 1 0 0 1 112.099 308.1 Tm 94 Tz (gets closer to the true pseudo-orbit. After a certain number of iterations, how-) Tj 1 0 0 1 112.099 284.6 Tm 91 Tz (ever, the implied noise tends to overestimated of the observational noise and the ) Tj 1 0 0 1 112.099 261.299 Tm 94 Tz (distance between the pseudo-orbit and the projection of true system trajectory ) Tj 1 0 0 1 111.849 238.299 Tm 95 Tz (gets larger. This is due to the model inadequacy. The minimisation makes the ) Tj 1 0 0 1 111.599 215.25 Tm 93 Tz (imperfection error smaller. When the imperfection error of the pseudo-orbit be-) Tj 1 0 0 1 112.099 191.7 Tm 92 Tz (comes smaller than the actual model error, the implied noise has to compensate ) Tj 1 0 0 1 111.849 168.45 Tm 91 Tz (for the imperfection error to account for the uncertainty caused by the model in-) Tj 1 0 0 1 111.849 145.149 Tm (adequacy which makes implied noise too large and the pseudo-orbit inconsistent ) Tj 1 0 0 1 111.349 122.1 Tm (with the observations. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 302.899 51.799 Tm 87 Tz /OPExtFont5 12.5 Tf (106 ) Tj ET EMC endstream endobj 576 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 577 0 obj <> stream 0 ,,6mmb7!>[JZ 0:㓼LH(O{u"9ф|Ýu1E: -Pw@FANڅ3;֖L)_簃'`8c{H)5y=3UfZӷ.杅 }4x퇇el4 q^I'bj5Bdv:A4TT$yˇ6H{uXIIu11up8Far0HN8#cmf0(Z+(*h2ܸnO\Z)3 b7iDMt `4CQ$[5ݒ(C jp^j'Iwm7I?5b'օ`%4Cwy"w=Ygķ~h{(Y'knj&%U}>nEѲohX3UpcdW y0[[%!U5mix:L?3t/4<VlG]R&y@~Y}Q[2:]P7̮Z/hxWD%XrtF8890UsQzOߏYqPL8ea^4mm2}(X]y,[tWÍ!i,ԥ*ʟ ]{0U6+Z\9WL68ۗWۍqspC.񧵮\m 'YxƖL*&RHڹ}̎#t+y,^(+V~u.0P"]::ު1԰A&hk3yض9B I*m{@}=>ܫGaUWKw9ApEKz&L?Z6D-Zx٠/q̯G;N]ff }uDf4h.>Iٸ";,̲Ե-0ճyjC wu #]Uw'H5ʳdyWB )'U,AB]% G-urc7>NGvtDx@m0cHoCXEҰ]p;"eQ[9wNe7Ӵ~sr8+s0k!(i?R33 HgK|NF"A҉;>O[[bA8Z(7;|!\odZٞO)\zrxn_ax~ so6X$FZ :><ԸLo@bꅗQ!Y1|I@U gvwNvj;-fQnNn:w=DvI #L׺7;P j9vGa8@5sRV*3!H-7g_1NLR/Ҋ4D1#-q/BWS?^,T [IS~mLEum5rt_2`[=C$dr+'GI_Wy:ȣy5l7;wN /݆x j֦B`b 1[;OcfLBK$&RP`!8Ϋ ͡Hf˿3KUwpNkIIV_(­7ϮNA d<2[O,}Cw.%ly, [(\yek,lUH5(j^c3}.)2U%iiU+1OSU\e|3LΩ~*P1,rCz|ESr=keQ?{>3ǣ ]ahQ2"^HAQY{Blk%33jgxTGJ֜#biN%cQ3V?[A%T˛*y% E50=X9YYV`fEV,P=RtfrG8IcX|QF?H |VY)Y!9 xl+ٽ9]q<'9)IǷqjmJ: =K+wߧ@2=}EFԸ* ]2/.ٝ譾zz0nQ4ZCwK̯r M'q]m(N~E0x#*H6z*5L5DsoM:[a)!k@ `@n]H% ߇͏\Nܡfb7Lg\M܏$&Rٰ/Pr>.5?IQp.+W;׬J*++ 8Ȟs`yPʤ!|&hE ĔsqX~.~teо# r?/1%nGRMCEKIi5!<^13`n Eͷ!\p8 ClR8w,֙w'˼~@JY rڂB'f8dK-k/͟Po7{l!cܪSC#/ˌ%~+@Op[CT|e\:N/Y1YXI.} 3Ev[I'80Vk[c _1 p < 4h0\80Q. ]om捤}$9 #x'2HoLypB'X 3?~(iRskC[eH~2i+8UT:[۷~[+A7<~^t~TQ0߂lОxAPJgUd39dޠ̶y< gdT>okGiFIJxߕkJۼGzd ]PijgPK"&&yo_roJ)I=q$mw&V# LiZocqzYm==gxiViZ%\B݌i.]wbn0Hd;Q;>חk>7+^ߙ崡ǙՋ+ľq9f>&d<`Œ1Po{.%EYD΂6c9YɄoR u's7̀,㕨}'_Su؅[ZVΩ 'wh\DL,+_\q1omvPPr\⹬0~K@-.Ы5tZű֐="j{ر kdE$`::d3/@@%dhS׸3FCO1/w/p;yOsC\iGIMN]'yQ/9`c_3k2>XߐZ)eT:ԫf ڇ[$N9}EnD)3\!j-j]!lts#}\GSFgn&Gjr?`MV؞Gpprsbs\A +,Fz{)>S⨈e{{m)50͟-$ɕJ o$כ﹔mP@- V7Nq 8AwP}VjSZ5+M: z뾆nl^Փ d䘷|eUj׶U%l: xBAt=l/wa[J{ Rq>͜`!-#չY#>Gg,zhcO[%)Z``1" ɟaTƈF4![/5 0&*,Bֵ̜F၂M1E]+F."(Wn|֠~;[Wg?'VoeN:,3{OB\`t=*64KEIl|.n(w$ veZ/3!tHI+K=l/gvZ cîU<ZȠD/w_w?[*g( j/agx:9%$t!m}eyΉmDxt }G=olXhIw 10S7:}@11F#a.x*&iuy $q>JÏTY17X:X^ﹿ\ّJCw u߯0`&FإwNdi6%]A"fs10 7.G@úE{ GaFЖ3bU?ƆvP)C,&ޤm< ;X>Ž,:n_-.:۞j7~IѼGEێod1ѐ%J2[WAXdY0AHl¼ Y'fu-:<^!UgU|:hʋԓ4hzRM dUk8N0|3е5 иsj#Ew,a;wrv7C)W7·o\|u^jޜuKI̟ƘLZCqX36EP -TXH'K:К`#Z;+P]|*C7H]HC XW09odmY d"ȩ9p@vw4cQ$Pqh-"RNK:-wϼxrN1;$xO~>~,dȊGQ=aġ1iz~bt" SG *E,6QaV]2acQ=ꍶbG{1}D) /I_;= x A0nDՓꄷե%c'FL؜v{L̜g )VS KG=.k񈖀oSW"Ҡ(OPfo9^{ aVk(vq$3+j:0'{L' endstream endobj 578 0 obj <> endobj 579 0 obj [580 0 R] endobj 580 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 604 0 0 839 0 0 cm /ImagePart_2134 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 319.699 659 Tm 88 Tz 3 Tr /OPExtFont11 4 Tf (0.015 ) Tj 1 0 0 1 314.399 621.299 Tm 115 Tz (o 0.01 ) Tj 1 0 0 1 313.699 583.649 Tm 70 Tz /OPExtFont11 7.5 Tf (3 ) Tj 1 0 0 1 317.05 583.649 Tm 99 Tz /OPExtFont11 4 Tf ( 0.005 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 99 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 6605 3538 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 99 Tz 3 Tr 1 0 0 1 6624 3538 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 99 Tz 3 Tr 1 0 0 1 6605 3560 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 99 Tz 3 Tr 1 0 0 1 342.5 640.75 Tm 86 Tz /OPExtFont5 7.5 Tf (la\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 7.5 Tf 86 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 6605 4315 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 86 Tz 3 Tr 1 0 0 1 6624 4315 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 86 Tz 3 Tr 1 0 0 1 146.9 519.1 Tm 112 Tz /OPExtFont12 3.5 Tf (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 112 Tz 3 Tr 1 0 0 1 351.6 542.1 Tm 85 Tz /OPExtFont11 4 Tf (100 ) Tj 1 0 0 1 358.1 542.1 Tm 1125 Tz (\t) Tj 1 0 0 1 373.899 542.1 Tm 88 Tz (202 ) Tj 1 0 0 1 380.649 542.1 Tm 1160 Tz (\t) Tj 1 0 0 1 396.949 542.35 Tm 91 Tz (300 ) Tj 1 0 0 1 403.899 542.35 Tm 1128 Tz (\t) Tj 1 0 0 1 419.75 542.1 Tm 88 Tz (400 ) Tj 1 0 0 1 426.5 545.5 Tm 1160 Tz (\t) Tj 1 0 0 1 442.8 542.1 Tm 87 Tz (500 ) Tj 1 0 0 1 449.5 545.5 Tm 1146 Tz (\t) Tj 1 0 0 1 465.6 542.1 Tm 91 Tz (600 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 91 Tz 3 Tr 1 0 0 1 381.6 536.85 Tm 88 Tz (number 01 iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 88 Tz 3 Tr 1 0 0 1 162.25 506.35 Tm 97 Tz (\(b\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 97 Tz 3 Tr 1 0 0 1 135.849 469.399 Tm 51 Tz /OPExtFont9 7.5 Tf (e ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 51 Tz 3 Tr 1 0 0 1 140.9 455.699 Tm 94 Tz /OPExtFont11 4 Tf (-6.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 94 Tz 3 Tr 1 0 0 1 144.25 441.1 Tm 146 Tz /OPExtFont9 3.5 Tf (-7 ) Tj 1 0 0 1 148.8 441.1 Tm 91 Tz /OPExtFont12 3.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 91 Tz 3 Tr 1 0 0 1 140.9 430.3 Tm 215 Tz /OPExtFont9 3 Tf (-) Tj 1 0 0 1 143.5 430.3 Tm 108 Tz /OPExtFont12 3.5 Tf (7.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 108 Tz 3 Tr 1 0 0 1 144.25 417.8 Tm 127 Tz /OPExtFont9 4 Tf (-8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 127 Tz 3 Tr 1 0 0 1 181.9 401.5 Tm 82 Tz /OPExtFont11 4 Tf (100 ) Tj 1 0 0 1 188.15 401.5 Tm 751 Tz (\t) Tj 1 0 0 1 198.699 401.5 Tm 85 Tz (150 ) Tj 1 0 0 1 205.199 401.5 Tm 751 Tz (\t) Tj 1 0 0 1 215.75 401.5 Tm 91 Tz (200 ) Tj 1 0 0 1 222.699 401.5 Tm 737 Tz (\t) Tj 1 0 0 1 233.05 401.5 Tm 87 Tz (250 ) Tj 1 0 0 1 239.75 401.5 Tm 737 Tz (\t) Tj 1 0 0 1 250.099 401.5 Tm 91 Tz (300 ) Tj 1 0 0 1 257.05 401.5 Tm 751 Tz (\t) Tj 1 0 0 1 267.6 401.25 Tm 87 Tz (350 ) Tj 1 0 0 1 274.3 401.25 Tm 737 Tz (\t) Tj 1 0 0 1 284.649 401.25 Tm 87 Tz (400 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 87 Tz 3 Tr 1 0 0 1 200.65 396.449 Tm 88 Tz (number ol Iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 88 Tz 3 Tr 1 0 0 1 143.05 378.199 Tm 84 Tz (0.2 ) Tj 1 0 0 1 140.9 366.699 Tm 103 Tz (018 ) Tj 1 0 0 1 140.9 355.399 Tm 87 Tz (0.16 ) Tj 1 0 0 1 140.9 344.1 Tm 84 Tz (0.14 ) Tj 1 0 0 1 140.9 332.85 Tm 87 Tz (0.12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 87 Tz 3 Tr 1 0 0 1 135.099 321.299 Tm 46 Tz /OPExtFont3 10 Tf (2 ) Tj 1 0 0 1 143.05 321.299 Tm 103 Tz /OPExtFont12 3.5 Tf (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 103 Tz 3 Tr 1 0 0 1 140.9 309.799 Tm 84 Tz /OPExtFont11 4 Tf (0.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 84 Tz 3 Tr 1 0 0 1 135.099 298.049 Tm 60 Tz /OPExtFont11 7.5 Tf (1 ) Tj 1 0 0 1 140.9 298.299 Tm 103 Tz /OPExtFont11 4 Tf (006 ) Tj 1 0 0 1 134.9 292.5 Tm 113 Tz (S ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 113 Tz 3 Tr 1 0 0 1 140.9 286.75 Tm 84 Tz (0.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 84 Tz 3 Tr 1 0 0 1 140.9 275.5 Tm (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 84 Tz 3 Tr 1 0 0 1 140.9 405.1 Tm 94 Tz (-8.5) Tj 1 0 0 1 149.05 401.5 Tm 84 Tz (0 ) Tj 1 0 0 1 151.199 401.5 Tm 71 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 71 Tz 3 Tr 1 0 0 1 322.1 518.6 Tm 89 Tz (0.03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 89 Tz 3 Tr 1 0 0 1 465.6 401.5 Tm 87 Tz (600 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4 Tf 87 Tz 3 Tr 1 0 0 1 165.349 542.6 Tm 85 Tz (50 ) Tj 1 0 0 1 169.699 542.6 Tm 868 Tz (\t) Tj 1 0 0 1 181.9 542.6 Tm 82 Tz (100 ) Tj 1 0 0 1 188.15 542.6 Tm 769 Tz (\t) Tj 1 0 0 1 198.949 542.6 Tm 78 Tz (150 ) Tj 1 0 0 1 204.949 542.6 Tm 787 Tz (\t) Tj 1 0 0 1 216 542.6 Tm 113 Tz /OPExtFont12 3.5 Tf (200 ) Tj 1 0 0 1 222.5 542.6 Tm 1080 Tz /OPExtFont2 3.5 Tf (\t) Tj 1 0 0 1 233.3 542.85 Tm 108 Tz /OPExtFont12 3.5 Tf (250 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 108 Tz 3 Tr 1 0 0 1 201.349 538.299 Tm 129 Tz (nurnboi Mile.lions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 129 Tz 3 Tr 1 0 0 1 141.599 583.899 Tm 102 Tz (D.35 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 102 Tz 3 Tr 1 0 0 1 143.75 545.95 Tm 108 Tz (0.3) Tj 1 0 0 1 149.5 545.95 Tm 219 Tz /OPExtFont9 3.5 Tf (. ) Tj 1 0 0 1 151.449 545.95 Tm 45 Tz (\t) Tj 1 0 0 1 151.9 545.95 Tm 91 Tz /OPExtFont12 3.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 91 Tz 3 Tr 1 0 0 1 143.75 621.799 Tm 108 Tz (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 108 Tz 3 Tr 1 0 0 1 250.3 542.6 Tm 85 Tz /OPExtFont11 4 Tf (300 ) Tj 1 0 0 1 256.8 545.5 Tm 769 Tz (\t) Tj 1 0 0 1 267.6 542.85 Tm 113 Tz /OPExtFont12 3.5 Tf (350 ) Tj 1 0 0 1 274.1 542.85 Tm 1079 Tz /OPExtFont2 3.5 Tf (\t) Tj 1 0 0 1 284.899 542.6 Tm 112 Tz /OPExtFont12 3.5 Tf (400 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 3.5 Tf 112 Tz 3 Tr 1 0 0 1 378 701.7 Tm 120 Tz /OPExtFont2 11.5 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 120 Tz 3 Tr 1 0 0 1 123.349 226.75 Tm 111 Tz (Figure 5.2: Statistics of the pseudo-orbit as a function of the number of Gra-) Tj 1 0 0 1 123.099 213.1 Tm 106 Tz (dient Descent iterations for both higher dimension Lorenz96 system-model pair ) Tj 1 0 0 1 123.599 199.149 Tm 104 Tz (experiment \(left\) and low dimension Ikeda system-model pair experiment \(right\). ) Tj 1 0 0 1 124.099 185.25 Tm 111 Tz (\(a\) is the standard deviation of the implied noise \(the flat line is the standard ) Tj 1 0 0 1 123.349 171.549 Tm 104 Tz (deviation of the noise model\); \(b\) is standard deviation of the model imperfection ) Tj 1 0 0 1 123.349 157.899 Tm 106 Tz (error \(the flat line is the sample standard deviation of the model error\); \(c\) is the ) Tj 1 0 0 1 123.099 144.2 Tm (RMS distance between pseudo-orbit and the true pseudo-orbit. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 106 Tz 3 Tr 1 0 0 1 311.5 46.299 Tm 89 Tz (107 ) Tj ET EMC endstream endobj 581 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 582 0 obj <> stream 0 ,,#R??b7 ?S>9~6s= Dx4%#Q#1aiOPL nw϶X ?" UM޳oǹh[[ x ъzɘ/IAX|DLL>&:_\(& Oi+g,;PlDh=6-ݞWj#U##lq'.t 9;;+Ai.T D_OjR zmd] pnໝI'!9XuQ3pQbREPPT91^0@|֯7L?lUhd iͶmH]~0T'UVPqBC|֡7ę(NSmxHƒ\@¡؟[ze;iI}z$ =ی<:K$yW{ JJqVkّ}] #$пBNb太l>$b2.“".q㐣zߛ-XIR1Ww{LpN |(i\lBOʷ GZ$_1'?l2+]rV4~F 9%9E)FU/>-5;, VLA$| E!<;T Z1h=r^$VTH%`AS`DSRR_^Cx $o{}Krj)P/o;o+#dM$(/ v,kU{rW|d{Ѡh؈L !C~Xj@VxRwk# d5`YnF 5t>kg$Ĉ0˓,m̅d{NZ0> I IZE @2Ycg@˘EGKVQY+יXA xDd`\J/ 3=OD{7t|xc  /X/?uNWr /a΄ņ%?N\*)Ui]<6&gb+7Q}RJs [ip/eJ)*2f3"rxrr3Iv>ڭ8"h )aB˿G@ǮuD!&*@EzGqJ19'փP%3BA k/N=$m@RSܗY6Uo8qz@g|?f+.ްP70b50.)! T{ YQjHwv%`|tNQ왬h¿ln6VEA[bBF 0wfMujf<^UnG'yWa3O331ݨĪ9ն&<z+G5NF&B; ^_ӎWd௳ȋšǰ:ҍ"+گ,+N]F.-x~(i-p~?\lQz [\7Рb\*h5~SӦW[/Y.0WHͯ%Cc9q,Np ؒM@rP;A2vMgxLQFU (-gѿV\/lPNňiW <:2 #=EVVP^]pR!nHsJj2Js .TW $ɇz_x F$z#fU !DN|*K\#!ur#9<"q4BC# 㕎q֛ɪn ,о&'"( m1#"(VUs_ͥU@i)@j:lr{hK=;;T8ux-X\E_[*b]?̑4'#CNbR\t/e1S?ǐbx+ݡڼr%$4\,c4beR@Iv7z:J$0GݦȪDܱ&RdIy96Ewz*8We`C5u)#kOK_QPGo?ZScKSmGQ.2(S!D,2F/6$Jgf6GZO/-0>`{wT.]q_wq@ )Gư '>ҽ= :~D koPkDaQ{b U#eCs@w5~w,4K.2ZTh;! ]0lH0l9JV-l~0taJ"'[mqL LiK&_^_:?{W}ӀQxY -PU+IY=V3' KY:-`kd1 ND(oay\CwT\蔦mq{K:el& \+M~7eKycc{)vxDF#9\S@=ug&D\\e_ͥء{J}=.\~eղByByEE5JONHyGF <ބCW.;! PO48N)Ix@vutH*f9ttUc*RJ1,]~u+ҘZC }Ц%\Ic .ާ zG>aA3IpiI R{!y4<I[@Y饉3ĆA^t^9./ ּ֫cs8"Ț98ы P w,ZcmI+B0iZ4@R`٤ZӀ*C. )ռ+[ylAc %X̞;+FrImI:j˵DI9,!`^mk;l:γG6ea]*]5Ki3q}PeɎ|Ǥv\NPw\w5*+#G< T3nu<*1faCns$RbSF|y|%ǁē*,?u!c._Ibbq> ֊fE3,5X \9Khz $yߊEZ"Bl yۀ<`<mTۿtd7kHc,ШKf[6~2S:[$]?Sa-^nėZ!A!"cgbݜ2I+p/pvnpd)i5DN4"p\K0 `^&17>$96;4;Wk cpyF4?ZGNU(sȐIϢS=JI#6{ 2#릉*IL< r1 @p&UT(tvfu?UTwyȴ1ysYU@C;N+i`[{vW9U?`1"eʭ YɚgC`w[/I6dzDR[ E GPċTh̝|s櫣p؄ȽL0()^[ʨjc,Σm=׀.,oJ]>Ro13tO hä67 ÏQF6E|,cl[2jHLȳ}_~̭(uHwQ֔ɒCEKmwgC)^J`+rKc!'\i8TFΕF+PXhcSzR#uadXŪ Pa,DY!~ߩ@ũ䩉ca$y Ob+>o6+b{ɬHu'hfyT.C2A'\ Swk+"a~B" < .lO[9]Nx]ZZ$@B ΄+ 0ƒmZb'# bV%uY`1Q1n n мۊHz6V0'RFF=6S0L^P b>MP4j%5N9f̉Kv$g) J\mUƘ9QIRNx"d*dp.7u*XSy&EFOLyxL6rIOmo ށX(K,'zڱJߣ6ntqs!ئo̜:^C3VCXduJQwm6i(F,?2TAql7 Kt/ ;ViY+T+{&8 FZIvX4`1Cg=Ỉ)[7G}O~0#TގkL/Xz{Ub<DYakZe*L[-o^fGc)-=*˛5irUmg a"?h2sn~G7뢛aQ^a߇AQ^y24ױ∬~7yMI7!d! ;6fW`m| 6Kی miq4MGa+jpt457 g$/O_x3_vT$E8bɩZ/!rtieQ$w8' X1Uev%4S3Sgbe| 2,(`y"BwKpjD}R`AG(,/7@](]@uL!i#[cSJ׶jРn kt^ڬtOzH9+'WwCn39A8'FHJ|ݢY, 91ӅPc9xc6+)62z`; ^1ˏl;ݤ3>௘xHᬰR"<@獐\/*K&T.ն픵@t^.hk~VUQ %g /{wTL*BD`Q1>w ]*gbanlxiwsBH2Ktum4`I'$#OwB  V R(`AO0 raS%>Էuz3V{U^_z-~쭸 mu@Ïg;q3v 8Ϲ..e._ _nsӼB4{ ͜Ek/AQ!Z&&$=FUB6B&>Ŵo c> -ץ `y\̲bʿ0hUIPVX~H&+KTx<[Agrp?J/DE d:*QzTה b63a7U=c1xbAw`ߛ83KNA*'INS*.c,acFx.>Rp(dXvM29Q?G gz4׹ZU<9sY]^3XgRLAOf0;io6ıqa1ې1d^TV5yqXJՋK IDhV^ި&= ~>C4fݍ!#@ӷҸ*1B =;CUAOePׁs/XAΦdF6alS;stl' ba*"K E]Z7c2=9ڒqw @& &? d~LZΠVGŋJ6?^ySC=T21(>1Gͭc%NYk'?.1={HG0iwԸPNCj}'N 9l#eTi"Ԍ %ggnD#-́k=3[LnD+LqA}Pܰ NdaJLhDx~_!/(t]]V $|H7u|FEd!ܒ2wHArʫKtIܐQa|# !R;Zi" u[k*p`Glڜ^o9uKP'N] ؎nF+U,x[yRoy>2{?˸MH 6*|RЛ:U}e=;oİ(칰e*ئ$߾0Ĝ",=ް'<&oLKW{"]3#h 65?[YCC|`*G߽66ǸꈀuJVhB`E/ Fe9P"r> R?&[ +ڿ:g5^$H-&n@7"{Zb9V Q=x)kI3N&g$VOjAK\cRUvzA!@M 9c$R' 'ѿ g ߧEX1Wh6/_Hkhc/T1ٟTN|H: $̓C 4!J 3yI> endobj 584 0 obj [585 0 R] endobj 585 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 603 0 0 839 0 0 cm /ImagePart_2135 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 372.949 720.45 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 131.5 677.5 Tm 100 Tz (Since the model error is neither IID nor Gaussian distributed, how well the ) Tj 1 0 0 1 114.25 654.7 Tm 103 Tz (imperfection error mimics the model error should not be judged only by the ) Tj 1 0 0 1 114.25 631.649 Tm 96 Tz (statistics of the second moment. Figure 5.1 shows that the model error is spatially ) Tj 1 0 0 1 114.5 608.6 Tm 95 Tz (correlated. As an estimation the model error, we expect the imperfection error has ) Tj 1 0 0 1 114.25 585.299 Tm 99 Tz (similar spatial correlations as the model error. Figure 5.3 plots the imperfection ) Tj 1 0 0 1 114.25 562.5 Tm 105 Tz (error in the state space with different GD iterations for the Ikeda Map. To ) Tj 1 0 0 1 114 539.7 Tm 98 Tz (make comparison easier, Figure 5.1 is re-ploted in the fourth panel. The pictures ) Tj 1 0 0 1 114 516.2 Tm 100 Tz (show that at the beginning of the minimisation, the imperfection error is larger ) Tj 1 0 0 1 114 493.149 Tm 99 Tz (than the model error in most places. The pattern of spatial correlation can only ) Tj 1 0 0 1 113.75 469.899 Tm 98 Tz (be seen around \(0.5, 1.3\), which suggests the imperfection error is not a good ) Tj 1 0 0 1 113.75 446.85 Tm 96 Tz (estimate of the model error. This is because at the beginning of the minimisation, ) Tj 1 0 0 1 113.5 423.8 Tm 101 Tz (the imperfection error contains both the observational error and model error. ) Tj 1 0 0 1 114 400.75 Tm 100 Tz (Similarly after too many iterations, the imperfection error is forced to be small ) Tj 1 0 0 1 113.75 377.5 Tm 104 Tz (and lose the spatial correlation it should have. One can see very little spatial. ) Tj 1 0 0 1 113.5 354.199 Tm 98 Tz (correlation of imperfection error in the third panel. With a intermediate number ) Tj 1 0 0 1 113.5 331.149 Tm 97 Tz (of iterations ) Tj 1 0 0 1 177.599 331.149 Tm 32 Tz /OPExtFont3 13 Tf (1) Tj 1 0 0 1 182.4 330.899 Tm 98 Tz /OPExtFont5 13 Tf (, however, the imperfection error seems better estimate the model ) Tj 1 0 0 1 113.299 308.1 Tm 99 Tz (error, the pattern in the second panel and fourth panel are very similar. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 130.099 284.85 Tm 100 Tz (It might be asked whether the imperfection error estimates the model error ) Tj 1 0 0 1 113.299 261.549 Tm 103 Tz (precisely? Unfortunately, it does not. Confounding between model error and ) Tj 1 0 0 1 113.049 238.299 Tm 104 Tz (observational noise prevents us identifying either of them precisely \(30\). We ) Tj 1 0 0 1 113.299 215 Tm 99 Tz (also found that how well the model error can be estimated strongly depends on ) Tj 1 0 0 1 112.799 191.7 Tm 101 Tz (the signal magnitude between observational noise and model error. Figure 5.4 ) Tj 1 0 0 1 112.799 168.7 Tm 98 Tz (plots the imperfection error in the state space with intermediate GD iterations at ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 128.9 147.799 Tm 65 Tz /OPExtFont3 7 Tf (1) Tj 1 0 0 1 132.949 147.799 Tm 90 Tz /OPExtFont3 9.5 Tf (The number of iterations set up based on the statistics of imperfection error, generally we ) Tj 1 0 0 1 112.799 136.299 Tm 92 Tz (match the standard deviation of the imperfection error with that of the model error ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 92 Tz 3 Tr 1 0 0 1 303.85 52.049 Tm 85 Tz /OPExtFont5 13 Tf (108 ) Tj ET EMC endstream endobj 586 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 587 0 obj <> stream 0 ,,9b6Z*aKXl3xs ln lv|NNtX* վi0WtLo(8(_cR,^OSb׉>/q1*qVssa!_Eލ=Up|/6\NoˬSg056o=,`K[P.MʾK'Thu!j'L!p?4+RZ]srB|?s߄iȚx n2,,_hpo:Z8MxKB`#ː}EՐ m|Lc|9 TK p`c_C9+G.wx׮.{0KV04JXӴT+sy-_s"ٵ}r&xm`( C DjQ4FjeGu$YX֊줦*e3TD%$^(2NJ*'J &tayb[#5=?z 8nP`{3bF2 2F1}wiqUm%Bӄ|(8XQVVЅг;ƖKKn"NK"q#3kz湩ۖ$rA/bx5m4))smctb4ˆɓ1ZPzT*-;1J$nvT*&m{9ģ|c!OSdQhBFV*:;u4xxP׸ pg4Bڌj(rL+?wlBñEHXTg(zWISh0Nd hqϻR@r#',"EFbC P;#Y4Ǧ\% -r~0]XX%RTJt@_Z!t1i?g hk݌ (fq+āǙDs B<>'As{|^~?.E\([ *_ * 9fCsGNXF輲;YBZ'i~5Dr>*;) bY87-w@!ѱR@-V_\Ө: ?Ƽc` p0SnA>#Z?ַʒjQlp6ڭ c@bb^2D>ԁ#昳l#+h8ڜڳ++nܜ<9׺DK j-6 7̄#W+v)d<<](xC;t]qLF31^fh(yZDm~Ū>( =v` ULЕKV ) #2+RPZZN̄l4as҅c?h]Ғ! Z M-!')s3, %/TQ1?1ٜUH"ށ\ARK8N/F~?7ºy]2 ϯtC3D ~\. o x@"G.~iӂG~eR:/϶ d uaK/{"gk ɼρjD4$j*.5tqc]3؉eBF>{ ܼ߷mENxnE\p[l؇bEDho!BP5L8`2W!hqAs+Y3 ;̏X >S} [ԅ7*v62P`g,9D$"1PvƴPˣrJ3l k-dKv`nkJ5LM@,S"$o8@uQѴmF2jt6 ('S$'np'~`2[pg$6 +Z&zEދh^V5s;;sVM#kG,di_X[p4a>Х0`0O8#0C?ҬD"8ٸ*ܳҰRֵⲲ˙ϰ;7,\)i\xVf |d n؈T|Uv'bS&HxlIo1ɤb$g^Y=׼JI ۸U7,2M q(Yx,,ԔHu<E0p]lB7~zUP_SpԃPlJkz!j_X3;ZHR71lR/aӰ TtP5{ v'CARSpي"7(xth3p#Ȝq,b}j^1 4ns?'b3oO*L)YY(5Y`ܼΙ: --Yؤ](/~Z bq%ɗڅk~޼ܒwgIT8fhnB]K#mcyFY!6[ݎδ+<(iGj$@Hu=syc߅fX2\iCAI :7Tj>R|3/5Gr~CvJ6T)5”cHEߧeueYm@QI$>E&UibV7E,lLJE!^:  ~J.O1;D+E<${P<`Z#a' /#Ɨ"U*+-u}JnG\y{|/Iͼ&4HG㠓ޜPYmȸ LQCX 1c1:)'8(IԬzc{N7u~Ekvip1O/+ITx"?ܿEH5*ԕ)Eq=g\$>e%a5yb:FܺũʥhnE[ruG FEKcC1s~'rF)1^,VW˂6AO'o.~ EZ}& c1~+'B۹&Y3A- D|Q]r̡(u`z.fgrZ Wek;m3  Ec@ܳ5%9Z'5vʡW#1b$,ŶEB:̮"X<P  `SO2I-Mx*]s5]m A70. E1DhQu,7i>iҘ43jȦ}bA+nIR ӑvNG7e3DuΈZEuaԺZ ;W7|0~K;D725bܸtJ` Z 3S|Bm<}(k*v\aM%_CəoZ3MT X|y@WagXL(qaNCDF(h`Pb-` [{]_,ZhӖG\{dZ*!% ;8HuPBgv$Wa #Zd=IJ̤MaxN܈Bl,IeK-fg:"e@M 76LZh~*Y[P+qԆW[ j>K50: *{ l퓅;fK-X;Siq|L; 2e!wCұ+7Ŋ)0{8T=VaY[ XkoA:'lrH E3A4J4م׀kݫwOl_rAl"ף&yi `L`UJQh6])VePm%)v½>l>Kv٦x 0}{$ͯSK8YLXxU˓r]v(oALE9euʵ 'NlQ=S$%U7G]JHsXN,pHpJXr*=>uB`NMRt9~dm#clG(Tmz/YWSa.OUff%R?Qa.N#J\H(x3-jrʐ{&;I tZ;{n29O6UuQL ™쒹0?›gj*9e:#1z[ {I#-xȓ~t;۠;~K+QԳ/,1I3QEYݥ v% ;2m FnNf": : R&9O Kk;'̟lƶ0pO~$ 0m/Lh Gu>'=G$nϷ_2;`gc!YPw>^9^A(.H{ڛItcƄJB.im}mfhj/d5WӓȐ>nHhyc-OBYQavn$Frkb|݇a 0{rtC[[[nXє1l$~AD`B۪FIssuxX/.^IoU3yvuGQC/dtP#M9rivR+H0;ʧӽÁruwI}V'H.V@zfu>;-춲}&TG:co=&H.i,|1)es WUv۹!ŋ0wQB2ҮO:) $l)Ȋ0;2ٛp$C~MJܒD_rT:`/RzT˨f1tOKѵa}0> ;ZIjB([8:l$ ݱo}2WJ%ל? 8 єp7W^9[-6THdfۭ -|iXQ֮;,ħUh3\N`{D!J:rQSԘnx|JMH>CSQFkg߾ RaLE#Ur|YF%o-d;kz35jߴVᲑ< 5KI)^QyXdM䱝fwgmԺ2fƷQ5vH@2^R|XyE/ジL:|cyN7)=_>ވMϪ_Cҩt7:W<S?R :Ačjmq7Hz>+؃CMIb,b>WΠŠ/ m[޽x{Z`MVhZ-r n|a_[7 |_wц#p<3A*~&0ۋN=O/bti).332xE"im`V %UA>t? X62R=:; ެHJzcٝ/pB}A|,VlƂ7#T.. u$ i~cgI#t /7hKq"Z:@0& rg3?i2zUݶ~b `͡ޠ~[;JU4j#K;RRä ̥k"M?%1%hX!UmX{}@1F68eNݱp ŤR&a-7>}.It$TI@6pBEX/UM8/v],ꂌzBbM(y$\Xx?k݌-O7 v-UuC%$T4YтD+iqu0 EO 5/u]7ԟ-@aD1.E3T[HY|`&R؅VUGˬ]Dߦ#1Sm@AR8l]pc4nGV߾|* eXΘ|śNRn3f䯂G=M̿ee;1OI] $UN? nީEv̆L~F68fl5AnϮ.z GL ~~@*_fN3ƍe( Zho]8w4bDs1,8n[?]mHd!١`M9y{W34udB3Y:wo 1ģ:}OB"q%l1 eoϫC?QZgCbBtکShSݛȱlТÎmW endstream endobj 588 0 obj <> endobj 589 0 obj [590 0 R] endobj 590 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 621 0 0 839 0 0 cm /ImagePart_2136 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 441.6 511.649 Tm 43 Tz 3 Tr /OPExtFont9 6 Tf (1 ) Tj 1 0 0 1 443.05 511.649 Tm 809 Tz (\t) Tj 1 0 0 1 456.5 511.899 Tm 68 Tz (1.2 ) Tj 1 0 0 1 462.25 511.899 Tm 634 Tz (\t) Tj 1 0 0 1 472.8 511.899 Tm 65 Tz (1.4 ) Tj 1 0 0 1 478.3 511.899 Tm 649 Tz (\t) Tj 1 0 0 1 489.1 511.899 Tm 69 Tz (1.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 69 Tz 3 Tr 1 0 0 1 140.15 449 Tm 77 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr 1 0 0 1 143.5 417.55 Tm 79 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 79 Tz 3 Tr 1 0 0 1 137.3 386.6 Tm 85 Tz (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 85 Tz 3 Tr 1 0 0 1 140.9 355.149 Tm 83 Tz /OPExtFont12 6 Tf (-1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr 1 0 0 1 378.5 719.7 Tm 112 Tz /OPExtFont5 13 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 339.85 671.95 Tm 96 Tz /OPExtFont12 6 Tf (1- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 96 Tz 3 Tr 1 0 0 1 140.65 641.25 Tm 74 Tz /OPExtFont9 6 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr 1 0 0 1 335.75 641.25 Tm (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr 1 0 0 1 274.3 637.149 Tm 51 Tz /OPExtFont12 6 Tf (11) Tj 1 0 0 1 277.199 637.149 Tm 102 Tz /OPExtFont7 6 Tf (, ) Tj 1 0 0 1 278.899 637.149 Tm 53 Tz /OPExtFont12 6 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 53 Tz 3 Tr 1 0 0 1 278.149 622.299 Tm 27 Tz (.) Tj 1 0 0 1 278.149 622.299 Tm 52 Tz /OPExtFont7 3 Tf () Tj 1 0 0 1 279.1 622.299 Tm 87 Tz /OPExtFont16 3 Tf (1) Tj 1 0 0 1 279.85 622.299 Tm 58 Tz /OPExtFont12 6 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 58 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 58 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 58 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 58 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 58 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 58 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 58 Tz 3 Tr 1 0 0 1 144.5 610.299 Tm 77 Tz /OPExtFont9 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr 1 0 0 1 276.699 615.799 Tm 97 Tz /OPExtFont11 7 Tf (f ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 97 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 97 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 97 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 7 Tf 97 Tz 3 Tr 1 0 0 1 339.85 610.299 Tm 65 Tz /OPExtFont12 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 65 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 65 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 65 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 65 Tz 3 Tr 1 0 0 1 165.849 599.7 Tm 148 Tz /OPExtFont3 3 Tf (':) Tj 1 0 0 1 167.05 599.7 Tm 41 Tz /OPExtFont3 9.5 Tf (?f) Tj 1 0 0 1 170.15 599.7 Tm 64 Tz /OPExtFont9 9.5 Tf (t ) Tj 1 0 0 1 171.849 599.7 Tm 100 Tz /OPExtFont9 3 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 3 Tr 1 0 0 1 185.05 594.7 Tm 44 Tz /OPExtFont3 3 Tf (.) Tj 1 0 0 1 185.5 594.7 Tm 52 Tz /OPExtFont3 9 Tf (2 ) Tj 1 0 0 1 190.3 594.7 Tm 444 Tz (\t) Tj 1 0 0 1 203.05 594.7 Tm 144 Tz /OPExtFont9 3 Tf (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 144 Tz 3 Tr 1 0 0 1 138 579.1 Tm 83 Tz /OPExtFont9 6 Tf (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr 1 0 0 1 333.35 579.1 Tm (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr 1 0 0 1 141.349 548.1 Tm /OPExtFont12 6 Tf (-1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 6 Tf 83 Tz 3 Tr 1 0 0 1 137.75 516.899 Tm 86 Tz /OPExtFont9 6 Tf (-1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr 1 0 0 1 164.15 516.899 Tm 75 Tz /OPExtFont9 3 Tf (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 75 Tz 3 Tr 1 0 0 1 163.199 511.899 Tm 71 Tz /OPExtFont9 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 71 Tz 3 Tr 1 0 0 1 180.5 516.899 Tm 1624 Tz /OPExtFont9 3 Tf (" ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 1624 Tz 3 Tr 1 0 0 1 177.599 511.899 Tm 77 Tz /OPExtFont9 6 Tf (0.2 ) Tj 1 0 0 1 184.099 511.899 Tm 619 Tz (\t) Tj 1 0 0 1 194.4 511.649 Tm 71 Tz (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 71 Tz 3 Tr 1 0 0 1 213.349 516.899 Tm 120 Tz /OPExtFont9 3 Tf (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 120 Tz 3 Tr 1 0 0 1 210.699 511.649 Tm 77 Tz /OPExtFont9 6 Tf (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 77 Tz 3 Tr 1 0 0 1 230.15 516.899 Tm 75 Tz /OPExtFont9 3 Tf (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 75 Tz 3 Tr 1 0 0 1 227.3 511.649 Tm 74 Tz /OPExtFont9 6 Tf (0.8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 74 Tz 3 Tr 1 0 0 1 246.25 511.899 Tm 43 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 43 Tz 3 Tr 1 0 0 1 261.1 511.899 Tm 69 Tz (1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 69 Tz 3 Tr 1 0 0 1 277.449 511.649 Tm 68 Tz (1.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 68 Tz 3 Tr 1 0 0 1 294.25 511.649 Tm 65 Tz (1.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 65 Tz 3 Tr 1 0 0 1 333.1 517.149 Tm 86 Tz (-1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 86 Tz 3 Tr 1 0 0 1 337.699 511.649 Tm 83 Tz (-0 2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 83 Tz 3 Tr 1 0 0 1 142.099 511.899 Tm 85 Tz (-0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6 Tf 85 Tz 3 Tr 1 0 0 1 118.799 280.75 Tm 99 Tz /OPExtFont5 13 Tf (Figure 5.3: Imperfection error during the Gradient Descent runs for Ikeda Map ) Tj 1 0 0 1 118.799 267.1 Tm 103 Tz (case is plotted in the state space. \(a\) after 10 GD iterations, \(b\) after 100 GD ) Tj 1 0 0 1 118.549 252.899 Tm 100 Tz (iterations, \(c\) after 400 GD iterations \(d\) the real model error in the state space ) Tj 1 0 0 1 118.549 239 Tm 93 Tz (for comparison. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 118.799 205.399 Tm 97 Tz (another two different noise levels. When the observational noise is much smaller ) Tj 1 0 0 1 118.549 182.1 Tm 98 Tz (than the model error, the model error can be well estimated by the imperfection ) Tj 1 0 0 1 118.549 159.1 Tm 102 Tz (error. When the observational noise is much bigger than the model error, the ) Tj 1 0 0 1 118.549 135.799 Tm 96 Tz (imperfection error looks very close to random. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 309.6 51.799 Tm 86 Tz (109 ) Tj ET EMC endstream endobj 591 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 592 0 obj <> stream 0  ,,#@,,j`j`q+.9e1 vjL T&k\-t&K݈VHBS9!]5xE-ÌE&U8+yy|$.nGl_!{Oa;,pb؜$ Rqo KԾEuM#k9Xν5\LVLA(D19X CJ7rx;Dv^ { Eiu=8*cZ[QBE{'XC 8r0]αqNd^L^akڼ_G) Icm}|wp/qa&YRu&eQ~tދG[ck-; X=Ɓyd#k#pw4,heFКߑtKڒ/e_䄇Ddeύ叮䲢4?vvK~4BZlX|̯ko|1F&ZiWHy G|~&! @ξ,tMgB_!O :<^ B߻>F*BfTANl[_zbFKg \:.nk5r!+%_] 9ﻹ8CIdE}eh,G[Թa?dUzg}a &δ´(*JT/E=e٧{\jNL/Z[&i L/sGPwYD8;L7AIҭ߾삽*LeE6ЛX(ajLLGraؙ!`<, 5M\&c,V.B=P da +DfL;|ꓘjJ7!t_1eH?䕒Xi`,KHxaa9US5KOB%\ֱz紋mo|-YFEMTh􁌱ɝ嚶Uòp}瓳.' ^Y?ZssK7ꋧLcI3t3< {&άcr;źdA\!/h9ݍ ٞd:)gU<XJ)K$8{<45ni$HFuh.՜cgVWy ȨVpf!Ʉ;ƥ7+ ko}$y1Eq04.{}F݄P>N:Yh 4߭~tme"sh}Ź"7rimוvTXZc~dثH?D.]|,ydk@ _J'K4|kh}Qՠ2|qoJ6"at6 fenUE,5c#SM*')`NHOV;O~6};Zy@;X;?f.7uJ1To|ҙ K{:*< Ƿ BTդ!WyV4v<> ; mOhqo/d/.ߡ\8\rNcB 29fya`Yx E4# ]0<*s'#fTz ^V OVS@L*yZ+^Dfrh]RSV!SɯNWj{\9w@ݤa6sW1(BCgd˩CZAWL@5WLjlO&,:װŋB:V%_۔TE(.Mϙ! ?1njTxe %q[&p.;^HKf "sùƙB\K)RNjg qUO+j| D \ o "aJYhbo dTdvf;o=<j32X*n܉.gVɠpJ$|I:~}f[}86\q&juNId6Wi~ZG Rca{|O>^ThWႰm3맠b"^F (;ݾ6|M d#KPKpqU. ju@xeaըQ~4*oJ$A,AB]@TL_MZPPCB71QWsfii &=9$Yxd \иc\V'#K5|# 4a7g]Y7Y(eyn`}rq`Xر} :24EpF/1!,2~|j52upCv=YnE*EsR.tyZ%fR1dm﷕ /,yޅ⾙˕|Vm@3l5t Rf!-7xiPʕ jGu({ܫp$2@+f"Zބ, kKUrJ!,1VZC |^q}r!2KLSSP֫=IfޢKeGԮKi9h{N 3z@:y#wd+r+ LwV[Ե!+-P+L{'FrLapG~ ]tRJq00W v[365ќK黹D~U=jUd9|b _@?; ӐΠ "CD;Y1e~7M@>iTLb"?J4vUFy&t`o/ăuѴHj&;J (2QX09+w.])M6 `p}X`G؈uuiucVE"pGn snI$ R]ȏ^-5cn -s+ ڊecTY1wwJ)&&8tqKxxR՚3R ]V>V( ݣJC;Tێ̴sOsล&UA߰˯.8lWz80Ӷ bؤ/#{fUt9t/P"~a(N"*{_Ou)4q(GFX/3ff(rlQ_n"_9k dt1© EK4]Jl]`iq{Y42Jǩ /"%b~y7I4[ʎG We]D_ج^5,AT)z谦CHZCp kL {7I O,HjA_Q\ÿYhۍs K+q w00>Oٿk><=S5F [qZ& ŅXȤ:ʂT=rV*n,υ%_H-%/P)CLϡlFJ5a@_;*T;{f>cQW@z12 Z>Ѳǻ<_*!{碮60Þ&5˩@|t 'pa+AF\:Xl1=]Qmc7y%O(Wbʙ In"cmWg!Y7RpNC_}3_w61%5Ad f(M6:]s;„_䪋3Sas#JfgdY@, ZNGz{. JO" 4pIU( lV3 (rtR>@dG~_d|m_Pҵ; #v=(c:څhzL0i sg~A|SavxWSv P[Zh;e l߄,5W4Ù&srq"[&ɍfB[>zôBr?xκn/}@D߄ĒoudLo9 cIsfEܿ0x}(9nȐ]Xf0;Y Cuf5%Hv{FkA F-66tϢ %EC)R Z0Y~<uf|!r vrkz?\9CҋaR Bኳ(;UjKºD*UJNHu]y{WM䙪Ta P/!NrP|+BWZ e~2 gBGjǘ#w,E$ fQqRe5.-7wse)WHo_'ZS1Py֌ h#ב*hᳳCG f.lW Bt,#s~S'#} UгCZZ:r!aꨰ{˝HĿ(/zl^]0ӷ܄*pK碗 q;p3{C= Q^$e'H9Љxa }.*t=Ńe0p!o:YX J lCH:x1"VRD^Ӈ0 s]ڍǒB/^dDY)˸ɚạ ZSCVp ۸쥍u!"oZ+wi,>|@?LWr҄](MAt[W@D5}֫i*I0ኍשƭ> aۑh̸W%s>?Sʂ3)6F< PA@X_7E![׌]U=JC2]G|PaZyyeZ^hL+NgGf="lyy‡pfThmoX8rCylTTD~^%t8*@JStkxJ+JL̞ա۔vtQeNk?gJBaGa L=,tYбɉIڂIx$B5r 'jߦN-bmALtO3xsGg#%EA;Ԙ3C]U9zNL}z66\j""|]L϶d[^>`q|KvM"_7IwYķE+׎@;"9?mRKj,T:VyjPh`#*F8D$r;5[*ٜlWi _|^lR/_ \٨c(G~>[`縆;G2lʔ4G,]l}Wsn0RJ[axI($2EJWXcϏPGg:qRi_4(%"w7(Cy UR@Y9{Zoʒ 1JB\ &1Q\0׼[g`"q/2gIEe=njUHF/W>޽,C|EK>v O#*[ԱWAh|1s{`@,yWn[¸iĖvg){ kHssCT8EZq._jwy|fShL|#׸4X.e4xa,ᝇ'T[JE$Q|0\WCG,a2S|";7e%*P -vewb WDڣwZ5mnT&I_z|:#lf@^Kp@ y9tKځ䈎kKCL/ҺT$-"IIҲ01zv-f%,@  U7Lr$%Z\,@?jVFg^ope;s2ȅJAfA$CF,]Wo泖)`)m:G 4k:i2IL,:ogҐNJXfȹ6(Af,] 7]ϾֳQ@;ò.bCdf0%oW~7tR56G)Z%| $fWGc!tJwtqo A xoO-ӔL≎CV Lemkc1Vͤ\^؉dSjc5](>ڮP2!rl@1C?J YzW|UlS]Q 4J+piX_ލcax:|L=ȶݹY.@9WqMI#Qݟ5*oj0S{C>wvG0*#{KӪ1Q^*hXooj/7gJp|XxٖAWmjJڡd n9 =\.|1^z{6W=/F nvĶm qqzW/ X:HH18^Mt&aB'ݛc:+ZWe=7UWg 8jv=2ɮHծTR+P{3NqFRRR ȭ1dv.j]"4a[˭ӂFNeZH+$?|XҰ.єCx  =s~1;BtoN͏=pgZ.R +K΢Uhȷg!d[ԧ9YxҤjN6v \b!΢RT<#޲.ds.J~B7Ӽj/JMkڬ0|"ŏXc5/ts!2xn 'x߻,yAwGג,q$1~HNECQ.͘V>z*T?1;_q0q>cbՙV]o2PDwr,:{6{g%TM    հ4bFBdOSVpNp:F[2'K;J0V`eɢ..2K)4o+H=$X!%I<{X4@%|KQE L6ENA=p"ڇ0(zLہi7V?jxc̙8~z*km#gt8r黛in? 1`vH2kR@X iδe:KFnw^*Nsj%Qkdqj^I5Y0ز؝d_Ud%zL ,CѝPX?zN(;UgNh]bLD4]^1',]+9v}/-ou9ga/~ 6V&DoL>> B$ee6HJ05Ƿlܞ"$%",,53>C.g񆑰ͻu!ßg&(/𴳳CׯP,)(0F0/3yϞgZ'fUMN"Gv?SrWrϏ}$P 9_K5^5٨Mdyp~Ng<LyWE6vybcEYi*R^&&nl=s[M48D63p6F/,OQ9,IDZ_J~ Vm{yXUaM]Nhnn6;tW=D|[J"%k,V9BCǭ3cp,*0NNm+d!ً(S?Z8!?+@]f W ?!Nwqޯ}0{v1 X _c%zGWX~JӱR a8'JUU%KWB\S>e@3[h¢ |fЀʏe+6rݮq3fpMUNG2U4fz%av66[\8(im1uan| {fNnHm{q Sh>+f?86AxSB|xP/(~& bh E?~JZQeaX*N|eL[S6x`u,D po,UxVgD  !ĉSx'xJ{$!j9}xl#_*bR)фτxtU]d{?V{mNלYhw"qlPp iHKcnp,3cCS`brKsʩ^;FYUS&GR:uz}?vp_,ug2޶>7ʛΧ,6"3/˸ې{'J+S) m8AL&S> ʗɡM%7#1^_'Y7fUft$[Ou P AYƓYL"Jvb8Ǯ`ޤuMH_s)PSo,^' =LkIr"y ANnS^}S/8*h_ZV` MuE-]Nv!: 2îIہu]yGRsmjTii[[$zjS B-N#)^=EGtnP3 nkSUA!@=B$"ݹ+Z CS`K󿳔zUfdTЅm=@bS5uz -1Q) 6jh$Z6 a?\C[˭R6FO68x?Ƨ$G7ЄE֗*+&l1g!TtvnҜ|% zˏ*ϹtÞ^p)dԪO+RwUupXBws#kŏ :uDF= ٫&G#Վg,:gvmcApQ$<׾\ʺ-ccXr?rd?akK% |N_b~M0LTaZml#@0廊qT( }@5L6fJMtD5paXe'u Q] а6zC.:ȍ|l􏿅`h5X." mlA[*j}y 6)eOqAթ|J ץ , cg?4Xz<>y_7Vm"Zkٙ4΋NDWSax.?0CoUT&i)z- ȤgN__we-fC&fQ ?hqY85s]˚д=i$AS 2{gA%b?<ELoM߉췦d@ mϴnQG=Z&ha/2E:ɰE?}k:PIg[zcUmP ;id{t}R/CriD'!}PvsݘNm\83inS}x\$մ>b f"v$1sĠȭJ6<>_Tg|,\UZJRu)Lq -x<,Iqd+cp9,YKG}D8[ 6xi oj$(kQa5ktkҚ\+l}4)uKSUuM-PuYLdtП,FƼ7c։Z0_w9XOYHg& `Mq a֊eu:[xO<` ױb>/k7XwKJ v-yKv4PѲ$À83Nh낌мm 1g$rnBAa^(Ʃw%c" y˩P.L; ĐrJ=鏖=i:jn˺/qCò"C=w 4=^_ *BՒ2s9fp)&ְ7:6"CuLkiJ_5/YVU*lhBN[݄h'waZ7xǚY Sg:̘MP*f=f<#1LT-Qo] YmD9I8l#ОoPlC%6e s0G77u:$VѰ.`2OX FbI&ll:&A4SJ{( ީvBYE V ŭ쬹L.TL1>ct'-/.SS>erC8>@I  e&xQj@D |ӊb٠Ζ}}9"S |E7>et\y:wx=ܖ(+ 6 8V>'YY}}lZf}BI*}Ʉ4̓h`c;J 0K +P+CYx1TL4]uU} =0 ~vba׹跻6;w͆ -.<[#HfolL9őaq70枉aw)h#@>u<ˬń Rd"*<"I͊!>Arp&@8̜@>wVI!ȅ'.]X3#>  咝4ǙKprliH*ĦΨWM椻NG` t\bF*ٌ"B]l@1+Kg+z8Of8XUMɇ[OSrQE[++x[zT*Fg;DZ B"йܷ58' $J7Knr;sS:-7n%Q?Spk8!;n2jں%j+0IO\GF̙(:KmV,ʥƳdAԓBdsX@ 0 "p4Ih_Ůnln<:ҨT~R3%Q$]Z~s=aa@nϗNPjw^,<&jJ~UYXL\F1 \E|4%WD&u\w~?v<54Ҧ]L>^M]E4dRl,j#'\^:e'N@>ȥ~x{ӊQPEhVn,!x3}~ u6J.XˠJ![C{"+geцe3%է*P$ߵCqNMo4Gt4.+Y:R{m +V ] ڽ(/Oo$ DO&@BzF[MKE;E֞AE,21gzy/VQ Q 6</uBU=|&Ԩ~nDR ޒkJ}R҂(l@JNLPu(TK)Q4o͓DzlCT1Q.|(1xgu/81mUutz,~pz&`]WUËfUKr-tlJa@XF?wqE7dՃ)1f. B;*oֳ] ?#>6mf6?ᏰQ-o4ܟ_ C6V,,;usBP\x{.{Πl9!] J\! 80/BIyQbw}l_2=q_gX3H|Tb7Z_BXbze@++w&s$87jdb)Ċ`@5O)Oơ1?h e;Ef%bBz*;Фj=K~DKV ro@ ް4%|k&İ|-s4SŊ?{m~3SThx֢ TE40U73`,|4=߅;'HLUޡK@%HϳueiN +x;^?ν~7+Y"%ͦXJS_^IR >Voʄɡ ]sSJ eu4973WAfJ]KE^‚PfwCÅX:aJl/ }?av1Cو:ic1tᴠB*-jo3?wڄNusK-'ˡnqm`4!JF5͈IPs7|q-o endstream endobj 593 0 obj <> endobj 594 0 obj [595 0 R] endobj 595 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 619 0 0 840 0 0 cm /ImagePart_2137 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 140.4 642.25 Tm 91 Tz 3 Tr /OPExtFont10 6 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 91 Tz 3 Tr 1 0 0 1 144 611.299 Tm 96 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 96 Tz 3 Tr 1 0 0 1 343.449 512.649 Tm 87 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 87 Tz 3 Tr 1 0 0 1 332.649 517.899 Tm 102 Tz (-1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 102 Tz 3 Tr 1 0 0 1 337.199 512.649 Tm 109 Tz (-0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 109 Tz 3 Tr 1 0 0 1 358.1 512.649 Tm 87 Tz (0 ) Tj 1 0 0 1 360.5 512.649 Tm 877 Tz (\t) Tj 1 0 0 1 372.5 512.649 Tm 117 Tz (02 ) Tj 1 0 0 1 378.949 512.649 Tm 738 Tz (\t) Tj 1 0 0 1 389.05 512.649 Tm 94 Tz (0.4 ) Tj 1 0 0 1 395.5 512.649 Tm 738 Tz (\t) Tj 1 0 0 1 405.6 512.899 Tm 95 Tz (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 95 Tz 3 Tr 1 0 0 1 422.149 512.649 Tm 91 Tz (0.8 ) Tj 1 0 0 1 428.399 512.649 Tm 1980 Tz (\t) Tj 1 0 0 1 455.5 512.649 Tm 84 Tz (1.2 ) Tj 1 0 0 1 461.3 512.649 Tm 771 Tz (\t) Tj 1 0 0 1 471.85 512.649 Tm 87 Tz (1.4 ) Tj 1 0 0 1 477.85 512.649 Tm 771 Tz (\t) Tj 1 0 0 1 488.399 512.899 Tm 84 Tz (1.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 84 Tz 3 Tr 1 0 0 1 335.05 642 Tm 94 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 94 Tz 3 Tr 1 0 0 1 339.1 611.299 Tm 80 Tz /OPExtFont12 5.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 5.5 Tf 80 Tz 3 Tr 1 0 0 1 137.75 580.1 Tm 105 Tz /OPExtFont10 6 Tf (-0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6 Tf 105 Tz 3 Tr 1 0 0 1 377.5 720.7 Tm 112 Tz /OPExtFont5 13 Tf (5.2 IS methods in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 119.299 475.199 Tm 95 Tz (Figure 5.4: Imperfection errors after intermediate Gradient Descent runs for Ikeda ) Tj 1 0 0 1 119.299 461.05 Tm 97 Tz (system-model pair are plotted in the state space. \(a\) Noise level=0.002, \(b\) Noise ) Tj 1 0 0 1 119.299 447.1 Tm 94 Tz (level=0.05. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 136.3 415.899 Tm 97 Tz (Generally we conclude from the above experiments that the ISGD minimisa-) Tj 1 0 0 1 118.799 392.899 Tm 99 Tz (tion with intermediate runs produces "better" pseudo-orbits than the minimisa-) Tj 1 0 0 1 118.799 369.85 Tm 98 Tz (tion with both short runs and long runs and the IS Adjusted method \(50\). When ) Tj 1 0 0 1 118.799 346.55 Tm 95 Tz (shall we stop the ISGD minimisation in order to obtain the relevant pseudo-orbit? ) Tj 1 0 0 1 119.299 323.299 Tm 99 Tz (Certain criteria need to be defined in advance to decide when to stop. Such cri-) Tj 1 0 0 1 118.549 300 Tm 102 Tz (teria have to be defined based on the meaning of "better" \(pseudo-orbit\). For ) Tj 1 0 0 1 118.549 276.95 Tm 101 Tz (example if "better" means the pseudo-orbit is more consistent with the obser-) Tj 1 0 0 1 118.549 253.899 Tm 103 Tz (vations, the stopping criteria can be built by testing the consistency between ) Tj 1 0 0 1 118.549 230.649 Tm 97 Tz (implied noise and the noise model; if "better" means the initial condition ensem-) Tj 1 0 0 1 118.549 207.35 Tm 98 Tz (ble, formed based on the pseudo-orbit, produces "better" forecast at certain lead ) Tj 1 0 0 1 118.299 184.1 Tm 101 Tz (time, the stopping criteria can be built by fitting the number of iterations with ) Tj 1 0 0 1 118.099 161.049 Tm 98 Tz (the forecast performance. We call the ISGD method with certain stopping crite-) Tj 1 0 0 1 118.099 137.5 Tm (ria to be ) Tj 1 0 0 1 162.699 137.5 Tm /OPExtFont4 12 Tf (ISCDc. ) Tj 1 0 0 1 206.9 137.5 Tm 95 Tz /OPExtFont5 13 Tf (In the experiments whose results shown in section 5.5, we stops ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 309.35 52.549 Tm 85 Tz (110 ) Tj ET EMC endstream endobj 596 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 597 0 obj <> stream 0  ,,Дb7 \Jńo@s"\$<ߌ ,:ERGo~t {%cS/-vU3@}1}xOO^"3h#pNF|1:XQ1Ue#5Ё(?p5WGbljAdw+E#)~,60 1"!sJ~b)61Rh0 Fs{~1 [Ұ}ndDu8t.r͓ȿlK/]~KSk4R+ Ю;PUnYN@ 1\!rl~Ŵi39^z!+6μm֜sön?:m5: :pLtkJ4(d ADmM |FLu6QD Xl}_dzҎTWlČ0om(jMiP|;[~kL|BŚ*ߔ|с%Kaq`naN,*Ԯ!kT~C8z"3 8+;FVOjm$M~-M;(O;N?ׂ_+H^j{ZHU6:KBo}L $.Sk[u5AL8g YBbv֖l:nymt.Dupr%Q2M˳8ѕ}軞63򼮃^7%8@ӏqVSTJzMm/:XTAJp{N<u[qR3AP%h!ƴsi~n" L\i5%{I5űa冬w8? ;}}YvƙT-םtvEt?[&Jmh؏dZYTt A^)]1dUK KeLJߚ\ Dd` H!Lv&Zʖ@#6Yzq֒_)t{ŏw cq>1֝>㘯9=`qteXn!Z3V}'nXD;7rK=*oykWAt>Õ/fd13rDJ{`\۽>5ʁ5-'}ϨbU1qvp(qXٓی9RD1OCb x%(eS MBr([q6{5vRga%xrƭ~fhD ӰE"!>E T?aV%s6Fg_Rp9⧑Z90йyw6含[:0.җ9Mh-흾Q2x+v`ƣ6qYPXq}Xi o'','&j !uԻ3`v)IE02@܅:c7I0QRynpA2ɹ6Ŋ#Q'dp4\gs EÇnQKb]2l{8鄨D1G+XF;)K}#ekR@bg+t&yjכ0=xmy[<~T~ d)3*ъ/{xyAx+f!4y;hF&ҤCV^J>Kc4;B'{$86yaY9Y`x>FJ$az/=(#g Uqr8鬉f(\0)֙8!лg%r 3NPo7vL>h.׼?\LtrP8m YwB0^-''gex㠜N =5;M-\ X &Lc&y3@.d"x6ٮӲ( Cߜ*ty6FsƇID3YE:h+:Нpc4]?~I2o|+wh|} QU&sm%chxu?ęT Gi;eQd!l_|Om: +wh.*mEҝ00m^ZGQD*M'6xJ>W"-@/J]-!Q &-w-kraRZ:n'@0>vE2:#ry=۰;є"Ojr!>7 0Œ.UlWۗAgp4ӢI%S9n(WJqgh!7}"#F '+`t(:#\CQ~uHpNɄ z )Dw{$^c{+86N0>9:c5 ɜ=f.>{A aF{KU PPs*I,=f'@+ڳo%2MT`JTr-eFI_v޼J"R(? | 7ۏ5 |wB72H't`L螚_p[wC n$"thB^S'zf- ?S=u$ ,5%΁;k"~ѮۑzN/`P6ٷ7M \pm9/RwR ,vQ;{h0Cъ#b+v0e6mI֬e / NFU EwWYZ]?PtmB!,z 9#=RCCT=g|MP; |SU='(J!ކ *t]p0)#h:\(iͶybJl+^W$0 ^3Xkثw{fd ( ? 楷*_$dS_5l ;0MU7;RW-ىV}<Ӥ&ɫ\a"N&oR>*wu:um׌C`[eI^{j䈂SVe$ +@9~w 6$lMX 9 Ю S& a yD-^-No tD?iCl|5}.fM)?G]oE[rL_snTTмtm\tRr"AJr^eֳ`8^Gs+󛌌^!%$y~SIUX-+c4-4X@{VX\q=KF~_gk_bDDCX|EΕx6zw>B]0`8)Չڰڰ3?N&/z9N< A#Du !Co& s֚&6StmwE'blUGPwuל$@^dB$?w-VmeL`YifψшeRf6Le&%Ab뮫a҉|f;@r*]S?N~@nu/C[aQ5M[ U .-E5t rdQ;)dw IHKk{41j9eCCTRMIJi T8 Ӄ"f}.).i8F /i0&p4 o;fyf M.{$ԟZlR^|Dj68|uH/l > hbW))1`u|lT娷2#9YX:=G92dzxrߩ_p)z 1L ` 3)7U{jbM`dMuFfRj j*缞GQH0Ox 4͐D}Aqږ_ {]r0, u+d"Ckv4&a<-G]c՛f NRnkΨgyz"\\:އdkcz$Z=iJVY7fnjî#y$YΚ] ׌x&inmIy^'dL֨?sB6S2z7M[m(A2YBޏ3G(E'33ç!An7Mg9N#eۻ}z#AG큤L WpcQmΰOtU DGLX,ʘ/o9atŽDy%mBhr!|SϹdPw:">L!m.%# PY_-qxlRalR&BF!dLz'xvhWzA~þ8Vp};*$+x7[ hS-&Z5;-ϊkL>i5} h9`)gŜ9])6BdMuqdYW۹d?_(PYJ4 ˬUÑDtW}<ޔO yOl!6賫)} Ze>&m0$HC˰33I;ٗ(@)4O{yQI;8 lxT# ySTGD/:7rRDnK_' ΔП#u^6"9RezG=qFtY~ 5ٞsbW]7Xȇw˞gy Ք)xyi"/ nA<^X̚%J9SPUHo?%DҼg=SKv Kc_\ s:FSCVr&rWM@hF2rfn/j@E9rD@VEcJ9 NP0b'E?{Xz滓%e(:p=8IRb^GbI'KM1R'(x:!HSE)I,wu$7/CN.;DTDW`:q #"_Ճq<Я P& MUuW'фN*Ԫ θ'F̛O"^>C@#]f!}[j ΃I.3a;K" ntˁ{K 4 sqA]߆%'ؔ ovk5~hxMp+iW%/^]aa8RZL:r39ZCgl_v^aGEiSYܭAΕ&_Z@ԘfLRV#A;n U^bHRb-k?| ^xl P`jNOqٜ)\4^]3@ W:l& QAFcއ'E2\5^)/WVqP@Jj 㣗DhM r7 VUO2{ e>M/֍n\{w 7lg4%uvGl!͒d*[_zJJQ ƣ:4MEh4ex}dC8foxhSVOӏ]؃Y;"6ҳXw d@ DRPR8]Q%XT6!X-nxgN I}~pR󧌡)'>䋗§˫:.Sf)֫]ܲD+~ȍMH΂X>exw6M n@E3 =ƈ$^QӘL A _'O8E'QVuK%X&+˺r 9BQN`4d SRR ?[&ť9ʕݎBY V09YBvoy9-$znZ#TtH9 qrllk ~# Qa;UN\2Q9wc}S"h6wfgg*kBeH0)5捷X*WBGm2(cd٪}5>Xށؖ2‘C[zg–߉9~E;JLQZsMEvɗ>4dX~}8d{q`ETeIuѣWUbƚ3]C).e. h6XY# R@Wt̰`8Bu3 :{E $^*iIFX{O@ʕ+#dD]=qCOX+9.j42YAD{N)} sz!%ڑpZJjIÄQwqB K'^&( rzݚbyV@hYxY/nҢ#=qd]_ō#lb>IS4?Ƅ?`N2;$C%YlHXo;6 oe.Yק \h pW aO$nsS/>#|LPLlK%~X-^Pφli`MxY|jO@:YdLX@LQ51o,c~?*՝[Y~_I\N /[ؗdTI節llU\RENp00*l)wcR\J.&GN+:d9/Rsc4q؄WVaΌdLФW<Vj>Mw'0DK lIkS~0[M$p2P&`ٌ_URfA–*/8,p ;²'TLoИ+H7h^bߍ ><|e#,7< LEbmsF;ƛ x_hORĵ֤LŠXMR["YHO;{\d XW%ks/³<#u7M°'_Do>dB*DE}-F[Qe˗cj,=tUSEѳgXRjnQ[4[В]sF@,":旡ccjy lj+3ʊ!l \6҇I=yHDc{P:LL4eJQH,jI;3:drQhQX g~ ^q1#:CmhVsXK55AꓳӖ a}p, f:*m s :va-B S' t]h_$G@]+qaӍv]\ku;Bv)pT%I0fݾ,gzPpψ9t̷P٦W/i޹ϼbXѻr"T1>=0 =Bt|1cn $wTŦ/5Hmn`f`39)_r>: `Kg2E71v.;>Ϲ&x62ĖVʄ'x=gڈ<6y2`PgJ.1%!9W\=,oYӭcU1sbr^t#,htAa":"V]۵YkC¿9@# D!+4kX܀bl_]ݒ[JtŨp%Dq )bSBWfsif wVzgIJ~dL@gv1þb(ʪP@6L& 9VA*7r)0ptx몦ʚ(mUe7@g\N? 3z&B)-& 3e X'jq8}ʊBVLX& 3)Bƙy^DΦG*k ur>fcه0SkhzSڢSIs997d( {&.dd鐈`$͙p =|(2qp CxYDJi2zЦMTjrqYLܣ=hYwq&"NT(s |;::Q lEqQV V?DZ-$Slty'rݖIDx5b4;!H_. ǣ-Se⃞?Xv 4fj?5Ԏ+Cᡲ{-*G:E@ SOܛ{7 6!|Ќnd yHWXbp](PKL,T$)X=dqC8I CI9r~@Hi`E !<u$@jh&ih(8K!93}*gMN畢ry<h>,@II+>M(7znZdXJ_]:նw hu=)/J1oZ@iۘMJ3}(1 ?h0`dˎ -(ą? iL5OR4rgJ}H:@I&B^4AH3peK_Tlǎp6F<::)7Nzp@ $pq6)XVe9#,m`!3饃E0*K4g=9iik-mwpYvyWÖޮk@.i!IxؐVTmM؁$Ρ"&U hꂂ6xTtM ꄘ9*(=}~3!Tw`!׺W8YB#|R4O4;;Xalr[vpBة()8ě/) ֕%6x ۄ57(庪ŷZc^j)Tv3hth$5mjvhvO {b͜o*|ԿGqXiꓥl.hpr}&=5-"Wj6z]?y<> endobj 599 0 obj [600 0 R] endobj 600 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 619 0 0 839 0 0 cm /ImagePart_2138 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 305.75 720.45 Tm 115 Tz 3 Tr /OPExtFont5 12.5 Tf (5.3 Weak constraint 4DVAR Method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 115 Tz 3 Tr 1 0 0 1 119.299 677.5 Tm 94 Tz /OPExtFont3 11 Tf (the ISGD iterations when the implied noise becomes larger than the standard ) Tj 1 0 0 1 119.75 654.7 Tm 92 Tz (deviation of the noise model. There are many potential criteria that can be used ) Tj 1 0 0 1 119.5 631.899 Tm 91 Tz (for stopping, here we use a simple one which no doubt could be improved upon. ) Tj 1 0 0 1 119.5 608.85 Tm 95 Tz (Most importantly, in this chapter we demonstrate that using certain stopping ) Tj 1 0 0 1 119.299 585.799 Tm 90 Tz (criteria can provide more consistent state estimation results. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 120 533.25 Tm 110 Tz /OPExtFont3 16 Tf (5.3 Weak constraint 4DVAR Method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 16 Tf 110 Tz 3 Tr 1 0 0 1 119.299 498.899 Tm 94 Tz /OPExtFont3 11 Tf (In the traditional 4DVAR method \(see section 3.4\), the model is assumed to be ) Tj 1 0 0 1 119.299 475.649 Tm (perfect and the model dynamics is treated as a strong constraint \(90\), i.e. only ) Tj 1 0 0 1 119.299 452.6 Tm (model trajectories are considered. In the Imperfect model scenario, in order to ) Tj 1 0 0 1 119.299 429.55 Tm 93 Tz (account for the model error, one should apply the model as a weak constraint, ) Tj 1 0 0 1 119.049 406.3 Tm 90 Tz (rather than as a strong constraint in the 4DVAR method \(76\). Recent research \(4; ) Tj 1 0 0 1 119.049 383.25 Tm 95 Tz (5\) shows that applying the model 'dynamics as a weak constraint in a 4DVAR ) Tj 1 0 0 1 118.799 360.199 Tm 91 Tz (data assimilation method outperforms the one with strong constraint. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 136.099 336.899 Tm 96 Tz (Here we give a brief introduction of Weak Constraint 4DVAR \(WC4DVAR\) ) Tj 1 0 0 1 118.549 313.399 Tm (method. Differences between WC4DVAR method and ) Tj 1 0 0 1 396.699 313.399 Tm 98 Tz /OPExtFont4 12 Tf (ISCDe ) Tj 1 0 0 1 437.05 313.399 Tm 92 Tz /OPExtFont3 11 Tf (method are dis-) Tj 1 0 0 1 118.799 290.35 Tm 95 Tz (cussed and comparisons are made in both low dimensional model and higher ) Tj 1 0 0 1 118.549 267.299 Tm 90 Tz (dimensional model experiments. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 119.049 222.2 Tm 125 Tz /OPExtFont5 15 Tf (5.3.1 Methodology ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 15 Tf 125 Tz 3 Tr 1 0 0 1 118.549 191.5 Tm 92 Tz /OPExtFont3 11 Tf (The weak constraint 4DVAR method looks for pseudo-orbits instead of trajecto-) Tj 1 0 0 1 118.299 167.95 Tm (ries that are consistent with sequence of system observations. Following \(Lorene ) Tj 1 0 0 1 119.049 144.899 Tm (1986\), the weak constraint 4DVAR method can be derived as follow. Given a se-) Tj 1 0 0 1 118.099 121.899 Tm (quence of observations within a time interval \(0, ) Tj 1 0 0 1 360.25 121.649 Tm 113 Tz /OPExtFont6 11.5 Tf (N\), ) Tj 1 0 0 1 381.35 121.649 Tm 76 Tz /OPExtFont3 11 Tf (s) Tj 1 0 0 1 386.399 121.649 Tm 62 Tz (o) Tj 1 0 0 1 392.149 121.649 Tm 75 Tz (, ..., ) Tj 1 0 0 1 411.1 121.649 Tm 90 Tz /OPExtFont5 12.5 Tf (s) Tj 1 0 0 1 416.149 121.649 Tm 75 Tz /OPExtFont3 12.5 Tf (N ) Tj 1 0 0 1 423.1 121.649 Tm 91 Tz /OPExtFont3 11 Tf ( and a background ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 309.6 52.049 Tm 86 Tz /OPExtFont5 12.5 Tf (111 ) Tj ET EMC endstream endobj 601 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 602 0 obj <> stream 0  ,,zzb7 p JA+Ҏh<=` ) 2GxӨQp|xq(l..MViJF Y %ϟ:⺈x\ZT W#`>\(#5]JVK[a"^$(O C#U?[}x6a0m8Di7̧aL~5#uDlv*E)'b(h"kՇ[vtaF.w\"~jbSp';;K*5)^]ѣ`G1r75GlI:LODp9v^PhΑ[2_s1yWJzg\Qp 0 k-677cI:3.ha%[N.@dqVi u;jkD:ů=tte$UUӳ}A]AQz mr`&'Y*a޻ SR]Hac$G3AsrsjfA\;z lBJJKiry/-W}qf+_?4 U̩f| ͎[UѡFDi=1o HuruS陾VJY `ފVIA%\A0XBz@穧j%+'on'ButB57|5 rs)EmJ3uϗR*t}:~ABy ac/o#ןB+ I ZhD6 G=6DBY=1"2]Iʅ@j1ga{6y $!o)=lseQqf]pʇbzͻg?cy{aL#?B3շkrkg1Y;c-w{mO  `3.-P]gqXD]e=EI rc֎ )-\nܰnt.ʉXojcs Balk%j4\HuN,6؃ҽ9DvKteF^b[ɞc$ŴYo\̍)"q̅L[fjRlCv,߀d|#?ۤ@٪0<B08fds; $w卟VZ%W{"Q7ױivQRH3;V^po49ӭyPv._yg6Li.9}I1[3|=%h6?5- \̓nI-Z{hJ9hAvH*{K=(N^oxxBa)zq\.W-UD|[7۶kzzMNIIJD@y?Ed?gM pO^b`aXEO[2ZOX4z@)k5ܗ?3 1 {)>67{Tª w)"A@!rBʾ|XwZec lITS?i),2kIqi"㿗TotpO&[Z7/XqfѩA h7 kںK ݂r$⥑Pb/mLCU?>Ӓ=~Aܥo٧*f\ kD0CHUJ-sB'<Y tx\rEYGA9Yښa= 8,Dg joBMU|dHd҈Lf %C[-j$YOV/!{>Ů'R1E3s9@6+l*Xݍ&Ҡ\+$WM.lU vf_tYE`ގX;\gy8~ Kl%Q߁;`%5) R+:gfs ѼQ;8xK@>䝢I|l4.ASUzDV p-eCQVWE:JvVj4ƥ 6czB Vv@!l NٟMA[\+>o p_y\mY̘ͪ}Oz+\! KpZGLf'SH15JN Н"E24azZ}puIQ"/ >.u<М^w=qSܾ ?:QWlv+|Q @}lՏ=*Z'tP6_paD;XP*0~<ұ)cz K^Cx|1Џ>,.$櫼gjְ܁6h֝,Y7(ΆǶ尪ɰǒ45չwW,+°"]l([L@vB/Z@}q*_ l7vS %7x!i fedhŎG'˵Z@pWŔ &;ɲfjC;'?tY|Bz^$sjMC/D&EĦ}SSR=;PaZ>_7czN"A#yRAW$.Gd"Ɛ^gΔIi1^!瞏" iQ$gp8map y']Ops0kFY@ UNyKs6UàQѡl eS/-_v,+JBo4+ũ2~h?B18ƋuF3R^um o C!bЙo pg!:),|Ki%nemσnޞ''yhN%&2;4N"659ܳ'%lMVϗ>'Ҷ+35V7/k,ɸ uJs7]-xRP9%QdwH Ep g{' ]{hN7K:Z'_0QM(3~E-pY+~heb9Qx#Go^1pVjM:s.) u8,V9h;KPPnyY7Ӥ!hn8FȪ:"?5~.$ڸ[|(2]Xo xo<6ٛܳWϧ=ֱWq%4NڲU$jU,ǴQ3%:%+[ԫ>0y鴳⨶IJäϼt*طl<ɈH* ,=i@=Y""  {/(e‘ QإTdN=/{ހ œ:P4[鍉R,ݯBY9`Gl˨&[#AH@{C9|ެ49;f * vmeF2qq^$O?*-y)ds&ȦpSh1EeWG>nJ&pW\MY}S_ݱvug!y0 Ƅ4ݲ'R=.HfvOYg_^+ĺgK ġ~ O#\211Y360||uYȁ *t0A4<&pPEah*G*,3=A#/[!$xh{w*Wr SrB;SQH柀x>{@kGq^$8~c,"샷: -_8҄i_iwp!^R2&HEH_R  T  /ٽk& Ck`(XE>P ӕpKly%MA4EåV94SXuC[Ų_0[(tw% W-фgn^dxQ()OF~RGtn̨xѠD !Ti$\H=]_(NlČo%I]wʃ%=bS:]7?E 9%Z)cވ?j+vA%ɂ۞r,UMR/m4tZdAxGxx4u<<+ԟ]1iC'& Jv3SDPռN>#!DRʠb3"M6+r)`g+ !xZV;ΔB}ٿ>je~մsWi UJJܕ::1V<* me8iPVO{@g=! YL+|"5]. { O<KKtyPzXafc+F1W|6nySjXdS[ ZC0x=&D^C]Bz 0 W6 ,I7& cED 8Zhf04S2QI>kkKu$RY0r -d>=/òٔǂW)'oUfXnDL:jwhoCPRa )zlBl߿Q38ƍه6)P usmRNXSΰR묻ecΠQSh|3}b .eIlQUϖ 4SMKm+7]^5Gէ$y=qiۧ._u,;lNG*6Jz晶`Ьy+/^Pk0^^[)WadϢ_=h5sP+bR`>h t(*z -ˢ@c`=R 3b^YLnK[+Ֆ@RlD+cۭf0P5'W)8urI{*>m+z0ͬ3sIū䐫=\Q &cyzkj 㑺V9pD p)y0Z-6B8R -eZ.^9[%mFM 6"٣/,Q_w{=3k{G`!ْ uBdX3XY@`j&ٕ" k.Bof@]O^\ly"Ž%4ߥ;hle>@uMAccI("kZ E.P$gV;4$@HN3z(b n,>ǯl*KVo!U-wbMoOEEuJ/qƮBEg{``jWr 5)MAG)l s&*s} o "WE>I誛ZXvht.,,5zmar $fLD7n H3 l)HS)nPD-k1߯@s$g #a NĉQwߩmBhCY K@XtV~`3 UYEBc +> :DʛW&[xXѝCMu%}N gShi{It_q2ћwۡYPmq %]*s* p ZCBHtx\$dF$Nevh$Y橳Rp1KT"z vۋJ͍_%E{Т0cШeGE##?xEkl $q 1l,kP<3h6F@jxgUlhc9)1rȞ“%gdͬWsGz-HFWg eŸ&@qh9 /W_APСI4 D"&iV#OȾO/m@'$pl 9=BwFp䴓@s]d MWɐ 'n52AB#+g. !\ WSDtC,5RGAjv~?UZc<(~kp펷~f hRk=o:&Dw#og%R endstream endobj 603 0 obj <> endobj 604 0 obj [605 0 R] endobj 605 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 619 0 0 839 0 0 cm /ImagePart_2139 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 315.85 300.899 Tm 128 Tz 3 Tr /OPExtFont3 7.5 Tf (\(Xi ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 128 Tz 3 Tr 1 0 0 1 290.149 309.1 Tm 60 Tz /OPExtFont3 11 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 60 Tz 3 Tr 1 0 0 1 279.85 300.2 Tm 141 Tz (+-) Tj 1 0 0 1 289.899 293.25 Tm 70 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 70 Tz 3 Tr 1 0 0 1 306.5 720.45 Tm 102 Tz /OPExtFont3 11.5 Tf (5.3 Weak constraint 4DVAR Method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 102 Tz 3 Tr 1 0 0 1 120.5 677.5 Tm 89 Tz /OPExtFont3 11 Tf (state ) Tj 1 0 0 1 148.8 677.5 Tm 61 Tz /OPExtFont3 12 Tf (x1) Tj 1 0 0 1 155.75 677.5 Tm 45 Tz (0) Tj 1 0 0 1 157.449 677.5 Tm 37 Tz (, ) Tj 1 0 0 1 158.9 677.5 Tm 102 Tz /OPExtFont3 11 Tf ( at time ) Tj 1 0 0 1 205.699 677.5 Tm /OPExtFont4 13 Tf (t = ) Tj 1 0 0 1 227.75 677.5 Tm 95 Tz /OPExtFont3 11 Tf (0, we want to produce the optimal estimate of the model ) Tj 1 0 0 1 120.5 654.45 Tm 91 Tz (states x) Tj 1 0 0 1 159.099 654.2 Tm 52 Tz (0) Tj 1 0 0 1 164.65 654.45 Tm 91 Tz (, ..., xN. Assuming the observational noise and the model error are both ) Tj 1 0 0 1 120.5 631.649 Tm 94 Tz /OPExtFont3 11.5 Tf (IID ) Tj 1 0 0 1 142.55 631.649 Tm /OPExtFont3 11 Tf (Gaussian distributed. Follow the maximum likelihood principle, the prob-) Tj 1 0 0 1 120.7 608.6 Tm 102 Tz (ability of x) Tj 1 0 0 1 178.55 608.6 Tm 54 Tz (o) Tj 1 0 0 1 184.099 608.6 Tm 191 Tz (, x) Tj 1 0 0 1 209.5 608.6 Tm 86 Tz (N ) Tj 1 0 0 1 216.5 608.6 Tm 102 Tz ( given xo and s) Tj 1 0 0 1 299.75 608.6 Tm 54 Tz (o) Tj 1 0 0 1 304.8 608.6 Tm 163 Tz (, S) Tj 1 0 0 1 328.8 608.6 Tm 82 Tz (N) Tj 1 0 0 1 337.449 608.6 Tm 114 Tz (, i.e. p\(x) Tj 1 0 0 1 386.649 608.6 Tm 62 Tz (o) Tj 1 0 0 1 392.149 608.6 Tm 191 Tz (, x) Tj 1 0 0 1 417.6 608.6 Tm 82 Tz (N ) Tj 1 0 0 1 424.3 608.6 Tm 122 Tz ( I ) Tj 1 0 0 1 440.399 608.6 Tm 145 Tz /OPExtFont3 12 Tf (4) Tj 1 0 0 1 452.649 608.6 Tm 43 Tz (; ) Tj 1 0 0 1 454.3 608.6 Tm 71 Tz ( s) Tj 1 0 0 1 462.5 608.6 Tm 49 Tz (o) Tj 1 0 0 1 467.75 608.6 Tm 67 Tz (, ..., ) Tj 1 0 0 1 486.5 608.85 Tm 86 Tz /OPExtFont9 7 Tf (S) Tj 1 0 0 1 491.75 608.85 Tm 120 Tz /OPExtFont5 7 Tf (N) Tj 1 0 0 1 499.449 608.6 Tm 122 Tz /OPExtFont9 7 Tf (\) ) Tj 1 0 0 1 508.8 608.6 Tm 77 Tz /OPExtFont3 11 Tf (is ) Tj 1 0 0 1 120.25 585.299 Tm 93 Tz (proportional to ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 173.05 523.399 Tm 85 Tz /OPExtFont2 12 Tf (e) Tj 1 0 0 1 178.3 523.399 Tm 110 Tz /OPExtFont3 12 Tf (-) Tj 1 0 0 1 185.3 523.399 Tm 104 Tz /OPExtFont3 7.5 Tf (2\(xo) Tj 1 0 0 1 202.8 523.399 Tm 168 Tz (-) Tj 1 0 0 1 208.55 523.149 Tm 104 Tz (x8\)) Tj 1 0 0 1 221.05 523.149 Tm 109 Tz /OPExtFont12 7.5 Tf (T) Tj 1 0 0 1 226.55 523.149 Tm 77 Tz /OPExtFont3 7.5 Tf (B\(3) Tj 1 0 0 1 239.05 523.149 Tm 64 Tz /OPExtFont12 7.5 Tf (1) Tj 1 0 0 1 243.349 523.149 Tm 101 Tz /OPExtFont3 7 Tf (\(x0) Tj 1 0 0 1 255.349 523.149 Tm 189 Tz (-) Tj 1 0 0 1 261.1 523.149 Tm 165 Tz /OPExtFont3 7.5 Tf (4\) x ) Tj 1 0 0 1 283.449 523.149 Tm 1866 Tz (\t) Tj 1 0 0 1 328.1 523.149 Tm 129 Tz (\(H\(xj\)-si\)TrTi \(H\(xj\)-si\) ) Tj 1 0 0 1 434.899 525.299 Tm 153 Tz /OPExtFont2 7.5 Tf (x ) Tj 1 0 0 1 440.649 528.1 Tm 1995 Tz /OPExtFont3 7.5 Tf (\t) Tj 1 0 0 1 488.399 520.299 Tm 88 Tz /OPExtFont3 11 Tf (\(5.13\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 291.35 498.449 Tm 42 Tz /OPExtFont3 15 Tf (Z) Tj 1 0 0 1 297.85 497.25 Tm 156 Tz /OPExtFont3 7.5 Tf (EN\(xi) Tj 1 0 0 1 330 497.949 Tm 168 Tz (-) Tj 1 0 0 1 336 497.699 Tm 137 Tz (F\(xi-i\)\)) Tj 1 0 0 1 369.1 497.699 Tm 98 Tz (7) Tj 1 0 0 1 374.899 498.199 Tm 146 Tz (C2nxiF\(xi-i\)\)) Tj 1 0 0 1 442.8 498.449 Tm 63 Tz /OPExtFont2 7.5 Tf (. ) Tj 1 0 0 1 444 498.449 Tm 41 Tz /OPExtFont3 7.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 41 Tz 3 Tr 1 0 0 1 120.5 452.1 Tm 89 Tz /OPExtFont3 11 Tf (Matrices ) Tj 1 0 0 1 165.849 452.35 Tm 97 Tz /OPExtFont3 11.5 Tf (F, B ) Tj 1 0 0 1 192.949 452.35 Tm 84 Tz /OPExtFont3 11 Tf (and ) Tj 1 0 0 1 214.55 452.35 Tm 91 Tz /OPExtFont3 11.5 Tf (Q ) Tj 1 0 0 1 227.3 452.1 Tm 89 Tz /OPExtFont3 11 Tf (are observational, background and model error covariances. ) Tj 1 0 0 1 120.25 429.1 Tm 90 Tz (The weak constraint 4DVAR cost function is then derived by taking the logarithm ) Tj 1 0 0 1 120.25 406.05 Tm 91 Tz (of the above equation, i.e. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 130.55 338.85 Tm 123 Tz /OPExtFont6 7.5 Tf (C4dvar ) Tj 1 0 0 1 162.949 338.35 Tm 76 Tz /OPExtFont6 15.5 Tf (= ) Tj 1 0 0 1 176.9 348.199 Tm 88 Tz /OPExtFont3 11.5 Tf (1, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 88 Tz 3 Tr 1 0 0 1 175.449 345.1 Tm 108 Tz (_) Tj 1 0 0 1 183.599 345.1 Tm 135 Tz (\(xo x) Tj 1 0 0 1 219.849 345.1 Tm 81 Tz /OPExtFont5 7.5 Tf (b ) Tj 1 0 0 1 222.949 345.1 Tm 1165 Tz (\t) Tj 1 0 0 1 244.8 345.1 Tm 83 Tz /OPExtFont24 7 Tf (1 ) Tj 1 0 0 1 253.9 345.1 Tm 1980 Tz (\t) Tj 1 0 0 1 292.3 345.1 Tm 90 Tz /OPExtFont6 7.5 Tf (b ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 7.5 Tf 90 Tz 3 Tr 1 0 0 1 219.599 339.3 Tm 143 Tz /OPExtFont5 7.5 Tf (0/ -"0 1,X0 X) Tj 1 0 0 1 292.1 340.5 Tm 77 Tz /OPExtFont3 7.5 Tf (0) Tj 1 0 0 1 297.1 341.25 Tm 132 Tz /OPExtFont5 7.5 Tf (\) ) Tj 1 0 0 1 315.85 341.949 Tm 113 Tz /OPExtFont3 11 Tf (_ ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 113 Tz 3 Tr 1 0 0 1 176.15 332.35 Tm 70 Tz (2 ) Tj 1 0 0 1 180.949 332.35 Tm 2000 Tz (\t) Tj 1 0 0 1 316.55 332.35 Tm 66 Tz (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 66 Tz 3 Tr 1 0 0 1 342.5 340.05 Tm 105 Tz /OPExtFont3 12 Tf (\(H\(x) Tj 1 0 0 1 367.449 340.05 Tm 66 Tz (i) Tj 1 0 0 1 371.3 340.05 Tm 75 Tz (\) s) Tj 1 0 0 1 394.3 340.3 Tm 66 Tz (i) Tj 1 0 0 1 398.149 340.3 Tm 80 Tz (\)) Tj 1 0 0 1 402.25 340.3 Tm 73 Tz (T) Tj 1 0 0 1 408.5 340.3 Tm 190 Tz (r) Tj 1 0 0 1 416.149 340.3 Tm 66 Tz (i) Tj 1 0 0 1 418.55 340.3 Tm 88 Tz (-l) Tj 1 0 0 1 428.149 340.3 Tm 104 Tz (\(H\(x) Tj 1 0 0 1 452.899 340.3 Tm 72 Tz (i) Tj 1 0 0 1 456.699 340.3 Tm 76 Tz (\) s) Tj 1 0 0 1 479.75 340.3 Tm 66 Tz (i) Tj 1 0 0 1 483.6 340.3 Tm 86 Tz (\)\(5.14\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12 Tf 86 Tz 3 Tr 1 0 0 1 326.649 326.6 Tm 113 Tz /OPExtFont3 8.5 Tf (i=) Tj 1 0 0 1 336 326.85 Tm 89 Tz /OPExtFont5 8 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 8 Tf 89 Tz 3 Tr 1 0 0 1 343.699 299.95 Tm 117 Tz /OPExtFont3 10 Tf (F\(xi_1\)\)) Tj 1 0 0 1 386.149 299.95 Tm 92 Tz (T) Tj 1 0 0 1 392.899 299.95 Tm 106 Tz (QT) Tj 1 0 0 1 409.199 299.95 Tm 46 Tz (1) Tj 1 0 0 1 414.25 299.95 Tm 127 Tz (\(xi - ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 127 Tz 3 Tr 1 0 0 1 300 287.5 Tm 112 Tz /OPExtFont5 8 Tf (i=1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 8 Tf 112 Tz 3 Tr 1 0 0 1 120 258.7 Tm 88 Tz /OPExtFont3 11 Tf (Note that although the expression of the first and the second term in the cost func-) Tj 1 0 0 1 119.75 235.399 Tm 90 Tz (tion is same as the original 4DVAR cost function \(Equation 3.9\), they are different ) Tj 1 0 0 1 119.75 211.899 Tm 91 Tz (in the sense that the estimate of the system states x) Tj 1 0 0 1 376.3 212.1 Tm 52 Tz (0) Tj 1 0 0 1 381.85 212.1 Tm 89 Tz (, ..., xN are components of a ) Tj 1 0 0 1 119.5 188.85 Tm 95 Tz (single trajectory of the model in the original 4DVAR case i.e. x) Tj 1 0 0 1 437.3 188.85 Tm 65 Tz (i ) Tj 1 0 0 1 439.449 188.85 Tm 101 Tz ( F\(xi_) Tj 1 0 0 1 484.55 188.85 Tm 80 Tz (i) Tj 1 0 0 1 489.1 189.1 Tm 98 Tz (\) = 0. ) Tj 1 0 0 1 119.5 165.799 Tm (While in the WC4DVAR case those estimates form a pseudo-orbit. And it is ) Tj 1 0 0 1 120 142.5 Tm 90 Tz (assumed that difference between x) Tj 1 0 0 1 289.199 142.5 Tm 65 Tz (i ) Tj 1 0 0 1 291.35 142.5 Tm 103 Tz ( and F\(x) Tj 1 0 0 1 336.949 142.5 Tm 72 Tz (i) Tj 1 0 0 1 340.3 142.5 Tm 91 Tz (_) Tj 1 0 0 1 346.8 142.5 Tm 80 Tz (i) Tj 1 0 0 1 351.1 142.5 Tm 91 Tz (\) is ) Tj 1 0 0 1 369.6 142.5 Tm 95 Tz /OPExtFont3 11.5 Tf (IID ) Tj 1 0 0 1 390.25 142.75 Tm 90 Tz /OPExtFont3 11 Tf (Gaussian distributed with ) Tj 1 0 0 1 119.5 119 Tm (covariance matrix ) Tj 1 0 0 1 210.5 119 Tm 87 Tz /OPExtFont3 11.5 Tf (Q. ) Tj 1 0 0 1 228 119.25 Tm 90 Tz /OPExtFont3 11 Tf (In order to make difference from the real model error which ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 310.8 52.299 Tm 74 Tz /OPExtFont3 11.5 Tf (112 ) Tj ET EMC endstream endobj 606 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 607 0 obj <> /FirstChar 0 /FontDescriptor 608 0 R /LastChar 128 /Subtype/TrueType /ToUnicode 609 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 277 333 474 0 0 0 0 237 333 333 0 0 277 333 277 0 556 556 556 556 556 556 556 556 556 556 333 333 0 0 0 610 0 722 722 722 722 666 610 777 722 277 556 722 610 833 722 777 666 777 722 666 610 722 666 943 666 666 610 333 0 333 583 0 333 556 610 556 610 556 333 610 610 277 277 556 277 889 610 610 610 610 389 556 333 610 556 777 556 556 500 389 0 389 0 0 1000]>> endobj 608 0 obj <> endobj 609 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Arial-BoldItalicMTOPExtFont24) /Ordering (UCS) /Supplement 0 >> def /CMapName /Arial-BoldItalicMTOPExtFont24 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 13 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2C> <2E> <002C> <30> <3B> <0030> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5E> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <2014> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 610 0 obj <> stream 0  ,,j]YiuAKe_<$zFk5/?A^v9 H8Xhlz[W %sPA/N9lr5p:x`[V 5˓b|:^'0\еuir4^. iDz3`S>NπlfoQ2Gfn y ; 0}7.2TMs^*$UC$ٚ^H#EX7[lj#& >C1b+JwHZ nL Ho7)%;s&fRpQ-dIe ՠׇb] $u@*B.wg-v7J~jQQNxB=Zqf>nL ĄVJ?ݷ*$S\2n1LgnI6x%0C\/:<oI0"NrbߐUl_2I%T3j-r(փ;Z5G2 j]n7$4w1Ѡ[x1 9FMYssľkL늶|jQKN?w r(@N";*'b_\G??)kǐ㈴C,D#4NŢ~bB6;3KZf 2Rv῭[̝/J5EL(TXu1oExϏ9/2P])'$(8ݾl<_ xx#kcy{5p׭{[QybpUPZ,1" }2`b'.!XT gT}L볉[%of^Wy;%cbiT/[j.#2,<`3%jEyKA\3PLN.[*Y7cxb4@[{Գ^E0m6]'kQf|ߦD4vb8J8 ʧA"~/ ,tnL-Uv F ;ks;dģ Q\!TÏY\!6D kWm6Ց#AͿ?X"~XmhF@cHXYu! d(Qo0`Pm:-:A<8^E}(7E'3-pSZBZ` @J{DWxusZxbfmٷ=ݯf_HT2R?୿n  ,z'Tl䬖qۨX'qz,ݣLt$ym!+IFЎ lO=}NgQ?8(7pv|DzV4tB 8tJxyuSȀ|^ NhxOv)x~8A /Tx^31bmTC')92ZoP |hzFlM~BM'5GBE.,0Q[klLZS+[f\1#g ,aU ^Gd27((Ai #`sn5VxzB~pj:6L@䭣`K3U]p&. @-݆)|o]5XM_L_GElps subߖc[?SNdS 3 ˌ`٧~ A^ۯl}?ˡ@@7v_zna٠l}U:}شR-f/-G];yx\ FޅnǠ P˽77Y-uexˀ.C5wq.,kN-qX$1xe<ۊW d ؈ /z.-ҙj0˪<`GU5):A6{u/#y%/<xdzJJǍ=d*J&OP^}/$!YķMLE=J1\yz~`'w$}_Q䞗C4)J"KcTTB{( }Cn$,!jrOrja]W 0UU/0b_8]Ÿ6wO]U%s2Y\*[.'4ojx5x,@4<Q@qPCpRUN5IWecS&96("uLb yX':ۿ(e굃O_ҏkR78!*Ke ,lX7iMVٺsMOrWFlB>Cgy8(yn%L0Hh!&c?[f/Q ׋zzz_⫀<2^x G+׺I;wW38/ }hwݹ -Jw4Jh|z~JװD8yUbGp׹:(%Ǯ2ԓ7cF?k 3> rBs!zq=KUcօHwiOVE5j`PȫiԽG>V1}!7E |UW3oMfk}G }$yzc{8{0ĆH,kxDfo@:4<1Z1КOp59Vyi!,㵤B9,"v #x/KLJHKi}IJRlڛe\n]D F0Yd97떑nϧul3`ڰ 22u2Lp`_TkBjC l6n(^ۚK{%YwHY.h,fRi61:'bI8Tnu`/Kwb.O:ɴ/\xpojJDU?%4vqCeOEB^)˗?ŝ2<Ҩf!:>;}"J5 oj~!+h]0<nmޜ:=JFfwCAMZbs(G \ѣm6VLB: T&+9) P+oBoG3x3{`E0&BݫoK V?WNH[ۏģk5bJ^@{|YH1ڔ2Has m+~G 2{0?逡/ؿ+muH<\ gg)Ey pu#w "T4%O{Ba ]ý;ӽdZ ;O𬎯yoh=tK(%U68=*f6aK-=9KӼ)\# m/ WQjvL;sc$u66O:VK+&/E /N[ȫ偻i- dۃ}'_˸aY,]hk}Rw=_ ]&[Zh‹늸As~<+t%;bUƱEq_6'Y!õp ^F olpn2n$;#52-I`\1Fא}hVeu 9-ӐC|ل |.^ANm't~dCkHZ@i0Hmv-htUGq:: #DJ AHr΂ރ{#s}:qBcƾ0Tc` ~r^Q}TID@\ -E"m]m GQ1 L-ƝoeRu: < jlj]h_,#cw\N)9#ѱL 7k(&=}3Of;}p|!l̕rz1>ˈzXE ZqX]5YFm0 U3vXs/m7u#qiiSN[6nwvB"?&-k{W@Ql`SeBbDsŚsݘ<’"kM D.@1ፁq:qcecjӜG (xio}R(p.'cOX7PZH}R1AI5{FCag ڻFⵞӮ뙂H0Bm(#9aZv8;3>4; qx_It3 tEn1_uODsgK^E" ݵ$` O%]%`kdDsqhO1L軝<܈Jt]Wckksm ZJW.":w? ՙ"Z8fWSC@ۘK|C@r8+O$BR2MPp뢨Ag0A~y\|B-0= 8Vb4*?q>+˶<<]L\Jx2ًP|uu/@U xH'&ݷ uj4 ?^8:r\RO_D:@~j@hOBpSm~$P(UxKeH&Ip^R}`\QGP~)1.!ZB ):S9N^U+"h/TZRC'|$1At ٪l3Kz$Ftpn-VYr0%2\ ߭aNM)0dY9i_ٌQH3nNb{Z(wC .E?~:D.p7zRMFn3J!_@{FQn`9f2hꡌ5 jmԔr4bF0+lTO9z*H}B\d+PZf:y!H=黊<HΓ%eL _a |;r5DBYT9$nݎ4t`f}3Lth@zҢ+k_O Õtd @[@wKpD~~ e}p5}Ы-b{d]hi$Dž#KLp%UlM"aŃյh =?܂CI]<VU9@8r?ȌU2X &!1KUCNqcvjL.0Doà1a|pٌX0KOyr)wf"q9Ԟ^9mO2PΣB1qI+bl%͊ߦ_    -?ƛ!;kx7:9)xkiVIF8^vHu6-48M[꘎TFAǀ`J *ZB}U׋l9HAt2<9\lU'Q1Jߐ'wa#E#tU&ͰIzˊ=,KzQ2Y${jGC<w?ċc&3vx'0gMU2.=z3HoRS^WݖZմcoUXA7]U:K>0hK30^D=dQX4_x?'%Zlw|cX=cZM7da8}#= 7K#zG%MȢ; dAyKu5QT)j:9Gތjh!b{Ռ"t*?dƶF!jfQ~㯖k7| еT]y?6,lN+2 FNJNnO?Xy3bI s>lѾt bzeNffU38"Lu#ͶmT6!JO<ݽ-K+Bnѭܔe aj lv\0ѭ;R Ko~I];ۏAZըY) }3&B/PPL>@`2`"xq:o *{;TGlz#V]~iTɐszq[2wcl1:CcX^ot QШ>9$U%Rٜ>J.`;*/<{Q"t5"dA(a~%3ZJ7坰~j!۽ٱL58:qb 8\@\&]:Sm$*ّ9rL$[(Cۺ*(9zwLUBRQgDxz%Jk?'- XQkcW ҏDeBf?Fpbu+Ml}*gu/q3Z]Jf<>>ܺX|J0utd҅Ԛŷ̝h*\ige2t[88fqγ&Ed|BU"&P1{6Uy֮#]K潋R% j#d}~:w )wn$ RqwFJT4BZQX% *QxBM3O+apIU{L03hFȀ؊48b4?1%sY|=WW(z.֑BEf )TMjs=凹g? vzH P J噠ՙ godҶ:Yw d,bEНY N^^Y~<[J^i$M|P?Tlq:x{Nd#x#1˭ZCǶ31> D2w mjb/nUg71cx뮓 YQtrc_\9L@s;ӏ':PE^22Y}n! # UBN'wtJAVVL^DD5PR݄Z,10TM7eT@JWA`ؤS%Soۧ7} - 7\e1S$zY#H*+IQg3J!RŵS H\S݀&GNf*?g~~&V1Hj)+,,<&T !|0)*_%I΋Z/*$NvVKw=Q9荒|S!@&ȳ:z3!)<_3w1 fZpL.pZG[ssk {aOFJq`:2hc]$!6f(_qoGP(p lr<*(u Dpc$- P+hm->qaeK.-1ʈzܿwD1aqE c l<6UO G } d[ C4^i :8B1a:3Y }sKf~z'bسg%nKDdy+@c-9 1Og5W3O(L=A׎G _WmUgZ 2[gp8%&ći׸ =)EnϲB3Tse )$stJZ#Z+m~"Ԇ>\Zc{QXc}4G 3ayB8oմ+xFgfSeخ.")qV_Vm4L G0\pqm=Br` U_-N=J5PSR endstream endobj 611 0 obj <> endobj 612 0 obj [613 0 R] endobj 613 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 621 0 0 839 0 0 cm /ImagePart_2140 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 307.199 720.45 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (5.3 Weak constraint 4DVAR Method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 121.2 677.95 Tm 112 Tz (is ii F\(i) Tj 1 0 0 1 178.55 677.95 Tm 80 Tz (i) Tj 1 0 0 1 181.9 677.95 Tm 96 Tz (_) Tj 1 0 0 1 188.15 677.95 Tm 95 Tz (i) Tj 1 0 0 1 192.949 677.95 Tm (\) and to be consistent with the terminology in the previous sec-) Tj 1 0 0 1 121.2 654.899 Tm 92 Tz (tion, we call the difference between x) Tj 1 0 0 1 303.85 654.899 Tm 65 Tz (i ) Tj 1 0 0 1 306 655.149 Tm 96 Tz ( and F\(xi_i\), the imperfection error of the ) Tj 1 0 0 1 120.95 631.899 Tm 92 Tz (pseudo-orbit x) Tj 1 0 0 1 193.699 632.1 Tm 55 Tz (0) Tj 1 0 0 1 199.199 632.1 Tm 193 Tz (, x) Tj 1 0 0 1 224.9 632.1 Tm 82 Tz (N ) Tj 1 0 0 1 231.599 632.1 Tm 96 Tz ( which is expected to be minimised by the third term of ) Tj 1 0 0 1 120.7 609.1 Tm 94 Tz (the cost function. Generally WC4DVAR looks for pseudo-orbit of the model by ) Tj 1 0 0 1 120.7 585.799 Tm 89 Tz (maintaining the balance that such pseudo-orbit stays close to the observation but ) Tj 1 0 0 1 120.5 563 Tm 93 Tz (with small imperfection error. Similar to the original 4DVAR, the application of ) Tj 1 0 0 1 120.7 539.95 Tm 91 Tz (WC4DVAR is carried out over short assimilation windows as increasing the win-) Tj 1 0 0 1 120.7 516.7 Tm (dow length will not only increase the CPU cost exponentially but also suffer from ) Tj 1 0 0 1 120.7 493.649 Tm 90 Tz (the increasing density of local minimums. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 120.7 449 Tm 107 Tz /OPExtFont3 13.5 Tf (5.3.2 Differences between ) Tj 1 0 0 1 309.1 448.75 Tm 115 Tz /OPExtFont8 15 Tf (ISCDc ) Tj 1 0 0 1 357.35 449 Tm 109 Tz /OPExtFont3 13.5 Tf (and WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13.5 Tf 109 Tz 3 Tr 1 0 0 1 120.7 418.3 Tm 90 Tz /OPExtFont3 11 Tf (There is some similarity between the ) Tj 1 0 0 1 303.35 418.3 Tm 99 Tz /OPExtFont4 12 Tf (ISGDc ) Tj 1 0 0 1 342.25 418.3 Tm 95 Tz /OPExtFont3 11 Tf (method and WC4DVAR method. i\) ) Tj 1 0 0 1 120.5 395.25 Tm 90 Tz (Both methods can be applied to an assimilation window to produce an estimate of ) Tj 1 0 0 1 120.5 371.949 Tm 92 Tz (model states \(analysis\); ii\) The analysis produced by both methods is a pseudo-) Tj 1 0 0 1 120.5 348.899 Tm 93 Tz (orbit of the model with its corresponding sequence of imperfection error. There ) Tj 1 0 0 1 120.5 325.649 Tm 90 Tz (are, however, fundamental differences between them. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 137.5 289.899 Tm 97 Tz ( The WC4DVAR method forces the pseudo-orbit to stay close to the ob-) Tj 1 0 0 1 148.55 266.85 Tm (servations by the second term of its cost function. As the imperfection ) Tj 1 0 0 1 148.8 243.549 Tm 92 Tz (error brings extra freedom to the pseudo-orbit, the pseudo-orbit produced ) Tj 1 0 0 1 148.8 220.049 Tm 98 Tz (by WC4DVAR might be stay too close to the observations and the dis-) Tj 1 0 0 1 148.55 197 Tm 92 Tz (tribution of the difference between pseudo-orbit and the observations, the ) Tj 1 0 0 1 148.55 173.7 Tm 96 Tz (distribution of implied noise, might not be consistent with the observa-) Tj 1 0 0 1 148.55 150.7 Tm 95 Tz (tional noise model. In the ) Tj 1 0 0 1 284.149 150.7 Tm 100 Tz /OPExtFont4 12 Tf (ISGDc ) Tj 1 0 0 1 324.699 150.7 Tm 93 Tz /OPExtFont3 11 Tf (algorithm, the cost function itself does ) Tj 1 0 0 1 148.3 127.399 Tm 92 Tz (not contains any constraints to force the pseudo-orbit staying close to the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 311.3 52.5 Tm 75 Tz (113 ) Tj ET EMC endstream endobj 614 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 615 0 obj <> stream 0  ,,mmj%;/W-Y*q+֘\Sʣzq*bvǼL+ٖ.^$ׁͽ_TcV_KHii"n :H,b kgmh:ŋ?΅`$>dEL|*E*( u`1AA%ٲ< uӇ% B׎#k$^A4 ]CmFDg]W#yQ``ONY}##_?~`xp1e{@_\&`;Uϙ- Ch:XvmHۑ}bE gAמm?P;E:`ބksVCy}f 2,]:<7elY&vg2RNq𗓑Z<_͐VS+V[K;Ǖ8/5U]~yJ~쑣0\j*4n+ {U0E9%XJ@6I*~5yɿә^7ij: jw|WK3>* zTn7yQ\ta#U5 p/\&R \)i|;}8.1XD[sW4m B2F0wf6 x=+*60&-U Yq/|J"eu]ڱiD^\@b[=ePNYy:.0{ f {t &+h㴾U֯g'cJkfd);.)@3Wk7zFvwdRk@<ʔ!Vή;zws%%, iTmX W3/x ~~@i/V(|4)t>Ed#&n繁= w;w8o"ċ/zdq(f^^\@٬I{B _]CEtJkA%yoq4;ֱU#6ˊNVᨬ^t<ȉPdxP$Ƿ!A[uз]TI,sEm&44{Ba^PED8<4[1~E٨"<7))!͓xkȗ1μ{]q&p_-,@؁}M0'n-y LL~8c1]b4 Vf'.r;pvC~_(rYt!wemGm%}v-K-?}ܷ%Oz-:6A_X22APˌ]y C.řyl:ײrɗN<]k) LQRJ'tas`S :SntOֿHV" /1+5R KN*=ŭ}}I7MP bռ&-G_knc^gؼkJm_1"QIҤ/'7;DWiF0߂}RfFM6땡dcMuf Yq@gi")=·XZ^ocJ08֝cW@AAfQ י;.g. É?_:ZCUP?Հ!Uct)D{gB`QCArDRHn'z#A|'ym uau#^),[+1RHE\QBST 5s_0\.9t`C'G[vO@IlJF ;W?'::አ$s5xcXΖ#O(}7 SKc\^1<ؽcrE6P{c2mQ3vmUwE@vxIӍlT Gl2J3S͖7[@,_t?. 4[ÊY㇫ ?o'"uKdiƾ|*LYl2e"ċnlG 2%3V2c&`+uYhTxl2{9 1ć: \DT13"pT%4%C){^T]!ڎ0-Ҽ&ܟ<CQtC~<- kz(N)&:HhAbOXcV@'s?`qVNHj_ݟ  o%1+^?~F-,YFR aƭ 좵o| 5^YU9wY ډ x8zϥn-$eE7/f+lFeFbHT%>v-[ቜ NVDf @$L6A'XΫ>xɪI7:kr,87~}6 |'ҍWv5q4|"LpX"P{9!۸b /H_<Y;4KMjC ܇&4CkJP˹$~"%daTe? }5L-j.u#Z~bk"şKKt-뙰: e\RTbB,V-GAe>e 55-a QuNSVӠ#? WaÓ= BxFg[YLk~%TD-%s>\B+j4f3I]ԭb[Q_TLIMt)X=d .V/(j򌑿|q~{?(—5]ڿRZ99cNy|[ܒiR><|U|ʥ -7ԜDj\G=t#"4e}ێZ .%r?s@vi4ghXڒk>s~9;%1e[i{(sJ F?jc| t#ųy>OVp8p^Ew"&W%Ɣ }ioЗ sY{\2 t4ꄶjmC];X6g0K B2.Uk٘`#~uaxX0b%/?X J6,p+n5 ;Y~D5\t*="_~O^sT?8) :΍z D-Fߪ$pQY'Z[ٝ Ne"~w3φO[KN,=E [ Bk3 Ūm9S6G üwΩ}AK:s2‰u< @CG6g/P4߮?&`W(@ǎٰ\EYW|$فZs`6kŠ/6٠ Y%JJ]=8)ʄyZCQIGy&'z-R70{3)-y3%ժV,d 6Eu>;m QцAԱ a7FI!U..pZ/έ\p+_/̥FWϋi7!iiۢcc5e%xD RHELs* GI.⟜jwɄiX+cѝ8s7Gy_ '[:r4Q)-8r o71<+Ed^]ա}aQw &(KͳftfhKћ(45rSpG}G Bo1?xKŸhΟz-Ωt O ^?2,(~ 6U ukTɢ@e=f?e%>踤/,M,d},ΖNe9kl2^;nua)U2FNhm&CgY[Y kW˼C;€"V]Y>Ius0tr3+m$-2u*z]䠝&n\84aTO!U1ҀDj9 $A-S&8_UNlc> rҕYM#*`"uanY -;zR-6EAh]4qj _3{P3Ӣ܅Antܻ5-b(Pr ~t8)QOEkJz?Ƿ9oHN%k_^6Mull@ ?S쏏d` d65oypHX7)eT_Gog-^zf|m L髊qu{s-un&GաVKf\+!=2S+ KjvLS)/\e}w(m,~^iG X{9y/?kK+C+h "&RT3Ɛs3ُ9Sdמ2e䶷§&֪9\臸"۪v|ZO O"Yu6?w:M ?H0zm7ǧ=e[͏U֡J ø` O!0{SV+a A+q {4Ugp2m+SmQ>Pg D~-R`I{&3NؠdQ'7hyKTdOǾF(fB`s'.Mbf8#Ov2z4"[j)n Òhѯ猃W )Ս7+Ũ`c@ Y\;? }qtʤbF9Hq"5gJI1@˜'PRgȾe92nCmex '+BV/>ߘJ܋|݋3?lmEw.-D+쭍{n o~{w(>PVu:!0Lc_R+޵4ph6^IIzPkGҍBWk Yo&3V0- p)3KUX+})/z |>s0B aSRDoogYXh2eucJ F\֮z4  "Jn _yx/HO-{Ck*;aZ19fH'6Yu>;$r b (V@WGD[F/ѯܸDk`Cn|0JKWgKtM;.b(kLg\9Og }|63]#iexaU61)>6GǫÑ 8Ʒ?EpjG©#RVBО2l7;1B<*}h7yuuL RuAǴa2e tپ6Ͷ2[S*kZe K׶U?kl^aE/2a4;gu}&v|sI98\1ί,*žDf oicX.4 e-[/27n:1{Nl(! ?j)wѵ֜Xg\P>ʳ|@"{ZNQeQytco,i/dѵO( xcgWyProV#!Ji HxP=ggg:'st94-t! yoj3R^sqۋ!bu:;,i8"9UUfd/KhY >$)ć)1e_V͂C3ЩFy8II^/+G'\= 3O5#qz[|3XgJ$g OA' &ÎUεe췠xz-!(FOzx@%r$;(m0m#:&nȯ$5I{AbV:E .Esd.AeI`|nזiC 5@W-,Wyw)ij94#$EOCSbc2 (¨_7-OIFH>w"6։&~:,W Hx+-`ÂO!)jWݫ{(Oe LyWk$vK3>1ibl]WM*w&. V_-mMl5s0N JA"cՓO;c6h0x @_uP-7^jƐ-4Y gt4N\MZ0?_fh9/kwK12.hXАu23p2)_TlU endstream endobj 616 0 obj <> endobj 617 0 obj [618 0 R] endobj 618 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 620 0 0 839 0 0 cm /ImagePart_2141 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 308.149 719.5 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (5.3 Weak constraint 4DVAR Method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 150.5 676.75 Tm 93 Tz (observations. The observations are only used to initialise the GD minimi-) Tj 1 0 0 1 150 653.95 Tm 96 Tz (sation. By setting up the relevant stopping criteria, the implied noise is ) Tj 1 0 0 1 150.25 631.149 Tm 91 Tz (found to be more consistent with the observational noise. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 139.449 598.049 Tm 99 Tz () Tj 1 0 0 1 150.25 598.299 Tm 89 Tz (Both methods produce a sequence of imperfection error besides the pseudo-) Tj 1 0 0 1 150.25 575.25 Tm 91 Tz (orbit, such imperfection error could be treated as the estimation of the real ) Tj 1 0 0 1 150 552.2 Tm 94 Tz (model error. In this case, WC4DVAR can be shown not to be self consis-) Tj 1 0 0 1 149.75 529.149 Tm 95 Tz (tent \(52\). Within the process of deriving the WC4DVAR, the model error ) Tj 1 0 0 1 150 505.899 Tm 92 Tz (is assumed to be IID Gaussian distributed. Such assumption appears un-) Tj 1 0 0 1 149.75 482.85 Tm 91 Tz (likely to hold if the model is nonlinear \(52\) and can be tested after the fact. ) Tj 1 0 0 1 150 459.8 Tm 95 Tz (As we discussed in section 5.2.2, we expect this model error to be space ) Tj 1 0 0 1 150 436.75 Tm 93 Tz (correlated and not necessarily to be Gaussian distributed. Even were this ) Tj 1 0 0 1 150.25 413.699 Tm 94 Tz (assumption to hold, the covariance matrix Q has to be predetermined in ) Tj 1 0 0 1 150 390.699 Tm 93 Tz (order to initialise the WC4DVAR cost function. Without knowing the true ) Tj 1 0 0 1 149.5 367.399 Tm (states of the system, it is impossible to obtain the model error covariance ) Tj 1 0 0 1 149.5 344.1 Tm 96 Tz (matrix. Therefore an estimation has to be used. As the imperfection er-) Tj 1 0 0 1 149.5 321.1 Tm 94 Tz (ror is the estimation of the model error, we expect the imperfection error ) Tj 1 0 0 1 149.75 298.049 Tm 93 Tz (produced by WC4DVAR is IID Gaussian distributed with covariance Q. In ) Tj 1 0 0 1 149.5 274.75 Tm 88 Tz (the ) Tj 1 0 0 1 169.9 274.75 Tm 109 Tz /OPExtFont6 12 Tf (ISGD ) Tj 1 0 0 1 210.25 275 Tm 93 Tz /OPExtFont3 11 Tf (algorithm, no assumption of the model error is made and the ) Tj 1 0 0 1 149.5 251.7 Tm 92 Tz (covariance matrix of model error is never needed, the imperfection error is ) Tj 1 0 0 1 149.5 228.2 Tm 91 Tz (the remaining mismatch after certain number of GD minimisation runs. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 138.5 195.299 Tm 99 Tz () Tj 1 0 0 1 149.5 195.299 Tm 91 Tz (It is shown in section 5.5.1 that the performance of the WC4DVAR method ) Tj 1 0 0 1 149.75 172.299 Tm 92 Tz (degrades as the length of the assimilation window increases while ) Tj 1 0 0 1 482.899 172.299 Tm 109 Tz /OPExtFont6 12 Tf (ISCDc ) Tj 1 0 0 1 149.5 149 Tm 97 Tz /OPExtFont3 11 Tf (does not. In section 3.4, we discussed that the 4DVAR. method suffers ) Tj 1 0 0 1 149.05 125.95 Tm 99 Tz (from the problem of local minimums when it is applied to a long data ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 312.25 52.049 Tm 77 Tz (114 ) Tj ET EMC endstream endobj 619 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 620 0 obj <> stream 0  ,,Huuj%m*]d7L9m\z;O Phxasg`Z('> [p5:':!?B J3wd+a`#>f?s؎[qI9?SP'}w}ǏGEKQM jehwH*j90WU-AQ|p mV<),4u12<8 =bxb@wN wk %2]K1>llegˈ} -AB1] J +zӇG2uAc<}C4@ӤAÖX2sIb**ЏULWdI}f'jNt0T)q1#0E$`C?ɆV'jiS/A UVߔpwL7!(r>b ͊ۙd+a$N5,7H%3`9V[*ZEi}70)rI&\a kCdf`s[pf򦕕[8!< 5ղG/|UO+dSpyEiJP9[,I+Khr}D$uXd6V?&R72/GҮtz+8MxNؓ\4XK:J>M!E9bz_ԳSʵ@8 ]nsU1k $Zɛ* }<l9rLY8eS! [ XԴ^SA8T_SAdWǒA>a`NjVl53!]7lMF)il8T3 3K9-_[(&[7&oM @[6єa0Dia2>b"Om,(k1yD;MH|57;Ņo5cE>=D|>\#( A-z+ӡJ̨tF%0`b3̴27S[hw )"!?YZJQAIU ;t@Cq?px ܴ)ŻU A< ,3>DsqTJtMdmzo씥EQukаċϮ75.~笗à_oA `)[ltK}J 9,f7~WE[X󋉻8bB9a Ogb5dWmQ࿒8i1NrՊu:8O#Nc8= jd>?+,ݚ꧿o/ۀ eqoK-Dݳ-6CwB6z*XtQ* ;n6ͬXq軵4L=K$Qyg9FRoJVI wElq'oєd8T %ffW2QE )qb/-~ hݖpYK!Ar?!Kk8;Xڏ*1;7笁Sߨ69!i%H%Q/mMQ#*_Yzg~Ȭv׈Oz3%sLOb$iENY᳾Xji >^Fid*r;eoNqI^ $MpoԧJJ4kB1R(?%Z`$ogou5+  _h–X?¨gcfh˔\ :˾d_(nV*,N: Oqv!rzhj=SH ]L;A0RԪFtBbΦI|ހkQ}kXQ@J\{F%3qkyN],TIHFd8`庋m0:Klxu$7@bJBI;hT0 |l@jɔ0_&*9ga@2ܘ'3Jq7TM1l'#Ͳ2fA'#y>$X)2Z_=j]cZ5|Y Gk56DO@Ӌx8\'1 wZ!A>8>mxFO?krJF@="hY&g]g1ga._.nߝ䴓}/S_\c2c}lTd5ӓc3]SM" k呴4}DggR!oaBtǶ2_'T6 >xtƼ>] ͉u'EfHt9Cqb즢 N?E|/*-/z=Ī n L^ Co[ i<d{hGj9<3727gu]Kq=u .S4KnW.DiV1!4Gea/s'82 {~jfU|)Ћ8;nyԝq+@nLݥs{;$y0" 8M#7tġt! N!v6֍nZѰ'ᐏtf1h>S#/[xC-NS2 *w>59bV.UmiީVO~&€gEib z rxz ͎౸L4+hP=w8)n@Q,ChHZGLiˬ[ъ3ӡvV3prR ^`J 0xTxvx'z-_ȃ{I M#6W6pr &.7x:eJ]REO*7EL y4`I5 !~RG(:U +\͌hngʽL9|(GF=mY7* 9mRT1[םͮIx?i#'/>! <[4ڿx.Ľ-@a#>uB*GpD#3|9RCR+=420~ FNqTnĿBvE#5\b4@Ib69~Pga,^19pΘp!dbh۬%S˲}ڦph^F?TNҁ祩7 3q$wu|_}˩Pſtmq-z(rdg>ctKL"d* X7T]w=c&tk fAY!QP/{uOӏm@PͶ'ulG,ޭ`STa5 n`^0pIԐ [d\ ؤ3ΥehQInwE|rp&mZ?W b`_>Un7]o>T+:VB'C) ( ɱ2i'f Rcq}!c|vvP/=\hIN~oȄ|qezЇCMb}~4{L@kNӿSנMW}X.";s) H[8&ɁBbS՗3l0t9en] ;3i =C=m:#4n\F=1>tIi3 ,  /u'eѩa$8qB 1c%+00<]e\j!!5 CB)V v9C mpbsl}/:mtW3;Q!~Ƙe Jt4F)7|iЄ%ȣ4f,ɨB_םApŜTf8m5l;9@ R"1 /he9n}:Էe:KAQa3*+J X'R E6AD94.f&йu`JAc|1 rPȮMBbaKO90:r:hPn1 ."Uω؀E\"Z& a! zAfv{I>_y_ p]B,$pY<`k'-Y%I"F=M4>-+ۼxF].h$/WrF%:G6ܣ.&)>4 (_땽1xXHy{ՍU??@ȼR4k [@/qw Zϸe?:VN'+F^p~u!CoA:|7a-%R. DBOyoD׭bЬjҬDNhPaE?WTun#)0> !l]wP*]W̻]EN_#5#MMį lx*5y@LGmHYLLN8,%TZZZ-Vx;IS5 ZO3 [dă:ZmX4= Ӵ P`Z⸖S`ӛ]EA̍b'nRm0KhfIz(" 'B *Y& {0-RX3P(L8<+easL^P " sUyW9;ge︻MH]+CI&mSi:bw)U9N xtCI!s#/è_)fAPՓjZiBCډKY; r0}C|X]3U{(/]q߭}-f{< 1Q+٦bIIhU?[usZӂFp7 Ō\/sc8}'r6 9RC\ S4~̧eF40mx[Yɂ> (2V O[b4@=gDZJ[Pn/Ѥ9GiT6q_L|ve#_VC|k qvPD) ʞ&vQlaw vT* Sb,uBP+N$ߢe1O章>ԒITyA^DIǎ^\`"7}s*A%T+GgL@̊WMPWˁY`JaA2dIa.o #>|}SM2ZCkn{.v̰Zw^(J]|mw aƼ/jR_DUqb4ި-QTq%Y`4'_nrO䰎o3kDKk=[N]#E'| #S]*#Q Oz -zO~^9]ipԇ еn,7pmv%<1OV1u"x4^D%ES֫}ͽ}4cJvyj'@{p/G]fm2)5mȤ,zw f'{-`Y1*Lr1/ye%U蹘t:/M$G\nE߲4`A4F/#Kd XZlޡ:N_07T$š{,B ocNt/-?֌e`&i⻱NX|[ ) nkR'Q>!U@T& x^G0iQizS .`Qԙ*FF$%%T1oS|=Aa7חC4  k1~h+SrqsxHO|me@/"ҾHnj|s˜1m?: DV3vwց`FW6 }=.2ДűdiKzV3!– =\(2cs3=tmaUvί2`d0(Qf7gFtu׀. z"$*cЯՙEFUb1E07\L"B,K@ ) G>oƀ"[ZM@_ |bvmE q\b_f h?գH|̦߬-g>?deŚۖ8?wH2xvG}JJb6Kk1"qhn,+G_[ֳ)X\ IhF@>OrZ{EAZ^2ΧDȵ nTiNıʏEUy?|IGKHs)nVzXis1CVίM:p,}l3|+%@mHU71462bCoJDbW)'8G6$V1M*K,WxlqZxIINaZǛ#r^%`U gµTPb+xpV2"' P'!%)_zQݭvf,6A)D}Vu"U(Z=6}얾XlʗLf%/i* +u_LJ "R+WXnޮR4s `3th8)pX8N=CFNB|"]"] _xG/-u;+ooSؾ8[Sme}5lM3D!78ҏ2FܗG9]nz,twt'|/z(.h2ԭa#i|;J-I4훣/h&^}W^䖃[z9x=ӄL; bv5 GS|}p5F%"5,T N YXp{3j8V"=KÏ_RcghpDG;!HUخuW2ü8k n܍XCBY$"5'mR׎Lc> endobj 622 0 obj [623 0 R] endobj 623 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 620 0 0 839 0 0 cm /ImagePart_2142 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 307.899 719.95 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (5.3 Weak constraint 4DVAR Method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 150.699 677 Tm 94 Tz (assimilation window of observations. Miller et al. \(1994\) also anticipated ) Tj 1 0 0 1 150.5 654.2 Tm 91 Tz (difficulties in finding global minima of the WC4DVAR cost function similar ) Tj 1 0 0 1 150.25 631.149 Tm 98 Tz (to those encountered in the 4DVAR case. For the WC4DVAR method, ) Tj 1 0 0 1 150.25 608.35 Tm 93 Tz (it appears to be difficult to demonstrate analytically whether the number ) Tj 1 0 0 1 150.25 585.299 Tm 97 Tz (of local minima of the cost function increases as the length of the data ) Tj 1 0 0 1 150.5 562.299 Tm 88 Tz (assimilation window increases. Results, shown in section 5.5.1, indicate that ) Tj 1 0 0 1 150.25 539.25 Tm 95 Tz (WC4DVAR method suffers from the local minima when the assimilation ) Tj 1 0 0 1 150 515.95 Tm 92 Tz (window increases. As the cost function tries to minimise the ) Tj 1 0 0 1 453.1 516.2 Tm 87 Tz /OPExtFont4 11.5 Tf (linear ) Tj 1 0 0 1 485.05 516.2 Tm 90 Tz /OPExtFont3 11 Tf (sum of ) Tj 1 0 0 1 150.25 492.899 Tm 88 Tz (the distance between the pseudo-orbit and the observations and the squared ) Tj 1 0 0 1 150.25 469.899 Tm 94 Tz (imperfection error, it might be the case that the local minima of the cost ) Tj 1 0 0 1 150.25 446.85 Tm 90 Tz (function defines the pseudo-orbit that is too far away from the observations ) Tj 1 0 0 1 150.25 423.8 Tm 91 Tz (in order to have small imperfection error. In other words, in such cases the ) Tj 1 0 0 1 150 400.5 Tm 97 Tz (WC4DVAR is trying to find a model trajectory \(i e imperfection error is ) Tj 1 0 0 1 150.25 377.5 Tm 95 Tz (0\) close to the observations while for the imperfect model of a nonlinear ) Tj 1 0 0 1 150.25 354.199 Tm 98 Tz (chaotic system, it is often the case that no model trajectory is close to ) Tj 1 0 0 1 150 331.149 Tm 90 Tz (the observations if large assimilation window is considered. Results, shown ) Tj 1 0 0 1 150 308.1 Tm 97 Tz (in section 5.5.1, suggest this might be the reason WC4DVAR performs ) Tj 1 0 0 1 150 284.6 Tm (badly when the assimilation window is large. The ) Tj 1 0 0 1 413.3 284.85 Tm 105 Tz /OPExtFont4 11.5 Tf (ISGDc ) Tj 1 0 0 1 454.55 284.85 Tm 92 Tz /OPExtFont3 11 Tf (method does ) Tj 1 0 0 1 150 261.549 Tm 91 Tz (not have this deficiency. Results, shown in section 5.5.1, demonstrate that ) Tj 1 0 0 1 150.25 238.299 Tm 96 Tz (a longer assimilation window does not cause problems; on the contrary ) Tj 1 0 0 1 150 215 Tm 92 Tz (better estimates are produced by ) Tj 1 0 0 1 317.5 215.25 Tm 103 Tz /OPExtFont4 11.5 Tf (ISGDe ) Tj 1 0 0 1 357.35 215.25 Tm 89 Tz /OPExtFont3 11 Tf (method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 138.699 186.899 Tm 91 Tz (The analysis produced by ) Tj 1 0 0 1 267.6 187.149 Tm 106 Tz /OPExtFont4 11.5 Tf (ISCDc ) Tj 1 0 0 1 307.199 187.149 Tm 91 Tz /OPExtFont3 11 Tf (and WC4DVAR can be used to form an en-) Tj 1 0 0 1 121.45 163.899 Tm 93 Tz (semble of initial conditions. The quality of the ensemble depends on the quality ) Tj 1 0 0 1 121.7 140.85 Tm 95 Tz (of the analysis. In section 5.5.1, we compare the quality of pseudo-orbits pro-) Tj 1 0 0 1 121.45 117.299 Tm 92 Tz (duced by ) Tj 1 0 0 1 171.849 117.299 Tm 94 Tz /OPExtFont4 11.5 Tf (ISG.Dc ) Tj 1 0 0 1 212.4 117.549 Tm /OPExtFont3 11 Tf (and those produced by WC4DVAR. Our results demonstrate ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 312.5 52.5 Tm 76 Tz (115 ) Tj ET EMC endstream endobj 624 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 625 0 obj <> stream 0  ,,ssb6!ipB]i c |ESL/wOYE >籷6$'杬31ڳ4z<epĐ:?dnT,(0wpRG$"WI%Y3h؃6)=RQd}-+ k7$dQPm_j4,bxp8=sd ʎE4pbƒ):w\ڻxQ~QԤ IH$DLkVн}N0Ofo$}S76xO#y"8+m;vI+PkE_Kg⎯L4gVpj l \W6,ؐ~OOwbIwP ]!#}al23a:%#jMd<&͔$EHF<~!Fj4!{K13nl,HAwqP{%EkE[,Ml.c7[R/kĽJ ?VUh.5E1FBNbl:(?dR+p1kf_uPLu\"˂\$rEA `x ;XfZ{-V꾪A6cd{۠Dd,qz8zX_x$.u%DK3Xpl6#mA4_$Ɔʵ¯ >mG$CMkFBnsGˊX;Bɻ!53]9PRpi"ۆ=ns сl<(0Hf6za-fzQE cM3rs0ՀF \ ]ԦlLrj\p[9g#dzq`H}M d/MTK<q^6ozFV gE}8Qs<)< X"`p`qg$kg2KSN*EjӸ'D=VCЄo%{bNxvXVlsFƦ\ߖ[Yv\Zy⒮z:. b!P~cOvo27\?cB3,ٝ M9'M8M?gޛK#lT5 ?VYU_.<=i hUOXa 3yiO AF}>xD,G[߀9@d[_jG;>\:*e 8b)=zY}k}ky'S o2&cN1QS&neLT$`D%};Ȗ2{)^p1fkl#@,1ɞZV@ٞ }<;O_Qqb~h8ro5kG>WB0x&0,50ʬTӯ2Ռ65,ٰ"*.0!B}a9!q:4%ճٲ'$Ʌ˰­l,³'ٰᏰc/ճ F!_o,Fv_BZw2> S 3 c-P! {>b nnNx01xݬnN+"(?\M, 2T2,?zqqaLSy;n6ج]A:JfN d8L &fԹ@[s(]Z˪~>eh#xu o/IJurR8J6&/A&%Z`OT䒠zda+*U-tOtZKJrxĻьbP ]'!OÌԟ8p .N^_m !oG@2/NXU] bZo(ҁawΗM(ŚYLxU"uöQrúe-K-S{n(OdryrJL,G\bK#KI\李IU嵊J}5 ^rXҀg}to5 {**"^JZΝP`97oPr;LWe¯Hܖ" b/Y7[>;+L6 ?-ڊ72#:Upt0EFeR7'']c[.ڿ}}b40!>{g$09N{+tT*kGjdi+eI}l^p|"Kcb2gB'VdCQ3> e%ř.$oޡy .K&|?.~Q+#v5`n84 P~C1-]k^ 6ֈ/qq\2=ОAULDOOy"~D3@Y &SӺ=b1 "*Fuvc&OvZJMܿgzB%Hh|t6x&(Bu?m4֮Uyյ(*7`w{1 KTaS6"4d/i6##JD[%؟M,x/x~M SA3&8#*ӊw ynG7qpA'|sa ȸx_|)/;Ch!>zsLcN[}} WgRio ebV`=5rg]>ӷ+ 1u30gksLE):'c/99ΐKHSruӓ M1O]?N!+/gEEmO02Є1p<孑4>{;KO"j3KkP Nƴ"&xA >uhZX n =%. 過.:p4h!FldV[/-'<#-{lma@F j4+p o]^.% t[j@B9Pı8 .!NN w5G&NR9#P[3*2zP$(h#}tr Ȗ :Rt*BM[ٿfGacao85+<`d6(ՂʦU{ 3DM:f[ W"q3?>:x2`"09~>9R]y||zFHuB`DV{WєqyTJjS ~W7hey:>Qx:!Suͯsm5!]K xN哩XI8XG!t.lXS }ʑjW)"w^ €Y_jj,*'wrG<;T\Vx%vc$D-(WN\䈬2;v;sȾG):"uORͭs@s?0Zх8]=BQ3Or?d~j ws_ZxM\q e)v~pSs>Vpc91Ύ"4*nP{8Ȯh 8suBSUyT,]M"m|Wro-H;ڇmv=z `T)gB͔v]N=%4-IxeMÌ| |b` 0NAZ өD8zޕ$Q"0d>,u6ٯ=n ɲ1Tz}6w*v{tl1w犬1eý$ GINhcX h엿L'[}ԠegV8TR,?.001.AK /!YIIӆfUt>nM8@ͯB` ýڜq*XF-M@ ly(=I^,Uƾ9g#yTjw|kC=jK5S/S "ݱ {;j|ҷ$@5-hH4SjHnM}' z魩v\̸W÷;su0v!pwS&{E3 F#!KM(\MT%qM}(3+{&RU eAb*B5lB)<x!-m; PaX]Y| ԒP5ZS0 l|>*" ^Ku@[g/G>Y:aϒ4ԋ\H'mtt_V[k.dէli65C^TZlJwVK1GDs:EMtOCJR h!T.]gmw?Fqx .G,Ai"=cKJzBڎfjf!H3 hkZ0>m";&ķ^<ƄS̴ VGEӐൢZ3 ܩgJ x^ qu]&6Dɖ_e!g䐪CzX)cB_^5 Y4rcd2;5!9sgUp[EۺH9qI;T#8uDdS'@cَ PQC  !($)WGE!fLރbpQC~E=[!оOAWXSťmm "+rwz !S6vTz*"f< xۅk-)jq"ʍeRc۪rA KIDA 9A@Ml2**D$S  2@@IwLjv'\d=5&'*45@iEmT^/AQ2Riaecp653s x6AG;}tj:Sp\S\Oz;tNfS!+ķrZtc>[xcWQAozږDB7 rn;yIAUs ZvOט%& .kdNUd6 'v8ݖ&WvjX', >*%U*&%Úʭ.ϸB42*݃u)xsȲ6ܤZ2ڟ`r?҅|#&1.55՗SI˯,Vq29$̔>}:1_fі!RLd,U\PR4/v'VSEW̥K#V%K*8C72N{$,^3_y1-])'ע +ͧ]>1azxMc$-.˿v4эpb\_Q5Oa(ң3-x`d3{HsO)V$nO' .S'6VK eUM%2potP"Kׯ1lӛs%%@2xZbuS[DZ2PYP==t|N]ĮW!՛(+2ڴ5:߰8:hl9qd3icߎ" 6{@VI6,Z4*?KƷ*;?kL)GI.Oz)MOPLgǙybh߆ۥΝ}i+ #zߎvcW1! sQ8R}OTCJl4\e&7(霯D5%x:͏ jY< Ym0a?b盯pgGӤu ,vO !f_.o@ c)9;(n*d/?ࡱv XXi͠M`cK3 .I:mJ@yw֩&Ӛ:]?ԬA̮#ývK {ⷴV,ELk0tHr,bZe?70T3l!CvieX2#-13HmT-ԦPnֻ Úa꓄4EZ4?ύBqc< w"H6TCҰEu+jMY͍3 ? 6WOukE mj?OI@+%kZ1]c*^FTSW;[7ZL)NϹ8q2g:eYٚ9Q56{qh!㞓,n?GZ_2 So#F~0< \;H|pTPfцX{G^̍Sy:qIޏQÁjrI/ԭ[x8PR8fww[ޝ`H%o?^hīƯ]z-5iG~P=mi &Kk~hCqs 1u۔tj\T?LjpӍJ®ڡJiJmxf&ɒmP!¡@@/*w|*=zF?c,t4KARޜ&6B"cV%M  bJWXyK޺Zb*Ӟ~Y1 Wˤh*>اNO9Js:iHñ[1t|SKcxJn^j~ԅ- $ 'ݴVMs[h$r?j-'r,gc'&h'6Fb> e$#~bg9L; endstream endobj 626 0 obj <> endobj 627 0 obj [628 0 R] endobj 628 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 620 0 0 839 0 0 cm /ImagePart_2143 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 260.149 719.7 Tm 106 Tz 3 Tr /OPExtFont3 11 Tf (5.4 Methods of forming an ensemble in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 106 Tz 3 Tr 1 0 0 1 123.099 677 Tm 95 Tz (that WC4DVAR still suffers from the local minimum when applying to longer ) Tj 1 0 0 1 123.599 654.2 Tm 93 Tz (assimilation window while our ) Tj 1 0 0 1 281.05 653.95 Tm 106 Tz /OPExtFont4 10.5 Tf (ISGDC ) Tj 1 0 0 1 322.1 654.2 Tm 93 Tz /OPExtFont3 11 Tf (method doesn't have such shortcoming ) Tj 1 0 0 1 123.349 631.149 Tm 90 Tz (and produces pseudo-orbits closer to the true pseudo-orbit. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 123.599 579.799 Tm 112 Tz /OPExtFont3 15.5 Tf (5.4 Methods of forming an ensemble in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 112 Tz 3 Tr 1 0 0 1 122.9 545.25 Tm 91 Tz /OPExtFont3 11 Tf (In this section, we introduce and discuss the methods of forming an ensemble of ) Tj 1 0 0 1 122.9 521.95 Tm 94 Tz (model states at t = 0 based on the pseudo-orbit, z) Tj 1 0 0 1 374.399 521.95 Tm 105 Tz /OPExtFont5 11 Tf (i) Tj 1 0 0 1 378.699 521.95 Tm 119 Tz /OPExtFont3 3 Tf (, ) Tj 1 0 0 1 382.8 521.95 Tm 105 Tz /OPExtFont3 11 Tf (i = N, 0, which can be ) Tj 1 0 0 1 122.65 499.149 Tm 92 Tz (produced by methods like ) Tj 1 0 0 1 255.349 498.699 Tm 114 Tz /OPExtFont4 10.5 Tf (ISGDc ) Tj 1 0 0 1 295.699 498.899 Tm 93 Tz /OPExtFont3 11 Tf (and WC4DVAR. Such ensemble is treated to ) Tj 1 0 0 1 122.65 476.1 Tm 90 Tz (be the solution of nowcast. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 122.9 431.699 Tm 110 Tz /OPExtFont3 13 Tf (5.4.1 Gaussian perturbation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 110 Tz 3 Tr 1 0 0 1 122.65 401 Tm 96 Tz /OPExtFont3 11 Tf (An easy way to form the ensemble is perturbing the current estimate z) Tj 1 0 0 1 487.699 401 Tm 69 Tz /OPExtFont5 11 Tf (0 ) Tj 1 0 0 1 491.3 401.25 Tm 101 Tz /OPExtFont3 11 Tf ( with ) Tj 1 0 0 1 122.9 377.949 Tm 95 Tz (Gaussian distribution. To form an Ne" member ensemble, one can draw ) Tj 1 0 0 1 496.3 377.949 Tm 85 Tz /OPExtFont4 10.5 Tf (Nens ) Tj 1 0 0 1 122.4 354.699 Tm 97 Tz /OPExtFont3 11 Tf (samples from N\(0, ) Tj 1 0 0 1 220.099 354.449 Tm 62 Tz /OPExtFont4 10.5 Tf (cr) Tj 1 0 0 1 225.849 354.449 Tm 14 Tz (.) Tj 1 0 0 1 227.3 354.699 Tm 147 Tz ('\) ) Tj 1 0 0 1 241.699 354.699 Tm 98 Tz /OPExtFont3 11 Tf (and add onto z) Tj 1 0 0 1 321.6 354.699 Tm 69 Tz /OPExtFont5 11 Tf (0) Tj 1 0 0 1 326.899 354.699 Tm 101 Tz /OPExtFont3 11 Tf (. The parameter ) Tj 1 0 0 1 420 354.699 Tm 80 Tz /OPExtFont4 10.5 Tf (o) Tj 1 0 0 1 424.55 354.699 Tm 43 Tz (- ) Tj 1 0 0 1 426 354.699 Tm 98 Tz /OPExtFont3 11 Tf ( can be chosen to ) Tj 1 0 0 1 122.15 331.649 Tm 94 Tz (obtain the best nowcast skill or simply use the standard deviation of the noise ) Tj 1 0 0 1 122.15 308.35 Tm 91 Tz (model. The problem of this method is that it assumes the error of the analysis is ) Tj 1 0 0 1 122.4 285.299 Tm (Gaussian distributed, which is often not the case even in the perfect model case. ) Tj 1 0 0 1 122.15 262.049 Tm 95 Tz (It is, however, a simple straightforward method to form the ensemble to cover ) Tj 1 0 0 1 121.9 238.75 Tm 91 Tz (the error of the analysis. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 122.15 194.6 Tm 112 Tz /OPExtFont3 13 Tf (5.4.2 Perturbing with imperfection error ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 112 Tz 3 Tr 1 0 0 1 121.9 163.649 Tm 95 Tz /OPExtFont3 11 Tf (In this section we introduce a method to form the ensemble by perturbing the ) Tj 1 0 0 1 121.9 140.6 Tm 92 Tz (image of second last component of the pseudo-orbit, i.e. F\(z_) Tj 1 0 0 1 424.55 140.6 Tm 51 Tz /OPExtFont5 11 Tf (1) Tj 1 0 0 1 428.899 140.6 Tm 89 Tz /OPExtFont3 11 Tf (\), using the histor- ) Tj 1 0 0 1 121.7 117.299 Tm 94 Tz (ical imperfection error. This method needs a large amount of historical data in ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 312.949 52.299 Tm 76 Tz (116 ) Tj ET EMC endstream endobj 629 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 630 0 obj <> stream 0  ,,b6וMfg ܮU=Fda]с3׏!xW$8Ԡx5Z7zn ~G;V)闚C .\"Z)yB^ X/n CX/-Y[#8vF[=ϴ "/42C`G{fw=dzi#CwY변o ͠ C$w},$z|y7-6a_/2NefKwbl[:u 9 ݑ,8Qh"<DN֢ygd AoPVqeW3SAD#>sPC=(Ui `& 4^DB%{O$,[N*.tdCىTYv BaWݩ2h?מB 2ި$BJW֬ TJ](ح yA FD>3&PaYU^U{cjzV)j=ljreY mq]LoO\qF @>Il-!Y*hqZ&* ]]{lK %-3Q1.>7{M8;V*iMi)+tEخex\0JLBfeeb e_ Qұ2e8MGV3;FJ(*ִQ]LRB3}굹'{)Wإ̸̜l2ۗR^`wdܭK~9OxgkH&ՅUð@$}&{?TF on?@0J~~1%?5ⴱ qSKqIW++ 2 aJW_*HGS'gHէ~cv~wPp//t ;E1(ƿ~qH: gwUvf^37´.A{F=C?3^ dCDwy3R ?^B G5eV{AD 'F#*GjmylE-*C,e"ҢyyΠGlר8X:n |pB04fW&yߤ$gIx.ӨF)Tg;U_=d% We"Hf5:k ìXnT$壃yr) #F|k|. xv)/һ"^>UQ GܬҾ,-[ TCyM EhdnjCs&Kl6ƺFQZpM(`=R b-«#Ro MX]/=aϱA}RSTluԪ}׫bkE|gG%Hh T,a$stJeW)%-= lzpOap7KosugImϋZ>).=%Y;ɚh?{RBԺ '紬+] 4wyO_w' ’lyCS_Hc-/GkE]NuG\,TzI Kō1<,†hq/?g=~]l:=h0A@k|Iͭ#J_/3gҀƘ[ .<('̐לpvϊ Hn~nT(,h/5XѲOc;\4h_5\ەBm@\1GM:bH2 $3X5 K҇9^#Z{C7g,NܱaCJDƊTos!/Ѩ굻qwEeOOCJJ@@x*3GaR!UNڎC?>/0Ѥ 0i A:P }|#%Hٮ84Zfۅ%Ej`/S#q{~P k=#][?n`}qHV̞!$>Rogc(`;O=1 iؒG7srq*9V`)(Ll;>]NPqkj(QCE∼uHo}hD%py^j :i=)j1e }zc$~a*N1/CLe`D2gW'lg`uH R歟?$F\wq5DEđrCN}HMtخ@k53KyMa65UčdžI5]uD!pw~hC.G$$U!Rd%N'_Xtchw^Hu|@Y/V;l.ldVJgsQJ<1˹50^cU!,Ҙ:ui'r7Dؖ:ϙZOvA=XUgbfk(bKGn@2I?pZ*N\~  8'}ɦͫb̒#0[YOL&JPna_o5ˠH= lRvI8/ q/fJh2R|hg7R0ueN$|R!Mk-3ݷ!N4cDaR;5 4gd8dbzlPZP-ƇteHM{LF/R:8^_~TB%*_'C kڈ != ǞM-{%<6 ]%.Jԧ $]b2:`Z"[*.!O{LiYw^ Kl!V6¯ Gy.tFF>$1E:?tyyo4QplQB_S7+' H<5W >a%ʥ< ^J@;%d!cX*Յ-\~ч}B>"1夰ܲѲK#➷ɸp><]Aog$0rR 5 cN8$3I@L&B%\aw*]na'RTLbAerΎJɐVȏl,J SMt2Y^]]@ bI|ԭ,_(lp_N=W(&X7DZ̓fnJtPbva!GG̀_Z]de9Ih^B;8&`c4pcso?VFX/qqi>Sr4e1!tAƭIxԈ)CIJRz{%ŠP "Y"C±hE"X4GJ ๰0Gw.Z A=yP\7@Mؾ]43*[m.pB9-K܃ Hq8{4h_z=x.H;RP]o]އ'F9׊NKфa3|:I럍J4ڹsC՞o*p s3D:?[(d |af, T8,<'OGqdb̤I׷HOACᘽS 2er$_iCd\* R ou;ؐ;#zD&-%5z2 :եgTݣ<˰|DFڿ.GH dEⶖ\{wApg&c ®ҫ4_r de)kqT|H؍N>o*6_Ö;+ӥ8E@ kTxV;${2߂\[s\sfdh~*2s߈b -&ܰOU?3b)%$_ζ~HWP`ݩ`㣵gBwLY>2ȴ+N >ޒ1c/FȴlzNo,.QCLm}}0l'1Qv̬ajv31h#g"WS=M_}e>lN6#W`YЇ[0^p0g~bO{fzHوS._ XiMyV*p%j!s#oc s]FH75k͉wI|j*/|&k'A8>_+7JA&ra 5[F;Rnt)9_h 9%9 مjם8ѯi3p##IE˙wS<Tauڌ?g ]@پY`#ƨEXDs ) 1q{W.]ފ6Z+ee (xTkܡO:4Sʽ7áf]ƛF;^-Ew˺:hyFtRWrl{GjCI{L(C~ʂ(fŤ@J*Nrn7&|">iDZ.tG\e~4P+Kӆ%k6 I SUv;BE;̩;Sϋv\ek~Ϯ&./Ά5<-_T%Tχfhz$dfWƵU|sk:"]ARoD{_`yQMO+sD :Uѝۜr)dDl~py`0.HZ9!RV٭͞tɈ\$v6x҄F|IF_c[5=Fsh\w/D8h=Y>xJx5 -|5t'X0Џwcqr{ i{o(<( $eԛ~WR6 1J?Eem3.vkQ;a#M L1m9ZhRp|hhN?*|H/K 7gL_(%]O8Ex+,,7WzbÄT³Fqz`ςpkIG\=Eb /Ѱ;LkJR!: x#KNW"# ʦSIͦUaYUOJ\激[ۖl?i0`[A \Ⱥ_BցDikyQuo|y;tэ^7?Vu7TQ^^,2\i,JrcpMhU tJKf>iuX AY4 ˅m-*2g[mBeqo3@ft$g (F* u|^${n M&(=CtcproRt'd&,VlhT7Sܽ3k)'ZjTynfɝ kxGE%n* 19Ihd8߃:SQ]aC* )l:hO@2{&/9LLh*՜%e7;ĩP"V豹)<)«y26-\SF &B>*Xg ✬)7?9QqŘO5~j ? E,ŀFO"L+=\6G,n|OCmNݏ*D lm}^ˠ u_馷YZ]Jǘ֟#gRՈ,Z.v~9^mqpsɧނO F*xpӖ+eLAV#!u&1U %5+F0<XeknsO625wYiĄ{9= Y9@&8z!PM#Cf>@-)275o`5_Twwb"i,77^䪆6@"3$UQrݎ9,J Ytʋ-ɟiB;c~u̓m3-HyM vdÎhVzWjL5lMQ{.1(@x}Ggһ)T&hO8QZetrۥ(x3zv.4e9-Tq|&uP.զ֙qz20Bj1L@S)1D/zׅ&\ Ͼ.%P31e iMZf'/cV "cg۳ExlۗfT3}7`$hYb?Ќ`03 Պw?< XH*p .{uڭJ7zߙ4 #iXSz?sI"g{;G" Jn`<1#`=+դwcr 8&|M_e@LyBDQXb-!7H3>^z!H`lDpP,!2s(xoF GS">6zs-?[ԹW(LϩTo#&(?~W:e|Zim+ ?Q_IBu&DZS*%uo&kcmcb$ yVD̆ߺ QjFCSh-mJOzw6/|5ztC^OR@֟=1lE 4Jgzn}:;0\ο"1ie3PȭcO8zFUP{" vt3{VѮ #Qvx=8'Z7bl}3LNõy?_LJG7^u\JDhkF3TaͰ3>-s1nM!sQfRiP2svb+ԙc;ؓBc 0-NB6扻!BUyIivW4QS\PB7\BY1ڱ5 jf:׍+^@4$d0@}g#<>aRfaP_q6RPL.%ӫV**}zA_C4c]Vr#™Kyrc6a`*cM4 Ew>ݷm-惘,*f5mW `edcùe|ѧ@@L-ްmU-k32k>>)}41w,FBS~$ND10]!LI( Lֶyw)l ,hчCYEЎ.w|TUﴎ70#fp[A=Kmk'yWcwM}73 }"05sMMGge'H;7-RI T> endobj 632 0 obj [633 0 R] endobj 633 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 620 0 0 838 0 0 cm /ImagePart_2144 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 261.85 719.45 Tm 106 Tz 3 Tr /OPExtFont3 11 Tf (5.4 Methods of forming an ensemble in IPMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 106 Tz 3 Tr 1 0 0 1 125.049 676.5 Tm 92 Tz (order to record a large set of imperfection error for future sampling. As we men-) Tj 1 0 0 1 124.799 653.7 Tm 90 Tz (tioned before, our state estimation method ) Tj 1 0 0 1 335.75 653.45 Tm 115 Tz /OPExtFont4 10.5 Tf (ISGDc ) Tj 1 0 0 1 374.899 653.7 Tm 89 Tz /OPExtFont3 11 Tf (produces a set of imperfection ) Tj 1 0 0 1 124.799 630.899 Tm 92 Tz (errors along with the pseudo-orbit. We apply the state estimation method to the ) Tj 1 0 0 1 124.549 607.85 Tm 93 Tz (historical data and record all the imperfection errors. To form an ) Tj 1 0 0 1 455.5 605.899 Tm 81 Tz /OPExtFont4 10.5 Tf (Nens ) Tj 1 0 0 1 481.199 607.85 Tm 87 Tz /OPExtFont3 11 Tf (member ) Tj 1 0 0 1 124.799 584.799 Tm 90 Tz (ensemble, we randomly draw ) Tj 1 0 0 1 269.3 582.649 Tm 76 Tz (Nens ) Tj 1 0 0 1 289.899 584.799 Tm 90 Tz ( samples from the historical set of imperfection ) Tj 1 0 0 1 124.549 561.5 Tm 95 Tz (errors and add them onto F\(z_) Tj 1 0 0 1 280.55 561.75 Tm 42 Tz (1) Tj 1 0 0 1 285.1 561.5 Tm 94 Tz (\). The advantage of this method is that the en-) Tj 1 0 0 1 124.299 538.5 Tm 92 Tz (semble members tend to cover the uncertainty of model error. The disadvantage ) Tj 1 0 0 1 124.299 515.45 Tm 96 Tz (are i\) the imperfection error is usually not IID distributed, they usually have ) Tj 1 0 0 1 124.299 492.649 Tm 95 Tz (strong spatial correlations as shown in Figure 5.3. As simple random sample ) Tj 1 0 0 1 124.299 469.35 Tm (of imperfection errors may lose this useful information; ii\) the results are also ) Tj 1 0 0 1 124.099 446.1 Tm 92 Tz (strongly depending on how good the second last component of the pseudo-orbit ) Tj 1 0 0 1 124.299 422.8 Tm 93 Tz (estimates the true state. 'We believe better methods can be found by extracting ) Tj 1 0 0 1 124.299 400 Tm (more information in the imperfection error. In this chapter we give an example ) Tj 1 0 0 1 124.099 376.949 Tm 91 Tz (to suggest that imperfection error might be useful to produce nowcast ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 124.299 332.1 Tm 110 Tz /OPExtFont3 13 Tf (5.4.3 Perturbing the pseudo-orbit and applying ) Tj 1 0 0 1 462.699 332.3 Tm 105 Tz /OPExtFont6 15 Tf (iSGDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 15 Tf 105 Tz 3 Tr 1 0 0 1 123.849 301.35 Tm 95 Tz /OPExtFont3 11 Tf (Another way to form the initial condition ensemble is perturbing the pseudo- ) Tj 1 0 0 1 123.849 278.1 Tm 94 Tz (orbit and applying ) Tj 1 0 0 1 222 278.1 Tm 111 Tz /OPExtFont4 10.5 Tf (ISGDc. ) Tj 1 0 0 1 268.1 278.1 Tm 92 Tz /OPExtFont3 11 Tf (As we discussed in Section 5.2.5, given a sequence ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 123.599 255.049 Tm 94 Tz (of observation, s_n\) ) Tj 1 0 0 1 225.599 252.899 Tm 149 Tz /OPExtFont2 6.5 Tf (s-n+1\) SO\) ) Tj 1 0 0 1 290.899 255.049 Tm 97 Tz /OPExtFont3 11 Tf (we can find a pseudo-orbit, z-n\) ) Tj 1 0 0 1 459.85 253.1 Tm 158 Tz /OPExtFont2 6.5 Tf (Z-n-I-1\) ZOI ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 6.5 Tf 158 Tz 3 Tr 1 0 0 1 123.599 231.75 Tm 96 Tz /OPExtFont3 11 Tf (by the ) Tj 1 0 0 1 161.05 231.75 Tm 115 Tz /OPExtFont4 10.5 Tf (ISGDc ) Tj 1 0 0 1 202.3 231.75 Tm 95 Tz /OPExtFont3 11 Tf (method. One may consider the last component of the pseudo-) Tj 1 0 0 1 123.849 208.7 Tm 97 Tz (orbit,zo, as a point estimation of the current state. To form an /V"' member ) Tj 1 0 0 1 123.599 185.45 Tm 91 Tz (ensemble, we perturb the pseudo-orbit with the distribution of the observational ) Tj 1 0 0 1 123.599 162.149 Tm 86 Tz (noise ) Tj 1 0 0 1 152.15 162.149 Tm 88 Tz /OPExtFont4 10.5 Tf (Nens ) Tj 1 0 0 1 179.3 162.149 Tm 93 Tz /OPExtFont3 11 Tf (times, apply the ) Tj 1 0 0 1 264 162.149 Tm 115 Tz /OPExtFont4 10.5 Tf (ISGDc ) Tj 1 0 0 1 303.6 162.149 Tm 91 Tz /OPExtFont3 11 Tf (method on the perturbed pseudo-orbits and ) Tj 1 0 0 1 123.349 138.899 Tm 93 Tz (finally record the last component of each pseudo-orbit produced by the ) Tj 1 0 0 1 485.05 138.899 Tm 111 Tz /OPExtFont4 10.5 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 10.5 Tf 111 Tz 3 Tr 1 0 0 1 314.649 52 Tm 76 Tz /OPExtFont3 11 Tf (117 ) Tj ET EMC endstream endobj 634 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 635 0 obj <> stream 0  ,,[jQq9Sl@ȧ2*4esP%ČWJV r6xֽjsUkidm0։*~-ZrbvJrlfybQtWdk 'Em$b /_ǥ")D aQ{T=1X_[.frœ ;u}報,3v)|A"v2iKb9!.1!r@v .}h}g @~%DJIJ.0>Hd!;PVߌ_9!kZ8q%Mʕ:N*ĥaYcʵI"4$c cwNe( D 򰬕Shh@Q~;8]sنQ,kA܇z4*Z ˰M3o;|tăހr%߇9S8BTF*_ ,Oݽ -mQzvYgrn/79R*o/$SwA %eOzx"XвG6݉pύ* ʔX7Od갭ƅBjjPñ&ٍ˱q\* -7 Yaeqt(@/U;.~J*t9u-@kES9%H%jRDdIl:.O1<wz}Q{(oJ1Lcʑ)GvX\,Th&[Esr DB#L#(kjcCEs;.tZ\z"]}B_۔81:[[nm](Ɛ s8>,2X"^XcB?z83!4̹r+U7\vzdd26ȓ޶)SڃXGӉՕU^~  Aax:W/2sʉf2Bki,ֽt\zB珞uڜ -BN*?%_e8bzjC"jgb®܂}&S:/լ0+$מ [xS̗DZRK^R7>(v ɒꍶ_4-.1Cy?aA8lJ:5{H]@oqi7U{p;5?XY3 &;P} *0,m {=M"H4P8p-,>%3P>v[mIĤ,ԇJjAʺ6&Oy:Zk -ri'cAMi( (&g:(nY5:aˏ2Rz(hEdB_7.r։wK^%p7!q2PբL[1klB+ =etLE J :hOSFF@(,>N6U$ݚSsHk)LF97 giA0ҞjtM3=z a3_+G*ng W[f[t-g*"{*Fx>A^,Dp߭YP;q)a'soI'+=DLEXB޾P3JKa.*~y_g^1@O|&0(_F0bg~b #ZӵrVLYbsepRƇAKhvq]2IC|ȸK JXvj8-f 4BmLlOK̥hE70K5z3JDn' wijB}A?i:+,oJJ$W:~]jDG8MhCZ$(lvj$t`gK 3l4il"[{`^8 spuCw6([+`ƞc((USz!lsi`~ߙ)NZeL( j36 qQo8U| <2Jݘi_OUo[7W \ W-K&ҟ-Kգ^\=JVX ƒG3JKm;GCӷJ :i'WzMqԷbG%(qk j03D7Y7k)0x*u9vy&Ӛ^wV]H5=aR"Ȏ` 3 ??Me;dej`wFo&b'(;~ Ʌ!ŜFOV?IYhZSiWhLM+RU5l}Iǽ%*Tvgf%y&gۉtHTf`CS!#ة=sFN4>\m,Ŀ! Jk>w0'xPpB%^{ˢyrW"o"%~ bfUww8,IzN LT_oCC:/29qc"{UqUߧv@C݀SJ ZBXIIQ-/D·uPDZTݑ}Ot`ﰢv:G p'_(V,$mڸ)ߕ;tNSdyoʺw=ͱDŽ`j4&lHTg|cgCB\ds}{:^0N"<:0Jnw!8=LoCyz!leै U(#+:\WR"K$cU b$}Zf4ߪpd#nVwW9d>vsDFtK8/*൑CC:Nm}4' IW(P[֣B_%9V.1el[$_!v摔Mo(˙ `i-Vݰn+L%Q6$qP{Q28p`TecV^NB GAUYZ4KakrdU|7-@@O$ P~۫X7A~D<78x#Y9}R'ʼn(\ZZ&f$ja%91}|!MA|J$@U(j>FIܰawȹ*sǻ,I}ìEo J6'=R%pc !MK?&̖-[ n1NM&K1՞='|bC_ӴA򥹟 q6[)Y+-E oedd2:4)^p3<'T I[)uI( |qM!\j.~ .ĒEВyBGέ\bE% a {7Q ][V`I z6*L,I7+pvkpo>w8DkLikbMeآ3 ǵ*Fw,msLye.nRHv 4@f1> k6 ruOOƃ$Oucܨ:7&oO݂ȽYL5gY] CFTEVo.AOaK?LYRi;YWGVT‚)B{ƚфpWyq.S [=G_/p;0=vR_He6MDQ|@sr鼗5J] Wd8ntS!Oˌ%ro#/;}L?ޚHrzLjiw"SC^ T*_wd[&Eoeh2}Eo+8|Mх}4638?֘xOōxx'nܛ۲uQ%X*Bm8&+L-,_7mO2>U.r@Sj?4)|Gq#a yn W.߿Ipkj T k\x"8O"\]psn^AWvC# niOua(D[$0 %|(=?ǕX-cq.9xDRT̮%iZv&'=5 U o $V-s.$}LC/>0E&B a "i˩ >< J "_Ȟ.υ bYSqrd$ZlV{zfW>GeBJ~,dWX :?*>\_ /2!gm7ݽ,.R%Лj.P2^ bwU1~7k!}qYǗpF?:q3ƣkuۍ#RANFL8;1I#O|2TwWy5Pz, ހ*4ˆеH^m_8rk' .vυ?[uO`z@`KJnoO%7c ͔u48[nB!Ê"REKƈ/6SG'cJ!A`!'RIרbTߔ % ^0s+myB@F R3->k WpByӣUá4>!Y'pMFߊ'G)eXch!^;CL ipLG#a` C*IVU"TLPF.@1zpqnzS!DBV^s5adC%;\GiQ"̶߫X3sauY/ -qX8EI%d%R%vXPMv vFbTd =g z?{\z27bاcEZ#eȠ32F:0e"Q7QP g]F N Y@7f̕~@0%h4 #s^rf9fgq@=SOFY;$U:{y7ޮ[^NXkB;)m cNgTCN?:cG +>BK$'44l1I.蔝i#pgZӐhJ06, s&E=~ؖڄf+ A):&sٕY-=GҲDiNO.#E#v{ʖvV;o[\Lo na>5 }{MH1V 0 Ϧu{([jCԌHs%I$I' .i)WfzXМs!L0KUצ j| ǥ1Mb)dYx&3è"_4J9XύT/7R,kƈm~ҹ´k.o8Sb H".xj/Ouy:ɏ;oFɦ:6?|AW|<@W0JNGƆ#p-!8\r Q뷎PkH^j Hb{@mu$n`$f*qKR+eSb[=Hu]f7w&C,%Ncʏ.Ky񧽓8e.q08]}p{u[?gOܗWN#kLˇK/JQ,AgswQeTN {wn y#pD~ާ"=C5bqaKJ/U6Sr2a85~$S`Um\AqxSFg!+'cNGj('Lȏ;3 >ScL4-Lp @ךeZD(B v&ˎ7yB]9oVoL) ViDnens*{A"~ښ% }::o q#V/Xv賙b]:GY[X:m`{?OBkSKd";u =?A-bLnei-ɱ^Wi*ֺyAƮ/$;#1/DQ~>8Yw Bb2 n]5N_@Hw1NjhTw! 0oVRwT+gR[׾*~%*]FiZx"dGa&"ŐH,"!wACo_^Z.tKo;hMAVX*}@AEH|B c`t!I;ݙ ëGvPznVC1Ғ(5g`'}=)6dEHho#ehINUV$%03҅AK^LKLET6 BZ.DssP}; "e_D@C\Ǔl=$m\8$k)kzKHOثsP9@@bN䟮>WYk%w}STmkD%wp[V} >fb^>9wPF$-{loEE)fG* C1J]Ӛ"W'ZB n[?4gI*}&|lR͋sٳ)(g}ćߕV70*?a}̯ * PȘqeᡏsXnI?WT,ް|;T(H݄񳌧F&Men)_Oީ;KMHnb-JGVs~\i݉LJ_w)[Fmi⵸mImbY%O9<TPuQ"j/~Y͗ J~eX *[ -|}\* Vgt1X00讇.pH8FH5$Vs-eYP,ˑ+E` n bG[FN{S$Sqr{%;u )̛ώ KnkA|K}P9`Œ"_ xl 2ԽG Yn|[Ӗ 5S)r/Ssn|m? K: mӴ?`3W:t{_DC]/h[!v|̔@MVZL`Q뫆+-G/Io%GMrw苤D(9$'Ay#)w*$O n x  `QVnm~Q 䲑"AhÚV O >H ^82*o&5S2\V M/Z [.G&w;J~x@e@4z%-~gܘ-py)f1uEc5bZ$%W!a:/۳3(_6hqRm5hV hOʒXᾖU ĜQe׏B\dAȼ$0M7,PNc GGTuW 81-ʀ?* Ko endstream endobj 636 0 obj <> endobj 637 0 obj [638 0 R] endobj 638 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 620 0 0 839 0 0 cm /ImagePart_2145 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 457.199 719.7 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 124.099 676.5 Tm 97 Tz (method as one of the ensemble member. Each ensemble member can be treated ) Tj 1 0 0 1 124.099 653.7 Tm 96 Tz (equally or weighted according to the likelihood of its corresponding pseudo-orbit ) Tj 1 0 0 1 123.599 630.899 Tm 103 Tz (given the observations. The results presented in section 5.5.2, show that this ) Tj 1 0 0 1 123.599 608.1 Tm 100 Tz (method produces better nowcasting ensembles than the other two methods. It ) Tj 1 0 0 1 123.599 584.85 Tm 103 Tz (is, however, very costly to run the ) Tj 1 0 0 1 304.55 584.85 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj 1 0 0 1 345.35 584.85 Tm 99 Tz /OPExtFont5 13 Tf (method to generate each ensemble ) Tj 1 0 0 1 123.599 561.799 Tm 92 Tz (member. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 124.099 509.5 Tm 118 Tz /OPExtFont3 15.5 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 118 Tz 3 Tr 1 0 0 1 123.349 474.899 Tm 93 Tz /OPExtFont5 13 Tf (In this section we first compare the ) Tj 1 0 0 1 294 474.899 Tm 90 Tz /OPExtFont4 12 Tf (ISG.Dc ) Tj 1 0 0 1 332.399 474.899 Tm 94 Tz /OPExtFont5 13 Tf (method with WC4DVAR by looking at ) Tj 1 0 0 1 123.099 451.899 Tm 99 Tz (the pseudo-orbits they provide. Results are then shown the comparison among ) Tj 1 0 0 1 123.349 428.85 Tm 101 Tz (the ensemble formation methods. Finally we compare the ensemble nowcasts ) Tj 1 0 0 1 123.349 405.3 Tm 94 Tz (based on ) Tj 1 0 0 1 170.65 405.3 Tm 90 Tz /OPExtFont4 12 Tf (ISG.Dc ) Tj 1 0 0 1 210 405.3 Tm 95 Tz /OPExtFont5 13 Tf (with an Inverse Noise ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 123.599 360.699 Tm 108 Tz /OPExtFont2 14 Tf (5.5.1 ) Tj 1 0 0 1 171.099 360.699 Tm 91 Tz /OPExtFont4 14 Tf (ISG.De ) Tj 1 0 0 1 219.099 360.899 Tm 116 Tz /OPExtFont2 14 Tf (vs WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 14 Tf 116 Tz 3 Tr 1 0 0 1 123.349 330.199 Tm 95 Tz /OPExtFont5 13 Tf (Both the ) Tj 1 0 0 1 168.949 330.199 Tm 90 Tz /OPExtFont4 12 Tf (ISG.Dc ) Tj 1 0 0 1 207.849 330.199 Tm 93 Tz /OPExtFont5 13 Tf (and WC4DVAR produce a pseudo-orbit from which an ensemble ) Tj 1 0 0 1 122.9 306.899 Tm 106 Tz (of the current state estimates can be constructed. In this section instead of ) Tj 1 0 0 1 122.9 283.649 Tm 99 Tz (comparing ensemble nowcasting results, we compare the quality of the pseudo-) Tj 1 0 0 1 122.9 260.35 Tm 96 Tz (orbit each produces. We apply both methods in the higher dimensional Lorenz 96 ) Tj 1 0 0 1 122.65 237.299 Tm 97 Tz (system-model pair experiment and the low dimensional Ikeda system-model pair ) Tj 1 0 0 1 122.65 214.299 Tm 98 Tz (experiment. And in each case, different lengths assimilation windows are tested. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 139.9 191 Tm 96 Tz (Firstly we measure the distance between observations and pseudo-orbit \(equa-) Tj 1 0 0 1 122.4 167.7 Tm 98 Tz (tion 5.15\), and the distance between true states and pseudo-orbit \(equation 5.16\) ) Tj 1 0 0 1 122.9 144.45 Tm (as diagnostic tools to look at the quality the model trajectories generated by each ) Tj 1 0 0 1 122.4 121.399 Tm 94 Tz (method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 313.449 52.299 Tm 84 Tz (118 ) Tj ET EMC endstream endobj 639 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 640 0 obj <> stream 0  ,,rRRV4fhT9 h^KerL~x-+.ftlAw{hp~CpiЕorMP:dJuZ-rV?Lxj nC5P "<7p~=,_Z Hlɤ(9^$.#lQ3 ,%YM;\MnSG^Ͼ9dE*@+A,%綝WB Y~mXEozS.:j@x3@Pe;ѕ GX߬@x30ZXA.Q _y, ݻWr5)99Qs o5tp# )+^A0 WbqU2NH jAáIkT<#uLR-ѳ]9rM)6}o Gi0'9"n&հ 0$DKcYP Ym!?Y,t\t(p;M޼g ߡ)qJ $ [ TPq,>8#{ ikg1}fBHE@_*SU 8K]",4f(}@Rᑞ$6CKIO+{hUhNd[ /\fnvX "'K)FX^ |5ÈХ/u2*hɡywBHUtuM?T\=;V-'?:Jz"a5b[3C[D&b4Ge(V3iuFhϠi51Ȅ@25 j,FpE[AolD9 ˟NRR=f˕Ȥ M*nSBB`"X6C'1OM<(7= XFp' -ц7g*̥zj_ 5 LWdx SAj}{I}j2gZ~cHޣ&k}oXpN̸An%d>Gf kn8hh "%bB\CWCsqDuh;`|̦bҍ0I |R}w\h?c[][ĺ5ViaD u]Gn^a 6)L5ՐyhZ/ :BrDO}l[?P&/Ֆ!56%&wA QVjHPZeBVwV~aSV@%yCM$k330#Iw5&ͪc,ȟZ D(|,ÑU1/Q3nDYy|a@#ᒻ-ƚ ,2-Enَ|W8›BB;m Dʁ~pڡ.j^e +y|5w's/oA[Ÿ10w ϋ|2Я~#tE}׾⟇NSU|?>qI *_ і'9؜]?Ё![`?@{vwQ3`#-rALC$9,6J5!jq<ѮXuSZ%mʣ4يʷ'xOaԇ; .s7)3\2qe3*BUqPbXbN&vfjS9Gs]>*,)0&lmLhEav|uD`BX?:X0Rn&Hg\Mz՟o'se}-(W ˕jVZC .ߚRו [ziG;m|ِZc#'iZ^{I"b2ah$x^ՎK'M`@@6?&8oKolGIfE/>1:HiE`Dg)F[RS(=U_ֶ]VDXFT@aٺ ,> J˶qD/41G}ʶr߆~ -'NmhO+2)v*Y)1j2FT֕g=ٖ=\2!'V_VhZքho_y@ ͕OZe[7 ?x\.O+k~d&(1p"Nb,TUBL(*(1U㎣67;Yu1Ü_2RO@@݀9N7uH_A1 g`ŏaXjGx`X <Wă?5HW[ Wѧ-h# wd÷ k(5$+CJ>ޚm7:hqbΐegx!ɪT߁ :,i7/ÔK][$"zo`ڞBnް/h?JCm FY!B[%61'b `1 ;*0TCPԩuCu.|eO@Tc/{6X/<]0FX"J;XRwE?2DȽ{L2Itƛ҄iMw֝n D7B4dWhLГQ`H.eq:/˪gJ$ _aWܹbߊ}˫䄞Gs>YV%/@z5 i X#Yߙecv1%r &0hC pzZJ牘Zzs0!BnD(p`Md52 MΥvЊ+ qWp{_<߳'2vպA lfJ!CUj|x/:CAJR]_X4^A^0!gd7+tOge@C_ v0rG!aڈi=圸q|:9ËOosFUֱy0ZD泝di΢ M(a"IB} _$ X T@8騧Q b$ר| A_tbHQ\cG궳h!14h~%-4:ٰf=$_.6CV:(Z g#ڲg1!<cߎrw# X=? YtIU[0.w(m]Iヶs6 Awf% W ߣMCӎ.M)oð07ӘGBFXNF/NS| m1 Jn<L^}.$BKr>69L/ ʨЁ{GRA#@#C!V@#mɜMXn]HdEvR'@2`@$%HN ae*b1$s& W$S JÔsU,_9<6Cؗt}DfF@&djf##2 q20Zq?ՂNu%}9s;VLC`|=-O .6 gGV/j5_8},bϷKr {(W^nw%C2_\8gmWEVť5^ĻnF& ĬGN׼O-)O\-dLd((4Ҥ70M2[vg|6:mMbⴄc1^41i=?q'ad3F2nh%LɵnV\yT+Mg+Ft|suC6ى3VfL)TҠZ>Hh0 ;],>Kig/]ÒNlJwU=N!@~2rWtqVNqkvaEfUH@hCagJR]#nSCaDh1Џ }HNߪVՇ?6zo.çyG10͓x cֺ5 !,s\ $笣֐;ٱfX:ܵ=r9GZ&>^{CaL]rx9ݳ0X "UfDv`֑鈫iOlԯ jQ8YRrH~Q!>O,=9}%?rfW~]S:|W۟tl;P:4HJs4zP~@1k N^msYmx(!5cT5vl oMiON{Z>H!F'+#ie!uASJл{*| ͆"NV .Q/YJR}ǀm}ILe/XJO;t`Я15w@F#iH3(CΩKn{KN CQX!.x"j~-_nޛ7_$x 5(GQ@~2;b Ji+<#G1 UTO^*VۅANNZ 7.yl~6!J(\a|N:e/ӫҧ8CzP?\T>z;F(*W6zʝy}U:xwtbwձ>NG2O-(g6"Tl\)V] ^{\Z/PRe+ }! (>>c8A5`މv=f}95A6Ɗ6.SyȳPV ys0OP"oQM)&sdZ09:zO¼BppRg0eGr=ԀъޏR0['T^w칚pe>UR?F'ť`!Tt>Q1Ρ;' i>mi?RDPF>!I̟kYa2Pn.؏d"w`={YdZzE endstream endobj 641 0 obj <> endobj 642 0 obj [643 0 R] endobj 643 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 620 0 0 839 0 0 cm /ImagePart_2146 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 458.399 720.45 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 151.699 678.899 Tm 94 Tz (Window ) Tj 1 0 0 1 156.699 665.25 Tm 96 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 271.899 678.899 Tm 85 Tz /OPExtFont13 11.5 Tf (Distance from observations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 227.75 665.25 Tm 98 Tz /OPExtFont5 13 Tf (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 334.3 665.25 Tm 89 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 434.399 665.25 Tm 90 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 203.75 651.549 Tm 67 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 67 Tz 3 Tr 1 0 0 1 257.05 651.299 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 12 Tf 98 Tz 3 Tr 1 0 0 1 304.55 651.299 Tm 85 Tz /OPExtFont13 11.5 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 357.6 651.299 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 12 Tf 98 Tz 3 Tr 1 0 0 1 405.35 651.299 Tm 85 Tz /OPExtFont13 11.5 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 458.399 651.299 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 12 Tf 98 Tz 3 Tr 1 0 0 1 155.05 637.149 Tm 96 Tz /OPExtFont5 13 Tf (4 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 204.5 637.149 Tm 89 Tz (1.52 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 257.75 636.899 Tm 88 Tz (1.19 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 305.5 636.899 Tm 86 Tz (1.45 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 358.3 637.149 Tm 88 Tz (1.13 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 406.1 637.149 Tm 87 Tz (1.60 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 459.1 637.149 Tm 88 Tz (1.24 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 155.05 623 Tm 96 Tz (6 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 204.25 623 Tm 89 Tz (2.89 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 257.5 623 Tm 88 Tz (1.29 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 304.8 622.75 Tm 92 Tz (2.27 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 358.1 623 Tm 89 Tz (1.24 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 405.35 622.75 Tm 91 Tz (3.60 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 459.1 623 Tm 90 Tz (1.34 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 155.05 608.6 Tm 96 Tz (8 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 203.5 608.6 Tm 92 Tz (4.61 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 257.5 608.35 Tm 90 Tz (1.34 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 304.8 608.35 Tm 91 Tz (3.80 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 358.1 608.35 Tm 89 Tz (1.30 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 405.85 608.6 Tm 88 Tz (5.52 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 458.899 608.6 Tm 89 Tz (1.37 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 151.199 593 Tm 95 Tz (Window ) Tj 1 0 0 1 156.25 578.85 Tm 98 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 274.8 593 Tm 85 Tz /OPExtFont13 11.5 Tf (Distance from true states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 227.75 578.85 Tm 98 Tz /OPExtFont5 13 Tf (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 334.3 578.85 Tm 89 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 434.649 578.85 Tm 90 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 203.5 564.899 Tm 67 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 67 Tz 3 Tr 1 0 0 1 256.8 564.899 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 12 Tf 98 Tz 3 Tr 1 0 0 1 304.3 564.899 Tm 86 Tz /OPExtFont13 11.5 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 86 Tz 3 Tr 1 0 0 1 357.6 564.899 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 12 Tf 98 Tz 3 Tr 1 0 0 1 405.1 564.899 Tm 67 Tz /OPExtFont5 13 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 67 Tz 3 Tr 1 0 0 1 458.149 564.899 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 12 Tf 98 Tz 3 Tr 1 0 0 1 154.55 550.5 Tm 97 Tz /OPExtFont5 13 Tf (4 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 204 550.5 Tm 91 Tz (0.70 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 257.05 550.5 Tm (0.67 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 305.05 550.5 Tm 88 Tz (0,65 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 357.6 550.299 Tm 92 Tz (0.63 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 405.6 550.5 Tm 89 Tz (0.76 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 458.399 550.5 Tm 80 Tz (0.71. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 80 Tz 3 Tr 1 0 0 1 155.05 536.1 Tm 96 Tz (6 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 203.75 536.1 Tm 93 Tz (2.07 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 256.8 536.1 Tm 91 Tz (0.55 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 305.05 536.1 Tm 89 Tz (1.43 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 357.6 536.1 Tm 92 Tz (0.52 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 405.6 536.1 Tm 88 Tz (2.81 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 458.399 536.1 Tm 92 Tz (0.58 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 154.8 521.95 Tm 96 Tz (8 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 203.5 522.2 Tm 92 Tz (4.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 257.05 521.95 Tm 91 Tz (0.50 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 304.8 521.95 Tm (3.19 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 357.6 521.95 Tm 93 Tz (0.47 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 405.35 521.95 Tm 91 Tz (4.88 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 458.399 521.95 Tm 92 Tz (0.52 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 124.549 498.199 Tm 103 Tz (Table 5.3: Ikeda system-model pair experiment \(Experiment G\): a\) Distance ) Tj 1 0 0 1 124.299 484.3 Tm 100 Tz (between the observations and the pseudo-orbits generated by WC4DVAR and ) Tj 1 0 0 1 124.299 470.6 Tm 96 Tz /OPExtFont4 12 Tf (ISGDe, ) Tj 1 0 0 1 167.5 470.35 Tm 98 Tz /OPExtFont5 13 Tf (b\) Distance between the true states and the pseudo-orbits generated by ) Tj 1 0 0 1 124.099 456.199 Tm 95 Tz (WC4DVAR and ) Tj 1 0 0 1 207.599 456.199 Tm 98 Tz /OPExtFont4 12 Tf (ISGDe ) Tj 1 0 0 1 247.699 456.199 Tm 99 Tz /OPExtFont5 13 Tf (in Ikeda system-model pair experiment. Average: aver-) Tj 1 0 0 1 124.299 442.3 Tm 97 Tz (age distance, Lower and Upper are the 90 percent bootstrap re-sampling bounds, ) Tj 1 0 0 1 124.099 428.35 Tm 99 Tz (the statistics are calculated based on 1024 assimilations and 512 bootstrap sam-) Tj 1 0 0 1 124.099 414.199 Tm 100 Tz (ples are used to calculate the error bars. \(Details of the experiment are listed in ) Tj 1 0 0 1 124.099 400.5 Tm 98 Tz (Appendix B Table B.7\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 258.949 324.45 Tm 215 Tz /OPExtFont4 3 Tf (\() Tj 1 0 0 1 262.55 324.2 Tm 99 Tz /OPExtFont8 12.5 Tf (H ) Tj 1 0 0 1 272.149 324.2 Tm 798 Tz (\t) Tj 1 0 0 1 297.1 324.2 Tm 584 Tz /OPExtFont3 3 Tf (- ) Tj 1 0 0 1 307.899 324.2 Tm 74 Tz /OPExtFont3 11.5 Tf (st) Tj 1 0 0 1 315.85 324.2 Tm 62 Tz (i) Tj 1 0 0 1 319.899 324.2 Tm 77 Tz (\)) Tj 1 0 0 1 323.75 323.95 Tm 80 Tz (T) Tj 1 0 0 1 330.699 323.7 Tm 90 Tz (R7) Tj 1 0 0 1 345.6 323.7 Tm 40 Tz (1) Tj 1 0 0 1 350.649 323.25 Tm 101 Tz (\(H\(zt) Tj 1 0 0 1 377.75 322.75 Tm 56 Tz (i) Tj 1 0 0 1 381.6 322.75 Tm 77 Tz (\) ) Tj 1 0 0 1 388.8 322.75 Tm 601 Tz /OPExtFont3 3 Tf (- ) Tj 1 0 0 1 399.85 322.5 Tm 89 Tz /OPExtFont3 11.5 Tf (SO, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 89 Tz 3 Tr 1 0 0 1 492.949 324.2 Tm 93 Tz /OPExtFont5 13 Tf (\(5.15\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 296.649 237.799 Tm 106 Tz (- RO) Tj 1 0 0 1 325.199 237.799 Tm 71 Tz /OPExtFont3 13 Tf (T ) Tj 1 0 0 1 330.949 237.799 Tm 108 Tz /OPExtFont5 13 Tf ( Ri \(zt, - Rt,\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 108 Tz 3 Tr 1 0 0 1 492.949 239.5 Tm 93 Tz (\(5.16\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 140.65 197 Tm 104 Tz (From Table 5.3 and 5.4 we can see that when the assimilation window is ) Tj 1 0 0 1 123.349 173.7 Tm 103 Tz (short, e.g. 4 steps, both WC4DVAR and ) Tj 1 0 0 1 339.6 173.7 Tm 99 Tz /OPExtFont4 12 Tf (ISGDe ) Tj 1 0 0 1 380.899 173.7 Tm 102 Tz /OPExtFont5 13 Tf (produce similar results that ) Tj 1 0 0 1 123.099 150.45 Tm 101 Tz (the pseudo-orbits are closer to the true states than the observations except the ) Tj 1 0 0 1 123.099 127.149 Tm 98 Tz (pseudo-orbit produced by ) Tj 1 0 0 1 257.75 127.149 Tm 99 Tz /OPExtFont4 12 Tf (ISGDe ) Tj 1 0 0 1 299.05 127.149 Tm 103 Tz /OPExtFont5 13 Tf (is slightly closer to the observation and the ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 103 Tz 3 Tr 1 0 0 1 314.399 52.299 Tm 86 Tz (119 ) Tj ET EMC endstream endobj 644 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 645 0 obj <> stream 0  ,,'Aϔb6 @ ٌt 2{Kq]`T~OG[ =&ۍ|ǹ(*n&&m_`\ƃ||WFhsK@џO^DCjFwQR  ~41jzUgVzhc0 |wmƫ ^+e[ 11R@T[C[=Jk]FMDp_YXnP6%mŸ!b-RpH*'-$Xo,盥!e9U'n`&fE}d%؄mċKΝe| l,ҶZ$3 i洷rc?(3h0fcec8D2 1^VЛ|`Rhc Y~ola)mG(1)\lC ~4o-kw͌?lyuk!KWYEXf܈ݺ @zVxfU`/)ulA?,%R㿭>͐pV8A1pA( >=TV]'!r# #qw 6m,-9&NGJQoךPtJ)xbsfD]sm)K>&b"|.QVX3דbk")atx&ɻ|?#ΆWd}'d h5:ܜ&^ h]dE:6ncɢ3kT[]:@f@Y0_OUʵ A IG(iA0ھZUXp4l__Jd4i.Z1^nqJqmE /ӥ 3AO7yόQHU%HON/ |֡yGk<}#${ԶHYØ ;X)SrtpܴϹ%/"ݸ1ӥW>2dE`uExk\`韉ƞe5޿?jAbs5ܦ"Z3гi5x-[wi~c/s~PI4''h~ ,cE \_mUhQ*K/KbzNi[v-J^dx.̓spJ8Ć2p*c5խS#rx, }UsJWfxR_yz5݇6&7N|zI/8T{ wI|V"Zo8,QhˆЏn9o^ܟf+kp I(Dq˖t'u/"zGG.FT`dei c#'7<qv=O+ΰ!! dUmƒ ${garA#5d=&|/Awֱ˾+j7*(֠_7?/){f@ݕ)npb}] )_3 s!R3]U3ElG zR"$O<q+QiƱ"փӓ XxHʺ BI/z?d`gmO4}뼷=>Xf[#^ံ {s<)b;F"kPg`jȧ:P˻q_V䡶ɨ#Y`?UX=SD52G{徱o 8ටQT\{G@Jz@0"tMN1Pdv6+c9[qUx־{WJWe$+MՎ@W!^B6^[ıȜMmS5Wo7H&%c-] ibh&W<4yb\ib0exSg(9c$?U 9uxK P"pr[pܚ y.*)Goӻextvo{S{{ A HYb! J{z 9.㘧UXU{"rщU؁$>.RA`)BI-**W}iY oat@|KEĝ^I/{jb-7yY45F!x.boiSmgj93q -ރ\B#VӐ=}Jַd%i-qahPșb룏K=b\|g{l43` ˂b!++$MA/r`E5s/ΗĘZ^,mWH >-q4,~-TYD76-Y@t"bH ##ӹ$х ]kxP[3&?s 6C pg@BK:$C˭+{3yg)KdWtߘ|g cHY+G@&erPϚ1ywN@=eXtBEEzVs3]xb0^ܬa>^ 0 O[UdNSj2Q[N\Y:>*JΝ͇4kYv ] {ċ}}d\y@ZzPJisSz&5]֚?~r.(#m{ub+ZrH9 Pxrg1TNTFQSCE^+vB0ef*#!ݙ go Тآm44ZEbYvO=@([Un,sy [vOv+&&,8df˹%BQh UK-y\ ݬJl6WEe yY6cˌ@)߇KN ZݍϹh pBu6DߪϸMgd\6![@cb #T~ZYȏԲQ &]ҘN%ww}zUw܄<>!V\|.`onn S}jS ;A:2ke8G4|1GҋdaTןlX6NJf;IO0yaPa%ZU<&yYb4مVer"g61Ю5Nwq,޷>ާ9s}vգ^T%WisY6k Zr IQX$Yf:4y/2o0!'[^TPt;l+7[_( OezQvc,we2F&EdE|]?f)y1v߱.[>cX5 XH]24~\96wRaJ1ju+pPz#xН)<U# H}Ty1< JD^MI[]j0{4LKa^#Br1.9-GSqbl8"bUub1E˻z1PbҤ&<;&O4=iCh8ng2%1 ]'Y^7La@gZ{2e^Cp`J79ZΠs&yqߍke>Rű1̷m&MFp$}/+\A0f5Qm769=U0mЎhn`$E R F%?UkJݍ= .dc,>^]lPiy;!5zLܸ m fAH; ֽ[J\ykfBr?~K e^u g.>lWĸ؇fUyܸq,z VviHi E`#rKId0jAw7]myJ逋^i *]YRVa੎C^UCK98DŽ怑HRmayS(KS*'C k2}g7ap1bM=~2r8H49-p/y9y(@NȰ:kV78#ölSG0~a!;4j.mW to<30_f+r^ՍF'< `d*ˮ,hgb(w~q@f@ hŃ )6xlȰHDq((=Lz6o߾RB};VPU:,31ujсPRX#Y--Ⱥ?"F~s| x8E A9S ;g=F + Z^1{"Bg!YQ pں0.;Ŀ<0n`2.[2n֙~N\Y(¾V,9|jM#K&~ptW& :C^ׁs^BB8>o|謟wz%7N  gF!GG X{I Eo˿Ҿ [Z zȸ҃x gpۛQv/|NN S^'G6'jmwIҜ6scIxxA1Q4'"͉,PP꯷Js ҋ ʯP9BFXwvCsh͠\kwPjGikB}9@U!;rn0י$d+8l@u u.PhCÊ 4qu$}3fe >rܴ_EPn5&o?njգeK t28J $fL`21jnT@Y.R {IGdĦ9υjBE[y'[ejɀk=≐a*.wA궇 ]!?4ZS'`2XHib m$4J~OTO摒ǪjSWMzWKh׆\ ņ64.^#-jѩյz>݂&Hu. )(OvٚR̂-Ӂ^D5̖ӵ+ u܌>-[VcF}8~?Wѹ+#f3nsY $ځPhDj#  e_R|w^VzSۖ퍸C:[NMޜ1 w|Fq#/)^*&wd3 Ac=?ezxs J^Oߵ\a27*Er0>?<ő)P#E`<%D |Q*d=ڄj3-oNmFАXDgS0Kr"e)i]'3WhOhFgp w1Fp,٢ 0GMsRDŽ=]|!2ѩfALp IGSϒ'1q:.aOIkJ\T-AĜr͇8=l^UAaPvرVggU ֩+i(c#OtHFUֈ,԰Y4aw}Λ_F]:Wv%Bea O`//[:—IQ`BDYL.WW#0 xr8NAXNmY#9 2ȁkl C\N-.wj BI+! x-o%F`!?G,c$Eu(BB]x\T{o {7-@3Ӛ8A]Aj$60^9'p^ yI 72 ;7f3m8O2q mnj݆@]"?rc71u_Ȕ㍘zR4jA!\{K2@thtQM ]w矱7s}oi=Hꥐ&;C,(QWRֈ "* f}sIC|u<0uA]% uZa^UFޯ_WЌ͜٦ >7}0cؒ:=UEl(}gLkLB~x*PZL8K/ T;70U:"*0stS+Ɲo,pRGAQwOgp8:}EܻW]#H5jqA# o;A8g^S<.?}bn9{܂CL_y"eQ  yNaSL&^|^rUKA¸ 4mem;,rF$F#/ 8$5_ĺ7fG!,JNj!>63hΘͱ";Uٗ<zw9yƋB +Ԗ}s2^/ALE3D"#P> ?l״O% <)dIeΦ#5Hɿ@@CȠN%r V/xsu5c$Kjm} `IZfޱ|J2>wď3 \/P d0ZO`aV2śeN-}jGPS5l[y% 60G rbeecpЉ$8)bNX/wIXFdo*2w|}cFgg!skiM$@4kT'rd/iΡk`?2NXxs4Td&{ȸ̭h~ptXdS*ɱ},_d5Gm7߅tR$Dhpk}Mc:iIyI .w.縼 1EqؙB3 ~+tBkP8GΰYUrysH.~2 8I4N Ɣ($%#L4(6P IB콰i3[5r`{_".UyHa!&mP9& 2Qj gKYTfc\""6cY8mʸ{d~\aXsssuES7ٴi׆Pptmdq ;fV q>_$禳跟+/><nK(S q491 PD4YRyePbEȧNMpiWk= Q0q6FAatdjaeI3_5c,V#{0Dݫb*7:.gCŏA68_ͧy$c ŋ~Bc?S'n+)a6N 2/Lag]:[wL(C,LIEMל`5_v]ϡ}SR ؜+EߊZA{_NhU;Er5c[U;4^t4^3qN|!>q;A6fIkz3^9֞=:]sqЕR`0v?q}+_7ǘm-o1g`_laX.8L) =ݿá}D4=tV` x!Ɠ٣sHI"dff 3,}p4p"lsdž{}==. okP 2h {QoΠ7%ÿ9 +$ڏ|t̶ ©OG+!h~r+pT#B` 0 _{+wN't%f?.3;XJOiD_^*#$ux UL=_H0u?n|qj/E(-t Y/D3ޮnMrzr&}׌8 H]jmջKC7`8)ዐjۓ:epЛͼ·'md;%Ʃz"=rk*4LN`|j3_-Im!K)m5Ҧ!P[U )TVJ[x@ ~٣\ŸTĶ0Zx5AWrؚ1xf7T窢EauP>V'p!Qڽ992f-*oJY:r}a'WWh?z3H?ȊR*:H!+ 4S:!@[u+`{<8>"Lj@g,\#`!zɏl[Zw |g%Z>@A&:m/+]%qV|"+IT`(Ɠ |B<2n i~ױzKǢ֎RypL!”-)/@\Ydy,OJ܈h,_~YZ)Swg0@b/}3L m,QweT){bk'OV?ݯvu-J͜ \|(a7{DJHCA<Eͣ6<ᑚz0W"dUFY(hs O$jyqGD<~kK*q"XftVT]pM&tJX LJt*\x)ߜb#P1xD9Lw)Ø2Q_2fDA ]q1;2Htv,E w.e۰gAì3*;ůqt,8ۥY#̓+(Z6!uP+T#1d2/Dɭoϋ{~].~)l2M3'NVuBrfij!Wp@T226lrN3ɵ仐.~y0;X>K0?kd[´Լܙe|@Ѳ<_`7+:w]W9}#r'7Q-> dE$bsHV02"> !L&l3=v$[Ubs7>gz%178{~mG'rD[xE (7ɗ\M1gi$P*rTZ3˙ Bk:t?c5 oh|L!V,V/>ߺQʻY_s s9SC\03 endstream endobj 646 0 obj <> endobj 647 0 obj [648 0 R] endobj 648 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 621 0 0 840 0 0 cm /ImagePart_2147 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 458.649 721.45 Tm 3 Tr /OPExtFont3 11 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 151.9 679.45 Tm 99 Tz /OPExtFont3 10.5 Tf (Window ) Tj 1 0 0 1 156.699 666 Tm 94 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 94 Tz 3 Tr 1 0 0 1 272.649 679.7 Tm 109 Tz (Distance from observations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 109 Tz 3 Tr 1 0 0 1 228.699 666 Tm 102 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 102 Tz 3 Tr 1 0 0 1 335.05 666 Tm 96 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 96 Tz 3 Tr 1 0 0 1 435.35 666 Tm 92 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 92 Tz 3 Tr 1 0 0 1 204.699 652.1 Tm 75 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 75 Tz 3 Tr 1 0 0 1 258 651.85 Tm 106 Tz /OPExtFont6 12.5 Tf (ISCDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12.5 Tf 106 Tz 3 Tr 1 0 0 1 305.3 651.85 Tm 74 Tz /OPExtFont3 10.5 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 74 Tz 3 Tr 1 0 0 1 358.55 651.85 Tm 105 Tz /OPExtFont4 11.5 Tf (ISCDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 105 Tz 3 Tr 1 0 0 1 405.85 652.1 Tm 75 Tz /OPExtFont3 10.5 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 75 Tz 3 Tr 1 0 0 1 459.1 652.1 Tm 94 Tz /OPExtFont4 11.5 Tf (ISG.Dc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 94 Tz 3 Tr 1 0 0 1 154.55 637.7 Tm 93 Tz /OPExtFont5 13 Tf (6 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 205.449 637.7 Tm 89 Tz (16.42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 258.5 637.45 Tm (14.00 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 306 637.45 Tm 90 Tz (16.24 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 359.05 637.7 Tm 89 Tz (13.85 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 406.8 637.899 Tm 87 Tz (16.59 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 459.35 637.899 Tm 90 Tz (14.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 151.699 623.5 Tm 92 Tz (12 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 205.199 623.5 Tm 90 Tz (20.60 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 258.5 623.5 Tm 89 Tz (14.40 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 305.75 623.5 Tm (20.41 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 359.05 623.5 Tm (14.30 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 406.3 623.5 Tm (20.78 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 459.35 623.5 Tm 90 Tz (14.50 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 151.449 609.1 Tm 93 Tz (24 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 204.699 609.1 Tm 91 Tz (81.11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 258.25 609.1 Tm 89 Tz (14.52 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 305.75 609.1 Tm 91 Tz (78.17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 359.05 609.1 Tm 88 Tz (14.45 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 406.1 609.1 Tm 91 Tz (84.17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 459.35 609.1 Tm 90 Tz (14.59 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 151.9 593.5 Tm 94 Tz (Window ) Tj 1 0 0 1 156.699 579.6 Tm 97 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 275.5 593.5 Tm 113 Tz /OPExtFont3 10.5 Tf (Distance from true states ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 113 Tz 3 Tr 1 0 0 1 228.5 579.6 Tm 101 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 101 Tz 3 Tr 1 0 0 1 334.8 579.6 Tm 96 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 96 Tz 3 Tr 1 0 0 1 435.6 579.6 Tm 92 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 92 Tz 3 Tr 1 0 0 1 204.699 565.7 Tm 75 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 75 Tz 3 Tr 1 0 0 1 257.75 565.45 Tm 94 Tz /OPExtFont4 11.5 Tf (ISG.De ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 94 Tz 3 Tr 1 0 0 1 305.3 565.45 Tm 75 Tz /OPExtFont3 10.5 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 75 Tz 3 Tr 1 0 0 1 358.3 565.45 Tm 95 Tz /OPExtFont4 11.5 Tf (ISG.Dc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 95 Tz 3 Tr 1 0 0 1 405.85 565.7 Tm 70 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 70 Tz 3 Tr 1 0 0 1 458.899 565.45 Tm 97 Tz (ISGDC ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 97 Tz 3 Tr 1 0 0 1 153.849 551.299 Tm 94 Tz /OPExtFont5 13 Tf (6 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 204.949 551.049 Tm 92 Tz (5.87 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 257.5 551.299 Tm (4.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 305.75 551.049 Tm 89 Tz (5.76 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 358.3 551.299 Tm 91 Tz (4.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 406.3 551.049 Tm 88 Tz (5.98 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 458.649 551.299 Tm 92 Tz (4.23 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 151.699 537.1 Tm (12 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 204.699 536.899 Tm (7.92 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 257.75 536.899 Tm (3.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 305.5 536.899 Tm 91 Tz (7.77 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 358.55 536.649 Tm 88 Tz (3.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 406.1 536.899 Tm 91 Tz (8.10 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 458.899 536.899 Tm 92 Tz (3.10 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 151.199 522.7 Tm 93 Tz (24 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 204.949 522.7 Tm 91 Tz (74.29 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 258 522.7 Tm 89 Tz (2.45 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 305.5 522.7 Tm 92 Tz (71.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 358.55 522.7 Tm 91 Tz (2.42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 406.1 522.7 Tm 89 Tz (77.61 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 459.1 522.7 Tm 92 Tz (2.47 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 124.549 498.949 Tm 98 Tz (Table 5.4: Lorenz96 system-model pair experiment \(Experiment H\): a\) Distance ) Tj 1 0 0 1 124.549 485.05 Tm 100 Tz (between the observations and the pseudo-orbits generated by WC4DVAR and ) Tj 1 0 0 1 124.799 470.899 Tm 98 Tz /OPExtFont4 11.5 Tf (ISGDa, ) Tj 1 0 0 1 169.449 470.899 Tm 102 Tz /OPExtFont5 13 Tf (b\) Distance between the true states and the pseudo-orbits generated ) Tj 1 0 0 1 124.549 456.949 Tm 98 Tz (by WC4DVAR and ) Tj 1 0 0 1 226.55 456.949 Tm 102 Tz /OPExtFont4 11.5 Tf (ISGDc. ) Tj 1 0 0 1 273.85 456.949 Tm 101 Tz /OPExtFont5 13 Tf (Average: average distance, Lower and Upper are ) Tj 1 0 0 1 124.549 443.05 Tm 99 Tz (the 90 percent bootstrap re-sampling bounds, the statistics are calculated based ) Tj 1 0 0 1 124.549 429.1 Tm (on 1024 assimilations and 512 bootstrap samples are used to calculate the error ) Tj 1 0 0 1 124.549 414.949 Tm (bars.\(Details of the experiment are listed in Appendix B Table B.8\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 124.299 381.35 Tm 101 Tz (true states than that produced by WC4DVAR. As longer assimilation window ) Tj 1 0 0 1 124.299 358.3 Tm 98 Tz (being used, the pseudo-orbit generated by ) Tj 1 0 0 1 336.949 358.3 Tm 107 Tz /OPExtFont4 11.5 Tf (ISGD ) Tj 1 0 0 1 376.55 358.3 Tm 97 Tz /OPExtFont5 13 Tf (become father away from the ) Tj 1 0 0 1 124.299 335.05 Tm 101 Tz (observations and closer to the true states while the pseudo-orbit generated by ) Tj 1 0 0 1 124.099 311.75 Tm 98 Tz (WC4DVAR become father away from the observations and the true states. This ) Tj 1 0 0 1 124.099 288.7 Tm 95 Tz (is important because we expect to obtain more information from the observations ) Tj 1 0 0 1 124.299 265.45 Tm 100 Tz (and model dynamics by using longer assimilation window. In the ) Tj 1 0 0 1 457.899 265.45 Tm 113 Tz /OPExtFont4 11.5 Tf (ISGIY ) Tj 1 0 0 1 498 265.45 Tm 93 Tz /OPExtFont5 13 Tf (case, ) Tj 1 0 0 1 123.849 242.399 Tm 97 Tz (the pseudo-orbit moves closer to the true states as we expected. The WC4DVAR ) Tj 1 0 0 1 123.849 219.1 Tm 98 Tz (method, however, fails to produce better pseudo-orbit when applying on longer ) Tj 1 0 0 1 124.099 195.85 Tm 101 Tz (assimilation windows. We suggest without proof that such failure is due to in-) Tj 1 0 0 1 123.849 172.549 Tm (crease of the density of local minima of the cost function, especially when the ) Tj 1 0 0 1 123.599 149.5 Tm 100 Tz (minimisation tends to obtain small imperfection error; as the WC4DVAR cost ) Tj 1 0 0 1 123.599 126.25 Tm 97 Tz (function depends on not only the initial state but also the imperfection errors, we ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 314.649 53.5 Tm 86 Tz (120 ) Tj ET EMC endstream endobj 649 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 650 0 obj <> stream 0  ,,'Ôj~ o>6=M;ǹ&įI=oJ,)a':B$iۛ$o3v3&`xx*^t-]Pr f@|V3Njx s,̇rPE<4Pj;% gʉs4e*J<2h"¨H zʒUҵXt~@6wv?%:A% MrgUQ^#Gn2F ErzesP\x/+9C1aGnfwy4OJ|:e؝ d~-dW3^Z^%;4 /Q6l޷u&f.MbV #s^DAٕDȾ -c~qÅSC)hKx#ޛZ,QC&I|&)9,^6ࢭ>85n͍X Ce?δ?<'#"<̬3s~;@'8)=o0Wx2uWV n VĨ. /v}.}r5> -uVX.,WTz :w‡UVE>ӏǮDD12p9%!E7;2Z&ޮګmZ+jGX!od#j)/u-L1TSu8 6kԩ.|L a`kљ~<,U2<#tDA}r~<8'0L?YhQJ/!xrZg{]L)4_ڡX$־sh,4Kg׏nmp!>bCQ#QI>K}DٕORo>shbV>u0~MoBJ HR6Te+rx("vhEHƠ )ȷH65v{7ȋoy &2buXj.pt]Ƶ`mk":g@a1䚀ڜ%ަ0GAy qA;t%_{T;^ןGkBNpOC:EI$86Xlqo(7l-m%{0}[h-&Wp"ѥor1).̸q0_PK@BIOSY_} b_L;R| %2*b&u!Tq"ĥ <] r\yXj۪V ׸״w:kFË` 'm|=/yj pLm,nJ\S or9FlMr}`BN'Rox#bh䳄"Q٧2V/'ݖQwsXC}-sߙ㙠z ܜـVg1 ݎ,KE>4zjAqZ=v,ݪsFGT2?=$wnFmBHtN\1Cm)7 ->U?`R)YxpʹgV &Api/נ?Hㄔ]$R#wYƗq(ЂcNO{}lݳJTp|TF!=ڛSrUdȲyTuj{?#Yz-=W緳ڤR0⍬2@k0MgfUt!ugݕWb'!j!-mT}:1lC#qyĭ e!U4{M2tj?0 Ο`)YY7OYxDZɤ\!IkqɗWX,Xub`8˗>ef\SSWn`Zg2:߻l06yǹt:wg>{Y,뽊'5y 0I !$$3Dl'Qd9`:UW_{Mz:*IHGD4ξ1?!5AӢ }Ŵ .$*(x>6.;@? 1h ]Pȭ 4iN@vw3"yt }a{Y$}uV*xqK;Kȧj"yѳ./цi/=&:ݦiM"dŒ%ἁqUH= ڀSʅv \ 2,]UH[VKJ4NFM/mh0TfwQ^e8 sFH޶ |G#Z}zx]E"j>kp  V)+r/~O'Ձ n?&aڵq$#SZa.ؘ`u vsJxZ틕# &o1k>uќR –9%0"֒X"Cij$ ^אւ_CMKԸn6)+z; a!ʉ% ^j;_]k &T6 0ZOd"-PJtGR!mjkt~C,B@ RwS,r{xXV3h:$ cM W,9PeXh#7Ѕ?Rzi~f CR9Zyn9-@ ;m#ч ܂3-[]5?|{-.0)4cאS8+4ݷP5:7 =9GsQrפ,g[쁻]Nb]\.R!|A=9 wX[Ui9UY㹩Gz٧OcPgْiˋ9գ5p 1 7'nT55 >j \]rg<#pÄ &K-_-,)wMIs3D?a%Qzn`*v2GP~m&t[^_C@~|}t34Uz4.\/|5ɟ\4@CfPAfD냓[[ h%<%1 qjW@6J9K}Ēdj>]/:/&<+i욟- @GjL:޽L0W_I5fҼR|qv+ eEsM]؅g: eՏ+Px&Zg|\Hn M<) 'ڬNf@[d>`fzkSH*t{k^q :|Znh k4nYjĞkA&R4)|P1nd`_6l>U&Pk(rHvCp/FBlbK^$mրA*"_'LT{#r5m5p~cB[6IQ m*q8 - a=!ʲXdĚ,d1֓D#1ago7#yxt-ZgnAoj4W~(11K r1٩JqK( j+0z/XQ0<佔BI@,Uxbqݜk.?o6ScTƭ-YM݂&ՙŶ.6b\lȨ(]~񹑠`}IF`#h-fmSB$PKY_E}#ZԁX \'KaGtvTߟc𡥟)z ԖT$&܁QPiEaE&iPo4rzM-X[L=řΐ 31uH+pRc&kxR]Yԉ].hp-Ʀ^J,9P$X^CcM%;R'HgkbN2ƻ;"ڹ5};D TIڍl^'zHuzή[P5lZAAv?"n lWȚZ|jVyHOVܣקEE{`ȏq}gzҽk3,1j-|mІhvڹ \Y̜WVi3* ~BMK"h[9ż/F)K?fGht)-5Hfc3-T1 WXT&Ԓ y*۠7Ug,[~cنO/H`\kJ2*c1ğ8|A-y8GYyO2EZ94%Wo>zYQ_{)N U5JH=ÅXdRjprǛOèCm^yRW0d3'3Իʽ;S0ћu*G <\ 7r)a1V9fhdRU-vwzPw2)1FB rp'6@2l'(_nB}OR9:, ]43K/sd9IքWp#۽-: ?YŀP|vQgHtH M\$x!5xP ?chr6DEpȵPW_(TLbH脀>ſg웖Uޖs8,XȂ83FEJ*EI& 3B㦶\)NEsjVixuTIʄ2we*:r\-Oܡt&}G܄H G9vP0sR#$"Ʉ V".a Q*l@Ġs 1tpHkP%Ia{6ܾMпʼn-"73GLdvQ^9\-(vS~tX\a0\h{KS Qn4+rӥ0d估Ej,͍B^JOTo-ʔPj07N{t *O}PP 'U>׼G 6ݖ /X$E"-H aIfXK2߅LlS2L3ix6.J`_ C!JHዟO[\X|rOpC3%wM0N3$Rm42U[a88,5]伟r0\I&Q tB|s>aɊ%MJW6EڢHgPUU M7D2"*kFƺ;i)XբEN]!Zu*Rݲ.QHUPS\ b]Dlos>vb@%,2 En`2KB{QJPۋ w/V㷝ߜ J\ "gPlki|u/-,gBdz蓞FcFs6-+ u 6aytW?p C1A5`xcqPFX6wPK-5rCm`wE5~7ޒ O L6\jkBo.H ǠgX[cʼn[IS teTL5=w`4yP 3oqvg z+y6-FdKޞb,C;wbcciUA/?hmnJe]:~|z1_&Vjq$ޑ}|Vdn)jd*d`=YYbqD jKT-+ " kQUϺwtZSNl_.41 H1ީ /yư W̰8" Q@ϥ9FAp@,Cvglƺ@lV5Oc-`L 0ⅆ* 0Ȓ_8`׳*1 |pJzÓ"QdF^p>`:lH>\kd1~ZejAZ)T?9v>ȵ4LXXr*5 APd&4PZX@UZh556$*|8'}v=R= mHB.!{'0yΎjVO?njFt+d E:αI+NPh" C*+MPB+yu;M>SⒿ{b @Z4(^0]5d1**؃}9 )[PpZyRy/waGK[%Bmyaf]8ECS3LJrDJUICY%؛ݒ֖Vw9OyAS*S/7Rp{(_ `.H2u(ò w{}OUUU|l.J=!J'o 4y$;^ap]ȪU= 2[{sC"O&pY^Tܹq3M K1TZ-Y?LZLL,3חX-@iPPVC; _7@^1uA%iTgK\_Ρ\XMz}LSYکKZnC:Lz@mO4iI: j寧I;\,|[r=L$T . r(Yl0hO=/ϫ1n m9+kٝtp$ GHqؤܛNHY(_M2q_n8!&;?]Yod0Q$6(2^ ʞ[_Pik39ԉPq"vNR\EGtO~С.5ckI!d./k}!IPq#' T ?/ȑ 4.ol*'枰Nm/FL91S2!%RI9 bs.&3uOE D@\7<heoilLDUV_PI2폀 /C[ zGϞ^6H` ?~H;lPPqz W L8Cwce}ڢ}OFU)|fF/[nld4x_ҞTv$9?JB8k*f0M9W_^HS)v+SRU;eU^ŏoHX&KzMSjW8z&t;mL1T,S:AF̭{Vҧy~4(냼5IA zYk '"XaJKqa9&mB'_}hK.+/-Y;\;qZh2!_ʻ86&y#"Wx#ь릝s9:x[EQ<᫞K&y,@,]6yI~Œ ~&NJ{.qѴ{ΙFDk!1*l ֏ &TP#&8w^OIT$.7 TS2i|u;|# *JB6|Ypt,NmV;Aˬ},ZF=BPYĈwgV{Ė[U(6*鳵7# 2[lA"e)Gd.3BM o]Xϑ&IdvU^(㚃^{seR31G4ڑ!*ղf|K'#๳`)U7+[.J"We=gD09B8D=;WPGׯ٬րBKNJeWd{|m3=`mHk7^&Ikia)~ 2bz=hH(>k 6EȫpچAPR`y֮C#X Le^4}Nvp^:e—K JmM-EM˰f}+՝4F,R;f> z^QJ31Qqyw(iW'_~D2ˢM6Nwac \{;< @QwolLV3HE]*f1Quz5'js"MBsXhJ;3 l*|f3fvkG0vT` qYjз5FGUN^jڦ 0WпIQ>tf2"86;Te *eT?DԦI+BMf5=Tx4(+A":Z|SlfkB*ԓ@jFa΋B Tw~0 =?Zj'1s~Bo$؍U# r^s c18MSū$@q8jF bHrl   ,͏yZEky`pFޜ)o(& az)~$ V48ajCiu?w9^xteUb,%{H2[]BsJv&dfB$vLY HZpt5BUCƃdFhH!,=&*Qw4 =DlP@K)s[`033FGA"_?'_7]+3@t3ND/ s%k";;Gq GtDӶrPÊV2>H'88(mlڡdC‡D'gV'~v%Eh¶T' [0ם~>}|eURlq'1T P3{y՜fzYL VI jҐ1$BB3tJA z9Vw(.;p@2U! >!E c3H.L  mȓw$"-p (L0+`!oWoFԈ`_.f:e-Ȑ\hGmbLO;HLuj?_#5IJg j-!͡@θ; z܅L=5؀ټbt5 .x0k z%8kdcKFB[J3gć]M%Qj#_U`Ja~\ ځ9wͮ\P_wJ'aj47GRs`g ^p ڢ+(,yۓ6Ww L? Q؎Q).܀l0oz(`g wtK^ϲևn-IF9͘^WK_aēEW_b{4HOQjYtC@"STf65Fw{ۿJ(K>L"Dp٩+*9]uGb>6v;KƜ h-xl!.yIi*1ԩg}[8GӉ%>&ɱݳb'<\A4#ɽM'G>,*Վñ\d6ltm u'O!2gI S/2:l1O{Vy ;T@wDd8#htTaEH{Ki}P Altk'-% 4?Z^B k$(Bv;}gS5yDj#zc74Yv|TSZ_bH[VO+ѲuQ5z+V?WKNhrߜfs6="? ʦ-,_rûц,6;V\#`E/eBxf(QMK~U#l)}Bg:G*"WXyncAM^栨œx/cT]<" `Y`x5 >pc-jk󻐧hpFI`+'[pR,e5_k[C8"Q QE@AÅ<Ѕ8:v ~2N[)MGoϚ, e+wq ̰ĥL@&gDO.X7;R)'X2l#G#SLXg,/c6|#רY(!SSa=Ie H7x,.1h][I- ‡Ʌ4C >'$I\3[D?T&+om6XY""gҸ.)=>,>^ͦ Mio7P ht@t)T??UVnьF36Q^αf\ÖR%u] T#)/yn $O?VX oQRgVؕ(711!j\%߂[Jx:Y_op#oŵ rV1;60Œ Yxjo >.{#sCTk #| `FL7b7+d D=X0e;OChRTn;)c\WMa+ES-d\fAړcp7P+tKjW<0H_P)f,CP5>?& VX`*''뮅y?ObV:BW#s1u q*98l6*,%lh)TP2B I?lc /j' hGz'`=*Dbѩܼ \(T/'gD(y;*|08O밡~ڪXW=($sk T3IP'sJ]08t[?뗖V{+R=2j *UD// vC%l1A8.Fkl~S׮l܎(iN}ܛJ|6d D*|9}^ڱ;RWQ؂pI?jcc8?{ILZd-xAkݠгǨ`kQKL>(( *vrAūPS &crw u2 .bFwQBnpss7f$O2+ oWgj#]ǭ\8dxWT]ux)?;*{!g6ϘuRvU/.׾eLūXߙ@^Zlcs5%\,5)6 :fΒrD#_,%jqAV cYy}ړm!`9${Zȧ0lzf ¿fVQj ϛQO;޼ W0薯Wo%tۥʢsES$pA)7̚LΏ uz7\́aSN% ^`tBYjΖ}Hi%o`ɻ] iKySJR60@ 5fq{d ًAi endstream endobj 651 0 obj <> endobj 652 0 obj [653 0 R] endobj 653 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 621 0 0 840 0 0 cm /ImagePart_2148 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 458.899 720.7 Tm 3 Tr /OPExtFont3 11 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 3 Tr 1 0 0 1 125.75 677.5 Tm 101 Tz /OPExtFont5 13 Tf (are unable to plot the cost function against the initial state to demonstrate the ) Tj 1 0 0 1 125.75 654.7 Tm 95 Tz (appearance of local minimums. To support our suggestion, however, we apply the ) Tj 1 0 0 1 125.299 631.7 Tm 99 Tz (WC4DVAR method on different realizations of observations of the true states. ) Tj 1 0 0 1 125.299 608.649 Tm 98 Tz (If the WC4DVAR cost function does not have multiple local minimums, we ex-) Tj 1 0 0 1 125.299 585.6 Tm (pect that the pseudo-orbit produced by WC4DVAR should not varies much for ) Tj 1 0 0 1 125.299 562.549 Tm 96 Tz (different realizations of observations. Table ) Tj 1 0 0 1 340.3 562.549 Tm 76 Tz /OPExtFont3 11 Tf (5.5 ) Tj 1 0 0 1 358.1 562.549 Tm 96 Tz /OPExtFont5 13 Tf (and 5.6, shows the standard devi-) Tj 1 0 0 1 125.5 539.75 Tm 97 Tz (ation of both middle point and end point of the pseudo-orbits , The WC4DVAR ) Tj 1 0 0 1 125.049 516.5 Tm 95 Tz (method is compared with ) Tj 1 0 0 1 251.05 516.5 Tm 91 Tz /OPExtFont4 12 Tf (ISG.Dc ) Tj 1 0 0 1 289.899 516.5 Tm 98 Tz /OPExtFont5 13 Tf (method. It appears that for ) Tj 1 0 0 1 426.949 516.5 Tm 91 Tz /OPExtFont4 12 Tf (ISG.Dc ) Tj 1 0 0 1 465.6 516.5 Tm 95 Tz /OPExtFont5 13 Tf (method the ) Tj 1 0 0 1 125.049 493.449 Tm 99 Tz (standard deviation does not vary much for different length of assimilation win-) Tj 1 0 0 1 125.049 470.149 Tm 95 Tz (dows while for WC4DVAR method different realization of observations effect the ) Tj 1 0 0 1 125.049 447.1 Tm 98 Tz (results more when the assimilation window becomes larger, which also indicates ) Tj 1 0 0 1 125.049 424.1 Tm (that more local minimums appears. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 125.299 379.449 Tm 108 Tz /OPExtFont3 13 Tf (5.5.2 Evaluate ensemble nowcast ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 108 Tz 3 Tr 1 0 0 1 125.049 348.699 Tm 91 Tz /OPExtFont3 11 Tf (In this section we compare nowcast performance of the three ensemble methods ) Tj 1 0 0 1 124.549 325.45 Tm 87 Tz (based on ) Tj 1 0 0 1 170.4 325.45 Tm 102 Tz /OPExtFont4 12 Tf (ISCDc ) Tj 1 0 0 1 209.3 325.45 Tm 95 Tz /OPExtFont5 13 Tf (with the Inverse Noise ensemble. For the purpose of illustration, ) Tj 1 0 0 1 124.549 302.149 Tm 94 Tz (we call the Inverse Noise ensemble Method ) Tj 1 0 0 1 335.05 302.149 Tm 86 Tz /OPExtFont3 11 Tf (I; ) Tj 1 0 0 1 345.35 302.149 Tm 94 Tz /OPExtFont5 13 Tf (the ensemble formed by dressing the ) Tj 1 0 0 1 124.799 279.1 Tm 95 Tz (end point of the pseudo-orbit with Gaussian distribution Method II; the ensemble ) Tj 1 0 0 1 124.549 256.1 Tm 97 Tz (formed by perturbing the image of the second last component with imperfection ) Tj 1 0 0 1 124.799 232.799 Tm 99 Tz (error Method III and the ensemble formed by perturbing the pseudo-orbit and ) Tj 1 0 0 1 124.549 209.5 Tm (applying ) Tj 1 0 0 1 171.099 209.5 Tm 93 Tz /OPExtFont4 12 Tf (IS'GDc ) Tj 1 0 0 1 210.699 209.5 Tm 97 Tz /OPExtFont5 13 Tf (Method IV. The three ensemble methods based on ) Tj 1 0 0 1 466.8 209.299 Tm 100 Tz /OPExtFont4 12 Tf (ISGDc ) Tj 1 0 0 1 506.899 209.299 Tm 95 Tz /OPExtFont5 13 Tf (are ) Tj 1 0 0 1 124.299 186.25 Tm 96 Tz (introduced and discussed in section ) Tj 1 0 0 1 300.699 186 Tm 79 Tz /OPExtFont3 11 Tf (5.4. ) Tj 1 0 0 1 323.3 186 Tm 94 Tz /OPExtFont5 13 Tf (The Inverse Noise ensemble is formed by ) Tj 1 0 0 1 124.299 162.95 Tm 98 Tz (sampling the inverse noise distribution and adding onto the observations \(details ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 140.9 141.85 Tm 65 Tz /OPExtFont3 7 Tf (1) Tj 1 0 0 1 144.699 141.6 Tm 90 Tz /OPExtFont3 9.5 Tf (We expect the middle point provides better estimate of the model state than the end point ) Tj 1 0 0 1 124.299 130.1 Tm 91 Tz (as the end point only has information from the past, the middle point has information of both ) Tj 1 0 0 1 124.299 118.299 Tm 88 Tz (past and future. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 88 Tz 3 Tr 1 0 0 1 315.35 52.799 Tm 83 Tz /OPExtFont5 13 Tf (121 ) Tj ET EMC endstream endobj 654 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 655 0 obj <> stream 0  ,,Дb7 LAez>Ir-B>gdbǂMz1^Q퓘v- [pD/?L{.Mx[gMFzjZug*imNInaqʼ)J"~ޮBƍh79yS.؈NmH %ï|gX/'c1+VQ9MgلGFNCSOP}e\wxm@lw*n0$AaE]lHፁ}]~9P/3"q}^d)l4raL `Z8$#~/cW 35Iѻ(_bEH AAoX8lq֧7-v$CWGP?Y*_Qr#laXSܳRP\=E[=Z!WYh:d$x\t|٪I8W{(y8S^o`B$З9YCǟ3rH^pꝸ Fkm Ug#WB5ja[31A؞' G-le6 K_g;g?Q>Ԏd͍(4Su@Wڅ85SG{?8g)ni}Wc Z*Poa~_rW>oF{#L7/l2YEbkF81?Zkqӌ3msC14nLJΒ63put yjqFcy9 _G lpߨ<\usBʕx2io̶bh6{4 >hż;?ѱ챷=۳!7%<*mYFz)Ls'[˳|O+JhЃF[70J-k5݆P[뜙f_JG'=Ȓ:*}Ӛ )Fː}3:/ Cgѧ\[xF= A[X6Qnj}bI1F{#쇚 ! m~͘>s{a[@o_E}Ƕʟ$> E # Ez>l#0BH (ѷ[E  2/AڭL o?ka ={}xsvQ{ZsD;F(I,615EVqjsa@?gu%-3^7)57fL\_?%ISR-"XSTqO%Wݤxç,sHzrh ;9;JʘLp^0dd;4!bB+4u ϲ{xhCť>I]0n\+?` C oV,xܶخm$*aBNJlt TcV? #Vy]8(CtIB:Nyp}Qh{(Byq)^p7u|@uPmoGY^!^s%!#ν@˓(G?ӏ_ P.uk,HaQ:P@A,d#%]~\CRlwPׅtjvD_)sҨB<7-axb*rZHX63ݪn`ɈsIz@)XEVe yǁ#"T!)( hvRGZ^ھ#7b;*UjD;Qm0~ӣ=wJ,¿sU9uH]5Vs 22gF\2BZ)G:؟kv*=z! ux%f-gpʝoC?Dyv*9q{ƻ8@a Ib!EzAK)8x0KU?\և1Vv^՞Sٜ^&lޝXpQȋ܇)99Yp=ᏹ]7?-2r,rn@Lfb!MJy :Fhe1 wͬ65ÇRÒCK̫4 'QR[_joN8܏RC,d"h0/?EM_īnhiNl%CM@`^kl#mK2;hSp-4Q)c>|2d/G[0^-y€[Dt 4 r#Fu10$q-tRqixVHp&5}I{OC?v;Пr‘uCs'Mĺ4؅xPEePE;S =jL%CӱAIRؚ'1\`XDfqVWPi1 UOR{ 4|RK0h@ A>FJKw&lg ߁ko!.1N}b2a9KI%?aJhK6V:qggh3z]EMpy'<[2Lɶ2>#~7Fdd79Y X+%,PHR pteAll51P9:H[-OxyAsݹǮ}?-AdB' djX0cDoG;@;F{0$o ?u5Y@ xukA-J\.EmC\%żmy^#c(o>S.~w+=1S"4 2nW%sh4w-N?B8PҖ9u10 ݁ lwp'[Cݏxs&6,Ln &L76pSp߱\j"ǂvba|1̹kWJz!zY2U"B#j*VNpNujI124/3kp8WpmħX{*tfV{[ңC8M.GWqTs,$/'EP/]1nD V]`{7MRBUjЅ0~GB3{\fRg(W,]2_GM_B}Bo46$iIYӒC %ZvwNPv@p30,b.rٷE~䎷a#MULmZr|m^+7o(f2ߪD0>:?)DtE*?hBB㭛Qc˗(bƮ}mv6@SR&H td LG̑e {^/!cN :1M+./9aNȁ,,vՐ[n~w+ y4$6P\)\ V}>:hOg"iRofܪ0(5smW8 \WV<.u4bx' ]ӷPQWӥќOS"PZF׎ǜ hE=G@vÆY(4eN@ @z$ˊ1QA+C$zTe됤\{J&|ٙz9hrSSgj&mN8sBo*s9Ttb,~4vpA (.iJ;W젧8/ xHT', %d?5Ո_QW B' hrB5eJ+C驯ɫ$<.מg[D %5u-/O"ocdb,yo!0ߑx,S)ԹscmD[V#7h.N')#3v'o Bd ҈ŠdT6,Pj0gÌ +_|YGX'6, %ЯMBJ|&n Ν,=-԰h PM}6lpǕkR(^D{roAs.>I'2 - Nr-ޫh`jU$5k>4 T~ R~(]Y)T]N>@VӞHa#,0OjA&E-x(6{LwN1c5(_:M&Lc's5k 8w==ioLY΁J`+#XŸ.72 x™YK1ʋ/]g1v{dn: 7vviE+Ĭjٽ !ߨ]9w&K[<֕y G6BihE Eώ7̀  ~;>`mu GEY~bFis еnI8}h?RuA 0/b׵L?AӧM:ϗsBV?$G#:n sq}3Z!1*2iD0 f^V鯈"UM!0bP!k ZOvRT:<8/_Eޱ 0dwn.*JY \GGZ0d4mOQ̉?Bȴ ^@3m0Gy\~GKj)/ލ@kU`6>ݫY`#R{يlF⹈A)sx`A"6e F_*<8ڥ߽N&Qהzc R 71?hkT@_DQ8Ź Bч+$o꫑s@ڥQ3aPn*˲zSY>MyNW3B& סT..0q] EL%TUZڶOk¯Y;*3g\EӃ?V>8w>9ղ@0/5!W\c-3B$~_?(#u*?:$H ?yL [dIynUI-DFC=᣶HB)1Gʼ,?Х2$Ư<ބćdn$9)|p;:}Gȴy EcHA.dz[q~ڀ:YK|\'$5n9QJNOr?G7b̤sFu0mz(k Ʊ)5^Bcv\vh8۲R߼hV} i#d5avfք+ &o]xp2U4h]tW<6n[ʢS&cv#8RIJmo2p\}n:'qbŻZ5`zUwd]­a R54$Ŏ9 djF6NgKB3]B\4DjrB_qnL8;<"/~仺UH~š3ܾR(Λ\?(c- ~͡*tY}9͊4]S ks~Μx ]C*}%;Eu3#SAEU=լ6 ~}xoY[n6"QT@mO:YF]7ɲfPJK/hW7)-{ L6`{6)}1v|Ӫ[tX3#N6Ǿ \ 7V$Wɲj, o2 0u {(DS^W$x/ ^{d&\*fȤ0 [ 'J`ej8{tμycrgCLC2߰ZdHC4"&d Fjy~aMlU9V[T·Xg*d7kG'`uXA}U7/;* +jDNm#|Sh"W:Fw3[(5re;x;i^) m_GY"jV=X&HIL SpQ6-IuZ6+T @'$V#s`=;͓X,JtIcҲG w  ,͏!m:?B%>fzQ@t"z"eHnNVx2ofn@F"Bt>01v byh+W6EeHHo0%'+"̚C~iM֓)I"*ef,?>q$Ki"H='; Zѓd}>ܺ۷Ę2#ձ5ʴڳ1v669T; ?"C!L62i6J|sŹm} E3^{B)~B{@g)0%,Oׅ)`S'hy}$>F  nc拾/_^ak"qS{Ka0г:_|O=Mݷ`9^ ّ:N?bGI좤־oμ\:SQ~\jG3XOߪD>*.9`r q"ՆNçzɑ2Z$\}fvT¦QJG'EaVq냭u{7&tl- 38"pHĨZjWR᠌J^RI[PKT)F75Mī0Nz<,d/ʆYoxڛmu ĥOBL`L,Wb)I*<_W^{Ȣ]omv=HDA;hZᔪBA_˄"X>p1L=H=}$Ʈ셲'т8<0Y#i$֜wLЌM c~#vP(p*7YlWw1~̒ZYQ4j $^!ه 97:] >Y8'C/gGQ>E; Y v=.%""Tu Aq%C Mo=_I\"s?V)옹-8m952pcF% )a}^*AhܒzYf5k Yf ?.I\avF^51X}Ώq!nSY lp+#NY'$F5 G 0 ^݃8O=LvGfKk;/k?B_g]BpĂ$ACVc*v >5C7w?Î,F9D<b_o#XRkIHԃiLfaa !jP Qii<ҭQ,p}Z롕AvH}q9G]NT|Px5.w׃jx|J|̈́(O  悏0ޅj?o ˩S b!uJT\]S%͑:vCYi|.!}!243H4~nS.XZmG+nx9&6CV,ſsdu y-E LC{Iڼ,yŶkКYe P( ]ox?4G$.gO+ v5{$e;ίp27*6{wʞ?qyVSK}"4ZrVNNM3x"ыY\CqՓ`Ovn~Th2ips $$rG,Uv G8 ڋ N^/Jr*SfȄiy endstream endobj 656 0 obj <> endobj 657 0 obj [658 0 R] endobj 658 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 620 0 0 839 0 0 cm /ImagePart_2149 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 459.1 720.2 Tm 112 Tz 3 Tr /OPExtFont5 13 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 112 Tz 3 Tr 1 0 0 1 152.4 678.45 Tm 94 Tz (Window ) Tj 1 0 0 1 157.199 664.75 Tm 97 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 222.5 678.7 Tm 119 Tz /OPExtFont3 10 Tf (STD of the middle point of the pseudo-orbit ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 119 Tz 3 Tr 1 0 0 1 231.599 664.75 Tm 98 Tz (Median ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 98 Tz 3 Tr 1 0 0 1 306.25 664.75 Tm 118 Tz (10th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 118 Tz 3 Tr 1 0 0 1 406.3 665 Tm (90th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 118 Tz 3 Tr 1 0 0 1 204.5 650.6 Tm 80 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 80 Tz 3 Tr 1 0 0 1 258 650.6 Tm 94 Tz /OPExtFont4 11.5 Tf (ISG.Dc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 94 Tz 3 Tr 1 0 0 1 305.3 650.6 Tm 79 Tz /OPExtFont3 10 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 79 Tz 3 Tr 1 0 0 1 358.3 650.85 Tm 105 Tz /OPExtFont4 11.5 Tf (ISCDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 105 Tz 3 Tr 1 0 0 1 405.85 650.85 Tm 79 Tz /OPExtFont3 10 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 79 Tz 3 Tr 1 0 0 1 458.899 650.85 Tm 104 Tz /OPExtFont4 11.5 Tf (ISGDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 104 Tz 3 Tr 1 0 0 1 156 636.2 Tm 96 Tz /OPExtFont5 13 Tf (4 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 204.949 636.2 Tm 91 Tz (0.0153 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 258 636.2 Tm (0.0155 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 305.5 636.2 Tm 90 Tz (0.0113 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 358.3 636.45 Tm 91 Tz (0.0105 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 406.3 636.45 Tm 90 Tz (0.0259 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 458.899 636.7 Tm 92 Tz (0.0274 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 156.25 621.799 Tm 95 Tz (6 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 204.949 621.799 Tm 90 Tz (0.0271 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 258 621.799 Tm 91 Tz (0.0126 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 305.5 622.049 Tm 90 Tz (0.0121 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 358.3 622.049 Tm 92 Tz (0.0087 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 406.3 622.049 Tm 90 Tz (0.0595 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 459.1 622.299 Tm (0.0264 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 156 607.399 Tm 95 Tz (8 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 204.699 607.649 Tm 91 Tz (0.0431 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 257.75 607.649 Tm 93 Tz (0.0126 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 305.5 607.649 Tm 91 Tz (0.0242 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 358.55 607.899 Tm 90 Tz (0.0086 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 406.1 608.1 Tm 91 Tz (0.0905 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 458.899 608.1 Tm 90 Tz (0.0262 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 152.4 592.049 Tm 93 Tz (Window ) Tj 1 0 0 1 157.199 578.35 Tm 97 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 231.599 592.299 Tm 119 Tz /OPExtFont3 10 Tf (STD of the end point of the pseudo-orbit ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 119 Tz 3 Tr 1 0 0 1 231.349 578.35 Tm 98 Tz (Median ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 98 Tz 3 Tr 1 0 0 1 306.25 578.35 Tm 118 Tz (10th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 118 Tz 3 Tr 1 0 0 1 406.3 578.6 Tm (90th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 118 Tz 3 Tr 1 0 0 1 204.25 564.45 Tm 80 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 80 Tz 3 Tr 1 0 0 1 257.75 564.45 Tm 116 Tz /OPExtFont4 11.5 Tf (ISCIY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 116 Tz 3 Tr 1 0 0 1 305.05 564.45 Tm 80 Tz /OPExtFont3 10 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 80 Tz 3 Tr 1 0 0 1 358.3 564.45 Tm 105 Tz /OPExtFont4 11.5 Tf (ISCDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 105 Tz 3 Tr 1 0 0 1 405.6 564.7 Tm 80 Tz /OPExtFont3 10 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 80 Tz 3 Tr 1 0 0 1 459.1 564.7 Tm 101 Tz /OPExtFont4 11.5 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 101 Tz 3 Tr 1 0 0 1 155.5 550.049 Tm 97 Tz /OPExtFont5 13 Tf (4 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 204.949 550.049 Tm 90 Tz (0.0260 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 258 550.049 Tm (0.0301 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 305.75 550.049 Tm 91 Tz (0.0124 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 358.3 550.299 Tm 93 Tz (0.0147 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 406.3 550.299 Tm 91 Tz (0.0417 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 459.35 550.049 Tm (0.0407 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 156 535.649 Tm 95 Tz (6 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 204.699 535.899 Tm 92 Tz (0.0369 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 258.25 535.899 Tm 90 Tz (0.0296 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 305.5 535.899 Tm (0.0228 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 358.3 535.899 Tm 93 Tz (0.0147 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 406.3 535.899 Tm 90 Tz (0.0841 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 459.1 536.1 Tm 92 Tz (0.0407 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 156 521.25 Tm 95 Tz (8 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 204.949 521.5 Tm 92 Tz (0.0590 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 258 521.5 Tm (0.0299 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 305.5 521.5 Tm 90 Tz (0.0363 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 358.55 521.7 Tm 92 Tz (0.0147 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 406.3 521.7 Tm 91 Tz (0.1294 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 459.1 521.7 Tm (0.0406 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 125.5 498.199 Tm 98 Tz (Table 5.5: Ikeda system-model pair experiment, following Table 5.3: Statistics of ) Tj 1 0 0 1 125.5 484.3 Tm (the standard deviation of the pseudo-orbits' components for different lengths of ) Tj 1 0 0 1 125.75 470.35 Tm 95 Tz (assimilation window, for each assimilation window, pseudo-orbits are produced by ) Tj 1 0 0 1 125.299 456.199 Tm 94 Tz (WC4DVAR and ) Tj 1 0 0 1 208.55 456.199 Tm 105 Tz /OPExtFont4 11.5 Tf (ISGDc ) Tj 1 0 0 1 248.15 456.449 Tm 97 Tz /OPExtFont5 13 Tf (based on 512 realizations of observations. Median, 10th ) Tj 1 0 0 1 125.5 442.5 Tm 98 Tz (percentile and 90th percentile are calculated based on 512 assimilation windows. ) Tj 1 0 0 1 125.5 428.6 Tm 103 Tz (a\) Standard deviation of the middle point of the pseudo-orbit, as the chosen ) Tj 1 0 0 1 125.299 414.449 Tm 96 Tz (window length contain even numbers of components we treat ) Tj 1 0 0 1 432.949 414.699 Tm 101 Tz /OPExtFont4 11.5 Tf (\(Length/2\) - ) Tj 1 0 0 1 503.05 414.699 Tm 94 Tz /OPExtFont5 13 Tf (1 as ) Tj 1 0 0 1 125.299 400.75 Tm 98 Tz (the middle point; b\) Standard deviation of the end point of the pseudo-orbit. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 125.75 366.899 Tm 97 Tz (can be found in section 4.3.1\). We apply each method in the Ikeda system-model ) Tj 1 0 0 1 125.299 343.649 Tm 100 Tz (pair experiment with two different noise level. For each method, the ensemble ) Tj 1 0 0 1 125.299 320.35 Tm 105 Tz (estimate of the current states, i.e. nowcasting, contains 64 equally weighted ) Tj 1 0 0 1 125.299 297.549 Tm 99 Tz (ensemble members. We use both &ball method \(Figure 5.5 and Figure 5.6\) and ) Tj 1 0 0 1 125.049 274.299 Tm (ignorance skill score \(Table 5.7\) to evaluate the results. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 142.3 251 Tm 101 Tz (Figure 5.5, 5.6 and Table 5.7 shows the comparison among four ensemble ) Tj 1 0 0 1 125.299 227.95 Tm 98 Tz (nowcasting methods in both Ikeda system-model pair experiment and Lorenz96 ) Tj 1 0 0 1 125.049 204.45 Tm 100 Tz (system-model pair experiment. In both cases, the c-ball method and ignorance ) Tj 1 0 0 1 125.049 181.399 Tm 99 Tz (score indicates Method IV and III performs better than Method II and Method ) Tj 1 0 0 1 125.049 158.35 Tm 97 Tz (II performances better than Method I. As Method I and Method II use the same ) Tj 1 0 0 1 125.299 135.1 Tm 99 Tz (Gaussian distribution to form the ensemble, the difference is that the ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 316.3 52.299 Tm 84 Tz (122 ) Tj ET EMC endstream endobj 659 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 660 0 obj <> stream 0  ,,,b7 \T.L"ͩ!=]ÙܘjIļ?iۜyKӨS꺏 ~(\ސ[Ft;K\ 6( O9?ݪi8Ԡ'v*ڻ">cβu\n'xոVȭ{-7re|bu NF>?7NutbVp9"p ?P?lAɉI~t4Fue,0|Xdp<3RdjMzF@~DZM$Iv 3:Ќ2ceU5(-nZ_B U'`$S$ʆVV1g34üObd167#9RDbxqZrWV4աؗܮA۳ bڻ"!a )"ne.9 !ť=&dk9\< P!nȂWʙ ѼsO~':NRݝ_ K3(HѓpT-ȤvhSinSXl]O+ jΐ1'e3BY\TcRnCQ}?r$ĩ%կkK鰨ʝ?5鋴~Ԩ2ϰԅճ+P/=?![~.v̯cXnK㋳YǛ m}#3X/v܎x .\gKGn\CAT{r4%)x {M q'B;)M:_װ?<{M=暬A)A+kuQά7v.g%#ptnK49ҽJp"@wyѩf B!ƺ4WD Ux`Kȍ²38x\b L I<`sN՗[Av2=^[L3Q嘑!QRð:#3ò.1윧gj<bJto{m Gڰ<t7Er:(mXp $-_2N:fz㷹.ǷrihV YÀ\w8VDq@f; 7{fܥnWeZ`c\\e~ǢhsJ#%Uw$#Y?#s uK&B}I%.j6y\PCkVbѿNRx{_hZ3j~75AG]//-86t6^j#g] psB沈6*wal5`$ 4)IB m2F4s~6ׄ+ڧYLaʲWK nMcVy!ZafZ ]ˡRO{4/+)/CpV;(3{eG=|-3 )sȻxy I1(Xn%Y,?s60Ͽ~l|#\±_ |{w $IiZp L-^) 3:H:G~j8nQ0,Y"ժRy-O ғ -r^t)o95zJ˫ ȣ^^Vwp}MQKlϽ48&ԕyR+6ԧީF5Qg I-p/ihlLV;O8.}[+jR, d UYzg?%uwX&#dTmcsǷ SUa?QOj?z"S¶I!?\)m|~m|^2>d?hc "Ph,%$j"OURm5s|uC" GOy48sHiwO]R~R*9'G*piًa126?CXXAழI70|2q HRsLj lay4^9L,r$I>mDZBM`弛AuqGhvЬ.pPm>O !we|RsӖ:gmX㦝 RpM Owy9J|y6wz0xk2Hؽk6pAm)12ې =a~u%d}-FKn=mU9o&S0D"| v.9,zmq!v'mQ/?LK{Z˧@_z{cmcGʤ'[cc%jGD L[0Q_؞rjgùXqnjÍݱTO \qNˆukp VHaU AD7S@ Vϴ`7~O{K$dDoϦ pa Ƕaqq^OW:f DfM@҆9/M=..sGx`oŏw1n" Ba^^ñ֪!6j`ك3 j|E/TE刞 T @DT?X!H+)_ Q+v H4bZ aRTN>SٲH3.h/ɀ.7w4>Ë *]˃o,,`ٓlUJNdlW@ڇLu>` 9=k^΋TMNolS 4q nY:xaN|my:OT*`ǻ_SեgR=P-YLL!*nMgm f`mXzKIhEi9]sB[a}&G0]M@9w}:Y0p#CQonpw_?E3pu.5kT9?i* smsEz({ijtl1U |= o Z14JY _" ,NdRRly F*Q&EX``(}kc~ r?AH8}yf~@=V1cø h'qP5^ƪp!nIEVX}v/q:gELD706EsOHmI+bIXH_EgXG>u@)Lȃ |:j KׄrHqo@'s-W^4R*1`K':@u2 XU}} =C'N©5GW$4H4þо4yOW{H h]Lec(,;_KrnR40[Bx ]6pmǭB2)c霥k H4lv%4m 0Eu9'.n))u!4"?cV@C&7 xf rϖx EJpz8fkB1&Oqى DP"EW4n8vbįOQ}đ'.?xMum(.'ܟMhD7B >ˣWeAO" Ol0C{ ꑼfe?ɓ Ab16{"!˾׻( Hyy}[[Gov$oj.g2ejUwbr,h#@Rug摬7ECz{4/W3;`+C?ep_=6B02p_E@y0zWFL:w"کH^))1A1ÿkI) Bl(sp>Ɗz Mg8ч*W̧k5/)2ZO}6n&@NcтŤӒp n޾O/ϊ֫T,uQ}p B`.. \9ɭ"(5fRn<:A;l_ $}1&ae.u/qzHbOKK% ^˞ Hi,QA/*UN?~+O3FOlF ԝE=PqE埱aNy:G ;Ѭ>f y5Grޘx#jS]#K`aeZCxS0ZD PI&ha՝\Jn+g3eg#^KpJZcIm4,)P2e9O85TaۺmZ ginkΫ̮br7=X_ƎEj|2>& 0.CO}wv;+75WӲԏՊ}Sb{ՀG(]oZo04:zP4}n~W`qqnGLJk&n)~J+d͙Dҋ]}ܨkNQcȧu ^(35Sؑ=^Nk!%\:ı Lhdgg!';FH R-%HSJȆ[9䚌Vɱ߰,POd鈣2 "Q1lb񈓹xPo˹_{{K;A6`o3lkzi?7܅z$ :y -yePsXB샌πr_4(x #y568}^ND&:[?nb>8|lF~9KҍM;I>RWa}L&;KNx3:C:fF{Lj)R${fŅ`i6uz[Fq~5+6OS'g[ړYvd{3-p BċL#q~Wd~їAVh^RTX(XQ$vS>Hovb[D~, ZhƦ,3'VAԲi\ڦ&hֱ3ԋ<$^{Ü;-<|,~XZ<hAVAUzK+l}^s`GTPrJDoh]ZTQc} :!=+%O#z?-?iKpڗUwXj/"7=R3 @$2Hkbx~ޫuҦ|rdֺv@֧ޭ\mߙ])5d\Ťq ӂυqF^jQ YB)7"ѫPqs)* k<)Va{-_ M0UBGضILl+Oqͭ a$K>~±ʲІD妫>!6}շ|\#6K*@ʴʿƳ;k7]%< ',%ɮV9:', Rֱ2=r4v`_ wye0 P{^P`agfKT.oi zsAE#heYĭjЅҌ @zw~1.O$Gx%vyp/tԷ9ɥk:WwZ6Aqv>y@L}kC'҄k7h}={Pt_RNx?y!MY aݻn勵<?Np OT(S4edU(7S!sOGh2urn[3 Q,yN† hjg{DR %.pК)qfhM>z8]|r8vg|[m u٪$:s5aUu0w$Ř2>iq2;V<5N! Qr 5Qbs6Z3ݭ^~ :$9xi5Q$Pk"[uQs#)51YѾrsgZQwÒ98Hi|h,AxKΌr uh3 ֩E>'LH!U9&JMigLZ׉[bIr hh)d>7U=Ŝx󷡱6|%<_pnam3'!WE2yFoHNeS}A? ̺ ^Ϻ8uChC8dl2?jb]S[6@,wE9ˁAGGC3ߣCV``6 Sn<둆2]TP =:D/ &p*^I&7nXRxMq I-M|4Y\:mʗٗJZXbަ TJSȖSr~9t |FYx`#I~ yܲy~5*3`Qc~ 9)% kEuuvRp=PWy-m0ߵ9hH:zˈ?ţr̞:5+@"5EY:Q%lWq"ceVvNٛ\w$b .5}O1%.2\*bS"2~/8%}<9Qkl#> SEt=dL[D@+*ot{hpRՇQ,!~l{G9ӝM` _ˋ6佟:.nj߾~h=Og`b~h2ӴC#FVn:(`lg~+։L\;H3 &M* F*~A_C po<KFvh[$RCj7=@ZGxz8ܤ'2#_&'0}6CR_%ZͲrEE%0C_1K!DGeeJ-O1Ky8o8c_a #BEfLqz5@"P Z8Zy}x$5V85~93tӋМ7(297yŤv!жep ZKŀ0Sכ5ģm A"jY97YJ:9kNDF}GÇ3sY@Hauc{_"PT76+1-{|I`a%h#g- 3E_shǬחp:DZ%(4 i`iWo7-bPs1qa7ZG]Z ۩ޕ.Kf8J~QŖ^i `[P R.k2݀ ̺,vāGR095K*S"98c~C(fL\D~>8eS!F !RJcɞs96I}yZ[36n]> aCP*-rO x%Iύ6É,[lzƒhp5wOJж8jqh9;كfʮGi|1 ,;ڬ);C4~WEzR-Nq'-LaJcMEd [54CDiq;6c>ޫ-*N # fEfg.meʔ?˖ 1һ Q\n'T^ՌQXg0 jx}}(x(uC4Far,Bj%%&yu0o'8@ERO (Z]anq,JK}l9bb%&cp)) Hd%Bbg<0\B@X4ERY5ZI4 C?qZ)x,* 7 UG"U:̩J+NUD8+>ؽ6 ah7l,=в?s&FPho33 njOp2zglXP2*!h桷̧ZYr6Nb@2p]<HiJWiEQJmeP&2-^@dtYlH+@rv 1n7ΫB\ko, &)mWB!bYV=1 hxX=K4<Cg'mNla$4ʌ5%E f!OC0Pf] pcbBͦcfS u'$f$wSwnc =r*t`-QQ<k=9w,k; C'=cKܵT0% -bBl31]73fF~*yH9!Yr֥?s"死꩘@3A90eLD"M΄zj'"$D"pg h%a:Ds$?,JF* #m0MCjY2wؔnJв"Qv72:tScdROJ}{Ydk,/>`,)*o^2A$=a-"Gnj+ٲ\y{ݯ,R{b__t g+;D׀?=՛&pBM{}ץo|D>;Ӏڻ+q:5K#ٲ3»x)ճ2,G< ֿNip 6ֶɟ `O+RNG2I[V4L0-V+3 D&؆qQb8?yUf)m{Fԑ\g/c4Z Ϩ:>p<9RxMx5?z| ]p5lc] .2 Aӽ>.KFsR0VGFu=畯gb= f-ޱ{u'ן{#߽IABiZ{ @~,G4@yEgzGUX'EÑʋ'Xn'Ib9ŋجk"M*tap] g8 )adLC#U4MR@wSa-60V% f|餓Z!EvS"-#ؒLE΀O3kz-L`D)@J~j&rb4$~᭪Ti|6?yr_gceCb,A3B>,2jDPV.R;/;<$=<,4I!O=FD.+0FK s[Y,ԒRICl\rf1"hR[w _@snAluh;Y{2~?kk  kgwo(؍6 9GU38*=x$^}l%dHBe%ݖE32 ;5 ܝ!3sک&)qR3~Nt`{2&&P6ܙRXa|K I ȝ>~MЅ1%vxZo|5 հU +4RSgy42Wd-GraJ, 'b qT7қ)HWҰX6ǫ9( urFYjӶ\Yp aُx<#|w7gϚH$hӣ%H&>rlu(oo;"7@EjG*)G <3Cыpv[SFNj%KQp &ɛEb o3ҷORYN;g4v2ơ` ANk*:eB6 'p5hPBqzgsNO9v\`ʙ:[X+ySP]\s~*7Ë!\1 e*l#$Z"b>~Z%݊DJ1̎nu pvp{Ϲxp?RcUѕЀGܝ3jmV6T֢)$:« Ѵ3ɣ[ ru>rפqrEU1Ȼ5Pnccy;(R.J^)6 Vh$pn <@_4 $at"BŖydbNWXM$cAh¶#xtuNT-U>:K_N,K!$8t 74Lwn{6nUD_K܎&適HRyMLS& >h>DSQnQGث了VM.KYkjo0/"_OHOVӦؠ yB]ǔyS3U˘-SФ`>"/aJ dljkIu9 hH'ùqSK1-i%0Q[:+PUIL˅hF+2p%ӺdgO.Fa@f3@k?I\!/DNwciZ-g6YcFMh0n'mjAs#Gġ"|!|,c L9X_5t@k2"/+nejOyzcy@eHJ;c1F)L3ɏ΀yߔmj9\\xe zVǸqV͹XȻItd?ok6n]]ol\գef 3gMF zEmpF`JWIVgx@!0 ]Pk"5i>U5|[7o2ixs,bP(HF9ty@qӄ!DSNY>Uv؀t .Od`i:8Krw=@69OeFOoPמ5^)doLRMu/>X"Bp"^-E@SU,JKD رPHp'D! †FgOlslbb8 m}dOQq!Vh "0y(lYOsgk(R;ӧۅz+T ! 7HVO&aփ]MIbr38&sDq%,r34ʷJgGTehPxݏU%9WdrJ("IgN ?Q,ASqKq@1>|TO.R endstream endobj 661 0 obj <> endobj 662 0 obj [663 0 R] endobj 663 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 622 0 0 839 0 0 cm /ImagePart_2150 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 462.949 719.95 Tm 96 Tz 3 Tr /OPExtFont3 11.5 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 96 Tz 3 Tr 1 0 0 1 156 678.2 Tm 94 Tz /OPExtFont5 13 Tf (Window ) Tj 1 0 0 1 161.05 664.5 Tm 96 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 227.05 678.45 Tm 85 Tz /OPExtFont13 11.5 Tf (STD of the middle point of the pseudo-orbit ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 235.699 664.299 Tm (Median ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 310.8 664.5 Tm 83 Tz (10th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 83 Tz 3 Tr 1 0 0 1 410.649 664.75 Tm 84 Tz (90th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 208.8 650.35 Tm 85 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 262.3 650.35 Tm 106 Tz /OPExtFont4 11.5 Tf (ISCDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 106 Tz 3 Tr 1 0 0 1 309.35 650.6 Tm 86 Tz /OPExtFont13 11.5 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 86 Tz 3 Tr 1 0 0 1 362.649 650.6 Tm 87 Tz /OPExtFont4 11.5 Tf (I SG.Dc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 87 Tz 3 Tr 1 0 0 1 410.149 650.6 Tm 70 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 70 Tz 3 Tr 1 0 0 1 463.199 650.6 Tm 104 Tz (ISGDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 104 Tz 3 Tr 1 0 0 1 158.65 636.2 Tm 93 Tz /OPExtFont5 13 Tf (6 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 209.3 636.2 Tm 91 Tz (0.0489 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 262.3 636.2 Tm (0.0402 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 310.1 636.2 Tm 89 Tz (0.0391 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 362.649 636.2 Tm 91 Tz (0.0295 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 410.649 636.2 Tm 90 Tz (0.0815 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 463.199 636.2 Tm 92 Tz (0.0697 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 156.25 622.049 Tm (12 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 209.3 621.799 Tm 91 Tz (0.0540 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 262.3 621.799 Tm 93 Tz (0.0314 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 310.1 621.799 Tm 90 Tz (0.0411 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 362.649 621.799 Tm 92 Tz (0.0236 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 410.649 622.049 Tm 90 Tz (0.1045 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 463.449 622.049 Tm 91 Tz (0.0674 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 155.75 607.649 Tm 93 Tz (24 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 209.3 607.649 Tm 91 Tz (0.2132 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 262.55 607.649 Tm 90 Tz (0.0309 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 310.1 607.649 Tm (0.1642 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 363.1 607.649 Tm 91 Tz (0.0227 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 410.649 607.649 Tm 90 Tz (0.3505 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 463.449 607.649 Tm (0.0662 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 156 592.049 Tm 93 Tz (Window ) Tj 1 0 0 1 160.8 578.35 Tm 97 Tz (length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 235.9 592.049 Tm 85 Tz /OPExtFont13 11.5 Tf (STD of the end point of the pseudo-orbit ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 235.699 578.1 Tm (Median ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 310.8 578.35 Tm 84 Tz (10th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 410.649 578.35 Tm (90th percentile ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 208.8 564.45 Tm 85 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 262.1 564.2 Tm 90 Tz /OPExtFont4 11.5 Tf (ISG_Dc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 90 Tz 3 Tr 1 0 0 1 309.35 564.2 Tm 67 Tz /OPExtFont5 13 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 67 Tz 3 Tr 1 0 0 1 362.899 564.2 Tm 102 Tz /OPExtFont4 11.5 Tf (ISGDe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 102 Tz 3 Tr 1 0 0 1 410.149 564.45 Tm 67 Tz /OPExtFont5 13 Tf (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 67 Tz 3 Tr 1 0 0 1 463.449 564.45 Tm 105 Tz /OPExtFont4 11.5 Tf (ISCDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 105 Tz 3 Tr 1 0 0 1 158.4 549.799 Tm 93 Tz /OPExtFont5 13 Tf (6 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 209.05 549.799 Tm 91 Tz (0.0563 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 262.55 549.799 Tm 90 Tz (0.0480 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 310.1 549.799 Tm (0.0429 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 362.899 549.799 Tm (0.0243 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 410.399 549.799 Tm 92 Tz (0.0934 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 463.449 550.049 Tm 91 Tz (0.0744 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 156 535.649 Tm 93 Tz (12 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 209.05 535.399 Tm 91 Tz (0.0743 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 262.55 535.399 Tm (0.0477 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 310.1 535.399 Tm 90 Tz (0.0573 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 362.899 535.399 Tm 92 Tz (0.0238 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 410.399 535.649 Tm 91 Tz (0.1332 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 463.449 535.899 Tm 90 Tz (0.0741 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 155.5 521.5 Tm 94 Tz (24 hours ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 209.05 521.25 Tm 93 Tz (0.2444 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 262.55 521 Tm 91 Tz (0.0477 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 310.1 521 Tm 90 Tz (0.1859 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 362.899 521 Tm 92 Tz (0.0236 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 410.399 521.5 Tm (0.3949 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 463.449 521.25 Tm 91 Tz (0.0740 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 129.099 497.949 Tm 96 Tz (Table 5.6: Lorenz96 system-model pair experiment, following Table 5.4: Statistics ) Tj 1 0 0 1 129.099 484.05 Tm 99 Tz (of the standard deviation of pseudo-orbits' components for different lengths of ) Tj 1 0 0 1 129.349 470.1 Tm 95 Tz (assimilation window, for each assimilation window, pseudo-orbits are produced by ) Tj 1 0 0 1 128.9 456.199 Tm 94 Tz (WC4DVAR and ) Tj 1 0 0 1 212.15 456.199 Tm /OPExtFont4 11.5 Tf (ISG.Dc ) Tj 1 0 0 1 251.75 456.199 Tm 97 Tz /OPExtFont5 13 Tf (based on 512 realizations of observations. Median, 10th ) Tj 1 0 0 1 129.099 442.3 Tm 98 Tz (percentile and 90th percentile are calculated based on 512 assimilation windows. ) Tj 1 0 0 1 129.349 428.35 Tm 103 Tz (a\) Standard deviation of the middle point of the pseudo-orbit, as the chosen ) Tj 1 0 0 1 128.9 414.449 Tm 96 Tz (window length contain even numbers of components we treat ) Tj 1 0 0 1 436.55 414.449 Tm 106 Tz /OPExtFont4 11.5 Tf (\(Length12\)- ) Tj 1 0 0 1 507.1 414.449 Tm 93 Tz /OPExtFont5 13 Tf (1 as ) Tj 1 0 0 1 129.099 400.3 Tm 98 Tz (the middle point; b\) Standard deviation of the end point of the pseudo-orbit. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 129.099 366.449 Tm 96 Tz (formed by Method ) Tj 1 0 0 1 225.349 366.199 Tm 85 Tz /OPExtFont3 11.5 Tf (I ) Tj 1 0 0 1 233.05 366.449 Tm 98 Tz /OPExtFont5 13 Tf (is centred at the observation while the ensemble formed by ) Tj 1 0 0 1 128.9 343.149 Tm 96 Tz (Method I is centred at the end point of the pseudo) Tj 1 0 0 1 376.3 343.149 Tm 74 Tz /OPExtFont3 11.5 Tf (-) Tj 1 0 0 1 380.149 343.649 Tm 98 Tz /OPExtFont5 13 Tf (orbit. Whichever wins merely ) Tj 1 0 0 1 128.9 320.35 Tm 103 Tz (indicates which centre tend to be closer to the true state. Here the results in-) Tj 1 0 0 1 128.9 297.1 Tm 101 Tz (dicate that the end point of the pseudo-orbit obtained by ) Tj 1 0 0 1 423.85 297.1 Tm 106 Tz /OPExtFont4 11.5 Tf (ISCDc ) Tj 1 0 0 1 464.149 297.1 Tm 97 Tz /OPExtFont5 13 Tf (method falls ) Tj 1 0 0 1 128.9 273.799 Tm 100 Tz (closer to the true state than the observation. Therefore the ) Tj 1 0 0 1 428.149 274.049 Tm 94 Tz /OPExtFont4 11.5 Tf (ISG.Dc ) Tj 1 0 0 1 467.75 274.049 Tm 96 Tz /OPExtFont5 13 Tf (method can ) Tj 1 0 0 1 128.9 250.75 Tm 98 Tz (also be treated as a useful noise reduction method. Although Method IV did the ) Tj 1 0 0 1 128.65 227.25 Tm 103 Tz (best, it is much more costly. Method ) Tj 1 0 0 1 323.75 227.5 Tm 104 Tz /OPExtFont3 11.5 Tf (III ) Tj 1 0 0 1 341.05 227.5 Tm 100 Tz /OPExtFont5 13 Tf (seems to work better than Method ) Tj 1 0 0 1 522 227.5 Tm 85 Tz /OPExtFont3 11.5 Tf (I ) Tj 1 0 0 1 128.9 203.95 Tm 81 Tz /OPExtFont6 12.5 Tf (& ) Tj 1 0 0 1 142.3 204.2 Tm 101 Tz /OPExtFont5 13 Tf (II which indicates using the imperfection error to form the initial condition ) Tj 1 0 0 1 128.65 181.149 Tm 100 Tz (ensemble is useful. And we expect such ensemble works better in the case that ) Tj 1 0 0 1 128.4 157.899 Tm 99 Tz (the observational noise is relatively large. As we discussed in section ) Tj 1 0 0 1 470.649 158.1 Tm 97 Tz /OPExtFont2 11.5 Tf (5.2.5, ) Tj 1 0 0 1 500.399 158.1 Tm 93 Tz /OPExtFont5 13 Tf (when ) Tj 1 0 0 1 128.4 134.35 Tm 100 Tz (the observational noise is relatively larger than the model error, the geometrical ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 319.699 51.799 Tm 85 Tz (123 ) Tj ET EMC endstream endobj 664 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 665 0 obj <> stream 0 ! ,,b7!j8HQ@]% ڸSU\-z )ɫ&@tHߖЏɔ{C?d 4ijoo n_ŎGe:#Ne0KgοIx }?߶,eE[v,+[ Q׺xŷt<;Ohr?  <O{"T 0$,jTU'1ȑ\Q0LZ΂njUL*5ku.Nྰ˘M(O*Pͼ;lĆ~$1xߡCe-M,Lg>}މ,_'yRK $jPQOcIlGR0Πf BL&%Ns'$[Kϳlp B`sSRw - n_b -}̞DF4/}1m`+du מaK=T?4+&(z~&|a='#ͳ GS?F$IFds4 ϵv-f04J~ ?/JgD7(vcJl`3CK#(d wnvG@TL'92jvo&dDf)rFuqep~eB&.S- 5 ~=uߥ^ Kj<[JO~W3p0M#2}sJ.r3v k|PNDU)(~@L+3׹@o|Ftc{#`9Rs Kf}u;aDz#=AlGNe.l ,e\`@F㰑t vޠNVzyby #>c&!?׾FƮ:]D+y) ^gнUH薭!X)-4Qg #xvMWL@&ƖNdt&5>4.`- "kBM mh(UM~>z-ۤ)i#%R<Vl,x+ is,3v޽4 _]SQ7f!G!Q܍Wp4}c=z-"SZ0x!#eICP#3(OEy~M)uU4I ~kM&0y=>*&<#<4v)!G;̼F) 0V[e$F4:W#d?*}do:T̨H  |w[0=a)@U ugZ-#vrl. 3L`9fy0ƈO'QhQ\b{rq{xuOЍXn(TȗXPK~qn xz74$5u$.wo8-]ۉTkS! 'F Q<I IM765xrq?~I%W!Dl b/d T]D]{ܸMt_\hkP T".} 8F=`.5׳[s @( 0eԅ '@/H'6lsȍ8UX6,'m6_{†s:k"̛r,Q,s}̷+:IOO!3>+̱9/jIJ0<" |k̂+J5S vDm#F3-W~j$;#۔<ʚ jbc Z)XLک!*AQI\|($a3-7?yXZ2džk3"AAabஅ-k^p\Vm֟ZKD$`ZRNe NS"w_eYb-|L*KH}z[^M&Y1Jd฿2?WQ70UX.8&r0z1_`I#U[9nK  !ov{̣;f5WAvS{洢D8͂D-*ԕ=^ũ)hяڣ|6&=F@cX u6aLyu4Ңǟ07 =&wev)#-] G_o &i)u鵜?톂zoa[]YzV14~ BDzԩ H@U2'iCf,V~%wG#_&!3lc7d6v>%DI*^LIuh/"siP(`1󗔶s|nxӝHF_,y{pyk%4V8֘6Kف).Π Z]J/.U~J?O-)np$Y?~r""z|4tIj*rp'u$g _襤ے=1oPݳ"pa37!h ") 9bb(W5/ͺؙkR]!DP\:8ų}잭~_O띟CNnk\ ɊuuʹqU1"ܿUX.Q v(o;RAVv>7hI]GHW{ O([\/^g(޾s +C0Ђ"& F62nCS.ݒm#XF^Llnql3~>2C_nUTC igE /PJek|#a{ff14((O}H}+3Zyݑeq먩b=ބpCH4h)n+fSQ[+S^ϑ[>4KJMs6O~ I6qޅ[e\2νt9:/x98oM6(xpK: 8S]Pe{4zTWp&+@-2U1w43vo [E) > Xr6.e;9 eٸf,+el>sI*7yߚݙ*%Hu+RV@x KOwix) V|D!e0h:3I1U=ٵ3F}w?{`P1kQHKz 4Qg߉0ĕ6Ą!C*o\IͼB^! n&&s>Q v":FfPP@â5OJƆ\F"ہl枦i5/Ϊk)[Ѭ3Q\>*Ŋ~wkf!dY1ÁX轺0̒S*^y& fS319yu̓NzX2U{(|>d}V*^n@oM乻AcS^^Aq:&͝kE\[OL}"npƵ39ޞݮo|HP>I9IWǓ!)j4a^y`&"Pc}ݳهgm7?RZ6c|vW۵Cf} Y9yDм !O*en*>âWF1l)%cgB1`r1sTs?Mƈ^WZĨ:m~}%JABrl.ݩܬSdo(*E:jRFph|TEphk !B~egYG@ k&pU*wV~a(奯jXt`]׫ԘjoZIAG'񁟿Epֶ͉c+nHzѾ^=gF2!í; s"S7@HfvɂѳR 5120F яr%렼<|>4g[HEizTu66t >죶r]BTN4Or &&m+]@)c‡M#mth Q~WSv d"$)ˍ3g2>0Wxi ාne@.lb1P>7&-ZVqD >QDoΡ7SVjLUmA@gP{"ze#ϵ  ӳh0 N>4\2œ26v*ٳ5625~a"ݲ!<ܞG!aAa\|>fc;y+Do AA#|`vj戒kVD0S#?}V E*r e5k \&N|t2Mk~1QA>o.*vE!AY5zu_@_IF*b Ķ3}vi:I|лf0Ō`GKu jX/+/.Nm>uC*>|18Ȝ%s=M|))cfz@„uD_jr.I=y˩nwŪm}n:;[ϐT:BcyH0'b00"ӧ^V` EthaNZ\Dg&v5.^|>nRrbt|$ۉ98U.˦5H |pIc\YcD %(K#r63/6܊ST @#HB/rKJ dkHOE{>(@FrhE%T2Jx'e"ΏpE^? pʒs<#P/*qRĿL6f0f  ! ,! 8Gu È3VIirajﵚa(k" ؽ_gvȮ#?췷a$kS2ŋs jGO+rM^?V. @Rzq$Rl!_

hDCۈ<ɚ%6\O7kjN@{?Fv MuY6lqR^ \ (|L鴔]|" g ! }pC#x,u]bB)'ddVY$)m'vGD.)Yv'c)De]D9 +=xƴי3*j;q^kU9"=J0 cvd kߞ]RsiFe;s5@PӀhVchԺ\lYeQcb+ST5*\ ؙ#CHT υGP;=:򴸰/t]Y2^1Bp>.knQ5t5BpcZLw0*բ+@{$` ͳfTAPUw}J`D/ؠ5vZ CUmO,{O E67psAUeMgaUx~JY7'NRNf!([ASL:"U_g%gbWmPϻMocCŽ6 +ٌҿW6Rjx0nl,&5jv&܇c| mX$ѠT0L:Y>1s- N/c,I{%kDra| J\d i*al[`FC,H iѸ[˘ G4 1S?>B"-=[NB@aV;[(,IE >o`*H/ dOʐ|2yks !P_ގ+$mwܕ?[^5)B֋ddH$om`Z)dE *ER(SFs +^)<* к[IRUXEk`iE( Ư~Rs^hdK5,o5C~\G 7ŵ7´HμFn{ӱ}c wTgyPj{2|'Epѓ~Zv0TLC f Ïg)Q;XKlJ-x~+fz` `Y֦{*W7(Z,_MS,zQ) MzibVYڠPEp ?bX2w٩!lG5*!}_S'm_ݓN3q${ñ3 /T%쯿)4NqgKT1bA]XBUlC*A}NdO:[ b]?|ACD*8A)K@Bax*BR/ beN]c VUKxδ0%S)xHjm5CKybirSREQݴÄeA J-1 $Exx~WyXyW=Q2iy= !'yXAeRDWX~UاF1oF-ϳe-gEʨ2A1@hץhg5X z08,'V ]w^ y-!8a2$?6"2M4XƂ4P.M$ebR @ gl@U/ȄډjO2r^[=%roPlM@dz[PF\Fvp Ð j W d4Y<]IU~kQ+u'C-kpځP64HdW>ne=Wr.g3S_1u+t/˰EDK_.w.H>QJ+;%]ykw Q/?;/!Rf:kKsC+L{H~⭕.e\lrrMG7̨d\2sAz/4~@ Ε#U t֕O8%UTd^/ٶ"J2+˝&?]|%:-šnN7Aal[f se5792?411؀k[pH9пc.rl\*0N[Xbo.nIWWP[<[}\MHw$6O<[ &_QU]lWz&v%c&aI+3{Iή+\Ͼ?%bOM!GA?L;IS{".0[48E. i?@ͥT```I'Krt[~b_@Uj3Y$^8X|v=Z/PZ>o ) |5~M0whQ/wl'7zk&QrlwJI^:N{]`#B%C;y\k.L|Rƺ\QX m? -Џ*mXڞ]rK@bb.&w7X\2r64W$D8:B3$VΣVp4DBs<ϝ[XiO&zPad 5>Ԗ~ᱹ%*> endobj 667 0 obj [668 0 R] endobj 668 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 509 0 0 804 0 0 cm /ImagePart_2151 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 478.8 557.049 Tm 116 Tz 3 Tr /OPExtFont1 4 Tf (0 1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 116 Tz 3 Tr 1 0 0 1 337.449 557.299 Tm 144 Tz /OPExtFont9 3.5 Tf (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 144 Tz 3 Tr 1 0 0 1 442.1 557.049 Tm 132 Tz /OPExtFont1 4 Tf (0.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 132 Tz 3 Tr 1 0 0 1 442.55 427.199 Tm 133 Tz (0.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 133 Tz 3 Tr 1 0 0 1 479.3 427.449 Tm 116 Tz (0) Tj 1 0 0 1 484.3 427.199 Tm 61 Tz /OPExtFont9 3.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 61 Tz 3 Tr 1 0 0 1 302.899 560.649 Tm 116 Tz /OPExtFont1 4 Tf (0) Tj 1 0 0 1 306 557.299 Tm 119 Tz (0 ) Tj 1 0 0 1 308.649 557.299 Tm 90 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 90 Tz 3 Tr 1 0 0 1 337.899 297.1 Tm 133 Tz (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 133 Tz 3 Tr 1 0 0 1 443.05 297.1 Tm 132 Tz (0.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 132 Tz 3 Tr 1 0 0 1 479.75 297.1 Tm 146 Tz (01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 146 Tz 3 Tr 1 0 0 1 303.35 665.049 Tm 61 Tz /OPExtFont9 3.5 Tf (1 ) Tj 1 0 0 1 298.3 654.5 Tm 148 Tz (0.9 ) Tj 1 0 0 1 298.3 644.149 Tm (0.8 ) Tj 1 0 0 1 298.3 633.85 Tm 143 Tz (0.7 ) Tj 1 0 0 1 298.3 623.5 Tm 127 Tz (O.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 127 Tz 3 Tr 1 0 0 1 298.3 602.149 Tm 125 Tz /OPExtFont1 4 Tf (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 125 Tz 3 Tr 1 0 0 1 298.3 592.1 Tm 148 Tz /OPExtFont9 3.5 Tf (0.3 ) Tj 1 0 0 1 298.3 581.5 Tm (0.2 ) Tj 1 0 0 1 298.3 571.2 Tm 133 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 133 Tz 3 Tr 1 0 0 1 303.85 405.6 Tm 48 Tz (1 ) Tj 1 0 0 1 298.8 395.3 Tm 129 Tz /OPExtFont1 4 Tf (0.9 ) Tj 1 0 0 1 298.8 384.5 Tm (0.8 ) Tj 1 0 0 1 298.8 374.149 Tm (0.7 ) Tj 1 0 0 1 292.1 363.35 Tm 178 Tz (I 0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 178 Tz 3 Tr 1 0 0 1 291.1 353.05 Tm 50 Tz /OPExtFont9 3 Tf (.) Tj 1 0 0 1 292.1 353.05 Tm 178 Tz /OPExtFont9 3.5 Tf (5 0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 178 Tz 3 Tr 1 0 0 1 298.8 342.699 Tm 125 Tz /OPExtFont1 4 Tf (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 125 Tz 3 Tr 1 0 0 1 433.449 612.95 Tm 124 Tz (Method III ) Tj 1 0 0 1 433.449 606.95 Tm (Method II ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 124 Tz 3 Tr 1 0 0 1 372.5 427.199 Tm 132 Tz (0.04 ) Tj 1 0 0 1 382.8 427.199 Tm 2000 Tz (\t) Tj 1 0 0 1 407.75 427.199 Tm 133 Tz (0.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 133 Tz 3 Tr 1 0 0 1 376.8 422.149 Tm 129 Tz (size of epe-bell ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 129 Tz 3 Tr 1 0 0 1 436.55 465.6 Tm 94 Tz /OPExtFont19 4.5 Tf (Method ) Tj 1 0 0 1 456.25 465.6 Tm 127 Tz /OPExtFont1 4 Tf (IV ) Tj 1 0 0 1 436.8 459.85 Tm 124 Tz (Method II ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 124 Tz 3 Tr 1 0 0 1 337.699 427.199 Tm 147 Tz /OPExtFont9 3.5 Tf (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 147 Tz 3 Tr 1 0 0 1 298.55 525.35 Tm 148 Tz (0.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 148 Tz 3 Tr 1 0 0 1 298.55 514.799 Tm (0.8 ) Tj 1 0 0 1 298.55 504.25 Tm 142 Tz (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 142 Tz 3 Tr 1 0 0 1 291.85 496.8 Tm 101 Tz /OPExtFont9 5.5 Tf (8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 101 Tz 3 Tr 1 0 0 1 298.55 493.699 Tm 148 Tz /OPExtFont9 3.5 Tf (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 148 Tz 3 Tr 1 0 0 1 291.85 483.35 Tm 170 Tz (S 0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 170 Tz 3 Tr 1 0 0 1 298.55 472.8 Tm 142 Tz (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 142 Tz 3 Tr 1 0 0 1 291.85 468.949 Tm 40 Tz /OPExtFont13 5.5 Tf (LLL ) Tj 1 0 0 1 298.55 462.25 Tm 148 Tz /OPExtFont9 3.5 Tf (0.3 ) Tj 1 0 0 1 298.55 451.699 Tm (0.2 ) Tj 1 0 0 1 298.55 441.1 Tm 133 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 133 Tz 3 Tr 1 0 0 1 303.1 430.8 Tm 149 Tz (0) Tj 1 0 0 1 306.25 427.199 Tm 136 Tz (0 ) Tj 1 0 0 1 308.899 427.199 Tm 100 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 3 Tr 1 0 0 1 441.35 365.75 Tm 127 Tz /OPExtFont1 4 Tf (Method IV ) Tj 1 0 0 1 441.35 360 Tm 126 Tz (Method III ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 126 Tz 3 Tr 1 0 0 1 68.4 384.5 Tm 148 Tz /OPExtFont9 3.5 Tf (O8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 148 Tz 3 Tr 1 0 0 1 68.4 374.149 Tm 172 Tz (07 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 172 Tz 3 Tr 1 0 0 1 61.899 363.1 Tm (5 0.6 ) Tj 1 0 0 1 61.7 352.8 Tm 93 Tz /OPExtFont9 5.5 Tf (8 ) Tj 1 0 0 1 68.4 352.8 Tm 142 Tz /OPExtFont9 3.5 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 142 Tz 3 Tr 1 0 0 1 61.7 342.5 Tm 49 Tz /OPExtFont9 15.5 Tf (k ) Tj 1 0 0 1 68.15 342.5 Tm 142 Tz /OPExtFont9 3.5 Tf (0 4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 142 Tz 3 Tr 1 0 0 1 372.949 706.549 Tm 94 Tz /OPExtFont0 11 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 94 Tz 3 Tr 1 0 0 1 73.45 665.049 Tm 61 Tz /OPExtFont9 3.5 Tf (1 ) Tj 1 0 0 1 68.65 654.95 Tm 142 Tz (0.9 ) Tj 1 0 0 1 68.65 644.399 Tm (0.8 ) Tj 1 0 0 1 68.4 633.85 Tm 148 Tz (0 7 ) Tj 1 0 0 1 61.899 623.5 Tm 167 Tz (S 0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 167 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 1531 2726 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 1860 2726 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 2604 2726 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 3816 2726 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 4717 2726 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 5054 2726 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 1190 3619 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 1531 3619 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 1860 3619 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 2604 3619 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 167 Tz 3 Tr 1 0 0 1 212.15 617.75 Tm 124 Tz /OPExtFont1 4 Tf (Method II ) Tj 1 0 0 1 193.9 612 Tm 1659 Tz /OPExtFont1 3 Tf (- ) Tj 1 0 0 1 210.5 612 Tm 125 Tz /OPExtFont1 4 Tf ( Method I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 125 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 4717 3619 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 125 Tz 3 Tr 1 0 0 1 5054 3619 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 125 Tz 3 Tr 1 0 0 1 68.4 591.85 Tm 142 Tz /OPExtFont9 3.5 Tf (0.3 ) Tj 1 0 0 1 68.4 581.5 Tm 148 Tz (0.2 ) Tj 1 0 0 1 68.4 571.2 Tm 112 Tz /OPExtFont1 4 Tf (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 112 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 1531 3900 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 112 Tz 3 Tr 1 0 0 1 1860 3900 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 112 Tz 3 Tr 1 0 0 1 2604 3900 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 112 Tz 3 Tr 1 0 0 1 3816 3900 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 112 Tz 3 Tr 1 0 0 1 4717 3900 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 112 Tz 3 Tr 1 0 0 1 5054 3900 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 112 Tz 3 Tr 1 0 0 1 72.7 560.649 Tm 130 Tz /OPExtFont1 4 Tf (0) Tj 1 0 0 1 75.849 557.299 Tm 119 Tz (0 ) Tj 1 0 0 1 78.5 557.299 Tm 90 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 90 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 1860 4733 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 90 Tz 3 Tr 1 0 0 1 2604 4733 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 90 Tz 3 Tr 1 0 0 1 3816 4733 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 90 Tz 3 Tr 1 0 0 1 4717 4733 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 90 Tz 3 Tr 1 0 0 1 5054 4733 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 90 Tz 3 Tr 1 0 0 1 107.299 557.299 Tm 132 Tz /OPExtFont1 4 Tf (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 132 Tz 3 Tr 1 0 0 1 142.55 557.299 Tm 129 Tz (0.04 ) Tj 1 0 0 1 152.65 557.5 Tm 2000 Tz (\t) Tj 1 0 0 1 177.599 557.5 Tm 151 Tz /OPExtFont9 3.5 Tf (0.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 151 Tz 3 Tr 1 0 0 1 146.9 552.5 Tm (size of ) Tj 1 0 0 1 163.9 552.7 Tm 119 Tz /OPExtFont1 4 Tf (eps) Tj 1 0 0 1 172.55 552.7 Tm 239 Tz /OPExtFont1 3 Tf (-) Tj 1 0 0 1 175.699 552.7 Tm 114 Tz /OPExtFont1 4 Tf (ball ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 114 Tz 3 Tr 1 0 0 1 212.9 557.299 Tm 147 Tz /OPExtFont9 3.5 Tf (0.08 ) Tj 1 0 0 1 222.949 560.399 Tm 2000 Tz (\t) Tj 1 0 0 1 249.349 557.299 Tm 140 Tz /OPExtFont1 4 Tf (01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 140 Tz 3 Tr 1 0 0 1 182.65 349.899 Tm 148 Tz /OPExtFont9 3.5 Tf (eeesee ) Tj 1 0 0 1 199.699 349.199 Tm 127 Tz /OPExtFont1 4 Tf ( Method IV ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 127 Tz 3 Tr 1 0 0 1 201.099 343.699 Tm 124 Tz (Method I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 124 Tz 3 Tr 1 0 0 1 68.15 332.149 Tm 142 Tz /OPExtFont9 3.5 Tf (0.3 ) Tj 1 0 0 1 68.15 321.35 Tm 148 Tz (0.2 ) Tj 1 0 0 1 68.15 311.05 Tm 128 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 128 Tz 3 Tr 1 0 0 1 72.7 300.5 Tm 136 Tz (0) Tj 1 0 0 1 75.599 296.899 Tm 149 Tz (0 ) Tj 1 0 0 1 78.5 300.149 Tm 2000 Tz (\t) Tj 1 0 0 1 107.049 297.1 Tm 135 Tz /OPExtFont1 4 Tf (0.02 ) Tj 1 0 0 1 117.599 297.1 Tm 2000 Tz (\t) Tj 1 0 0 1 142.55 297.1 Tm 133 Tz (0.04 ) Tj 1 0 0 1 152.9 297.1 Tm 2000 Tz (\t) Tj 1 0 0 1 177.599 297.1 Tm 135 Tz (0.06 ) Tj 1 0 0 1 188.15 297.1 Tm 2000 Tz (\t) Tj 1 0 0 1 212.9 297.1 Tm 132 Tz (0.08 ) Tj 1 0 0 1 223.199 297.1 Tm 2000 Tz (\t) Tj 1 0 0 1 249.349 297.1 Tm 151 Tz (01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 151 Tz 3 Tr 1 0 0 1 146.65 292.1 Tm 130 Tz (size of eps-bell ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 4 Tf 130 Tz 3 Tr 1 0 0 1 44.399 264 Tm 90 Tz /OPExtFont3 11 Tf (Figure 5.5: Comparing nowcasting ensemble using &ball. Observations are gen-) Tj 1 0 0 1 44.399 250.1 Tm 94 Tz (erated by Ikeda Map with observational noise N\(0, 0.05\). The truncated Ikeda ) Tj 1 0 0 1 44.399 236.149 Tm 88 Tz (model is used to estimate the current state. We compare the nowcasting ensemble ) Tj 1 0 0 1 44.399 222.5 Tm 95 Tz (formed by Method I, Method ) Tj 1 0 0 1 194.65 222.5 Tm 82 Tz /OPExtFont0 11 Tf (II, ) Tj 1 0 0 1 210.25 222.5 Tm 92 Tz /OPExtFont3 11 Tf (Method ) Tj 1 0 0 1 252.25 222.5 Tm 93 Tz /OPExtFont0 11 Tf (III ) Tj 1 0 0 1 269.3 222.5 Tm 94 Tz /OPExtFont3 11 Tf (and Method IV. All the ensemble ) Tj 1 0 0 1 44.399 208.799 Tm 87 Tz (contains 64 ensemble members. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 44.399 178.299 Tm 95 Tz (information of the model error is hard to extract. In this case the estimation ) Tj 1 0 0 1 44.399 155.5 Tm 92 Tz (of model error, i.e. imperfection error, will more or less look like random noise. ) Tj 1 0 0 1 44.399 132.7 Tm 93 Tz (As we mentioned in section ) Tj 1 0 0 1 187.9 132.7 Tm 74 Tz /OPExtFont0 11 Tf (5.4, ) Tj 1 0 0 1 210.25 132.7 Tm 94 Tz /OPExtFont3 11 Tf (the disadvantage of Method ) Tj 1 0 0 1 354.949 132.95 Tm 91 Tz /OPExtFont0 11 Tf (III ) Tj 1 0 0 1 372.25 132.95 Tm 96 Tz /OPExtFont3 11 Tf (is that it as- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 232.55 51.1 Tm 76 Tz (124 ) Tj ET EMC endstream endobj 669 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 670 0 obj <> stream 0J ,,(j%Nx** +:WZeWkH2|&cB7;tʌYi L`-EB(6j?8?F$soEǤx[ecPYZA|ArFF6fK®=,ů>,9i^3?2ʔԁőN`h-y?f6VG ݲȺڪ07 ɫ].S]V&c;[&TSFG}Jc w󌝟U`wv?WFo5 8ޱxZF6 }/RI/"ϗgɱ3a zq^ƙpH (562 Zƍg]0 /IdЇ@P 휔 >;7Qm"6zM"HpYx[IFɉxE\vQc$$ mT'Q7'˙!K&OLAo.a_)y Pt}vJ;\|;ق>ty"j ւΛ'\˒ݙ6 K PURn-6hR՟i=S3rJ%(o:Ԉ$OwI% dZVk& 'h4:J|a6Tx!Gn]FY8K<-65W|3NnF[1 ;G"]\D}<_OwTz_xj9I6j.М] tIvwR?ӻj2&;'ťqaRT8ՊfNHDN% ˆCOl*ϋp:'BMĥ~z.btG gj-yMyƼW}Tn.%>谎I$<@xZ}c';I ^U)ֈr\LI lĢ*vɪz8i+]Yc+lc MI9Gx5gVrLn wQ|\ U:90S},ee=wv[vѵf0Ft'Oi]8eC VNtM3M%yDj1UDRgKmqE/YsBM`&ՎRjp'f=O[1jb 13+ŷCBwP96 r< dX;4*Su҉ R%O9Tc .WZeyv"g {,ezsU'p֥=xgl )U]r;ۏ3ʊ|VH( 0K}ކǑBqaFcfjw2v$WNܨ<GDRr+QBןeCևш5"ȑ29~w] Anu=tԶ!8ėڏ)nn)BUwV$׈Oy|l>ڛ*h21~_{8%iZ 6q!Qa`:J/X=*j9>5l颋1TXo(,3<|CT iYhsPƕDUnOM­3[g) FWi_ >9ұ5=t: 49㲂 CO~g|2xtW8`*F|oV>ί(>o yE&tqQŌM.8蘗8bq| [͞B'@ov QfGQ}H+gr*Acl]~HlJY b4-Qˑ]5 ?x`38Ws 7,Z-T2zz58YX~]/TfYZu5I:J ?#?23@>co ;L}uy7Ws9Wձvԟ)aLHMg"`8' e{4>ҵ!%Ҝʱ:aDM#Ġk;\9+*_qqaj rޥb͵';!S&X P(#-ϣV0?q[f&<HcR|.rC&28 7 <~ x&G!RUny~',/7*{&R 38 9Gl:3jKT,0ЪPr(2aTa*v8$9aH ZXAlǑ7 ++ DKSD%/?ec$\ț4 WlEN1?n- *"E{ 1L_p\auT1t[ Abeѥ!GtaSEt+3LzDE7uM҂뱷*O(ܡ-ud;c8Q/e)^حz/AH>xȴDZPD DYoQrs Q`#>f(Q1Dv^%Ybds9sx-tW081f7)J?,|v/nfJf N4^(?(/24(QXOy!'KXH` XRp'h$nUJnXDl37VEqDExfHxy8rh0J2齵4 Ϊ/K@))9n*VǸV=XY<zrvjJ~i8{ô& %Ng/9+u,ds*#1*Jxz +"q߀UE-P&q{d#%aH_@4с*}7Y9Ic=ߡy72%oݫln{͞L:bd>nBAQ oY=ehM/p7?Rk؈%dAPYbD [tqۦ':nMI ^_>7Ұ[i<EWOgB:/38%citz`4rΕ?𮌕]&y1Zпb4H5cVY8R.Kzd{`A.}Ƈ"3*w޿ Y*`aSRByCs Wb4m<[cOwYSM8{$Ϻ`(ΙQ"Əq'#@9[zi%Yt !"V h˚ERAz`K.*$2ܘ-Vixa\c@^gbt0\A4Cm߭QVEU*&@qOYA0DOю7kkC@$*ξJb،$.GްeU_Ҷ` ꏬXә*Y_PI/ŚtpMk-vC7"Vzu"lgXDCK+%jѰ ?Z[EV(B0, |7tN7 6y?kI|_и#.9 (gQ9BN V]ԙ Gy+E!pi|&/f ّc=XW%S>oT7؁#mUY[g[z֨>=VpcnJC m/؆7!a-%_BPŸ *P .?k54l-WGJ ހZѠB՗@nbXI҆IoZXC8`a?ᵮ2=Ѭflyݻ#BSlyK(tσedrDc⛁fHwE+;"`vRdf40mP>Ǵʳʴϸ#CKՓZƴDҝ.%̥lII(CһPݳܳjd?F‚4V>#:۳ܱD03gZL s8$|KNQ9\4΅zЇF7CJ{v>N_AtSX=qWڮ0 R+zekAH#jmB6C$h k}`+7 C֑4O+]R4(#X8 HS7IxXF}PMEvPczx]}+U8V` Ķ- F|k:э.pջLXl4CH i׷/U򺩎xVl|ޕdz8pxR~kYK2X;]C.rǏpVyRh3V;Y^{W1$ՖQe:=SF@G[t`GFY8!E:yRvtiF5-BoL'h} ϝ%>ɪZQBoS!waq)8ٓI}rB "x5@~Zjӑx aGJB `^)  ᡔ-xo/IzG<U}:akoֈb3=zpo_уwe6]{ XEm'heNRW Ge B}5]ѹ\tx=\3DX'I<BE7WAGUJ37&Ty*$':'ffeש-{cӟ[DA7PIesF*L,IbQe6=(۪JjR ֽ~Pf;8;g(8guga}9 $TJ{Q2le4h?R3+;MrQ*Qh~'VP /]9eyx*f1-^[2xcZ^)sJ3XU|WhBǀl#Vx׎&vY=\oYƠkƕz )E?JrtoNazk!m@#NSRfAQ8+ju) zJhOR\6P 4A_?Th-YW(,ΦY~+H#N-\Se%:Y$ng ߁(#y=,PYg#Z噡4>ќAWp8 :7b+E㭛3}:du[yNM8D}9A0ÑnA"hLRhI脨e܂6 /jViv^8s YsINoQ#eth4XO&g'ľ?2Y' 햂*.'VyCvut5-t`S%!B8QqK] ᾮb!t|"z 9QLiwĀ#(˓%YʔI;ItqNU0xk.DnU-FUT)M|Ow,xE+~6>XN |WZUo$Ϥzo4?E9 Jl䅓HU_ۥ`:5SHSN&pJ)'|_;x#P*hE: ixp!/bnF4g=1 =ue<[{`a %Opqf'[4̸/ 쪊=%e|9jr6ȿdP5/XCAz݉J1k}tgtEEvV?ˎ?/ʈ[J>CPsy= gs d@>ؓsy.|P:> "쌓/uK &zQk wkBZo}^Fg+!|TrgHT0%)3?} M"i#!HnVy~`r3 ӃoBFl>hs2GYUgvJPOwڅq.Rxm 7%bi|v_yDV a~RUV<%@CYzFXIqPw=Q-Ο "F/_E#7ME OO]2 l=#rimY;!v^y1p ҌšU챝ěј$7FofYj%=}Y4Ʃ,D1xD>TVjɜNߙ]#A ʈh5ua\^)WW}$7~i zz-)E7Pؐmj'\:8NTu= -В. ?h7x"g>egg"|bfMHܼ!-e#@^ԽOh,jI&@^ERI'1[8{ rurb&G*3r^ҁ zv,^on>MFtJN@4V|r̐vBeLMqGaE&#~am"7eFՊ_>0'=t d9V ΃Z=ܻ'|{1aKR/LP΢45h{jV,cۃX8ƙ2^]&>`D OO}@ђJryY.C`B!B|+6;vaJէDKeY$ d}7ƔzG*c fҘ7#TMbv1 9^6oKePKHZyݴ s! Ta[K8e#&81j?c5覑Zv/mQ#q]ѿ y3V(i¤krLN7ەJSꑯDq銺48|vAWH)\Uw ^E~6!Ō +:X4e5FՎ!~įn]Ț6Yr&$,+C>8!}ID.R|Z6zZ@vsH~v 53(pݙvsdw4痺 rAs ͸/0%`!V꟤T @eB\ͯVK2* S'C.?O;|B1?1;u Iglϳo+T9 /K^&hWiT$ul!ȞV@ǔtxځVMk8~9N1c\| 2ʻ /90ȸLŘ@_-دIm(i|ƱY#0;jp-IZg"gl&X:?&QaVϐFX鈌|Gn $$xќdd`< \!6"?пc"^\߄7[,ZʘU1]I[LY|mNNja@-iT(ℿA,{q~GG&wg c0 ާ+OŐm`>Su0f 8"Hk].TaV&u<1l4|^)C2k5jI/ն_ E6hhX&:;f)JDz:"_:MpfL:kJe$u^͗~Lyuؚ m6*^l'^l&v܊f a8ZA?[<$'/rJͶE1םEKj( X Ƃl`-WG4" #y}b|ʌi_ݜ#SCV`QPw)pQdrG+Өoۮ6oCRxRCeh% &cM'JdwhzMJ:J;# 2՗-h?qB xq_&9 Pge fmyp6#Nd(k%> ;'O*QN3kAٺӢl*' EڡAtd>KŽ4%Z!bp[ $scn@U'1FHc|?(UPˠNV`X_ ,7G$rC@||f$OSգM@v;j !v)F]\d4(|YѸQ_[.qӿƬ\P6\i a8P@:}+PL&UЍ<Ey#dD[1u2$ȝDDF3ڝ҂^WJ-8wX+7X4bZjWj%4mL\%fXWN{` V J <1XYzEOO~Y $ C%Xt?VV3@ۘTǷmFhZ~'Ĝr"H ;ْ7_.h6RjoA\jOj;u+^Ǭx¢AvX'Aǣof_KM(+t9d$-%>=bf]xNEƺ"`+!Oq#%rhyLYam77H!ο%[1aA"Ņ:HEj)? 5侏ps?]A5AB{{ uHb^ew #f4 *C!L|0~@OMvHnFL=CIw5]Pf( 09 ‹_.NGP`So(n* @!h@S)x ydV* hv.6*5QhU" %~Gp} \z3s< ceM&雳 ΀Kwg#j]Ua'zU"2~Q\eo؝]4U2'.07 DɨrK65a/-^$Կ,\ek a 2Ch,iR[OmiK۝`.zo wQ&ՁUt="{ mnlt"R^=o8.Q'Ee ?Р;U(_vU <^C8d|V z)[J-g*ӡ"X`>f(S8,%WCdp^+ f5T'xׯqk%rF;,썙3 Ț j#'S׌)|)Ҡ̓ǀT~ DRcQoXj67iuw]^ekPڃ/-sޏA ;qќ|ti+2AT{' 0NJĆe oaܥzV@.ڪ}zR..hM;jF70ȑ񸩵P.u}j7qB-lL0b.Dړ\ky.$",;~N֩ [4ĤcsWi t%S@ئ+ ;坄y^O> Yc_4jopϺOau:I㿫Q^Yph7C*srڷQxGW|+6 llPznSx*E,;-I5syc` hZt摫Qd$n|CCHĉKa`HycсBERnKgʾ!!hLŜQБWT۠y(ߔf ^2E7Sz>³/ڲ+;дDZAgƀ<͈u!DКӨi7vhz͆Jri٫&4=Qr-/+.96?Y 4:9eZw9TU ˿QS=%5|]K/qB)0lKSDG;,G_a^'mԫKs͹ś+2[hOcKKSjؼDz[O'ĨBӜuaD.%RC 2ӐS+XdWbI(1&m>3"v8 d\ʄԪQwB) PGQ6þ `=L*+t N#,FZk" خSpc7 \^M +a"p` Ǽ$%h+boB,&ʑJ˃#v\'Cf[ҏ>f{nϫkڻM6xnF@:+0Z\@|.sٵe쪼rAX \4zW8cԛ YӰ2x\ql+ޒQ_ }k[2kFۂ[^Zmb.Q7 T20JSQNL%}~5 Aٱ0$ K'-(`kkKÆdrܝﵫ>(H) t`YN gAnٌo0qiicje=}KcHیwM},|M@be&M.~dMi|it0A!?&?vĒBI䅀FuOp'}7@m,֓Ef2@ qS`\\GXs&`cG2uߋ gΏdPi@'Y HPjO_ĿSvދ3&s "TVc]I%\f2ʱ&VlBy_MsmP;-ZHA9G/Sr#-}npN ExPߠ˒>};MXW`DTRK߽}n;N_AWWrԗ!AN']Gsk/B n}0B BM,%K# +е'/F)R[ͰOބʖ*J}2TK؋ :I@4sA#_@<"@d+YcdYtR呗xLx[n낅iCqP'~C<&65X^1{xr O0&c:40X SiMܦ, s e' 8 ГQޞa@1zA(EGY6lCxP=Rv Mӟ:B QXy-^\1tAanX߿ 9FW>I^jKh J PRi~ap ģ&#> endobj 672 0 obj [673 0 R] endobj 673 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 512 0 0 796 0 0 cm /ImagePart_2152 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 333.6 540.899 Tm 105 Tz 3 Tr /OPExtFont18 4 Tf (0.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 105 Tz 3 Tr 1 0 0 1 368.399 540.649 Tm 115 Tz (0.02 ) Tj 1 0 0 1 378.699 540.649 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 403.449 540.649 Tm 115 Tz /OPExtFont18 4 Tf (0.03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 115 Tz 3 Tr 1 0 0 1 372.699 535.6 Tm 123 Tz (size of eps-ball ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 123 Tz 3 Tr 1 0 0 1 438.5 540.649 Tm 110 Tz (0.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 110 Tz 3 Tr 1 0 0 1 473.5 540.399 Tm 119 Tz /OPExtFont9 4 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 119 Tz 3 Tr 1 0 0 1 477.85 540.399 Tm 129 Tz /OPExtFont11 3.5 Tf (05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 129 Tz 3 Tr 1 0 0 1 299.5 519.299 Tm 27 Tz /OPExtFont19 7.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 7.5 Tf 27 Tz 3 Tr 1 0 0 1 294.5 508.5 Tm 116 Tz /OPExtFont18 4 Tf (0.9 ) Tj 1 0 0 1 294.5 498.149 Tm (0.8 ) Tj 1 0 0 1 294.5 487.85 Tm 113 Tz (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 113 Tz 3 Tr 1 0 0 1 287.75 477.3 Tm 73 Tz /OPExtFont0 11.5 Tf (I ) Tj 1 0 0 1 291.1 477.3 Tm 143 Tz /OPExtFont18 4 Tf ( 0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 143 Tz 3 Tr 1 0 0 1 64.549 509.199 Tm 117 Tz (0.9 ) Tj 1 0 0 1 64.549 498.649 Tm (0.8 ) Tj 1 0 0 1 64.549 488.3 Tm 113 Tz (0.7 ) Tj 1 0 0 1 64.549 477.75 Tm (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 113 Tz 3 Tr 1 0 0 1 64.549 467.199 Tm (0.5 ) Tj 1 0 0 1 64.549 456.649 Tm 109 Tz (0.4 ) Tj 1 0 0 1 64.549 446.3 Tm (0.3 ) Tj 1 0 0 1 64.299 435.75 Tm 117 Tz (0.2 ) Tj 1 0 0 1 64.299 425.449 Tm 102 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 102 Tz 3 Tr 1 0 0 1 294.5 466.699 Tm 116 Tz (0.5 ) Tj 1 0 0 1 294.5 456.149 Tm 113 Tz (0.4 ) Tj 1 0 0 1 294.5 445.85 Tm (0.3 ) Tj 1 0 0 1 294.5 435.3 Tm 116 Tz (0.2 ) Tj 1 0 0 1 294.5 424.949 Tm 101 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 101 Tz 3 Tr 1 0 0 1 299.05 414.399 Tm 128 Tz /OPExtFont11 3.5 Tf (0) Tj 1 0 0 1 302.149 411.05 Tm 149 Tz /OPExtFont9 3.5 Tf (0 ) Tj 1 0 0 1 305.05 411.05 Tm 81 Tz /OPExtFont11 3.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 81 Tz 3 Tr 1 0 0 1 68.9 414.899 Tm 103 Tz (O ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 103 Tz 3 Tr 1 0 0 1 103.2 411.5 Tm 108 Tz /OPExtFont18 4 Tf (0.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 108 Tz 3 Tr 1 0 0 1 333.85 411.3 Tm 111 Tz /OPExtFont11 3.5 Tf (0.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 111 Tz 3 Tr 1 0 0 1 244.099 411.3 Tm 115 Tz /OPExtFont18 4 Tf (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 115 Tz 3 Tr 1 0 0 1 208.8 411.3 Tm (0.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 115 Tz 3 Tr 1 0 0 1 438.5 410.8 Tm 113 Tz (0.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 113 Tz 3 Tr 1 0 0 1 473.75 410.8 Tm 127 Tz /OPExtFont11 3.5 Tf (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 127 Tz 3 Tr 1 0 0 1 138.699 411.5 Tm 116 Tz /OPExtFont18 4 Tf (0.02 ) Tj 1 0 0 1 149.05 411.5 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 173.75 411.5 Tm 116 Tz /OPExtFont18 4 Tf (0.03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 116 Tz 3 Tr 1 0 0 1 143.05 406.5 Tm 122 Tz (size of eps-bell ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 122 Tz 3 Tr 1 0 0 1 368.649 411.05 Tm 126 Tz /OPExtFont11 3.5 Tf (0.02 ) Tj 1 0 0 1 378.699 411.05 Tm 2000 Tz (\t) Tj 1 0 0 1 403.899 411.05 Tm 147 Tz (003 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 147 Tz 3 Tr 1 0 0 1 372.949 406.25 Tm 139 Tz (size of es Gall ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 139 Tz 3 Tr 1 0 0 1 299.75 389.199 Tm 22 Tz /OPExtFont19 7.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 7.5 Tf 22 Tz 3 Tr 1 0 0 1 294.699 378.649 Tm 113 Tz /OPExtFont18 4 Tf (0.9 ) Tj 1 0 0 1 294.5 368.1 Tm 116 Tz (0.8 ) Tj 1 0 0 1 294.5 357.5 Tm 113 Tz (0.7 ) Tj 1 0 0 1 288 347.199 Tm 138 Tz ( 0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 138 Tz 3 Tr 1 0 0 1 64.299 379.1 Tm 113 Tz (0.9 ) Tj 1 0 0 1 64.299 368.55 Tm (0.8 ) Tj 1 0 0 1 64.099 358.25 Tm (0.7 ) Tj 1 0 0 1 64.099 347.699 Tm 116 Tz (0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 116 Tz 3 Tr 1 0 0 1 64.099 337.1 Tm (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 116 Tz 3 Tr 1 0 0 1 64.099 326.55 Tm 113 Tz (0.4 ) Tj 1 0 0 1 64.099 316 Tm (0.3 ) Tj 1 0 0 1 64.099 305.449 Tm 125 Tz /OPExtFont11 3.5 Tf (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 125 Tz 3 Tr 1 0 0 1 64.099 295.1 Tm 101 Tz /OPExtFont18 4 Tf (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 101 Tz 3 Tr 1 0 0 1 294.5 336.649 Tm 116 Tz (0.5 ) Tj 1 0 0 1 294.5 326.1 Tm 113 Tz (0.4 ) Tj 1 0 0 1 294.5 315.5 Tm (0.3 ) Tj 1 0 0 1 294.5 304.949 Tm (0.2 ) Tj 1 0 0 1 294.5 294.649 Tm 97 Tz (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 97 Tz 3 Tr 1 0 0 1 68.65 284.55 Tm 119 Tz /OPExtFont11 3.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 119 Tz 3 Tr 1 0 0 1 243.599 280.7 Tm 118 Tz /OPExtFont18 4 Tf (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 118 Tz 3 Tr 1 0 0 1 208.55 280.7 Tm 130 Tz /OPExtFont11 3.5 Tf (0.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 130 Tz 3 Tr 1 0 0 1 103.2 281.2 Tm 184 Tz /OPExtFont9 3.5 Tf (00 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3.5 Tf 184 Tz 3 Tr 1 0 0 1 298.8 284.1 Tm 130 Tz /OPExtFont11 3.5 Tf (0) Tj 1 0 0 1 301.899 280.7 Tm 149 Tz /OPExtFont9 3.5 Tf (0 ) Tj 1 0 0 1 304.8 280.7 Tm 81 Tz /OPExtFont11 3.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 81 Tz 3 Tr 1 0 0 1 333.35 280.5 Tm 105 Tz /OPExtFont18 4 Tf (0.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 105 Tz 3 Tr 1 0 0 1 438.5 280.25 Tm 117 Tz /OPExtFont9 4.5 Tf (0.04 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 117 Tz 3 Tr 1 0 0 1 473.75 280.25 Tm 130 Tz /OPExtFont11 3.5 Tf (0.05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 130 Tz 3 Tr 1 0 0 1 138.5 280.95 Tm 113 Tz /OPExtFont18 4 Tf (0.02 ) Tj 1 0 0 1 148.55 280.95 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 173.3 280.95 Tm 118 Tz /OPExtFont18 4 Tf (0.03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 118 Tz 3 Tr 1 0 0 1 142.55 275.899 Tm 126 Tz (sae of eps-bell ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 126 Tz 3 Tr 1 0 0 1 368.399 280.5 Tm 115 Tz (0.02 ) Tj 1 0 0 1 378.699 280.5 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 403.699 280.5 Tm 113 Tz /OPExtFont18 4 Tf (0.03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 113 Tz 3 Tr 1 0 0 1 372.699 275.7 Tm 57 Tz /OPExtFont19 7.5 Tf (size ) Tj 1 0 0 1 382.1 275.45 Tm 124 Tz /OPExtFont18 4 Tf ( of eps-ball ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 124 Tz 3 Tr 1 0 0 1 369.35 690.149 Tm 90 Tz /OPExtFont0 11.5 Tf (5.5 Results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11.5 Tf 90 Tz 3 Tr 1 0 0 1 294.5 638.299 Tm 116 Tz /OPExtFont18 4 Tf (0.9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 116 Tz 3 Tr 1 0 0 1 294.5 628 Tm (0.8 ) Tj 1 0 0 1 294.5 617.7 Tm 113 Tz (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 113 Tz 3 Tr 1 0 0 1 287.75 607.1 Tm 81 Tz /OPExtFont19 7.5 Tf (I ) Tj 1 0 0 1 291.1 607.1 Tm 143 Tz /OPExtFont18 4 Tf ( 0.6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 143 Tz 3 Tr 1 0 0 1 57.35 602.1 Tm 38 Tz /OPExtFont19 7.5 Tf (15 ) Tj 1 0 0 1 61.45 602.1 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 286.8 601.6 Tm 84 Tz /OPExtFont18 4 Tf (15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 84 Tz 3 Tr 1 0 0 1 57.6 597.299 Tm 155 Tz (I 0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 155 Tz 3 Tr 1 0 0 1 64.799 586.7 Tm 123 Tz (OA ) Tj 1 0 0 1 72 586.7 Tm 2000 Tz /OPExtFont19 7.5 Tf (\t) Tj 1 0 0 1 287.3 596.549 Tm 90 Tz (1 ) Tj 1 0 0 1 292.1 596.549 Tm 130 Tz /OPExtFont18 4 Tf ( 0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 130 Tz 3 Tr 1 0 0 1 294.5 586.25 Tm 113 Tz (0.4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 113 Tz 3 Tr 1 0 0 1 64.799 576.399 Tm (0.3 ) Tj 1 0 0 1 72 576.399 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 294.5 575.7 Tm 113 Tz /OPExtFont18 4 Tf (0.3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 113 Tz 3 Tr 1 0 0 1 210.25 571.1 Tm 131 Tz /OPExtFont9 4 Tf (Method I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 131 Tz 3 Tr 1 0 0 1 64.799 565.85 Tm 113 Tz /OPExtFont18 4 Tf (0.2 ) Tj 1 0 0 1 72 565.85 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 294.5 565.1 Tm 116 Tz /OPExtFont18 4 Tf (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 116 Tz 3 Tr 1 0 0 1 64.799 555.5 Tm 98 Tz (0.1 ) Tj 1 0 0 1 71.049 555.5 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 294.5 554.799 Tm 101 Tz /OPExtFont18 4 Tf (0.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 101 Tz 3 Tr 1 0 0 1 103.45 541.35 Tm 108 Tz (0.01 ) Tj 1 0 0 1 113.049 544.5 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 138.949 541.35 Tm 116 Tz /OPExtFont18 4 Tf (0.02 ) Tj 1 0 0 1 149.3 541.35 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 173.75 541.1 Tm 118 Tz /OPExtFont18 4 Tf (0.03 ) Tj 1 0 0 1 184.3 544.25 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 209.05 541.1 Tm 113 Tz /OPExtFont18 4 Tf (0.04 ) Tj 1 0 0 1 219.099 544.149 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 244.099 540.899 Tm 118 Tz /OPExtFont18 4 Tf (0.05 ) Tj 1 0 0 1 254.65 545.7 Tm 2000 Tz /OPExtFont22 4 Tf (\t) Tj 1 0 0 1 299.05 544.25 Tm 128 Tz /OPExtFont11 3.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 3.5 Tf 128 Tz 3 Tr 1 0 0 1 143.3 536.299 Tm 125 Tz /OPExtFont18 4 Tf (size of fps-ball ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont18 4 Tf 125 Tz 3 Tr 1 0 0 1 40.299 247.6 Tm 91 Tz /OPExtFont3 11 Tf (Figure 5.6: Comparing nowcasting ensemble using f-ball. Observations are gen-) Tj 1 0 0 1 40.1 234.149 Tm 93 Tz (erated by Lorenz96 Model ) Tj 1 0 0 1 174 233.899 Tm 88 Tz /OPExtFont0 11.5 Tf (II ) Tj 1 0 0 1 186.949 233.899 Tm 94 Tz /OPExtFont3 11 Tf (with observational noise N\(0, 0.1\). The Lorenz96 ) Tj 1 0 0 1 40.299 220.5 Tm 92 Tz (Model ) Tj 1 0 0 1 73.2 220.5 Tm 78 Tz /OPExtFont0 11.5 Tf (I ) Tj 1 0 0 1 80.4 220.25 Tm 88 Tz /OPExtFont3 11 Tf (is used to estimate the current state. We compare the nowcasting ensem-) Tj 1 0 0 1 40.1 206.549 Tm 90 Tz (ble formed by Method ) Tj 1 0 0 1 149.3 206.549 Tm 73 Tz /OPExtFont0 11.5 Tf (I, ) Tj 1 0 0 1 159.849 206.549 Tm 92 Tz /OPExtFont3 11 Tf (Method ) Tj 1 0 0 1 200.65 206.549 Tm 78 Tz /OPExtFont0 11.5 Tf (II, ) Tj 1 0 0 1 215.05 206.549 Tm 92 Tz /OPExtFont3 11 Tf (Method ) Tj 1 0 0 1 255.849 206.299 Tm 87 Tz /OPExtFont0 11.5 Tf (III ) Tj 1 0 0 1 271.699 206.299 Tm 91 Tz /OPExtFont3 11 Tf (and Method IV. All the ensemble ) Tj 1 0 0 1 39.85 192.899 Tm 87 Tz (contains 64 ensemble members. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 39.85 162.649 Tm 92 Tz (sume the imperfection error is ) Tj 1 0 0 1 196.3 162.399 Tm 88 Tz /OPExtFont0 11.5 Tf (IID ) Tj 1 0 0 1 217.699 162.149 Tm 92 Tz /OPExtFont3 11 Tf (distributed, the assumption become less of ) Tj 1 0 0 1 40.1 139.35 Tm (a disadvantage when the observational noise is relatively larger than the model ) Tj 1 0 0 1 39.85 116.799 Tm 85 Tz (error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 228 34.7 Tm 67 Tz /OPExtFont0 11.5 Tf (125 ) Tj ET EMC endstream endobj 674 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 675 0 obj <> stream 0V ,,&jV)xzĕ~,FKzt?3w3n| 4\37R!^zOr(@z)(1w҇?\u˜x+J>07]&c_vkyZEnz7㩢Iv/_EՍ c>g=BtB6{+]X2&TM]c$4#x)_@FwhHŀR.b}`Bot:ïDBIbz]Y3;׭M C5bVnђe7xef~:b@frښ90M h$?CkobJo(U2%MߥL46 ۞6/}orOu^ zd15R9ѹI!ue>iǹIq,ǹ ґGdYB`[UkN1ßW?OsvI.%&ERK)`"Wn"_|nɄzj3G履;VU9?&1\69-µߤ; :9zZre68>?Dyb4fpij[ ^g U0ˏnE_JA'Aa|WL/1/ BoBst*;8 W??:PZ *\C\T&̴햵 뿆Τ`#dܖ!nMK3F1c*-3ve{UuZ* ̐!L#;ƄyXjFIA tS ]?9ʤ(txDKe*zFS?/#y!ަmv97C'ޚW (d}Sׇ`$|fm?3j٥ԜQ /hc, 05e! n[fQ ҅KECMC7 = f3R?+$ h{-`&>'6zͫL5?ٞe&sÃu7u aXD>I*\Gp[&tb/ J1~,j+JEDY#Gq_s^C1nź_laioM r,ر-XsH>(8%Vɋ p)KW P|-ܒ`B]DԶAM\nyMǪTIdoE^]tL;tHKP|[_LcWPZSff+gSϏ֍6U=ZcѕjCadX8L[xjW:p{Bé`O} (p5_W8,6=t,p܀DAc y 3{ji̊%ה^*^ /f}<̿&{q9̊#uO4`)`sめ8m^ /#5|q;Ubo}Ku3r(r1 4e ꋣF/6I oOȟ)"uG*o: \f+SKhLH/<yo\ 1w:DvlZŮ7@vyMdS󡣮#I:c=g' w08 ʡG^vd>y`x _l<'? 61Hػ4}֣RфOh(IԏKCIp0n4`Fӱ9LSzHh~m{ie;h D"w 9yWlâՔV H ,8w'|N,)xwLk؛ZHmRF5$D\;pR_p%t^3m'ȷJksmKxvߊ0ò"T~*VqAbn"{]`b%f::v/|9\|٭qPLISȰ.ǖlAta1gRT$ly"Լ? XyINEr ,5$RZb}1Q\@*(ySKj>Nb5s (.S'˃ޝcUdpay ^TiඳWf(sx &IF2&^E$5DCkExE!;X1"DBQ1Rg _J~cَEO 氡۝5q|5GJV@C00P1@1٤5\D{>yQsߘ mAR~`5A1$ J+h?#x1Ң[A[ybnߨjCm[5{ i'(.%i»)Ou.ң[`53wWdʈ̬8pbHrDW߬ZzYUWٹTcjkvsTJq!V"tݟI.)|"OEkS,oXKbFVZeu>mDW:v iPU?4x[- IԦ\ 綅Gi,c_ItZqnHu, =':HhO"s M$ӡ*s~]rZp[l#IDR Sʲe͗\0ݣc^e˫d p[RHlEXK9ţT4ste; g_OE,)j %l%voRD|1r*<-| <"q+x8J{Bi/)zc@<:.?Ԓ״RgYAqs´#|l^_oyx1Yϙ,85ֶnq (2 (Ύ\MM 5R`|bpBZu1wNx~֨9>Ei67-^~?uڛ$E:JZ>kF?ԯH2~1ފ0e/c,r6S0 )[Unw>˜/ |ʝaiҲRMRm ;nژ/Z' k% pK蹗x}ڜe'8[]?Mwٽ]''f|GH;hJTk#  HNԄYcrH-+ %_fGNPKQƿCv~@oQ5XmJS>^LcwA}aU.0_C [C5^5|9֯:y@ƣā)l#Ϩz<SO#܉%K+PDhA$d .RxoZ4wUK0o[0CU o<{ڽNb~l idtzՇFdq20lVf2 \iٚX FnGy&Oql(h/KZ3 .`XYXTu D_Fshc=ǚ&NBU]\e@/<Xu'N< _7:%4AZGjͫ7ß5mmgV֩tPX90/+c Oh;_ki_N]pv?&츂;DL6MXYB݂z"xi+RIKؗ؅Z` fC0 ͱ؈G0-wܦ㳾E7?kj-"䱷ڐP.$jp56dtZ7ʝѹϯNU4AL-*7v=1°1)r|7Y<މJѬC]2u2|(uu" 0Dώ&xhjPQK%+p:= bت&%*@~.J-5I[2)] 0#a.ZG6&)4< ݠwbb 7Oq{f~6Mi2)r2X٬5IyܓO/I!t7 0ܟYn(QELŐG|o7F)O@7[|/3vJ3z7buQWsz#m>Nr0(֭Ÿ!"%!di$z|v$zW8M r\ PU^uVjLiQDJITz2mFzb[LIw9K(;j;8gD[tS/>&E/$8Pn̒q7:؈! >- iHnK5w'H_NlgocJc# TݘFك_!fU'`0;+I-)YKв />˹ɺu{>ޠP귘&1~Bo`$1#Z;;{1hIoIhEa>=m6reCVU+U:Ff{0;T0Eh7Wk28'P>199=0;y6g ]$:|m[vo KWmIY Ol`[KB~#Jsqj`l[eaD}ex"u0vWR+! .C V++ 6.9Z RxXHP۷NJw1]+ iW}uf xKEunOy2HO~ RS%]Qe|m-JrW1Ә&VR[I.Z9x@BRM\sNȤƥRH-btvc]F)2[oPXjYTPt ?|/Ul'u_|\b'#Bdo]ț; %&5l^n ڞ|cpЩK=ѯ̎d*ճa=SK.qJ$(Xz}㏟G߯`f.lx?ʔgsi,zI4D4i;SfJK֞>'#7?6~}۵I {MwF>j0ůCr"[5ϰ~~4R WrN!8=Ϛxtlx-8VQlC>|eAA_0 ʋЈ'?5!z{pk9,9T1l$tłC.8q*裈4)țHL'(~Įaa-/KS<2O^9|zq~8m^yVjcpdΛYrϲ@f?xkSܖ9S5y& YS9}o\ri|:9Nxb5P8Q}ئ-a0D]]w{l~)Nnܰ3oY8VvN !VX6j6N,DB>c<0>`;S 9j$Jq_= V X:ԢK0984SOGN"=+s+)0=l1Z ԁЂt_Vlijj,z>2X8>"6^2E9!3O[`?0C[v 8SͪVC8df}s u>B0XD ZڠH@D69dN6lFѪKSEod踑$jw:<݃eT3~kSC Y'AO/29qS>CO}?l;d{S֯>Q#LROOjQ\O45gIU'9[ y OV((L-d? `ehE? IFexV7<gKH_DzBigEP! W!ݙj;Bgdah4YFc&$˔pIcdBq p80;=Z~@G=?5bv 7SDfK!ZX7^dz؍VqxTT7jf%ZI-X~U }rOɱU|y!0 j'0R_g^J<妔a0.)x &ݍa匞FzCʒ.'Bjn` : V)TD]^ . cW@-'eDCv}cᰙ=mub~S{ԙSn+_ᡀ\jf \O%YsP;1uw,|{'I~DaS3=%IGQI śor'9 [ITpWũ_oY"+zS ; [` Q{b&uqQ.^{lШ-x'f0hÒsdݐiYǹ\YG\{%wg|nx'cx.7:4B [JS E 7GcKdꞽ1;L44_L> v9 K.%bXIӥJa.HY:%<(q¢A{ Wcj/nMMvwE9xFcI*IUt:sB$hpJ.Knp/6PUu6WjW;D ;~IKAG.ȕW&ںިZ5/]W`>H.4+tdpzŅ SH^܎cͽOvZ(e.ڳ6 7g2QI:A54>G m7CVJDk-8|Ol*NmtmI;76ΉYKLm 8&6_n/l~'LYiNQnY!Sc-L$L h,v팅$i1|0?0}ҌfE4,QrsȄ b2oX Ly0)K8 3f! ;E-T,U>\Uw:.Ws#ϊ}K$ߚi)g_Y.G1 7="䆇hXe^a6* cy8c~4{o&..=R),\XY# ]y`"}cgq)D%*g>zh[J|C]%nҲl2Ay[&4w(3Ug,{MnWΥ:QO(wa/lSvIiL)TB 2|(>^ktMZ'=l]BB2dJL= gRAwp^bvrLDBzk( =hU851Zar1԰8s`  X[7TQ)}voP^$ ߖ4 [vn jU`s2A1+!c}uBeJ?Z[V"њhxa2[3,ܛbυf3B.O +_߃ ǣUg퀑,|bL7rQ(v rlc-zi5ʐ i) } dY>8:07xz7;K) ~ԧﺃGiϬ.B dSx%5i[̧]!cwV/[akJZ"5\UmM-"{@8*/^eB)"st } Mۢ̂] le3>n@b:4)P,C1E"cq*m͵%x="MK֫3g݃:NROIKڇt,|µn+O9KOr}ZwKUdC^l_-rPr Ц;YT(*ס]OzyZ#vhYYp5̩,U3y(~]c?ϵ{+,?VlcRW}7ʔMj!&KVèeĭSnGj}" ~S~΍  TĶqL;pjmAogMfYΕ3 T[Y=݊2¶$ ,y(cVи3l;Kc`ggࡁVX쯬KiJ+{&*OI6sȅu_8Auu:Hl7^]k&%OҒu1#CvVeښC`KJn"S)[Rps'P۬O urHJ $dƨ^OՕԢs 'O~Le<"n *]h9p5jN2tE#P|s E{or_t0֓e$,-Y 683'd'xeJK%AdC9J GHy.\5| O&n¼ ,~NLx(M(A~Pl4mWh[,4SB.ɁTT1 x5Df>|.ّwS;8y gL`4ُуFJ)6nlN1nR\6Pip 6IMj5v1~Z Csچ%5E-!lL سJ )͹|5sjtf0n%QV.ŒhIRK`&abaYh?8!)%&9WH݂_l>E ޒ;5 %鱻(#Hef|cQdo܂pa,cs{ b:avLO7M#7al.b| -Nmm4}8b 1gj3̋nR]Rn΍$g!zDn2KUH*nv\ Cb !^!ڡg &> endobj 677 0 obj [678 0 R] endobj 678 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 618 0 0 839 0 0 cm /ImagePart_2153 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 434.899 720.2 Tm 104 Tz 3 Tr /OPExtFont3 10.5 Tf (5.6 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 104 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 104 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 104 Tz 3 Tr 1 0 0 1 296.399 678.45 Tm 116 Tz (Ignorance skill score ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 116 Tz 3 Tr 1 0 0 1 207.349 664.5 Tm 107 Tz (Ikeda system-model pair ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 107 Tz 3 Tr 1 0 0 1 354.949 664.75 Tm 105 Tz (Lorenz96 system-model pair ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 105 Tz 3 Tr 1 0 0 1 206.65 650.6 Tm 102 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 102 Tz 3 Tr 1 0 0 1 262.55 650.6 Tm 95 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 95 Tz 3 Tr 1 0 0 1 310.1 650.6 Tm 92 Tz (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 92 Tz 3 Tr 1 0 0 1 354.949 650.6 Tm 101 Tz (Average ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 101 Tz 3 Tr 1 0 0 1 410.399 650.6 Tm 95 Tz (Lower ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 95 Tz 3 Tr 1 0 0 1 466.3 650.6 Tm 90 Tz /OPExtFont5 13 Tf (Upper ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 145.199 636.2 Tm 95 Tz (Method I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 206.4 636.2 Tm 93 Tz (-2.1863 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 259.899 636.2 Tm 92 Tz (-2.248 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 306.25 636.2 Tm 93 Tz (-2.1233 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 354.699 636.2 Tm 91 Tz (-4.4901 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 407.75 636.2 Tm 92 Tz (-4.5519 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 454.1 636.2 Tm 93 Tz (-4.4252 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 142.8 622.049 Tm 95 Tz (Method II ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 206.4 622.049 Tm 92 Tz (-2.5351 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 259.699 622.049 Tm 93 Tz (-2.5857 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 306.5 621.799 Tm (-2.4854 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 354.699 621.799 Tm 92 Tz (-4.6042 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 407.75 622.049 Tm (-4.6682 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 454.1 621.799 Tm (-4.5349 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 140.65 608.1 Tm 94 Tz (Method ) Tj 1 0 0 1 182.4 607.899 Tm 117 Tz /OPExtFont3 10.5 Tf (III ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 117 Tz 3 Tr 1 0 0 1 206.4 607.899 Tm 93 Tz /OPExtFont5 13 Tf (-2.9782 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 259.699 607.649 Tm 92 Tz (-3.0665 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 306.5 607.649 Tm 91 Tz (-2.891 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 354.5 607.899 Tm (-4.6345 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 407.5 607.899 Tm 93 Tz (-4.6886 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 453.85 607.899 Tm (-4.5966 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 140.9 593.5 Tm 95 Tz (Method IV ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 206.4 593.25 Tm 94 Tz (-3.0267 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 259.699 593.25 Tm 92 Tz (-3.0981 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 306.25 593.5 Tm 93 Tz (-2.9249 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 354.5 593.5 Tm (-4.9227 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 407.5 593.5 Tm (-4.9964 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 454.1 593.5 Tm 91 Tz (-4.8181 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 126.5 570.45 Tm 97 Tz (Table 5.7: Following Figure 5.5 and 5.6 experiments setting, Ignorance skill score ) Tj 1 0 0 1 126.5 556.5 Tm 98 Tz (of the nowcasting results of each methods for both Ikeda system-model pair ex-) Tj 1 0 0 1 126.5 542.6 Tm (periment and Lorenz96 system-model pair experiment. Average: is the empirical ) Tj 1 0 0 1 126.25 528.45 Tm 97 Tz (ignorance score over 1024 nowcasts , Lower and Upper are the 90 percent boot-) Tj 1 0 0 1 126.5 514.5 Tm 99 Tz (strap re-sampling bounds, 512 bootstrap samples are used to calculate the error ) Tj 1 0 0 1 126.5 500.6 Tm 95 Tz (bars. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 126 469.899 Tm 113 Tz /OPExtFont3 15.5 Tf (5.6 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 113 Tz 3 Tr 1 0 0 1 126.5 435.3 Tm 97 Tz /OPExtFont5 13 Tf (In this chapter, we considered the problem of estimating the current states of the ) Tj 1 0 0 1 126.25 412.3 Tm (model outside PMS. Methods assuming the model is perfect are shown to be un-) Tj 1 0 0 1 126.25 389 Tm 95 Tz (able to produce the optimal results outside PMS. The adjusted ISGD method \(50\) ) Tj 1 0 0 1 126 365.699 Tm 99 Tz (is also found unable to produce consistent results. Using the ISGD method but ) Tj 1 0 0 1 125.75 342.699 Tm 98 Tz (with certain stopping criteria is then introduced to address the problem of now-) Tj 1 0 0 1 126 319.649 Tm 101 Tz (casting. The ) Tj 1 0 0 1 192.5 319.649 Tm /OPExtFont4 12 Tf (ISCDc ) Tj 1 0 0 1 232.099 319.649 Tm 98 Tz /OPExtFont5 13 Tf (method produces pseudo-orbit that are consistent with the ) Tj 1 0 0 1 126 296.35 Tm 97 Tz (observations and imperfect error which well estimate the model error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 143.05 273.299 Tm 98 Tz (The well established WC4DVAR method is reviewed and the differences be-) Tj 1 0 0 1 125.75 250.049 Tm 95 Tz (tween WC4DVAR method and ISGD method are discussed. Applying both meth-) Tj 1 0 0 1 125.75 226.75 Tm 97 Tz (ods to the Ikeda system-model pair and Lorenz96 system-model pair, we demon-) Tj 1 0 0 1 125.75 203.5 Tm 101 Tz (strate that the ) Tj 1 0 0 1 199.449 203.5 Tm 102 Tz /OPExtFont4 12 Tf (ISCDc ) Tj 1 0 0 1 238.8 203.5 Tm 95 Tz /OPExtFont5 13 Tf (method produces more consistent results than WC4DVAR ) Tj 1 0 0 1 125.5 180.45 Tm 96 Tz (method. By measuring the variation of the WC4DVAR estimates based on differ-) Tj 1 0 0 1 125.75 157.149 Tm (ent sizes of assimilation window, we demonstrate that similar to 4DVAR method, ) Tj 1 0 0 1 125.5 133.899 Tm 101 Tz (the WC4DVAR method also encounters the problem that the density of local ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 101 Tz 3 Tr 1 0 0 1 316.8 52.049 Tm 86 Tz (126 ) Tj ET EMC endstream endobj 679 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 680 0 obj <> stream 0  ,,&ߔb7 )3(/ӤW>0Ɗ eBymK+eyt8 J:e\YUٸK@s'yAb6#$CK! ]&$,zTF€^o.Ef-"g@a[VOk/)N{d8F`ϥؕjtJo'* ED®23{(ʍ!51{Ja;Npmoa^;xjr*_sQ"0rk%sފkHR;|T1SOݨ @4cYPG}ݵQ[0!(uW+"* p)TY?Pw8)M#ok :i>3^Z֩aV]7fO92OP(N K}77}4! c 1η%+Mw*l?O6DBI8~Z,bi- %wE?rY `W*QA+9ǎ ^Z O(0#vS*qZioN /tz 28 :"uPI3]m*YoY!z}ozne|T̿^`6"{'sٜ\V }o 6u&Π gg-Yduѿ$"s4bdNۉm@9z"qg%kp'ZzݧC.:yxӼr흂)97:;l\8\)q-uw2? ȝHc=K1'E/x+8!ZXz*ޠd ?.Ћ X&!li׻%`3]OwFzW5owގYs~]M]=i:L'^]2wh'R$OKf>4yrЌ&E8|t&sO]ڮtۃaGϸVڰ"!W !E{O0/~dpIJ"Z'`КӢ ?E6p ( ntw.u;!*i\ '3JjaSCrs2"a 6f#8AKF1LR7">%-⛘Eh(brW*&5_9L"i.6d0wgO( &ׂJ8m!=ayWZ jcLzDyU8D (g]TYTt4Y`HGBB6ws`_IYQR7mqtn;nDMoll c^N(I 톙b-ϾG) +1~'PbN 9 IW0i(>ؘ,O1/+zkQZnT-TW~a;>uȣ?[-:\0%-O{Oz\n`޶3jB7Pݎz؄0{borݣD`Dğѿ h<+ACm)Oh\㫚߆V P| sP??ߊR/YM΍Q)лY#di~cC1ӥje΃' !`E(bt@PpwqǨi_2{ZQ:9%fIKZ=HY/[og#H)Jsgj.,N/=$5;WgǪj/ZGt~ʏ'9d"nH*n A$JtkVD]:sbr۔Jr1TP%jH*XEO-XdUXT;tSl:XLV"SAbdӠ?taգ1uX"`CD)f/~DDqƃ'eKR(b N{#t$X9 >ҩ,3 `4<8VA+<,0cVU$دb9k޸Xx 0Kxc;k#\>1 i]:]LVL<(F?K؝v'HF!+h$LR4%9P+r8\baKCwzZ[YAz`ЀڀIJlRZ f ҙ۲aɱ%EȒ9ǣ}<8c\ɼvv$ڲ[SM!7U9@&Cs,42ZFw:cH֖8y>-UclݔmBz9cHѪ3)={i wk4 qgg۝4ᯚh1l-\L?.>o6)! & g -wOr=zuy3lao B#IM) -_>M*rв;0kճѱ仴z*沨s(pΎoF@f:ԛ:O-1F2I įk^Z3B3;t[KR8&y7%oAW, Xq^ Iugfx -̘> KjlE)g8OU~y s&$"AAe=@hsOE4HYdADľe~z=XC9;}ktMH"6t|-O )$-ڀNM:X"J]Yc+V;ĹyC08i=~p1pXbXLzI^hRJ2Rp%cVV"p _WO&n>R)s4n 'X:UbjəF$*]3mHhol1'g\$5a^U58KßAc! =<{5;SϖCD:7ﲖЗ-uKy4͂}/#;nNݷQNQi9SA[=]ҷ?ֿZ(,Әĉ \BFjG+(p>G3.*8J>h`fuپK>*'r&  ǁy;1"օN])H%* xI) %#$RH,2AtKAS2`[ l.pk*]>(ȋѯd/ռ0挲}F=|C9ZP4d-Al10j_%Qbr@D@~^QJ3;OE,&`"=% Qj͌"79+YnN;W?~QtC%n}\=rv0f]-I MyA^{j(GAw:ҋ^G.D<^Oo R}  ㆥVSqbzwcWƣvn. 9]zy}f{t}6} y N(O$yMUK4RW71'u\PYl݃FșQ>ђ<6U%1VPFm5cDdޭ§ah8kGU}%"oCeO2}DVdX3rA= i AWw,IrS  p[ \?"@CPsr`jLccW$hcR}=mׯr7aF0TB>]6RUHд@]꣛y!% NKml*x YWʏ~,rΚ Ys)'A|x;ܛ}ļ(*ӊ\طQp.m<3~&i}ؙxa~ _ _jF}7KА$4B>5,JM|2:!?b%wuǝq91Ƭn/eA9\Mz9*1z/ȶѫh.Ԣ$ ՗+~I$Uȕ "1B+䰘Cgٷ_NIcfZDWCIʠCʤ[*G7~M=.hMu<)&HܝTՐLUb{ww컢cjh:n)7hd[%R7oOyP!w6lD&ʂ_,[KafW2oYRrĀ{ҰM5f'ԘܴwxAL|T( 'I 8 O`]Q{94k}07fz58Dhmfn>&Y⚴Tl}ᾱt fD?FUzX~ǿ&;|JTS"q%X-sK 30Hy{1D Y#r2vOKr8&y{ժB7>4T#8*pk;O>r@ "R6AO-VO")8ޢjD\MkWGiW!Z* M DZj(TV1T8 割G5h:Eq%;CM 8e"IPUdP3 N0\b uܘ4q%JIv \ykMD=`P'a\,IGvWG^*edZ6B %$7ip3R!Mt pGk@71kR/;9k/ఃBâ *=CK>ґCeιײQ3.bn$V'N[oX :5^usDTFu0K|qI#O(V*tHg;,%jRZHBAy => WKQ.49Bq֦=ɪM1E! =)U,{7:Ņ_ Ƽoi-JH.W?RRV`,16WJ &?7;@|l* 'oٮO`JK?T knv/p̰}naqp/a]UԿԵ+\N&"d/ԥs- ^iUq%eb vV7UO@B5L4*SXj_ދUǢf%NK=$@bQ3#iLC߸"q {&kHF~/!ΐY?h |7sb&&%{WȭO-Cy 凖5v nͱjut`ELK4#׆bJE{,=yir/8' gR3fΩ<Ôg C{w?˵RO^pz*t(¢wz<*MKkfCqhf& iO_"&?8vdᅅ߻muB6_V}ToNťj^z5:*2|F'zV3PaJT&]rxv6[XȷL{BMR$0oU;~~=5ư\T!ԁ"Y^f*osR6KVI .J;* L(ڋE.pqn/{u#bļ:.ƑJu9IMBuͥy'tҋ`A#8|۹j'<X }F XjAWgjصȇ4) wMkP}Ԟ>\MaiF eӋ -E.njYdiuo0knW7%}|9V^GҎcśssT[D%Yc ցB 'F0s`ӊ꿐@uV5A>!6۾ϱ(ѳ~"5(r,3AB%k<0z 'UdžyA-=9Waj]^q=E-{AArm%, e{wP4Qյӣ9D!,PNFݼ}lvpXkbFӢ[9;GdC ,ьlfieip$㟰.ي,{F#GXœza#pyRDxÂZPo +Oa2&کM"Vl|Hβ"5؆Qw|JDuH(/#B&F.|^F1 + "ܾ}G1ϝAeؕ8ɲ=3'Vb#pHsP=&5 _鉚*ʇbn{w tHs# zkEKrN>E?T× )\ʼ%E$[k{;>^! cVtHfnla9BZdk7@lmTJLCN}9 #!O;]&ƛ("~Gr-l:oe>oUfaӠݠ8|J]3|ҟy}$+äSsj`j֋AxuA`CڃvJ-ZF6iם'r ,'AV78E6'ZF }s1 &Sc: "#RNb<;$N?']v-i i>v _%4%ٕUyxi?]~ۍXI?$TdZXd Bm].#tIʚ$fti+{9D^Xl4{ƺU6<뵧8j<$kȍ5=1d "X1Ƃ]H# J=5؆:2BRT Qyy鞺4"}=q)ɿ1hG5|"gmNȊUA',Fh hrV Okc4٧Գ6vy 05 J;H VDRpF%0ۘqgҝJ1%׼ (p]>`o7U-hulEf .j7U\lL2 zzsE25#$^2>Ŧnc9l!Dik+n UwcJ;~4y@B61'dꄓaJS)$R-Jy[{s@WAW+=;g<;<՟fw߉H%6hY362h'܄TÓFQLP\Oˈ8 p *Aw+1:OB#=^Ƴ|5qb$&/ `엯Z(R91L Z^ƴ݋ƶdSqњ;(3@0?2lw1jKN:u#nxKeך^,QPUEbsa'v{Zo%S [[nDDz]LzmrT } :zZۺ? vnȈ)~itINa9qR8;2M<^nvm9ࢰwq)x/q*mn4h6g{ \2|y@hi 1m.ԷyO:_Gƍ3-Z,F'Wa-ﯬZ"ּ*|eM|>`sYkzl5v OH9wu8Za q‡7LUr~i!`CI6CQopMiɻ=q.zuWM&(1Ŧxe & rsEYgYgBq+6TsyX0X6R 4enk5F9=r|>\@R [&\]iP+t|;LmR%Me6ݮżӝJξ/2,k0ӌ^F\;i{-aZHiѫK'Z   ˈQ*wL  kݗm-b-l.U77jʖ eҽ^AT]SA&@ &49?"b PrBHp7G(4!;y[Xn K9\Į8{0o/Fg9H&ul3 zu<>nu)ջΦ<">@;*q ԕ>6˕ xNoz)g3es,-0dfl+Ƨ6E+3G~UfG$pCGP;|҄CJX憥vaR|^FB427 \5< EQ`< Վ3=vSx״Vc`S;O!A9x*eX1@tAյ~`0YaCOQYJM_Mw0;*/a8g_s͙҃T`oS9v iHW:4J`V{ &1PĮfuP7<ٶ3a/w<^LsTxA燓axJJ2o : %Sؙ/^'K4Z*625{vc>`-bvJL cX!^[W}$?iQ7?tJ͘_%\T.";'1<}#&};ue+H'$ؑX%!λ]HKDG2Ic42őtxG@Gyqd۱ȺK]ҁI„yla$8\pg87YZH%#I* -URMPXOI=#mև޺X[J8c6[|*j+t dopyjp3@,4fΚ6J4ᒰohZ,JmVr ŴY_)NZ\(e:БZAu6?[hR~wKO4R}H5jk\>i]]{23LS %MiPjE=U W5̂3g,8,̗*4rՀ P{®ERӑI`։(Js-ƉM8v# 9ZaJ"$GWXmk3i Fpzg/I F}-/hܗ%Y XeGŚL()x?-[&՘ OQ爗^@7G^){m8y(by[vB J/J|fhpYh?f{c`̘J8*/qL:3)&@#DO&zK"_b&'J5s4j;RJkbFvV nMU$dg!kEy_0Qm;gJ;XPbGc_}Zym7V0IN2J8vN >VOPi|i UwÌWf6.eZ߸9R0=;@fi;[H$qˆa7_Bٰ$ႋa>bd{u)0 ^8a.,YJ D4#H]ď6k'4?{Ӆ>G><3 ŷ>'Ǿvb6L@eAߘgB+"O+g_ER l5D 8JQ>]Rn^ ;,'5^͔Q9]R0nͱKc 0>byB{!\9#˩tX8p7,dEg74VEI >Q8<8g͟E)3~> jKd~u:XP0!YQǵ@>utTDe {i@|%63Rd#9yXW&X{cKىX+/H5ֶOoe'fbb"ځt8ԟǀFW,y K) v(EeD6,[/ؔ.٠6p00gj>2)#ڰõ#2԰շ/=澱ձܕ&ê4Ho?#;TF!ɴ)> endobj 682 0 obj [683 0 R] endobj 683 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 619 0 0 840 0 0 cm /ImagePart_2154 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 436.3 720.7 Tm 99 Tz 3 Tr /OPExtFont3 11 Tf (5.6 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 99 Tz 3 Tr 1 0 0 1 128.4 678 Tm 89 Tz (minima increases as the length of assimilation window increases. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 145.199 654.95 Tm 90 Tz (Three methods are introduced to form the initial condition ensemble based on ) Tj 1 0 0 1 128.4 632.149 Tm 93 Tz (the pseudo-orbit provided by ) Tj 1 0 0 1 277.199 632.149 Tm 116 Tz /OPExtFont8 12 Tf (ISGDc ) Tj 1 0 0 1 317.3 631.899 Tm 94 Tz /OPExtFont3 11 Tf (method. Using the information of imper-) Tj 1 0 0 1 127.9 609.1 Tm 91 Tz (fection error are found to be useful to produce better initial condition ensemble. ) Tj 1 0 0 1 128.15 586.1 Tm 92 Tz (Forming the ensemble by applying ) Tj 1 0 0 1 303.35 586.1 Tm 105 Tz /OPExtFont8 12 Tf (ISG.Dc ) Tj 1 0 0 1 343.199 585.85 Tm 91 Tz /OPExtFont3 11 Tf (on perturbed pseudo-orbit are found ) Tj 1 0 0 1 127.9 563.049 Tm (to produce the best initial condition ensemble among these three methods. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 317.05 53.5 Tm 78 Tz (127 ) Tj ET EMC endstream endobj 684 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 685 0 obj <> stream 0  ,, nb7(x2p} |w|ŔCs5Ր^"4Fbl4U %7^ QD0RP2`[y#O pdS;T\#%R)Y{},qԓf1ǸMĩ淺8C\V`sT#_ 4c~' 6[i.J',}]u3%Tt 3^& 1KO1cz5n+F);f>r/2k6 .H&ǝxbKy[Y][t2Г缸#~_XD DOe'>,=ݒG2<Յr ?RgKh~5s+;9cN\/gyMçա8Jnzu3졭ߘ ?5ai,aWG꒽>ʼ/-`3` | !*IܡT]Rwzmw3FOXR޿}EvT>)j%J?W+PSXmh #Lu/g0GgNwWAIuVvk+WRJz X5{O42fh%r>z55vwçÛS=0A`ڣtL-ٝ¾vq: ^參s=i <6PrT1}OHy8cy 6$I*FIr1g6*S ZAZ<1 9W+$)Tqw s`ZHN  SAC:\oZ>3ճܧ6ڛIH8_ϳ"dzŒª#찿+z:8~<3R_s8׳E#XŸo"u]Nmt~H,]kԠn_YNP,nh#ѧ!h? '[ۡTa D?ߴ vᎠw^:_Ҩk9 nv{V_'u Z\ۍE~P#jwvsCS%lVd'|S=y8_mmJ5&6[p1 !w sR[N7rdJn:GG8'QxtP }&`n3Xڎq-2W&"gv'u]͆`(_YpFQ}&P༕DWc_ڦ4v[0{1=DG$q yq}HVj:=C !|a/i~qE,1@?ù7IC:4D=}˥M:@Mڑe Qq -D'\؜#C5}bdA|?]l0[!.Fi]j) slGt/[Jfڀ(,ǰ/0iq=ptMtN9As]шyi ڰu9D2Դh""ذɳ^ձD*(yΗ)梵:=l(854O>4;닱C<& kv$iS,$Ӽ0$IcH*鳮)t}lfS7/gPf>"?gVp`rk⟩ug4#. C X־;DlK KtZω(.s>F&]|_YM  Ce9 xbG3No6 *Vǹ)s%C2W=nXy:{Ѷ2^m*|ZM΀7z,83.][Ly6IQ)U`ƴ~ 'L5tDb]1[Sw_lؿ6K~A;QVڙhmFo;ɍ薽)w#\ k6CzBfUda{&k; \:z|%)⃼<1rsi\( )[v, 2w'Zn0n9Ɋ5x+~JYոOD RoW@tu5OwxY|jj9!'f%Htэ S[DH厞^"=b$a_rt/Ӊb"S 0  p"0sE~KfW׮A&UĤQ O)գ.d-@Lot{Kùu, 8Z7p5m}hray7n}7f#[nvA룍/O v`CBģI, %;S4}o(=Ϲ/ZU]; ރSB)ڀPy/X$" fLjΠ5U3eƓ Adžj:f\t˭+H!KI0ٻ7%yvUD+&JB^,PJ mt$驡%>)_S%Vj{&5yLkpYFel3{|\ FϦW}vbv#G$BJ_h5T)|Ỻ^ma:4~}U7oN#?1A?\j߸Opՙ6'"' ѬsPJ!fd:YQVR1ЋAlo|-q*Xz+\_M@7 endstream endobj 686 0 obj <> endobj 687 0 obj [688 0 R] endobj 688 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 619 0 0 840 0 0 cm /ImagePart_2155 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 128.4 582.5 Tm 105 Tz 3 Tr /OPExtFont3 22.5 Tf (Chapter 6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 105 Tz 3 Tr 1 0 0 1 127.7 515.5 Tm 106 Tz (Forecast and predictability ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 106 Tz 3 Tr 1 0 0 1 127.7 468 Tm 107 Tz (outside P ) Tj 1 0 0 1 265.449 467.75 Tm 78 Tz /OPExtFont11 22.5 Tf (S ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 22.5 Tf 78 Tz 3 Tr 1 0 0 1 127.2 406.3 Tm 99 Tz /OPExtFont5 13 Tf (In this penultimate chapter we discuss how to produce better forecast based on ) Tj 1 0 0 1 126.95 383.05 Tm 104 Tz (the initial condition ensemble given the fact that our model is imperfect. By ) Tj 1 0 0 1 126.7 359.75 Tm 98 Tz (showing the results in the Ikeda system-model pair experiment, we demonstrate ) Tj 1 0 0 1 126.7 336.699 Tm 101 Tz (first that forecast with relevant adjustment, which could be obtained from the ) Tj 1 0 0 1 126.7 313.7 Tm 99 Tz (imperfection error \(see section 5.2.3\), can produce better forecast than ignoring ) Tj 1 0 0 1 126.7 290.399 Tm 98 Tz (the existence of model error. Secondly we discuss how to interpret predictability ) Tj 1 0 0 1 126.95 267.35 Tm 103 Tz (outside PMS. Traditional ways of evaluating the predictability of one model, ) Tj 1 0 0 1 126.95 244.1 Tm 98 Tz (Lyapunov exponents and doubling time for example, provide the information of ) Tj 1 0 0 1 126.7 220.799 Tm (error growth but they implicitly assume the model is perfect. Outside PMS these ) Tj 1 0 0 1 126.7 197.75 Tm 100 Tz (measurements would systematically overestimate the predictability. We suggest ) Tj 1 0 0 1 126.7 174.7 Tm 101 Tz (using the probability forecast skill to interpret the predictability. Such forecast ) Tj 1 0 0 1 126.5 151.45 Tm (skill not only depends on the system, and model, and observation method but ) Tj 1 0 0 1 126.7 128.149 Tm 104 Tz (also depends on the way that initial conditions are formed and forecasts are ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 104 Tz 3 Tr 1 0 0 1 318 53.5 Tm 82 Tz (128 ) Tj ET EMC endstream endobj 689 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 690 0 obj <> stream 0  ,,?++jSES T9{d^ndiN:1kLa `&؛;q9'u|,9]]c EOuv8TǵzO]J6:PCV16Fp0+֥ 8dopǘzz 'ubJ:R5, n#nr ߲$Q|,ɮ iuL\Z'nj넑UޔuHi(CxD4O_&apo?a mh-9|JƖ/`ܑccι) aJi] 萴EP3LR/kYdZJ>+l R6y S0?D`U$Êˠyχ iO΅gP:xgkv̔=+2+}{@lcs{1) |*F>.c!o*|s{lܧy׽j:=-$:*%Ӄ/ZԶ2$CYeꥳ<qx;]A=lu3K 84ALYJ,PX ]E7T9&MKW BU";5TQ c4Ii7Fp ]JTQ6r3\2Xn^޶ƒF~t'B40q۲-kJ|>gRdB>Jl5UXY)]2473y뱩 }ˀV [\?KLuR)QPVIE@EEV],Mphlr)b>_&!+mt Ka*XXx(B*Q{]dJHjkXlj?\;  WKٲ,eu(S\XxgIUUa 6U픲vVkQ0T@Vۆ2#cn[r!f-n:SaY'tb O*@Qq%3mXtQ$\X>r6႙bpɽe٬凁0b4W6!D v^PU>L͊ \u*>ۘy~uYlR 2et*h*:%W /Ac;e?_ 8=8cÆk_-r-F,y5IT#Ԍ߯צHTޙeXV.Ohl`ĵQ8}6D6F%@ԀG fb|loE3٨BNjلR GMM/9pf|5g¢FV$,(ƳDOPB7~-f=@GF!v+-qh`17 IHn*%cڳ%?sJS%ˆ'XsK.?i ,)X@' qb]|اTtݠ#Y~wEW9??ռnǫ]Ѳ=ֶķֵ$7=?\F)#һ<ݶILCXv Խ _RUbla!>-2ٱЁj=Õ<V3c,={nĔ qiG)C%g"6s6֮yۘ2ȍ@rq}6|\Fhd7H'^U % ,1=(G HQ!.zP i@#y7 ǻٝ` =sH>[![ oYXJ!߾Xv1 z5cZw`7̉j `V'w̞U޸- V5Ṕg~EGF#nrTOH{̣Q0W įs} :|(ICf ̜7t&k$U'HBTZcUȨQEetOs16a;r*+UN1J>ogvto&Pݎq;jMAWaVV^)qI-zh1F:dze9[AВ];}eK`qFBӳn9̈́xh!,N9Vv܁ ܦ^7χrtZ=|r.2'$R'u3 /p[#) 3 INGR^z@$hL餭вx#/aM/+[rwVq~59&އ|(аJQ} L,t\ ea%m~]y 22kMb6hdgQɞlnA˵Y%_9Z\RpHcߌ7c&]y e @OY۹ZdƉy56N^#_qbKH|?VbreKRRß߱vu$bQƻQ%v4Sv]4 =<ȥnycP5 (GC]ɦ"JV QMѠABzs{l3;*`J:4>lyt&$ZT* $ۯ~ 9eHg6JCT)o`qnv]U"7ay3B GI ڄg[X_2;Ȱ.<*lk~>|ǖ#"Fe93S+ *jWQ88IW!LC*m`E9}b1"ٜD,Ov0, XLtpC,~7.NF~xۡ&ҝQD0hlGs-\br a]7u$H 9CYq|W˜j]brYĢ,X+{^g'r ϊ&fa^t=>Y.A4B lQ<6f@}'PRv,֔~5_}GKOqhik^|$ :e|80li0r]٘3p+F X /~r8&jӳڦL r|BN(; mw^eɋL'/mI."+4wf2;;Zs'UL;jQ{_|qc_7G1V܃F*{Ng!42hnPHgjO=ي6l3F)Aewi%G^!1.,9?/95z@"KlP!=-n&gJLܵ܏p   'Y=5EXm)RVYg ߝi pRm'q㠂gțq;4C[$$ۭDKdKkPl3/Dc<6M¨$_]=)o R~CISX3.ki:ć *[73Ic[ӝ{^F|L6G;y) n,d؇BW~wvJ_k{~sM|z 9Hެ 5?ˌ@QN`*>ZE%c' cRl[zO +qI7\AW ,@YJfkuR(s,cِ9w(Tr:U <0|"5s1Џ^׸%Lyg\B &kn)"?rJ%8u)\3S`k⚯=WkWbjS#볡{eJnmech 9"Brb._'tPCD=2r]UmXH0t ht|vJ yEq]{- Lj55_KK:v~a=G%WKc^*9gҝ;ܱ_daHØC{HB)G"5|2W:\v¼dި`rK=_;hVHа{ ,#e ̹kQ܏ȩG59zfˋ\ r<Q7wR1DA>+ D}Ѥ & ֎uY2 qad yuw' AB@ ֘!W2+i)ʕmXtRmE^i7)2xV m'pX4gvp)`1˫ / =lA6 ]a{'SÕ>z= ]+ѐc,|Ҝc0"C,٦mr8 ZA.3gSz~t)5zj)cl;&n34Hn=*z(/;53uAHSJ:Ij$X{Imςu[Tթ`mt$]D'X.KWa^fFމA@kɏq LڟE$6-D|5Q<әxE,o@V1"wzg:l^v2JeTWKӳȧ\):zSyx<[lb`g{3d,/m471jl\+Z^Wh40~ٰ(ėb:r\׫>myѫC}N5֬i2ǑI$M8\)l[(e%bo)ٛfL.V1p~7qXvn܇8_u*FǢ$%2!(4 g-Gҏ ;9&>hCBpOF&lγXyc_ ~Ef컚3ElG!66(@@隕: k.2Oyԙ~]YMBWOt4+[LؿTNB6?$m=y~{ZsxaUv 9'[f"u5> endobj 692 0 obj [693 0 R] endobj 693 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 618 0 0 838 0 0 cm /ImagePart_2156 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 308.649 719.45 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 128.4 676.95 Tm 90 Tz (determined from the ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 128.4 624.649 Tm 111 Tz /OPExtFont3 15.5 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 111 Tz 3 Tr 1 0 0 1 128.15 584.799 Tm 113 Tz /OPExtFont3 13 Tf (6.1.1 Problem setting up ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 113 Tz 3 Tr 1 0 0 1 127.7 554.1 Tm 94 Tz /OPExtFont3 11 Tf (We set up the forecast problem in the imperfect model scenario following \(50\). ) Tj 1 0 0 1 127.7 531.049 Tm 95 Tz (As in section 5.1, the trajectory of system states, R) Tj 1 0 0 1 387.85 530.799 Tm 89 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 392.149 530.799 Tm 107 Tz /OPExtFont3 11 Tf (, t = n, 0, ..., ) Tj 1 0 0 1 478.8 530.799 Tm 111 Tz /OPExtFont8 11.5 Tf (ml ) Tj 1 0 0 1 494.899 530.799 Tm 88 Tz /OPExtFont3 11 Tf (where ) Tj 1 0 0 1 127.2 506.3 Tm 99 Tz (Rt e R) Tj 1 0 0 1 160.3 507.05 Tm 76 Tz /OPExtFont5 11 Tf (th) Tj 1 0 0 1 168.699 507.75 Tm 91 Tz /OPExtFont3 11 Tf (, where Rh is the state space of the system, is governed by the nonlinear ) Tj 1 0 0 1 127.7 485.199 Tm 93 Tz (evolution operator F) Tj 1 0 0 1 230.9 484.949 Tm 140 Tz /OPExtFont4 3 Tf (, ) Tj 1 0 0 1 236.9 484.699 Tm 86 Tz /OPExtFont3 11 Tf (i.e. 54) Tj 1 0 0 1 266.149 484.5 Tm 74 Tz /OPExtFont5 11 Tf (4) Tj 1 0 0 1 270 484.25 Tm 105 Tz /OPExtFont3 11 Tf (4 = P\(5) Tj 1 0 0 1 309.35 484.25 Tm 50 Tz /OPExtFont5 11 Tf (.) Tj 1 0 0 1 308.649 484.699 Tm 92 Tz /OPExtFont3 11 Tf (ct\). An observation s) Tj 1 0 0 1 411.35 484.5 Tm 67 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 413.5 484.699 Tm 90 Tz /OPExtFont3 11 Tf ( of the system state Rt ) Tj 1 0 0 1 127.9 462.149 Tm 87 Tz (at time t is defined by s) Tj 1 0 0 1 239.3 461.699 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 241.699 461.449 Tm 120 Tz /OPExtFont3 11 Tf ( = ) Tj 1 0 0 1 258.25 461.449 Tm 90 Tz /OPExtFont6 11.5 Tf (h\(51t\)4-ri) Tj 1 0 0 1 300.25 461.699 Tm 92 Tz /OPExtFont8 11.5 Tf (t ) Tj 1 0 0 1 302.899 461.699 Tm 87 Tz /OPExtFont3 11 Tf ( where s) Tj 1 0 0 1 342.699 461.699 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 345.35 461.699 Tm 127 Tz /OPExtFont8 11.5 Tf ( e 0, Th ) Tj 1 0 0 1 388.8 461.699 Tm 88 Tz /OPExtFont3 11 Tf (represents the observational ) Tj 1 0 0 1 127.2 438.899 Tm 89 Tz (noise, which we assume is ) Tj 1 0 0 1 260.399 438.899 Tm 91 Tz /OPExtFont2 12.5 Tf (IID ) Tj 1 0 0 1 281.3 438.899 Tm /OPExtFont3 11 Tf (distributed, and ) Tj 1 0 0 1 365.3 438.899 Tm 124 Tz /OPExtFont8 11.5 Tf (h\(.\) ) Tj 1 0 0 1 387.35 438.649 Tm 91 Tz /OPExtFont3 11 Tf (is the observation operator, ) Tj 1 0 0 1 127.2 415.6 Tm 92 Tz (which projects the system state into the observation space 0. For simplicity, we ) Tj 1 0 0 1 127.45 392.8 Tm 87 Tz (take ) Tj 1 0 0 1 152.65 392.8 Tm 126 Tz /OPExtFont8 11.5 Tf (h\(.\) ) Tj 1 0 0 1 174.949 392.55 Tm 98 Tz /OPExtFont3 11 Tf (to be the identity. Let the model be x) Tj 1 0 0 1 369.35 392.55 Tm 95 Tz /OPExtFont5 11 Tf (t+i ) Tj 1 0 0 1 381.85 392.55 Tm 126 Tz /OPExtFont3 11 Tf ( = F\(x) Tj 1 0 0 1 420.25 392.55 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 424.1 392.55 Tm 98 Tz /OPExtFont3 11 Tf (\), where x) Tj 1 0 0 1 475.899 392.3 Tm 60 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 477.85 392.3 Tm 108 Tz /OPExtFont3 11 Tf ( E M, M ) Tj 1 0 0 1 127.2 369.5 Tm 94 Tz (is the model state space. Assume the system state k can also be projected into ) Tj 1 0 0 1 126.95 346.5 Tm 95 Tz (the model state space by a projection operator ) Tj 1 0 0 1 367.899 346.25 Tm 122 Tz /OPExtFont8 11.5 Tf (g\(\), ) Tj 1 0 0 1 393.6 346.25 Tm 104 Tz /OPExtFont3 11 Tf (i.e. x = g\(X\). In general, ) Tj 1 0 0 1 126.95 323.2 Tm 96 Tz (we don't know the property of this projection operator, we don't know even if ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 138.949 299.899 Tm 98 Tz (exists. We are just going to assume that it maps the states of the system ) Tj 1 0 0 1 126.95 276.899 Tm 93 Tz (into somehow relevant states in the model. For the purposes of illustration and ) Tj 1 0 0 1 126.7 253.85 Tm 92 Tz (simplicity, unless otherwise stated, we assume ) Tj 1 0 0 1 364.55 253.6 Tm 133 Tz /OPExtFont8 11.5 Tf (g\(.\) ) Tj 1 0 0 1 387.35 253.6 Tm 95 Tz /OPExtFont3 11 Tf (is one-to-one identity. Our ) Tj 1 0 0 1 126.95 230.549 Tm (aim is to forecast the future model states x) Tj 1 0 0 1 348.699 230.299 Tm 68 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 352.55 230.299 Tm 91 Tz /OPExtFont3 11 Tf (, t = 1, ..., n) Tj 1 0 0 1 411.1 230.299 Tm 74 Tz /OPExtFont5 11 Tf (1 ) Tj 1 0 0 1 414.949 230.299 Tm 96 Tz /OPExtFont3 11 Tf ( given the model and ) Tj 1 0 0 1 126.7 207.5 Tm 92 Tz (the previous and current observations s) Tj 1 0 0 1 325.449 207.299 Tm 89 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 330 207.299 Tm 102 Tz /OPExtFont3 11 Tf (, t = n, 0. Chapter 3 and Chapter ) Tj 1 0 0 1 126.7 184 Tm 93 Tz (5 have discussed methods to estimate the current state using ensemble. In the ) Tj 1 0 0 1 126.5 160.95 Tm 92 Tz (following sections, we will treat the ensemble for the current states as the initial ) Tj 1 0 0 1 126.5 137.7 Tm 91 Tz (condition ensemble and use them to forecast the future states x) Tj 1 0 0 1 442.8 137.7 Tm 90 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 447.35 137.7 Tm 34 Tz /OPExtFont3 11 Tf (, ) Tj 1 0 0 1 451.449 137.7 Tm 114 Tz /OPExtFont8 11.5 Tf (t = ) Tj 1 0 0 1 471.35 137.7 Tm 84 Tz /OPExtFont3 11 Tf (1, ..., nf. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 84 Tz 3 Tr 1 0 0 1 317.3 52.25 Tm 76 Tz (129 ) Tj ET EMC endstream endobj 694 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 695 0 obj <> stream 0  ,,:b7 M*( S 9!OJ`&~ VTEq2?_;A9,<3 qTuEL 0RKctپj?ٌ;at5N#?[Xlh v!7|LąJ`Ir'CP/ZfQMPk.AULhKΎ7άm;)0M]/\3 !oibF􄫶kmHԺPˍR:$ Nܖ ]w݃k|߉Uem1>54 jјé ok3ѽȳג%rk'FIw? l".^o!Ze"뤿;G/m;68ѧ8'^'7 -<Νsy>9`K%*zC'QsDZocL$n)t ^1Ӈ,:X@PgXT""oøqP,pj͑E̱Ǧ3KWs`HT#P@&fUKMDqfɪ vCdµ ١5Zk mi\3 Ag,ꦘhyO<^t? ر_No IĕBԪUBFφ8`6ua;Pq婘Y#hHlDY[Qi<l0Ppm3BJ [>Ͼ3*.͍ޤs2jKm'|TT>>-G3|*W?|\$fvۣNhbBɴ8&-1կLF n$,E6N~;I}MƱ{v#{{xa8HLCh&Ll?Y|T3i9|Uұ\'sw^G8 fAv0 W-ͬFX4ZTR4ZJ}il{Gւ.S3r XZ|BeCՉy͈o 8_<'O>B @S5Na@cFh3- ` ޴oz?7qHKKv+#K4p Jΰ()Uy;ImZ\H,4xN|JYhihc2+?? X>xXyVNMAӴا{t'!w/yۭOJ?+" cP},ge:2{EɬS>'RQnD=8;2RV WR i:1zUs+Cg0QI$%}7h/t DGm0 Her0y:P#lh݌zG5]!*_`QzJMhD'%kZ2k lL||0mŶ:ݪ]'~d//|m+_j<7~'skTZ%2l=4pg@Doz{YMӊzr msa.4,}9hҗ)FNadRXhK)Qx߬f޽>DZ4K9{0oi⫣=x#V'fa7z9x$C);y$3$heW-)otӨEBӺ߱Q醄{(Ĕ*Zs(]Ӣ -P`g-/-7q\@űsh^gP>]wnA0?Z9]hɀ#/ʛĴ?۝Vbg/*;؅nVd`ӷhU"ސL+ILobei81W%ZoСW8J66.-xt@`GwPdƃ 񙃞D7#1Š')Nn%HϷpbt]oF1Hc.V @a-v|kBnm,ovIB7/U~d: Vft=YP`S)ji!gnI\y/@E&y$Wax >'_E°ո鷫7Aճ?撥R}S#o>?,y{[nq A65m/DC$]# 1U &42?^$?NSbQz[/|TyfF?$ NRﷁU~8I6>R7{ω~ nI;ds$B'B&gs%lÀ{?I}p p2>,ʘ󱧦rL >zƾUiI OA1ovϚ uzX'92z*(; F@,=֊-)-͉/۰Y^ Α8!e[0QLC4# m'<.:5M3֭qRxK5( Q/z/ g2c4q/CGJ|"`DBN^BgpKBqHrFV/e=v^2aܨu{y^'^_/ũ0KCAoPQd|"(}ܹ6{I];h/'U<j+8XcoN[_1siAe ;f}3&@|W۟,jrƧI<|0rA3~L^n*AGc 7c/+tď:0:P[?nyz} ܷU-*HX{rC?N&hKD(}_NO3"X뎹8u}>W;-P==d+1$J-2ʱ*;ԦO6V?ir\LmfRf.L1@6Fmp]D6&ʎ!:v.5Wk1ZcKz&d"myk({!=,.hAcYa;^"./\  Wr&ql7(mIGCe?C  2  \ݽpv*t̒0;ύ Yyw&$: iچ_xcA0;}o-(GbF[l(0yE7q"Dt@e=-DT^l&T"M߲ed5ֵ}.}J4F׹˩ml`ۮ$5EJpLWV]ދprKLox.E9?ʼnAw9r3tsRr-G(z$qTlSblI}%t_ziyYttz oj:hCyn^Mf Ψ;dsM2Ħ_l'\:OLjg2K:Ly+c>>a0tk2Z\~=ncB\za'$_ng5_Ź~(-iϙ$+A:$_7P2L7ZgD = _^RusB1Ԙej̞6ݪqX30♦dĦ&!Y3*?$/F$@XҧTfمm; ܏~2?Gw!τMe,ԵJaNpa&-y泋cpt:hIe U"FNZU{3uc@Q2L2k-=nVHKW|q+Òg|utp(a*&x{lA s\'6uJM?~f/K#WѣfYr̴@åq2-'^I=gDQN:?V6@[ui3r@b.kWf&8kXX'IkXȃy[0'?`"LubB񰅟e ]jPP*NcsZ](}ﹶlx\/6sJrBspTP"`K]%2cƼaM(ЌA5`<CtSi+fܙE'IYy0.l2Fd/GiPʤLJnH;$9 } FY#[||+5 Yr45@2I$JFeJ7{h.I+ˋ谨8?-XnY&{3ԬNX^AED61bseƪ2Z] j`]^ߊ M%fCIu4#1@㭂x.{YPDsUQ;}6xdNռvT&H&y/'jE1!t?ٽA6F/^z9>].qf_U} ,'t¶voS pL!K j Iɑ 5 '0G(O9b]fZh.pgP\U]a,\h2~n`IL#nTZ!}o1zҎ%F\> endobj 697 0 obj [698 0 R] endobj 698 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 616 0 0 838 0 0 cm /ImagePart_2157 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 306.5 719.899 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 142.8 676.95 Tm 95 Tz (The experimental results discussed in this section will based on the Ikeda ) Tj 1 0 0 1 125.75 653.899 Tm 90 Tz (system-model pair, i.e treat the Ikeda Map as the system and the truncated Ikeda ) Tj 1 0 0 1 126 631.1 Tm 91 Tz (Map as the model. Details of this system-model pair can be found in Section 5.1 ) Tj 1 0 0 1 126 608.1 Tm 84 Tz (and 2.4. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 84 Tz 3 Tr 1 0 0 1 126 563.2 Tm 111 Tz /OPExtFont3 13 Tf (6.1.2 Ignoring the fact that the model is wrong) Tj 1 0 0 1 459.35 563.2 Tm 75 Tz /OPExtFont3 3 Tf (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 75 Tz 3 Tr 1 0 0 1 125.75 532.7 Tm 95 Tz /OPExtFont3 11 Tf (Given an initial condition ensemble, the simplest way to produce the forecast ) Tj 1 0 0 1 125.5 509.699 Tm 94 Tz (ensemble is to iterate the initial condition ensemble forward bythe model, we ) Tj 1 0 0 1 125.5 486.899 Tm 93 Tz (call this the ) Tj 1 0 0 1 190.55 486.899 Tm 89 Tz /OPExtFont4 11 Tf (direct forecast. ) Tj 1 0 0 1 268.1 486.899 Tm 94 Tz /OPExtFont3 11 Tf (Unfortunately no matter how good the initial con-) Tj 1 0 0 1 125.299 463.6 Tm (dition ensembles are, by simply iterating them forward the forecast ensembles ) Tj 1 0 0 1 125.5 440.55 Tm 96 Tz (are expected to move far away from the observations eventually. This failure ) Tj 1 0 0 1 125.5 417.3 Tm 93 Tz (of producing a relevant forecast results from ignoring the fact that the model is ) Tj 1 0 0 1 125.299 394.25 Tm (imperfect. Usually the invariant measure of the system in the model space and ) Tj 1 0 0 1 125.049 371.199 Tm (that of the model are rather different, and iterations of the initial condition un-) Tj 1 0 0 1 125.049 348.149 Tm 94 Tz (der the model will, however, only approach the model attractor \(if there is one\) ) Tj 1 0 0 1 125.299 324.899 Tm 90 Tz (eventually, which essentially cause the irrelevance of the forecast. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 125.299 279.75 Tm 110 Tz /OPExtFont3 13 Tf (6.1.3 Forecast with model error adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 110 Tz 3 Tr 1 0 0 1 125.049 249.299 Tm 94 Tz /OPExtFont3 11 Tf (As discussed in section 5.2, a system trajectory provides a pseudo-orbit of the ) Tj 1 0 0 1 125.049 226 Tm 95 Tz (model instead of a model trajectory in the model space. The mismatch R) Tj 1 0 0 1 496.3 226 Tm /OPExtFont5 11 Tf (t+i ) Tj 1 0 0 1 508.8 226 Tm 80 Tz /OPExtFont3 11 Tf ( ) Tj 1 0 0 1 125.049 202.95 Tm 109 Tz (F\(R) Tj 1 0 0 1 145.199 202.95 Tm 82 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 148.8 202.7 Tm 96 Tz /OPExtFont3 11 Tf (\), i.e. the model error dh, distinguishes a system trajectory from being a ) Tj 1 0 0 1 124.799 179.45 Tm 92 Tz (model trajectory. Forecasting by iterating the initial condition ensemble forward ) Tj 1 0 0 1 124.799 156.149 Tm 97 Tz (by the model ignores the existence of model error. Given an initial condition ) Tj 1 0 0 1 124.549 133.1 Tm 93 Tz (ensemble at time 0, the ideal forecast at time 1 would be obtained by adjusting ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 315.85 52 Tm 75 Tz (130 ) Tj ET EMC endstream endobj 699 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 700 0 obj <> stream 0  ,,}b7!I6Ўd Zh' nB:^ԛ/ |2CFA@Fy4 ,bdO>fal e#H%N -U,*iO82rբMQz?cGHkp+>{ VӇW2 \f ]h˺uRbq wo-]R ^4R81:HX!Y ~alS !9T'Mu 6#LGƶ 5 r&1cDڶ(v8/NZ\K[/]y/EGyhG^W`\GLK-܏!A^rscF/m@L [ b+,cj`DM1_+)%. ޥ5ݎ_N/\L _o\&'=0]C׮(h;b,O/N^@6Ь7Z]BvPce2Lk/>u{X8|Xd?Ky;"7(rԼWrD}Iɰm͢XD[/: +h%֧W*`Ori բվ_ҳ-F(QŖcw4R+C7s)cn3 LdbFӇ$|ݛ7{5jsNb6w'.7w@c2#Zߙ٤ϡr<"/@9w)L$4$#/%B%}rVʃL#`3hLF+O_aJxe%|l-mȊF -wA!MޒyCp=$;p]>=ԴvR[ySUABNT&wp&A%5@U*s$ dg哮iWʕWД4*7]|nqyD ͒S93¾(Yy%F! ըr^3,,#e?bK{itRȟlt8$)(d.o"UiBB, ۂY th֭lr<NSJQҵSaJKpXu @ όdq*tZÞr *Bƞ8X|ۓA4*èUK"4;iA;$Q$!72TׇVw- 6x,.o,}mOO警0| g)oyq'"jD{U^͗(yǠ;t#ZS9@IM'I5ΉÝNL 6:T٨agG_/|;/Û 9RnK[|Ә̿%AB׷t+d j@K5c h+̎3/8gycmtM!Iٝ'B-(=]ׁorṲ̆Ei+j0Džs5~]cנKM͋][6b;@چ>t-{2y}|!~uCJEgL.Ohnr»S,ݩ]FD{*N; @fk^WsH_mvKCblT(Q1VUy ){JS'% BfL66iPVzQ1^5|` c:K5~V%]}੻l%$cZ +|;}[vZhDZ1EȽ}ii}{q*5zM?OTt 0 +"4i AJV Sm[+gK'4$X\=KdZ9ϫ1n[8wp9Bh~6f- |w]w㳙=x4JnT٩5>ne 9;mGdO=8^eOYETQ3ߙYde\ƶCUU?턧H Kb_)9$[ECYF/]8w韤 p95'x ˣ?|@O&*o@=%̲ϒLտ n'";  ֥KX0.]/F:ߺ|aΔ0/p[&4\ (]-]'2'zc&͓bG8IQS[\"` .LDck qqlyqD:Gk&| )Q!.p[!<1h1Yi{eV2xs I 5h^_JAMAG V=oʩg$, q5" [6)߼-]ysw-_*q8eRz,8{R=@G` =z ~b`b>y'dtvą1X AӍ5px5N3WizLg3h˅@Dh(H^ ꜭPF&ΗNJˁ!>ȍ` !(Q @nh+z,7ܱRAWF6e$wǴ8f!whD!M~A⸵?zŧ wAJ|e|_H7etpR@-Mӱ"B*Eݜ$I"J7|a(#p㫙Hc^t("!넿B:zR od\k((R3ad~ B&O =n`%~4vuafY,~z QUΕм^9=]PϑEpBJ_AMw"u!y&LbBo^+غU+0;/ kGmQhk%lq$H,7CIhpLzf+`(ķЏƝk-yd`~#޴F~ɕIg&}sU[u2LRpޯi:nS^,`ʯ:MFz0ל᠈54vl%UZ39vx@I=]!VQn;uyLo%v`T 1[Wg,0&-YVl&/6Z_d"A7SY\`Ѫ'K)*;Yi)_ dT8+m=FRH=I]։6s5S9(pu3S=w4f.CX!,r], ?&Yؕ)gȸ^PA~Sa_y ᱌(D&\8U}TlaV݃[ڑH|95hk+mgFs\@ojTC0￷YSaRePV{8>>4581l3mғ&&n9wi2vD헮\̹^z7`ʨ^T21sU G'5j:PZ@e{CDlXŁI?55Aau>۳4x'<|DzLg;-Cu Ԟ NHpC#B-u"N8B]^sTh0ROQ}LoYoHnBGNSrz`R2hmw"w&nUNPܸ庒$+g4V7JgZ%f$& Cc(~.g[6c1꧎$p ي3Hc}*<?#}oivQ"qTb1l! nmkQu tYwfvXgt',_,H0&V|):11m[sJ])$75t&b/qK, HR=w'ԽXQy:^15bѼ'$V0*JƬjMN'aVOo1Wy } I+՝(\bfM}Br^{<,Kϥ+ Y2u.u/qJ: D X{}2F'Fkcfz0V("n䓯x)Yܱ-;Dx #ض3aX^-֗= |ĤKזk"Vh ǫx_FKk;+Lg9%FtvE 6.[ Ϟ!Ntؗe,tXvr ,wQN{ Hͻ8}W"86,Xf9>CXZ%}IO&6mVM{iU-KU"9L"q- &ZgӠR.O߬c whޓzGTVK󇅚Ron~W3T5lwFnSQnv]e-) WLeGBl Bͩӆ0aX0ʜB/7TxOzb!A]J*XkM,+PkNo[8܃KgmҧJ m~XkE`8tһ~{&6lYrڡBx!!%wpS6/7dz?aGSrQDɈigx頿Lk/lVą6dGb7Ĥ[i켗xܩ,{~rC_au ޠئt=']8iKyA JcP'TNIv4@`Rm끋i|}k<߳G&Pסtf5/+%ܻ~T$պդ+`CzЙtwa~Dɥ/cq4'HR(Lp{X{`GrDO~Tvy ׷-$w +1z6F%) pzp3j~Ҷ߮Lf(դl_Gr1_LvJoJ8w>s0ybal(Ay> 0; rUWݢkl4H+d/‚t&\yN;^ٽF N&CGjt4P{*o@ej@1S"jJրE6@d ZJf!F Ee@+7.Tv71 J쳪T#/FبhQ$AFx7fzjCg [|_RI[w"8x̱ @L`x&}PA@XEutW0g>}MaUG   3,!cPꦑ)c1ﶧ8߀q?ԭxэ`dM`uL݇V.nnETwtpRv nwZ& RxyDG&C <'?]BZ)s.>(|nB_~Z.^\DP#}Mq -AL&2!EzXI4IʼtQɸeEy1D,T>c&Re@ 5q9>a {Af<*q>$+7< H>:זּU_B1臀p!rah_M`Xڝ"9^:py*V: Ӳ]o7YvUAiD{B0.Acf.]}(|q}'J FwlXZZ"0X:MpES ZF(4/Ȅ,8bN u|>\뢢ڵ,C{3颧!L <@WEp ' ;Ȥ[<M.$d(u>lBI]*Ǽa+Uau^|a@T$ O{>WY̻iGϗѭ0pGVC{h5䂇ׁ1]7YH9(ޢCǼ:H;l?jR  ;,zoMqZ5=uՏȜd 9.r|.6P 1`kr b"7>59ʾ<ӭjH0Ƈ@yMGH3h4>r͂'(AR8|;IbD`ÞrnO} Ҫe?3ͦDpϠYg GR`ύ~3 =e!ftaC~D@5,9S&:P_ЎpDx=7@wԠd'k,Q96SO wCi(Oњy؝pB'8)ԀB:뙢Q X/)<RA;:MKweH-)637vKk~Z吜Xh>v.)E16(SKvYgeg5H006Í cmaBg/9z7@eF*/v3zx+VeOWݽ'bb"HH- ,;a.1ʷn=y@n:>fl&.#Kϫ3K#gFQR"`vCfUo_p^_"t/mZb0gLvTXʻn4SF|/fF)8Q0lݟ_^(zQ O_JUKzRj 9lP<|SyVfDTsKtmٮlW?8: vܻ̑.'n.I806FJgV4PQezR[i54 xz~&h`@فߛki_4I:nLm;fqsY0gߩ "SDg%qTQq~t5( 6QjU\42Id8CôfdL6b8^-hq9rTxYg}yt7A{k,PI bQ;fi:{`KH x>L+Ⱦ;ZJ&`^97Ix%qq_n$ Sfw`E(ɣDf{L?l*ڄ);h^9焀F| i޵xgxb1gw m RMqzzdskgVhۈ=FZƕk(x xLUN7;OqݲJA yI#LHL㥀.lݺkp1 ofJKXY7C嗹}["V +ҫHxzzs)BvCAe7Jn'wqR=ϖ$dHVsb@)EjD%G jMǐ$(PB[k[]֡}QjD}BfՁdv[kM5$j ׇʴ-y 3⎮0hT\)HBzSҀiaƔT;+i'jnVxLoE$\ʊ6 |"f-ED."ҿ4Q`k0fOP_`MHkqcQ>=[˘$4gE?d Fwqzk+VW&̬ ެ$z$3\[Xǖ:YҼw\wMy߃]Ak0 89bSJCð\LNz>O6* +kWP7hl]Kw %hg9$bպk<%;p~0 IчS|#"ʯuyU;M M8Ҁƽɮ0"}!Rd9cN_zU:74Y8jde"g }zگ/f% 9 &v,aG%"&/o{K>> endobj 702 0 obj [703 0 R] endobj 703 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 615 0 0 838 0 0 cm /ImagePart_2158 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 308.149 719.45 Tm 111 Tz 3 Tr /OPExtFont5 13 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 111 Tz 3 Tr 1 0 0 1 127.7 676.25 Tm 95 Tz (the iteration of the initial condition ensemble with the corresponding model error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 144.949 653.45 Tm 98 Tz (If one has a large sample of historical model errors -P) Tj 1 0 0 1 410.649 653.45 Tm 92 Tz /OPExtFont3 13 Tf (j) Tj 1 0 0 1 415.899 653.2 Tm 99 Tz /OPExtFont5 13 Tf (l, these could be used ) Tj 1 0 0 1 127.45 630.399 Tm 96 Tz (to improve the forecasting. One could, for example, adjust the iterations of initial ) Tj 1 0 0 1 127.9 607.35 Tm 97 Tz (condition ensemble with random draws from the set of relevant historical model ) Tj 1 0 0 1 127.7 584.1 Tm 98 Tz (errors \(79\). Let the initial condition ensemble be ) Tj 1 0 0 1 371.3 584.299 Tm 118 Tz /OPExtFont5 11.5 Tf (xi) Tj 1 0 0 1 378.25 584.299 Tm 52 Tz /OPExtFont3 11.5 Tf (o) Tj 1 0 0 1 383.5 584.299 Tm 114 Tz /OPExtFont5 11.5 Tf (,i = 1, ... ) Tj 1 0 0 1 427.199 584.299 Tm 85 Tz /OPExtFont4 10.5 Tf (Nens ) Tj 1 0 0 1 456.949 584.299 Tm 93 Tz /OPExtFont5 13 Tf (where ) Tj 1 0 0 1 489.35 584.299 Tm 85 Tz /OPExtFont4 10.5 Tf (Nens ) Tj 1 0 0 1 516 584.1 Tm 86 Tz /OPExtFont5 13 Tf (is ) Tj 1 0 0 1 127.2 561.049 Tm 99 Tz (the number of ensemble members. The forecast ensemble member at lead time ) Tj 1 0 0 1 127.2 538.25 Tm 104 Tz (t is then given by x) Tj 1 0 0 1 226.55 538 Tm 68 Tz /OPExtFont3 13 Tf (i) Tj 1 0 0 1 226.55 538 Tm 53 Tz (t ) Tj 1 0 0 1 229.199 538 Tm 103 Tz /OPExtFont5 13 Tf ( = F\(x1_) Tj 1 0 0 1 276.699 538 Tm 35 Tz /OPExtFont3 13 Tf (1) Tj 1 0 0 1 281.3 538 Tm 159 Tz /OPExtFont5 13 Tf (\) C) Tj 1 0 0 1 306.25 538 Tm 61 Tz /OPExtFont3 13 Tf (i) Tj 1 0 0 1 306.25 538 Tm 53 Tz (t ) Tj 1 0 0 1 308.899 538 Tm 97 Tz /OPExtFont5 13 Tf ( where C) Tj 1 0 0 1 353.3 538 Tm 57 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 353.5 538 Tm 61 Tz (i ) Tj 1 0 0 1 355.899 538.25 Tm 100 Tz /OPExtFont5 13 Tf ( is random drawn from the set of ) Tj 1 0 0 1 127.2 514.95 Tm 102 Tz (historical model error. we call this the forecast with ) Tj 1 0 0 1 396.5 514.95 Tm 94 Tz /OPExtFont4 10.5 Tf (random adjustment. ) Tj 1 0 0 1 501.6 514.95 Tm 95 Tz /OPExtFont5 13 Tf (This ) Tj 1 0 0 1 127.2 492.149 Tm 100 Tz (method is equivalent to transferring the deterministic model ) Tj 1 0 0 1 436.8 491.899 Tm 112 Tz /OPExtFont4 12 Tf (F ) Tj 1 0 0 1 450.5 491.899 Tm 101 Tz /OPExtFont5 13 Tf (to a stochastic ) Tj 1 0 0 1 127.2 468.899 Tm (model by adding the dynamical noise term C) Tj 1 0 0 1 354.699 468.899 Tm 53 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 359.05 468.899 Tm 103 Tz /OPExtFont5 13 Tf (. And this method assumes that ) Tj 1 0 0 1 127.2 445.85 Tm 99 Tz (the model error is IID distributed when usually it is not the case. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 144.5 422.55 Tm 105 Tz (Model error is usually correlated, for example see Figure 5.1. Randomly ) Tj 1 0 0 1 127.2 399.5 Tm 101 Tz (drawing from the set of global historical model error discards the geometrical ) Tj 1 0 0 1 127.2 376.5 Tm 103 Tz (information about model error. Another approach by using historical model ) Tj 1 0 0 1 126 353.449 Tm 99 Tz (error that doesn't discard geometrical information is to employ a local analogue ) Tj 1 0 0 1 126.95 330.149 Tm 98 Tz (model to determine the adjustments fit. For each model error ) Tj 1 0 0 1 434.649 330.149 Tm 67 Tz /OPExtFont4 11.5 Tf (\(D) Tj 1 0 0 1 443.3 330.149 Tm 104 Tz (i) Tj 1 0 0 1 448.8 330.149 Tm 34 Tz (, ) Tj 1 0 0 1 454.8 330.149 Tm 95 Tz /OPExtFont5 13 Tf (it corresponds ) Tj 1 0 0 1 126.7 307.1 Tm 101 Tz (to two sequential states x) Tj 1 0 0 1 254.4 306.899 Tm 44 Tz /OPExtFont3 13 Tf (3 ) Tj 1 0 0 1 258 306.899 Tm 94 Tz /OPExtFont5 13 Tf ( and 5cj) Tj 1 0 0 1 296.149 306.649 Tm 58 Tz /OPExtFont3 13 Tf (+1 ) Tj 1 0 0 1 305.5 307.1 Tm 74 Tz /OPExtFont5 13 Tf ( as c.:.7) Tj 1 0 0 1 330 307.1 Tm 41 Tz (') Tj 1 0 0 1 333.1 307.1 Tm 86 Tz /OPExtFont3 13 Tf (; ) Tj 1 0 0 1 336.699 307.1 Tm 174 Tz /OPExtFont5 13 Tf ( = ) Tj 1 0 0 1 389.75 306.899 Tm 107 Tz /OPExtFont4 11.5 Tf (F\(R) Tj 1 0 0 1 409.449 306.899 Tm 112 Tz (i) Tj 1 0 0 1 414.5 307.1 Tm 86 Tz (\). ) Tj 1 0 0 1 427.449 306.899 Tm 98 Tz /OPExtFont5 13 Tf (To construct C) Tj 1 0 0 1 500.899 306.649 Tm 43 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 504.699 306.899 Tm 91 Tz /OPExtFont5 13 Tf (, we ) Tj 1 0 0 1 126.95 283.6 Tm 97 Tz (can first find ) Tj 1 0 0 1 194.15 283.6 Tm 123 Tz /OPExtFont4 10.5 Tf (K ) Tj 1 0 0 1 207.849 283.6 Tm 99 Tz /OPExtFont5 13 Tf (nearest neighbours of xi from the historical set ) Tj 1 0 0 1 445.449 283.6 Tm 97 Tz /OPExtFont3 11 Tf ({ic) Tj 1 0 0 1 456.949 283.6 Tm 95 Tz (;) Tj 1 0 0 1 462 283.6 Tm 140 Tz (} ) Tj 1 0 0 1 471.35 283.6 Tm 95 Tz /OPExtFont5 13 Tf (and record ) Tj 1 0 0 1 126.7 260.549 Tm 88 Tz (their corresponding \(.7.7) Tj 1 0 0 1 236.65 260.549 Tm 86 Tz /OPExtFont3 13 Tf (j) Tj 1 0 0 1 242.15 260.549 Tm 99 Tz /OPExtFont5 13 Tf (, we then randomly choose one model error from the ) Tj 1 0 0 1 513.6 260.549 Tm 126 Tz /OPExtFont4 10.5 Tf (K ) Tj 1 0 0 1 126.7 237.5 Tm 46 Tz (CZ\) ) Tj 1 0 0 1 144 237.5 Tm 96 Tz /OPExtFont5 13 Tf (to be C) Tj 1 0 0 1 180 237.5 Tm 58 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 180.25 237.5 Tm 61 Tz (i) Tj 1 0 0 1 184.8 237.5 Tm 101 Tz /OPExtFont5 13 Tf (. We call this method forecast with ) Tj 1 0 0 1 367.199 237.5 Tm 92 Tz /OPExtFont4 10.5 Tf (analogue adjustment. ) Tj 1 0 0 1 476.149 237.5 Tm 98 Tz /OPExtFont5 13 Tf (There are ) Tj 1 0 0 1 126.7 214.5 Tm 95 Tz (many other analogue models one can use \(details of analogue models can be found ) Tj 1 0 0 1 126.7 190.95 Tm 102 Tz (in Section 2.5\), our interest here is not finding a better analogue model but to ) Tj 1 0 0 1 126.95 167.7 Tm 100 Tz (demonstrate that by extracting information from the model errors the forecast ) Tj 1 0 0 1 126.7 144.649 Tm 96 Tz (performance can be improved. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 128.4 121.6 Tm 103 Tz ( For computational reasons, we illustrate both methods taking only one ad- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 103 Tz 3 Tr 1 0 0 1 317.5 51.299 Tm 84 Tz (131 ) Tj ET EMC endstream endobj 704 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 705 0 obj <> stream 0  ,,b6X{7:ǻȷ k~^YAi$IԜLp*Rcõ*дg$Km%yִy=YEޥA\ps4G)q+Tnd!!,tǐגq%;UY^XBIE9Tћ|M#xWLOvx_/zJc,a'cME2fn0AW1T "$}Ec#BTT3˔So7M>U"[N=n8ްN$ \$>?irG#$KDqMLiBL&}}7.Fi'ŲǃA67W$:G捣 >X #8kn`?n!9mAʈZ!xq\amnJOV|sC~"%G_9aCV )ӆ4xffo[B {QWok<0hf᛿4ha[$%d>>^06ɃMKamB,BO9z(R0Pb"T]EA}jfe;;5u5Jǃ TflgO)~e 1ldY!ʂ2o9Jx*ن=ͽ8w=+6y% u^Fã5y͋3Q?)C&#N|󤂠McK3n2DgmAv%5kNǹܛ /]e?||+mܧӟbjqÿT'$/WH;mLPs(R Uw"T~. C*hj5rhNoMfeq h1h wx9lЩ)S;?[v y(ϨResH:g I8,7tL&HBƜH+hR?]9ς=&LS0=m$xB3w?jRsJIz8 GKPfU%$)kiWSWB ,w :Ux΅Iq E?adޝDImBj|=?9~GjH?Y`ɛ^hCaA1 *uo>zOaR>zt>FpNӭN@K^ytt0Ҟ$11.e-Z'{Up%Qx פy <&$ Uy$M$ghi @3O,0RBoS8~V$ P;kp-8;rf'gAyBK #ٛGYXM=\i{y!}xDpVd}$4w: ucZP({T20z@4`.]xQWՒamC$l)2jhTLPV5U_A k"_B#,@4!$n\I^8(Z.AU{ QbB}[p\V1߷'%:u;4 >Cf_fu{+1¿L8r*U1a8_ Ks.u;*r="ƚ=WC^x }l\/F[=lCLT7({d}7hjha[NUdUD-0޿O^|v@ʪ56C&҃Q;'vUȘRәuO+JY;2# [n웕2DH||}, +?GNc".U]I\ܬڌMmkK[ Sl#a3O%|S<4蘨Ѱ:4DԎ9G[LSxy@{"_ L,r]̰\M٢]C؍z˓)bZ"Ǭ6@.FmBwo]t^-,w&'a/);pd5 xȰmS|1luT+j>{Ȉ'9J9j :-V <"W>X?3nպ,v9CS'"嘼sC @ j);GYaC3`:6)ϝT2Ù>±נɇEd篰ٴ$ϸ䷡=֣&5"yǰ˰ղ$CΪ8;~l鶭M夌¹5K]Ӭ%Di3@=kÔP 1F^8ߟوt(ȸ~E-34jR4e[t lxuN,!+,Le)6." FRcI< bzAXjdF<v^rbQ0I!8 9NvsluHKONf][\g?v[tgpY <|S:&oyy*^'Ms۟e|nD5%W‹y*G1 #ό$10S:pgV$Mbj@ΐɗ3㇬tު`i<}ڞh5l;[iq4p;YV\ePT |934f~1^ӪGPBbXFn4+TG\WDY;: }JWui_A@};IL@I3!^8_ Ba13mZSb{̴5.%Y*wvhˡ۴ǁ$?ҴAז~;ϳ۱:\᳧*(^矈dsW 6GO#WY"ɐ֌fh|Rc4?J,g+ЉFSSŠ>>哶HBRq yAP'BF餕@Q$ 8O#X8IB6L別2@&1saғBWqAȭ,Bn/)r+ =MϬ^6NPޚΓunc_5~-6ZYq7F2۴Iᨂe7Q@VTcDޥYP J M(ԯUg"Ū23˖3~q*WZm0j @!{ѠI}ܢ9_ަnɈR(1}B;d6p[|4 >֩6Gΰ!ɸijұ0Բv.2bØֲ<.h); ݺUGn>vQ]50QY(*3FֱZ Hļ,nNt)͘%)ųYoTJi :ylw\X^-ӥr͝=l ;giS070r*wUO*Sݳ\_ Alc{fEJ-8Ëh4IpEgD0.m!Иt[V; h2^EsZSՈѾ^~p?P7eos7Xʾj> VkIcp)@J..? NNg7e~,EAغZ #RKx{EJ:DwL ;fDr_ymz1xË$,#r`34v7kt!=`Y A*NafVvp6PX]q`H- _;ufY*fu8tѼuNLʡM~~k N=IZF%#Qԩ_$" .BDmKBP"XFbfm"T0)e%w4LwDr]^ňFQ=8ϔ=R *]0j"rNܫaŅaASK"ԞmD=mF V˞b]Hߗ&Q+RsT:'(CE8D3GWL7~aB LlJ8iT\>Dlv,2P_!k1ˋ⹦^0E\m_11] ykᬖ"柌M p|[%oI6dMU- At\Wl yݙX <_N$+^WieoGQ}@Bb>p6]jyih7UkaeTԚU/V@"D(yQ I ~=H2,bgUK3c^ U]-dQc(K `*j n 0盍LlL(F(¹+l 314.@b婺D,R'7Elzv*vG!^Y((ApA`u:kyeO}NxIs'ӯѰ ;L*";x4q ȨUuX٧6b#2 8er4 ؔUH#glDc2!eQ`Q&÷y7?^\ve% *+O%ɓHw SxL&"4=DN[,fr0C w!66OңI"IJK31C.щs!4ͪW1KdqHo8_.~P /]@fSTt.o, {T)* 0:M_<ƬlqpGI)+X6:n5P4>ul+ױL?,Ǚ;*)i+=< |݂s8^"ɶ>}n+Fcx̥` fwԄf*C}*DԀVDHcaF*`2Kvy/1SIWEёa 2hcV:dzYi(FSK0(quy "#6|lN0򾠷ĺdFTE4aS1E=f_"]ӗۖ>U,a23V͑"zRp{b Oc#dFrJ`\yhz]^Ma9lF}kS3?i0(ܵƬϿ CX#}(a]^Gi2`סBUQ53$irU뛫 ? endstream endobj 706 0 obj <> endobj 707 0 obj [708 0 R] endobj 708 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 625 0 0 838 0 0 cm /ImagePart_2159 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 309.35 719.45 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 127.9 676.25 Tm 89 Tz (justment ) Tj 1 0 0 1 190.3 676.25 Tm 99 Tz /OPExtFont5 13 Tf (for each ensemble member xt. Note that in future work, one could ) Tj 1 0 0 1 128.65 653.45 Tm 97 Tz (sample more than one from the set of historical model error or from the ) Tj 1 0 0 1 487.899 653.7 Tm 113 Tz /OPExtFont4 11.5 Tf (K ) Tj 1 0 0 1 501.85 653.899 Tm 94 Tz /OPExtFont5 13 Tf (local ) Tj 1 0 0 1 128.65 630.649 Tm 100 Tz (model error \(70\). Taking large samples will be more useful, but will lead to ex-) Tj 1 0 0 1 128.65 607.85 Tm 98 Tz (ponentially growing ensemble size, which is interesting but beyond the scope of ) Tj 1 0 0 1 128.65 584.549 Tm 97 Tz (current thesis. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 145.449 561.299 Tm 96 Tz (The experiment results discussed below are based on two different initial con-) Tj 1 0 0 1 128.65 538.25 Tm 95 Tz (dition ensembles. One is inverse noise \(see section 4.3.1\), which is a computation-) Tj 1 0 0 1 128.65 515.2 Tm 97 Tz (ally cheap and easy way to form the initial condition ensemble but which ignores ) Tj 1 0 0 1 128.65 492.399 Tm (the information of the dynamics. The other is the dynamical consistent ensemble ) Tj 1 0 0 1 128.9 469.1 Tm 100 Tz (\(see section 3.6\), in our experiment the ensemble members are consistent with ) Tj 1 0 0 1 127.9 445.85 Tm 99 Tz (the system dynamics and a segment of observations, si, ) Tj 1 0 0 1 406.3 445.85 Tm 116 Tz /OPExtFont3 11 Tf (i = ) Tj 1 0 0 1 426.949 445.85 Tm 87 Tz /OPExtFont5 13 Tf (5, 4, ..., O. In the ) Tj 1 0 0 1 128.4 422.8 Tm 96 Tz (imperfect model scenario, such initial condition ensemble is not achievable as the ) Tj 1 0 0 1 128.15 399.75 Tm 99 Tz (system dynamics is unknown. We use such "perfect" initial condition ensemble ) Tj 1 0 0 1 128.15 376.699 Tm 98 Tz (as an example of the best initial condition ensemble one might hope to achieve. ) Tj 1 0 0 1 128.15 353.699 Tm 97 Tz (Results shown below demonstrate that forecasting with the adjustment of model ) Tj 1 0 0 1 127.9 330.399 Tm (error improves the forecast performance in both cases. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 144.949 307.35 Tm 95 Tz (Figure 6.1 shows four examples of the one step forecast ensemble in the model ) Tj 1 0 0 1 127.9 283.85 Tm 98 Tz (state space when the initial condition ensemble is formed by inverse noise. In all ) Tj 1 0 0 1 127.7 261.049 Tm (the examples, forecasting with random adjustment produces ensemble members ) Tj 1 0 0 1 127.7 237.75 Tm 105 Tz (with too much spread. In panel \(a\), forecasting were made in a place where ) Tj 1 0 0 1 127.7 214.5 Tm 97 Tz (the model error is very small, which makes the difference between direct forecast ) Tj 1 0 0 1 127.9 191.45 Tm 101 Tz (and forecast with analogue adjustment very small. Panel \(b\) shows an example ) Tj 1 0 0 1 127.7 168.149 Tm 100 Tz (where the model error is small but not negligible, direct forecast ensemble fails ) Tj 1 0 0 1 127.7 144.899 Tm 108 Tz (to capture the true state to a slight extent. Panel \(c\) and \(d\) are cases that ) Tj 1 0 0 1 127.7 121.6 Tm 103 Tz (the model error is moderate and relatively large, in both cases direct forecast ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 103 Tz 3 Tr 1 0 0 1 318.699 52 Tm 86 Tz (132 ) Tj ET EMC endstream endobj 709 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 710 0 obj <> stream 0 - ,,b6G $ZS=2~g[WRubfNO9<$ ]ۑjÑimAM"pX.s>抶ͫ2=":*ʠy[ܱ8I<\T;q "<15SUgN~`&\p{:JKy0]D-&-Dw\LK23L+sknS>nF;`+Hg6TBCgwEg' +([M`Pz{%|]LpوϮ߷x+o Jq pއR>qM)Q]3l5cĂRB/گV-*J*v˟Y3`j ,}vX_jt>ޔhM钊4[GВjnUeΟX#Ys$|_P揰kɘٔA$m'J:$Fj [Ÿ wݩ~'_MRkܡjpPޯon,6}"$ԏЏz/P[.Jg=.a -|ā=P7|15ViƋA樻 PѾ o/YMHB_E֕4Mˁ$~?Ԅr+spQ#zzn@im=iuES/MLX0F#Wg|~c|7~jYlRĊeՌGf 2áv̻+ۄ0;Ȑ'E-Zivc3 JdXW5s-;6zeNfdvҼ)'#oZ`{b-hz0LI_I/ }K]3+I^f#';^s>OA1XOqK I'5 qjX<7J +:7,(FIE)x? OU>l=H>Ȗg)vb`Rt]T-:dmxF]`ZOU5PhN( -?+d: SwӟPѝÂAuLd0䠪 7ȿ ˼4Mg߬"O FF<.E!zdžoݞ|%z8S"j>րl'AǾO IG[M!ߵ$00@24Xr4ClA"O]x;PG UgyKr O%2MgcVh$D+k\I Рr8óws/h6#8KXߴN!8 ⌈=O@֝jJTѐEŴ(sbPSĸggͦ+dy܂Wy-v3^uzWσd"fF8z;x[(AwM3@XG\$*i I[&! \*iO@YW}4_j"|W?=!>{,7-97ED)qd]_Pơ1k,bDaqRlyuD'|msQ'.!BsS03Y㝜DNc6A3hq)*v"vA+dsXdڀ^_a_I 퀨Nvݑ *X7`h49xc*M`eʧ/ᔑ.P *an @lp򊃴PuXJp!hEujf*cxEeKl-[~Cl7z0u5mQj/?`_}zFQsv oj}\}a!e|FnSvӋZN+$v(IuSUC톢CU QX]%×2)V:DM Lt|Ko/0!uYHBl\uFAjv:eXsz,1|p$c֐@}Чxj}e/ԇ|>,"FH-̀)0lyzus6H+{T)}M1Q؞ q,T=1u&^ߧ/= : YeD;CǾؤvW:IZh<޵zo.2X=&z"L8i?]_ MryR>)sմZ1EƝ-Sv^;>.x ?[K(6iʖX 4r&r[c,h $+Ga^i-OM=%u`6DNAߔQXtJ,ȡ@)9pk۲Х3:kt__ERv-9ƆAB=-A-9ӭv\rNRCB+hg3m_O()hNbz N񣨲;aŗRN4]e,twL<]A` S `oJ_$ kG3&wdw+ xvmpB˗,wcR pB[poJZ̞sa1ٍZsz4C1"O\2-JNW}7׶"v 0Æs.<0$>(K9ϒWތճɀʲ(޶]?ٳ<`{;TJ+("<M߁i5ÀO-gCLձ?m5JT3t3vePI x"SbHom׈" DPJ &\^WU+z-bsTi 5\q ۣ< ;!%ze, ıG 3$i~J +pr:RN$k.l8nn)DP|H>W(noZԖyo|7hƐT"מ˚c`cݾʸ;ḱ~wĒ3Kݗq99@jyGd&lr~ ֆ3{wؐPIj@LeSKV^!%\I<ӎa( d8r8>-_أJy>A"(Y#y 2XPBjurv8~?+6tR;=)N}!biX5MZҩ)M9Ke]fg}%Bc=F-?qЈsIl/u烞R@eAԊvg} KA>wu*bު6s &ZW&rɪ O$t}k+_Pdkk$qBmumAp4) h4٤LQSTsb/}.uHRNii3 KiU 8viH^Z[qK:Os<8s6/869~u}& Z Iԧؙ+r :E\Uu<8y˽ A2qm)?2{6\SPˎyz 1!9a*RƏQġahwUPşj5Iuܟ`p>e,tV- 04<9wXS~TT/GQ@.:"bwsUo`Fa*]TNu.Δ$]4\c8ozU=[Sn!j~7;/%jݗp*0PCN$-EE7-eݩ)sj|`%Gy,ٛN5 wDk7ۅ@RdM G$_`>=-y,R_9q~UO:I>a;$l.?C m֛DBvs6ՙf@;f:Iy'7_#tşw3wPHJ=>/$֬Ka1pe?}8 f ɜ: =\(OAV;lm(==7"a"hr'sHH}œ%гrB5 g?OWq2Jұ}-`;N6F5;CT=MOGiWmp!#49<RQ`fj%5k觃' >ʲ冴ܸ,+)ٴ渿ٮ.>薳ۿͥ;((լ3!>Bqؿ<0:>|b';;݄D[xt_? xxXΕ[hjwC )ù)j%w)a\:Ї9g͗! H1SJQ _c--;_z6Qz_(+ptf*htT:/ W=辰ݤ=*3{\4)H=TB̽KX(iB2"V|$Hޟ;Z3K>SϤI^􉓛Arз/x+k[#HKI3*>,9 AVO!U!M!vȰ?v I3~,x\j i8?PZaz|jlrr[-Y.ٓ[6a=Nhfb`/lB6 I0)"I0đ>rё`A׋$Z  9}75Qgv5|8ۥ(dNX"NǝzBczŢ'Cq2 j,8Dqed5=]W]c#ϿǪm[¢|uRH>X"$pi'%S0֞BCxDy#&H"ȝr fWp4S^hvy -"ϼQ%XR V!P/Fv@"dQԉ5'4] 5tYOyqv/ LQҘlq5t3Cݥ$=`>:c'-ng&"NxǙc]| 2 V58=-KGR's3tkّOOl+ɓ :ozPS;`5~o.d U= (^ QUpmzE3 ɻ;`(h)UB빋 \@h^xf=Au9arjuI7?5޳Et#}챂6H?DreoEV\v}WhwQ4CDH18Oc\$'Trg3|M=}mNh#ٽR@#Ñ32+s8xNa>sjޕ5游%%wV"c-i'aI )08/P*e8 Cn=,y3BO+:&`8l$UU{f\8BU ,wӛjvKG͓u38w=Q9=u>xT.@kMX7Buf*xov! %ym|$Oe΃SXirH눶DJ@M٬Uވ}A08m3<ߓLXO汯Mebʇ<; 3"#؇)O)4v(s x4ԬEFǒkn^~*Xct &m'Wgpe;c A\/郍8Q s6+g;k~sY]8+5DIXy|sq?D\[$ &p_OslxXy{f.Z_,+!+ kjbAW_> endobj 712 0 obj [713 0 R] endobj 713 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 499 0 0 802 0 0 cm /ImagePart_2160 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 296.649 376 Tm 82 Tz 3 Tr /OPExtFont1 5.5 Tf (0.81 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 82 Tz 3 Tr 1 0 0 1 322.55 376 Tm 92 Tz (0.82 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 92 Tz 3 Tr 1 0 0 1 348.949 376 Tm 89 Tz (0.83 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 89 Tz 3 Tr 1 0 0 1 374.899 376 Tm (0.84 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 89 Tz 3 Tr 1 0 0 1 401.05 375.75 Tm (0.85 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 89 Tz 3 Tr 1 0 0 1 427.199 375.75 Tm (0.88 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 89 Tz 3 Tr 1 0 0 1 300.699 529.6 Tm 104 Tz /OPExtFont11 4.5 Tf (07 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 104 Tz 3 Tr 1 0 0 1 325.449 529.6 Tm 85 Tz (0 7) Tj 1 0 0 1 332.399 529.6 Tm 116 Tz /OPExtFont9 4.5 Tf (, ) Tj 1 0 0 1 333.85 529.6 Tm 63 Tz /OPExtFont11 4.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 63 Tz 3 Tr 1 0 0 1 377.5 529.6 Tm 87 Tz (0 73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 87 Tz 3 Tr 1 0 0 1 403.449 529.85 Tm 89 Tz (0 74 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 89 Tz 3 Tr 1 0 0 1 268.3 496 Tm /OPExtFont1 5.5 Tf (0.18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 89 Tz 3 Tr 1 0 0 1 268.1 475.35 Tm (0.17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 89 Tz 3 Tr 1 0 0 1 268.3 454.949 Tm 92 Tz /OPExtFont11 4.5 Tf (0.16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 92 Tz 3 Tr 1 0 0 1 268.1 434.1 Tm 91 Tz /OPExtFont1 5.5 Tf (0.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 91 Tz 3 Tr 1 0 0 1 268.1 413.699 Tm (0.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 91 Tz 3 Tr 1 0 0 1 268.3 393.3 Tm 89 Tz (0.13 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5.5 Tf 89 Tz 3 Tr 1 0 0 1 91.2 529.85 Tm 82 Tz /OPExtFont11 4.5 Tf (1 06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 82 Tz 3 Tr 1 0 0 1 117.099 530.1 Tm 85 Tz (1 07 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 85 Tz 3 Tr 1 0 0 1 143.3 529.85 Tm 84 Tz (1.08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 84 Tz 3 Tr 1 0 0 1 169.199 529.85 Tm (1.09 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 84 Tz 3 Tr 1 0 0 1 196.55 529.6 Tm 78 Tz (1.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 78 Tz 3 Tr 1 0 0 1 63.35 489.05 Tm 92 Tz (-0 4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 92 Tz 3 Tr 1 0 0 1 60.5 468.399 Tm 101 Tz (-041 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 101 Tz 3 Tr 1 0 0 1 60.5 447.75 Tm 108 Tz (-042 ) Tj 1 0 0 1 60.5 427.1 Tm 94 Tz (-0 43 ) Tj 1 0 0 1 60.25 406.949 Tm (-0 44 ) Tj 1 0 0 1 60.25 386.1 Tm (-0 45 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 94 Tz 3 Tr 1 0 0 1 87.099 376.5 Tm /OPExtFont1 5.5 Tf (-0.03 ) Tj 1 0 0 1 98.9 376.699 Tm 974 Tz (\t) Tj 1 0 0 1 113.75 376.5 Tm 93 Tz (-0.02 ) Tj 1 0 0 1 125.5 376.5 Tm 945 Tz (\t) Tj 1 0 0 1 139.9 376.5 Tm 96 Tz /OPExtFont9 6.5 Tf (-am ) Tj 1 0 0 1 150.699 376.5 Tm 2000 Tz (\t) Tj 1 0 0 1 220.8 376.699 Tm 92 Tz /OPExtFont11 4.5 Tf (0 02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 92 Tz 3 Tr 1 0 0 1 150.949 376.5 Tm 119 Tz /OPExtFont9 6.5 Tf (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 119 Tz 3 Tr 1 0 0 1 202.099 455.699 Tm 45 Tz /OPExtFont9 3 Tf (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 45 Tz 3 Tr 1 0 0 1 82.799 406.949 Tm 67 Tz /OPExtFont11 6.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6.5 Tf 67 Tz 3 Tr 1 0 0 1 87.599 488.1 Tm 77 Tz /OPExtFont9 6.5 Tf (\(C\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 77 Tz 3 Tr 1 0 0 1 221.5 700.5 Tm 95 Tz /OPExtFont0 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 95 Tz 3 Tr 1 0 0 1 43.899 341.899 Tm 90 Tz /OPExtFont3 11 Tf (Figure 6.1: One step forecast ensemble in the state space. Observations are gen-) Tj 1 0 0 1 43.7 328.5 Tm 92 Tz (erated by Ikeda Map with ) Tj 1 0 0 1 173.5 328.5 Tm 95 Tz /OPExtFont0 11 Tf (IID ) Tj 1 0 0 1 194.4 328.25 Tm 90 Tz /OPExtFont3 11 Tf (uniform bounded noise U\(0, 0.01\). The truncated ) Tj 1 0 0 1 43.7 314.3 Tm 92 Tz (Ikeda model is used to make forecast. The initial condition ensemble is formed ) Tj 1 0 0 1 43.899 300.649 Tm 91 Tz (by inverse noise with 64 ensemble members. Four 1-step forecast examples are ) Tj 1 0 0 1 43.7 286.95 Tm 90 Tz (shown in four panels. In each panel, the background dots indicate samples from ) Tj 1 0 0 1 43.7 273.049 Tm 91 Tz (the Ikeda Map attractor, the red cross denotes the true state of the system, the ) Tj 1 0 0 1 43.7 259.35 Tm 92 Tz (blue square indicates the observation, the direct forecast ensemble is depicted ) Tj 1 0 0 1 43.7 245.7 Tm 91 Tz (by purple circles, the forecast with random adjustment ensemble is depicted by ) Tj 1 0 0 1 43.7 232 Tm (orange dots and the forecast with analogue adjustment ensemble is depicted by ) Tj 1 0 0 1 43.7 218.299 Tm 85 Tz (cyan stars. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 43.45 185.7 Tm 95 Tz (ensemble fails significantly to capture the true state, while the forecast with ) Tj 1 0 0 1 43.7 162.899 Tm 93 Tz (analogue adjustment ensemble is still able to capture the true state very well. ) Tj 1 0 0 1 43.45 140.1 Tm 92 Tz (The forecast with random adjustment sometimes produces ensemble members ) Tj 1 0 0 1 43.45 117.299 Tm 94 Tz (that stay closer to the true state than all the ensemble members produced by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 231.599 45.049 Tm 73 Tz (133 ) Tj ET EMC endstream endobj 714 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 715 0 obj <> stream 0! ,,"jٲO>{sFaoFь8u/VGeb w,Wd\ahuESxQum:,- ,pwL|bG-hu2|OfBUb,E#猑ׅ4!@4oHnٕ%)Еdm)d3 Jp 0P= }}8*;GUt ;:L١6u)ѢᏝ?Oh@+X;N0V˅)Mn0V[Si]EJ3PXPe$mt77ӲJ1KcIfuRh!"<傒NAweS!a1 YyN}"P3_J0D3?Xox68g>ӎ oj:v6s߻2eȕ‡0O e-WG_ix EH/2t6x)\lnWZ;C6O\V2=;śoUmg^6lNXz˜ٜtj543K$?x)NݎX%5 +^mUV·v0f(!!2<-U37ʽRv| q29=DlE+WQpVQuȳS^~e `;Q9\'qm?(`gn$ -$ڷ 0<hBem΀tCjhFDт˔[Ci/c7)lEi8L5B%﫱xH1>%\xϥR( mϫZn[i}ے<1FL>/-m{ `|fCWַ/Ñs{AMz4Gpaf_UX75]\gm/Fͧ0RP%Z((--N}l^s|b3b|]yD6$.(3V3͂9w$mNnT6}l`D}p/+dj4p+K cxז{ Wujq}pxG.>s\Lޒ3kxEϽݶj{pfGbd\xlzP>1|! g}ek|^}5@ne\A"v*HBD)m8PI:/җ9-tCD-unQTڛfyY7ʮaVEwJҼ$D\JENb^&$g*qDTe>]SdIX>f +_x=oO01c 4ַen 1@}}V \%iDlu5dRZt7RetaMU뵵6vNd+3BbOg1Rװ;*0iBj\P&.hyFqgA/9ik`W֠oaD8dֲjHs8nӮ^!D*$YÐ 77LbӢ4Ԩ_ȉ-Ty|1%ayHٹw0kؽ=|fA֤}[\ >腠 SnӒS߹wɯLnL J>10"~1^3恹sK6m8Gcp!WW{$Pe%$%^ pq+D ]>9,Mn~ü, 7>s"j7-,ھ'j#E=417$VfSړ1W[iMN#g`E2Dyv]+OmX`쇰.XŤ L߸F\Yf8K0vm1/rIC|̎2ņ׍TpQ3}w0 Iz TRm׼dZHD8ޒa:,Q"8&@jBg"y&FD}}$$iuS0zǨ&g7N94bd4|HT"X#ڪ%H[;N,a{d6 aI:C58 '1kTa6[o`E1# sF(Xc0pxHԕj'~a qU{_Defv i[3!G] Cߥޚn]QG+Gϋlc>gVw\a\ ne23u-]pYH[~Jk@ޢs( cݮ J7eƱ@aV0q)-_̵P2OjP^{ˈ1T\NchExyvk`h}ܕS5էeNc==}xn8eUk^@cݐ0Imvp"XNsًpxĉ0@~@'u\ieZj3mWӆ/w;"Ú3lޓ0B ɲ$~n(7)zCqm}_j%׫ XV~VGvlğE3j:cݧ}kl3$*]qX4ӶSac*hyNֳT&] I@ڗ{;xmj/Ҩ+AiU[I܆Rd ױ",=n8m%≵{qʌWTۢ>_5Mj=|Syq m8.Nˍ^6j~#9}ɹdaBn8SҰd N* b2DrWl#1LzDH,ԧAXM%*ZqVZOGW$лbo&EIZ:ƃuXƠd/ ɻǾAd5=-7!YlY$l_6?騇q& )fbaNjL+Ox6Ҁ[+7D%M9ߗf/"I ^yʴM$cN>b Gw zK0P=M3?nvAY֫+(7>pVaG%X8T{rjT"(W&Gkk2c5u_c(@z5ЩggZmeTɄr?,]Bx9 ov6.5U(_9rW፭H>)~ibu9jS~٤h Y,="A;wRU*`ZI c7ҷ> `6]௸H.ۿ{hxDR3B݄͵ <̾wu =hjU} ͓ʞG/^ncω5صщ@jD_K`Wa[@gifR¯ B%_yakE o.W1>ڥZCY@O59y}P(P?DVi/ODCXTE?ؑ\;V RRR]dXkMcO Y>W/ʴ<>ܝ_N>xz8zTX e8֘(c潳;97k]9ۯg68? 3%bu[,obQR YCjݏڙM_ >X)\\e-5c%I{7doD08 Yw?.SS C+>Zp#'"nc))Κ.>ܻ™Waaډ,BY2Nb IJLX#r %f֥߉Ѡ. (z(OJRQ2?ARA4M5X} swX +0n4oΘܚNh)ĪCFwNON5M$@j Q0a!ƵΚOY@& 5f@8v* B)@T-Et vޅrzVfx͈& "ID45jONNM~P(۵#]6Y Ƽ(:WG𑺭F x V٢~tE}'~5G7@G]<5ՑO .C~2 gw=J&AW)W5e} v_%D&L4WFGh Y&ZbO}N1݀80Sx+h[_!.]4,p4%!9h4I*eN5뎞zlr3P*VG"jFKT)-vQӢ:rKO(cEP)nC/yDjj_9ԯl#t/ #F Rs?s >ⱹ"հF6<c # Fo}oUSyds{.<͕] sJ_ʥoڷK̔7Gy|_5|GJy5%S {+,3P+ A~ izV0|@2蘧=vB?[xkxuv5!g F }$By2NI2B`/tu[I}ۅINw9>ٰоצ/R%S(,/.<ת> 4#tcsJlAb@Y,m9R2%s"&g&_LLPndA(7[HCi1;hxKKKD?|Eߗ>*S.49hӀ)"U;hצpƄn'X&SNV=H⢾ϖ^lUuu5Rh?GQ J˸$t⮀Ս#./._zT9S-٥ 76d|~o;2>|]_A#b?wm0g7 yMR>sүI+g& Hȩpw$X 57{0W_-gN]BOF-D6torP<*/h`4TY+%yi|ew`>3.m0)^oFOz؆S"Z ڜr>Åۦnt^Ǝ#gA:W™&0VWl)Q *Rް }64ԋfjv0#W(!2FWYzd$8e])jFD%XU[{WRL_ ;. VZ_ '~S+'P}q#[of{~D(iHdk8i۪}PW`Y*Q ‰ֱ,m┣^RscIF3wou5}fv.}znG.n>'jkB*L|;ȌsL-_VhwDy-붯nݣAoSf6O[ໝNTs5F8Iu3Ѭ%ceXLKcn'6( q,Z;*\s?Cq#x匝tM]6ϑv k]&yn~`HEIKK߶KlCB{{wEzs/+R+-li!ZroaR}WS-& @FO5Tiz _/st=Vq%+"a%E].o%yDJ:p9)ڞ)ޯ,-eEp0DIoZНcQkуS^l7i45ܶ*[y`BJBN*R'B27Om%N>Bia@gPz5x*MR2DQO}ˍބcځ6J74g7MAXAg+?SV 'w7GyV|a@ X@ ꬤo-?QU'Z%S/#z6̩Gw$ &BJK'"5N>AX+g5`nڭoWP Sx#[{>Ӹ{'xTgB+G*Z|ӫ?,D3hC9`^wms92]N ͫg ];o}W~f'bզ'n iŽCio,D=S4nuOLI1}SjiF^6J[B$q19 h`Wv5Va_Y_;hf0^ҠjSuH.c?+;3a%NMF/=~R\ |l" `eJo%5}n3Y|>i?1eQ!sv a2bWySS ZR #%*3.aRV|qvGdCnFnȰWsB$]6N!NdLGQi&=:q`+eQ5~9~\FL!e%‹'$^+[-Pp0&G-P?ءbm ==]-uoX P}JU6+<}/ۥc]8B?vmH&7rQ1oeQIj Y8xnfAk%fM,YH\q 4R'l_) & YLsM6T+7^Kah}[<uy#}@Uw9?CA+CNt3CZ?W=!1~;4'uv CѲfm~49ԁxn,;%:*&pMjf1!z +B-[灅}HGulY:.Ht E-u\0pS}0,o`ro YeӰn ~7T՞J4C/8S0C; *0P/F￞af.PAPΔtVZ΅۶_2DPr2vHTS5/UJRRcoiW doбQZ.㳕Tmg~gPmD,d:,95Bͳ|7)ԧ4QGqհ3lџGǞ$κgeֽ:Q<Ȇ`%Oħw*vÅ:sthг}78A,u|{(>"J2Ձt;7-rԧ`xʥ=-'E.!]1҇,^K1BʎT> 5ea 5=6)> f{@fd /69a[WնLJI|k|r)/i F㧕HRC6`ұyMMG:w?~S+}kX^LxY6WƃB#}!Hce0Mh@'*^P[}k] o }aJh-Д G=d>E\&0nk5dn!QRh%ò/rTG }o$2InFYG wA~g,'.^ï޺20ҍ›R,LDIPPz~I$HM4 p4eʃkE#m >I-N}mI5*{_p;^LvEg7]y@ilN]~йpـ?昿eh,fHpB( -ko1G .`ij4&tN̚kPA;N&׭M~5KnXA*Ccz# E^r; кJSb7SǴsd_8ޡ6*w69^LېΈWԸ}}><[˪tIŝ"EDmDWQ$n=!>9/_ <_|؍p}ZflxۀKGeQ}@TΏGl "0lUͲXSo%Nru,ZhY^ہ[mA zC:4^99k;0!?χ OХ1 IA.x"T3y3;h}PLtO !!ӻJ^F=s8DB@!ˮ-[Wc.R~:N,7Pw}rn\0kp(TxY7`n{$MR:f_4qBDĴv]nZإQc}ΠOrUg'j\J|ڜ2/ *%SkFhxd"ˌ!}83 &YnаjUaKG&7a#1ܨTlΖ$6Ҏ,ZK@DZ`]&V㸼q7pA|G0[- k@E K{k/3-XY},mxiۛ;݀o%2_,;ߖQި@Q~xIvO]pD̄]l2[ ؽiLy^yU+KL= Y^Ċ+D͇e% HM&Q#*4*H 6[ ^}SQ4qwDG" TA$31~1xy GI+/PUML ,Pa9LvӦe4[e۩CN(t;z˛7њjfsZ/ ^OLdp#ywHb[0 F=j*95,{\80Cd8FtW:ɵdϒ|J[ f~&h.E.uO&8 5qD:;FV2NњmqjLu{(3)E/_ƠxڛU?}{l/e.bpIrrzJ hA?W 8 &K,Vh SO{\_NBoGNxpW$V.!3sY"M7˫ ]LBps!2H35l-vQqꑝTc3ۈwQ?F{,n52*ڥ }?.< KNq*afTT 0,pB_X-g )Siu7j =+hUnd lgDY#KU[+cY޵.&D[ܛ3NXnDEt7Pu𳶡b4[Ӭ8h4֭AgM@3oAQmW~q;UJ:$IaRa6[ =91POR JE"CL R7UUi) oe`S^;]iR' 37V`6|0)XiP$@- dkg~EW2Q a†vEOt3:иeɇ -q`׾{TOzMgAbLS5,J܈@GHo- vaF\&y3NYB"IR~ Hh'|exkU#&ɫ%ؓ=SHtꐹ(u5EnAQ\Ә/H\:aJ=l(=OÐBjZk|HFxbFHmtZMW^S/g+):7гo}Z}D=c6bD5qp͗/." mEչtF9;)Gߟ z"DLAW/N}HE3M/a)U@O$xHnjD5'7?{PT>r3ܾU;?P> YhM` nhCuiY)ąƊb~#]IK5b0ɨ$֬il-ٌI6ޅHqU4nz\KWdU֞u L $DePkRc[,0Mp V`Iү7_R[d`yt. >vA ,R@^]bDv =2X,jGJ8bԬ^|vuV Kj;YH̵:PEzH2{Lxd Ux]J!cav*a>N7cOqgBSޛz#A"½͗҈l DE֭n P.n0XO͋1֓|2om ZJɗSi=_F<6t)mvbv͆3E^nOk_$>a0ZCSSJ0;I5 % kR= ϖE~Q_d%#s}Q}d{;viƍиTLm++7X(1o}Y9ͱ)L"TVj{{kˑl_pw{] 6`Oo,!U%aXC&Ek$qm%ajx#r;s;Nqf9G<Í'R6~ĩ>׷:? y XEV6tN&z[3})rOjo%vx^Zܘ06|[2d;p]{mOx@,+ cQZx1W\PXJEd꽢2u)Djwh"Ԑ [lR&rx>_H'DP =i~3`HME4dha̟?42F"~! bPÑLnۘze,Be{O(ELlU]({1<%/>"NFqI/$½ֱfAt qME#qrl#Yq_l-t Lm(C@2V6[vVUw\ jf$ da8_q %knWb ۼVsB $R045՟R0܌*pܳ͞#ieNd b HAb2mL)ωonҐ;c$Gpπ ? endstream endobj 716 0 obj <> endobj 717 0 obj [718 0 R] endobj 718 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 623 0 0 839 0 0 cm /ImagePart_2161 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 309.35 719.7 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 128.9 677 Tm 89 Tz (direct forecast. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 145.449 653.95 Tm 90 Tz (Figure 6.2 shows the comparison between the three methods discussed above ) Tj 1 0 0 1 128.65 630.899 Tm (using the c-ball test at different lead times \(Details of c-ball method can be found ) Tj 1 0 0 1 128.65 608.1 Tm (in Section 3.7\). It appears that forecasts with analogue adjustment almost always ) Tj 1 0 0 1 128.65 585.1 Tm 94 Tz (outperform the direct forecasts for different lead times and different sizes of ) Tj 1 0 0 1 516 584.85 Tm 83 Tz /OPExtFont6 11.5 Tf (e-) Tj 1 0 0 1 128.4 562.049 Tm 92 Tz (b ) Tj 1 0 0 1 134.9 562.049 Tm 90 Tz /OPExtFont3 11 Tf (all . At lead time 1 and 2, direct forecasts outperform the forecasts with random ) Tj 1 0 0 1 128.4 539 Tm 94 Tz (adjustment no matter what the size of c-ball is. At lead time 4, the proportion ) Tj 1 0 0 1 128.15 515.7 Tm 92 Tz (of wins for these two methods are close when the diameter of c-ball is less than ) Tj 1 0 0 1 128.4 492.699 Tm 90 Tz (0.03, beyond 0.03 direct forecast wins. At lead time 8 and lead time 16, however, ) Tj 1 0 0 1 128.15 469.649 Tm 92 Tz (forecast with random adjustment outperforms the direct forecast. The reason of ) Tj 1 0 0 1 128.15 446.6 Tm 93 Tz (direct forecast winning at short lead time and losing at longer lead time is that ) Tj 1 0 0 1 127.9 423.55 Tm 94 Tz (at short lead time although the direct forecast may not capture the true state, ) Tj 1 0 0 1 127.7 400.3 Tm 90 Tz (the forecast ensemble members are still stay relatively close to the true state. For ) Tj 1 0 0 1 127.7 377.25 Tm (longer lead time, a direct forecast ensemble is not only unable to capture the true ) Tj 1 0 0 1 127.45 353.949 Tm 92 Tz (state but also further way from the true state. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 144.699 330.899 Tm 89 Tz (Following Figure 6.1, Figure 6.3 shows the same four examples of the one step ) Tj 1 0 0 1 127.7 307.899 Tm 90 Tz (forecast ensemble but based on the initial condition ensemble that is a dynamical ) Tj 1 0 0 1 127.7 284.6 Tm 92 Tz (consistent ensemble in the state space. Forecasts with random adjustment still ) Tj 1 0 0 1 127.2 261.549 Tm 89 Tz (produce ensemble members with too much spread. Although the initial conditions ) Tj 1 0 0 1 127.45 238.299 Tm 93 Tz (are consistent with both observations and system dynamics, the direct forecast ) Tj 1 0 0 1 127.2 215 Tm 92 Tz (fails to capture the true state with the appearance of model error. Forecast with ) Tj 1 0 0 1 127.2 191.7 Tm 90 Tz (analogue adjustment ensemble members not only cover the true state but also lie ) Tj 1 0 0 1 127.2 168.7 Tm 92 Tz (closer to the relevant system attractor. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 144.25 145.649 Tm 90 Tz (Following Figure 6.2, Figure 6.4 shows the c-ball test for the three forecasting ) Tj 1 0 0 1 126.95 122.35 Tm 92 Tz (methods at different lead time where the initial condition ensemble is formed by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 317.75 52.5 Tm 78 Tz (134 ) Tj ET EMC endstream endobj 719 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 720 0 obj <> stream 0 ' ,,b6,rvN%kxp#&:ϮB#.o2B{*SjZsv(P6 BbJJ\zήf@Ü1j[#.Kْksˑ,I%gHrM+HLmTF [SjHE4}s1Y&Ga*;-ޒo_qR ,yH0nw(~k]Zť[7ix?o(,3؆lQZS&U"Z,I6C[rrG-E*:BB->8 $,L5wN 17LmoxT6S>,MNlap;~w$K) nw>ٶ,1`ٴʓOIJشE?⿼/GW>3=Iׄ"bύA7]#E<\--1clhJ;bQ)z>tϮ6RJf.겸 gpxЗ)/C#6S*RkqbB9gH1im+#cV~$}+h+S) p)z!U|̿v\zn2ad ۤ#ȱ$$|hO7(\D916[[.Dؤ#sJz|OF>7bn=? *# HՀ.j}j{&D+gT:=A;z)NR"}uon9HI K,"3/Zsuk#|HwY pXZ]irgwZlYjT kao2%O+m#o::Smz޳/'b2<s*PQgT-,zA? ݺ,n=;F=!X|vY8<_"K۪rTt &3憩ǥŚ rsk꨿'茚yo_6x7GUCiJKbk. vH+sGaț?2bȽpOA qNP:,RN|LgxM⚖8@~,7dċҫYኁ`=E@cpIO]x`R" `v7xҭqšQ_)YSgf~5K~ܠ*ת3!H׼]C`7 ,;o]Liy8$Q  Z&:C5P[hw~"zx{z IoQhtRRORVxKp9ꛆ }p&L-6ݞ}| ʬ)6#ab69C:X}CʦL2x7o< gXI  n2_fr#4 bwm/R,n)Knܽkʻ-/g,9WJ:#"LD׋;]\Pu.n Lz^?Hސ/\e@t\v6҂\n@6:O` ?0KiլOo*M߬p-c]u캞]s0R[JeVmvq f'"ĵ TyE L)+1<"!y|&CkQ!K(@x3RAPa&d9u|.n} usVhesb5*?M},G)e(%@L㳹\=o삾sQ#fXK/uО:w7-^F\=df$&\CvNzxW)$XD"|8S1|S4o+,o:/iG)!ө&`h;-7P JfPTqtqDkx]f$?$-?Z6FpR[z> w3{8 ьv+/I]v )!*a=fnNr)!cZG\\c>p>D &_*K )T 'qj]uZx.%,Ͳ+]TfLj;`d|&CcoDh0jRT6Vܭ i3?4åП'JM;Ah!ĴVń%~<,߽6;ѬiqCotx`ʙbt ^£0"zgC4@ BWۈmˇoЊ2&`WNtϣ V S>j5g"rS]+ٜ vru=x. z-9_wk—#Hb]ykm:lJ SD >9y)Zt: 'tdu/8h}R3ԉuЀu(Qol'0KR:4P="?[:)JhjlhΝA$.[w+ O#u !$~@>%<3@ Z+ec!Bc_pߘ-WpwkYɄ¾/QFS.Gӟ\+Q8/tYiú8̝M:p+>tWnke @Ԛ4G=EMm_H76IqM*e_?=}0׍O=5[U79(B)q3LA݂E`32j.~|[r0k,cϻKKVwpiy kۏݚH.Kճ%p"<8z 3b0(@G>온 UJAk]TMZWή(:i`.+F @Y*4Z卤Y074+_% gᏘ~#c|8@^b.zqgO{p#@qZB6vmf3o`{޼b'5ï"ɝL gB0YFv8Ws3}˕Np+p(++<,+R@Hxys%U>5&>dHY*44@2o"zQpZT bd g7BF5:Zܨо]{k&^tUZF̑+0Ru Jy?J/W,{7]_3FЙK(Kge;Ҩ7QOk-Qa~&`.Y/ {/vkc׏PxC\2ԛs<~8>.0Ƥ#ڷ%"e󴡸<:;\܊dW7Ol:hDK???1q.بQ5H n~k#1,xg3etLIŚ, u 1(IU8V[uمл1M=yߕqʺf䍵.[@A}&6NtCxΟ~Ԟum[Gj`ӇO=.q ztv>^s0}B%~[ :yާkٙs1pǭ₉KTZ3aP0 }Agk S R >x2G|.o̒U1|"U'.+eP$sA:K7h1vF8nM|Q] ]T|Ž=ᛱ,3")t>a-c"CH";v蜰~QݍUk T Fߥq J'1-Վ>m{4`dLn! uvQ{+K%I\R9'\%Ɓr0p +bӼa/ 8pK#u172Y629Mbs_a|\yJw_/{Og,~ ,A6`R\桞Wf?I-B홛hNlS_ʾ6? X&.wܙIApAy(4k yXȵ ;d, 't O N^0ZuU(7<gw^իagDΘ 0hw/:~dz[_2[NJe /Ȅnn? /P d?߷q/Ȯ<4USol1:'ѵx+5:D=񏀇7~p Ħc;n GԏP.Ivv+ R0az>de7/UvbګpPaylt%,KԚ ß607Խwf'#l:FUZ[kC9X~vs*fM Кjeb’G'>'_'PkUd{汛P_.,9r')@z;y'=W  ' +ˍ8 ^i;&K,eKT떏vG*1̌[~qfv_ʫC)5]Mw0̧ MBEpBcZ0q(e[9է&(;ِj9zTq P^TK}^M;X lߡ9'l4]&$4oi ^w 47?pR'! e <7Ē{ZC?J1cM-iAѻy1jzv)Pi'ZGNU1m p Fh 9B ft)77;Bg)v:,EɭLNغet!㪗8FMĆd{ZY7QCȹg=vwRCC_OCJx DX@oth5:ϸB^jd鼨6 $F8]= ?:wXwq$ߚ r$ iG(U(D|ׄ"#8/݌M{H,'?KG:ft !0Q9&v7oMܤ~Vſ_1n|㻠NI#hO͸1pl_l[g`@{ (ڢvado EA;o=:9ۂ*nNZJ6|%,HWSw/_ç{'4.1 &T7㑆%sOUVr5珳4+ M!Ha{Vi+ؑ . .KF{UzDr.BZ*H;RJog]dFMN)F!B<'N"Gaaӯ n=i~{Ht3pBZC #*((3GISO(˓mlnwH}BVj83?.θ"[sHGׂ#{I Jȷ)gTAqP}ؐak(;e8S:H&RgE"FxJ sBod0X@e^,dY 38r*3N2Lg(w%FXPb6 AV^>.yhlɁ OYIB]@?$k79TV:y ikhEcolq$$9#RDFջ}w4c+~w>n?եbAFBW8ؐ /3YcǩXi@SHnsR uWɪ~Y`Us{nNTW\c.`+\KdRVsj/ '1fƋlv+qq9D !60K&MgMܢ ۃeNz%'AK˝B5ElFna`qvК]fy+x#LYx*[y!+B5y;rg|<ć@m}kNdveJ@jle6S!^X.\6 _y␛#p -F9 wI&F{ٸ T(,B f@#3j87%d[{Ej09bF;OK9g/+ƥ /o<l_} O;qVu-mwaDz3/VF*zw+ޥs({1 in2oCꙁ _d?Z( KWV聱)1U8 M?1faVFFԩю8_}qtQnO@l!n[E1CU/g G̑ BT%FY i>T;'ó˿ّc/]Yo. h )%d8v: E#[PX;j1חKzûxELAYhw2NS(>1n%*\6)v3i4+"KET5QzmȖG-iR}K5P-RPoS.i^/J ji бU2 U;#r _"t4`X=zd x9-9! Ow7TIKP L_}xx[k9$PX4nY|60g2uNe̒r EwW,q4j tϒ';8~ ;qA|䟹(ޥɆ|I^AN^r} )ql"ZpkE%noy)qe-Aߎ_° f4CWYTd[2od[&}ԭ5}Tµܯxv'H }!\I#nzdp-Wf18$vcDN䞸aȍP^)O* &~äK(vnDv@Q?S-zojT rK՜ϳq@3h4V _LOGrBHJ_g\o%UY*dmS 19#^"7JM|aΌ7?BS 2:BLq{-e'CL` XSʎ?&b+xa LGNT<ܵwB+?=7і&d-7,v-gx%;vݱ[2oM%3I~S(\nv)ך $ "\OEwsLsw3k5X6ױ\/,2ޥXp:u_TwG6er"/1Z:0>.}.>OhbԶ*qvCpZ1};>l,XB^br=q,w#^膏m3qwQ=&N7BCGG-.z!K~BsEqE#R.R{kw擊d =Ŕ`V,_^igESl"^q+#>v09G@_}m2;;4E(VAu2:f&SˑK ]$/8?,vAH_JV>𴳶Ę3<@A;*d$l{uO wNDVxEE)`.K˕#Ӗ%7oeP$YVjh*XL/4l \|gWfP ;> endobj 722 0 obj [723 0 R] endobj 723 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 625 0 0 838 0 0 cm /ImagePart_2162 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 240.949 258.649 Tm 178 Tz 3 Tr /OPExtFont2 3 Tf (0.00 ) Tj 1 0 0 1 250.3 258.649 Tm 1705 Tz (\t) Tj 1 0 0 1 267.35 259.1 Tm 175 Tz (0.0e ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 3 Tf 175 Tz 3 Tr 1 0 0 1 357.85 560.299 Tm 85 Tz /OPExtFont3 7.5 Tf (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 85 Tz 3 Tr 1 0 0 1 364.8 547.35 Tm 75 Tz /OPExtFont9 8 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 8 Tf 75 Tz 3 Tr 1 0 0 1 420.5 519.75 Tm 127 Tz /OPExtFont3 3 Tf (0 Oa ) Tj 1 0 0 1 429.35 520 Tm 1704 Tz (\t) Tj 1 0 0 1 446.399 520 Tm 139 Tz (0 06 ) Tj 1 0 0 1 455.5 520 Tm 1680 Tz (\t) Tj 1 0 0 1 472.3 519.75 Tm 139 Tz (0 00 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 139 Tz 3 Tr 1 0 0 1 434.649 516.399 Tm 109 Tz (oo so 01 0 00bealt ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 109 Tz 3 Tr 1 0 0 1 365.05 392.8 Tm 107 Tz /OPExtFont9 6.5 Tf (-' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 107 Tz 3 Tr 1 0 0 1 365.05 382.949 Tm 35 Tz /OPExtFont9 16 Tf (oe ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 16 Tf 35 Tz 3 Tr 1 0 0 1 364.8 374.1 Tm 102 Tz /OPExtFont9 6.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 6.5 Tf 102 Tz 3 Tr 1 0 0 1 365.05 355.1 Tm 176 Tz /OPExtFont2 3 Tf (0 ) Tj 1 0 0 1 369.35 355.35 Tm 64 Tz /OPExtFont3 3 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 64 Tz 3 Tr 1 0 0 1 315.1 716.1 Tm 102 Tz /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 137.5 229.35 Tm 105 Tz /OPExtFont2 11.5 Tf (Figure 6.2: Following Figure 6.1 experiment setting, compare forecast ensemble ) Tj 1 0 0 1 137.5 215.45 Tm 108 Tz (using e-ball. Direct forecasts are compared with forecasts with random adjust-) Tj 1 0 0 1 137.5 201.75 Tm 107 Tz (ment \(left\) and forecasts with analogue adjustment \(right\). The initial condition ) Tj 1 0 0 1 137.75 188.1 Tm 102 Tz (ensemble is formed by inverse noise with 64 ensemble members. For each forecast ) Tj 1 0 0 1 137.5 174.149 Tm 106 Tz (method, 2048 forecasts are made. Each row shows the comparison for different ) Tj 1 0 0 1 137.5 160.5 Tm 109 Tz (lead time. First row denotes lead time 1, second lead time 2, third lead time ) Tj 1 0 0 1 519.6 160.5 Tm 74 Tz /OPExtFont3 11 Tf (4, ) Tj 1 0 0 1 137.5 146.799 Tm 106 Tz /OPExtFont2 11.5 Tf (forth lead time 8 and fifth lead time 16. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 106 Tz 3 Tr 1 0 0 1 325.699 61.6 Tm 87 Tz (135 ) Tj ET EMC endstream endobj 724 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 725 0 obj <> stream 0 - ,,8IMMjCAo  /(o;H⦫ksrHV 遪soMρqÜR5P`g*E]mߣȢX ##l'8(ͤ9:풂W@tؖ6ѧ>E|܅>iDnwh24t_5+6McqrH)yKI`D;tDU$ T3XX& 0WQYS=3F>Hj'ƀ9%dBV4D {5ixx#G;fYr/ĠXe582g諁f^X~?Gtň5SuD S ^F"t N#:00H:o|Vn{0Z^Ƨd LGD_? ^_gB:SVV~Ìй I $xX-k07i ʻ|$Fɇ(c֕l7ceQ1v$8/MŰgǹc7lH]](ݨZm=r=b!ֳW 7x&48P'l=&L&Tm1$@YyfqN(0H,>v2Tgj0^&. dŶwuwڣEEFIT'x9Dci_z˄;:zP^+nsv_I~nؤgC4V=43@Vm=dZ8Bx5{gVX*zŝTL))q"ZSTVQ,j nDs禝;twΙP OX p/?#CqɏU$ zj 9(ڳ~"Bá\bw<8Zw3ӊo,,!6.9a5JZ}aҕ$16W;JYcчQ %(ϻ@%b$˻jEŭ3[묮W%m=Z_F[~A#UdkM ]WzLR8&6Q3 wx)߅Րնm`vdz|[ 哩@*7]$fxu_^3뗠8xN(XkP]hA9a1N>pӍ|xlO6z7G^[=CH8!-NF4huE~LD%*/7.Sz$ G$A6O1x"Wᶨ xu̥' {ޤDJ5:-ղp&yQӢ*Ƚ{uMߺS/c̑Fmf1}*smI[$QзdQBOU=GbC(ycw;tݲw 5K:kM~q@}w2Wq^\i]cs4/E?s$$=NOf֕7ޱ$3ɑIJHuYQAG[tc>ԸIA(u(r;h|cMȡD䴀Oo^5t ‹)`xװ->6K]:ʗ]vh̩7OgzzW Y9e6vt}\@h@T\Jē$ gvnDBa7CkgQb3{σ38j?sZAP'rˀ BU@9r$ko|jhZZnnZVȋr]肳8;9X;_PqΙkG] #'z>ͪӕt$::>$&"8:bi囙þյtʳϿNK$ګѱ岵,V7]̆iYFTBTrXJ*M|ầARb':e|c9;#8uq3[IEmrNTפJb|F%6ZdAD =8q<6Э&7'»>Y[4ˇ5+OWtAFNب$3L/sDh ,|.1qb,Ekv6ûP,M &Hl8:,LK:}-4.bZ`I_fr4M5\c($#=}YTKZPA'C [I=1|fˢOb4kFu&߾i3)Q8m L^ߠw!$M o)/DV $nl2t.` W9^⑤y0轢t0 -ު(9?>R6Ci u:y" j5AM(u 2VMA(6M`4Wtf:dl6\q|aE.}>ŕO|;g[涮 "%q+M7чnXA3/WlI_Q8WjDoC6/K+g1D;~&U՛=h>3]l3%{7WZ> ǎ@!qj'@ƿCD؏oā:E4k~kZa'@Ҏ-H`2e#p9n ԐH 8]jHwȄLgBء@3z<Fj9"3)h9%F#j އA[S >М9eaaXȲQD(l" 6Se 1c"xZ/&#Ա?:>ٍ\*mA1f`Ykޡy7YeSL[Σ$r+.Ho0R#i믾?̈y,%Եb֓0Њ7+*;ՑiDX 9=ܢe6O_0zXkB˘0Nk\G݅[KFm[(2pؒ #dxuӧCE.4+f)=k 0'aWdMo"$[O}ZfSB?B*bM9eMUv:䇚..O j_sRg/pofwB+IS&Qo3K2ff5ٖp8e-=d2 镊`{(X9/?i"83ײF5i72>+4j帘3,*观Y9\մwٓ9vզp?(ƪ)<`ePp/86UǢ4"i6/:NXL8ϓ0- 8:ޅެ*|xtr*8-%$0θ7ё<0_C9X8MUe/AzU:yDn*{KJZȗ:'|D_xSKCyʍ iUef:oI )?( =+0lzaiKq)lP6V7XڋHσld@F?#MR_>ܰQ/7;<"f"ԲQ"PN$oK&AV}zH\0h:4[ ! Ԁ{YRd!BIbR'rMPUALlK죍C0#q&"i K?oK+xu4HWliGMŵAXYV<~; 4F𭶸O_&/Y8Fz뽭,6LrY /ӤOJ`CN1+<+l4=$8QB, Zm4gU^fyTn [Z7!$fH4sD0~Da;u,,H C{:w1,-ˢrGn8v- +MD}fS_*9 hlW%vz+5. PO#mѭETȑߪZep̊UTcAxi_ܭpeo"k\UmRZE/^SUe͸jD7dF2~V^R`]@@9N~F}Y3jmd|"/DųFU:006Mb.^)iZ[~Sj( ʿ'W=ҾHI?hA6;vRȐ%<nP70CBB:fnIL]9oIen]u_n{s&G{I$jcDf`Ssj#)y^M`%=J,h R>v:`UCQ elto 6#b *g(].YESTNq[N}OV6uTWZgp+|{֢0;c'+GrOPT"d~r%?׷j9z,)Gg8t?S@3s*Ԥ*-Bl͈P58C'hMjN!nk䈗ٝ˵g# (}!qyvˆzvd PgZia:juKı۔ toPL)V'i4wPd!A R߾rMT6HG*(Amd$Ɩ.Y pYcA0#k\qAn y0-t1z_>YG-Cצ'fՍ7+~ILp밗&|2MА&lFꊸzZM(}4XĜ5G.kHEyb"$ kƑj?Zg{v N޽=z/>Æ+0<'$2M;IUދ,}G1F ⎆Zz!2M>YC3 i :tܛ7BFİN:R%bKwOJZ[1Sir1L<8):{,DS5cb 1l!▷KS¯pK[1 %N躁*adE9UO=Iӗ6Ml&  W!t-6t?"O]v6<8'P:|->T|DqV[`.}ᒫ>⼊ RX Gc oM{u}[ qZܴߛR'`tĴR7{PuȧԦc2K~7(ŝVHׄ BK脆0ўП N2XM4ׇ;J`PV^!e̜bf2E HFBx& [,z}=#_\rG ;oE`o&<'};ԝ;nY\r<- iq(WM_1 > ;N'<姯 [xn=HX}RTBJDOHQ?/Ԛ`fqѦGhLѾ~S1CFQ(o8A!k;ͣ3l#˺Hd.Ǜ?'a5mjڠ{!H\ib[#H gu^k?ap6KznZKP2q˵ME&ڲeGЄcl^- PO?D63TPD'JG/Ƭ*ƾ/B{] ^kGhtQ Ԗ uՑKJ ?ݙ\T棰ʽ5t۷pʯʩɽü>>ԴW𢻳L-1Lʗ;H xw!WLokSA,쁋+Mq6R)[-\F8 UV\I׽=ey/cL sԖ;+Mi6,ʐshȟ8)RMVEɠi-Znz?) I)W*{4!Bf> x|!C&3ږpWuoC,1Sn5Hd|1aht{FcЇ+ yNBnm`i5_Mܕ߿xȺK7 10%x5z4-&}`7:Df>!]2Qe2w G.c䪔:q=⋭,3Blf-Gq":cVHl/ga52("S/KELvMY%^0ܬ&xEZsh2f&dsdFҀzK(r<症dߥW3$iYZo6դtG-JY>?p˞Og FqJ;4wk8C{h *2S).tN6g^O~ sh3^\N*?,Ҿjo+-]s*N,")W3rD71wy%"-l )cO!0uO&/~A nISe0(!sV4B&oVG({mNfFR;Xa  lH~+kPdpX#ex-jxS hѲlvzs_ P0mb= !E$ _'K '߃S5?C& J~ `>"~K(X'q1o_;b6aѰAŽKdԌ"CQYkd[LOjR {f?f_cW[,QھkzVt,0k Gy I|Fj.8*jzV pwPwB>)ᾱ򫔨Yl9<* wڸù=ynpc>Ujf3]! Evʢ3 >L˞7QM^}6hz7 .c A!DB, G=,dP9RD^fgӑ?z8PORd,/zA+Lj:sP"Ixqz>̳,L  %yz9I$ 9ho 3 J hRm;M)$Po)wgR785zdN$Z*ƕzV5hHdW NUR"XE_]}{xs5Q~V֏r?[Fĺe}+r S m_in)Ӓ-. v"q2=+^\WZ qߏ#8N#wq b[ :wVD42LUGxZFfAY}(4K6lYtǡlՆŒJgq/|!&c\`C"5ɖfyq4Q2+[:8+GT~̕z`vcFm.KFNC<W@oOMO\2z$>KH x?HY5!+{%{&=[ (B_.teJ9|Wk{ۤ%b†31+k*fY°\wnt>@P^_?  0S uUYׄ:" 2;-"mMrZ5ᦀr-tLp1PWhg\n+DkYR>崡2*A./ѹȯl?ԟOjb6&K1L/mX} YX!T HR ):E´T_ GK {]؂NKXd w)P@\^c=N{h,D66 u@FX筙(‘`͂مED^l'xe[tv>&%0\sq駳ݨٳ"%Ҭ鸿"܆J8fQ5m"2eX~6\{ ۲B`(+[AF?2sxrǠWN|qT0u v=.=Wמ:΁ x(aG-;jNfi{M]hG9d~~6C9:?$ *M6ԫ* =:TE6c i^Lzu`)YD N{䊉~ PSGVp1_X8T=Gj*MLDr3l<.r4j@b]oa(݊gP݈Y7WjGodilhO#W'NaJ^& ǯmoRu.5ܥWeh/k{:(  hN l;~(T69Gi4GAҲTF$}x+ PO.t2?>Յn%E ,F 2(Ҳ>F\ðR`,k1'#W᲻t$C^3/Dm];~OzUƣhrO0E ~Ҁ ̄*/ ?}S14U:{\nͨ^Tq,7h&31*?UJK<*zdDvΔmXm;M#L_t/c@ҩls #>[ހl\MhiÏ7382XH58ocP:V(ϐʴEWE HE$@auVIˬ5ƷGQ&Yv{XAۻ+O9އ 3QT8 ҃GP$e+"DkƟ\KCp"6fo5U&.J]Kx<0 I8VTB iGB3 Nl֔7j>ѽ޳?Ղۖ37923\<8\S+mV>SGD&=}r4UH_ XxTXڿ˯=Y. ?,M;UY$  - /,!s˱ 4#xZP.t,p,優Ϸ I,L$:p֠J:-^A۟ 6~'qK!Iv-U˛tcZƻy R=KlQ* Z{NNVW6G8d}4#o%CZUa;~"BH6MqF"])i (i8)j-;;,}"U A,, dG*^u YBt/h G#Ƈ (᧞.mÙ7N5q!/ U{?*o~. DOw`貧cF~rx/\wc7s(4,jhlfiK)×Fn٩rv&A4k^bj~SJ\XM"Cm+'W6J;\r`3due VX(6ߵ"ۥk'b3/pH 1 1kkӮei4ljL&^ݡUO1~5m i#`6?J{P﫨o"oi#"Ͱe8amfiBl -+N13`O/%ji@D$Xܯ "x!F>JAQ` Ԅ+E>3Aڱ?O7<Į=03&>7#/2Ubx4bBX3w؊0S!Sk`=hqn7HμbߋFXnx~թT?jsBXj: ԧ#s $Cڂݶ=6+][p6}D"]zJB_=Y,pmg>mRwqzEі`҂f$E%YCqE7Б$^҄yqix;9}?"趦rئDylK +nf~ʤi,ݟτnke%;O7)eXҨ>%4̟°12ձʳb!ձ#!}D<&`5UbuO(.gK:\j֊=!TT28NqO;"T[&_ )T”^꺈s(ȒCb"I}˶BgG'컪r> Q 'X9c 'x{ ϩcqnE?1[ȩǑ;u9 \uf{ꍲyaZ=i!YEOQZ3̳yUBt3\34cT70%Fu|b iQg=%l22:bo|T 8h,,z|Ltn}*}jX!aw>qQQTS0 ³>fְ !:f chv$]Pn:"5כgs5=Na;׉@:wSkt|"j9?SCAo笑4{x- J$͏U@{ĀjEu'N36Nō;ќћ:]3c VoPg?Re0" p{>%ʁfG.Cbi ;Ux 6,+XqHrrOuDR&eV dkOl> EOLH"n`Xz洶EXv:``ptBPn4/ 4<0&jũxR,j<@sxghw0Xib&=veyΒ(aU>mɜ&R=A)ڹ#%$4 H~` ($+#CM|=Oc ,*䍛h$vmԮ;+Bc:KUh~ϫ H# A<Tgy`WBk2d}IrާGY@RX}o7xsK!Vx KOLLDAK@˿4cZZ&BȠYgjKINgLFhBSR0GzqLQsԖrM\m/)/i'+ZUQ+b}#XV%mQ18zޡ-7ꝍbXH2'Բ ܍mR:xF)ek;!'yف a8 a{fk7Xuʩjw^Eq-_ö'TK $2ٖrC1ƱX]ґUj˲^71P&59";ii2&bqb+LCoa6k~7JVP|Q8h*-iA^+դjڤOP#3-Pk$€ $?g)cw●}a[?։"(Ͽcř4~;dqB4/Qҝ:#\XƖ!!敂&³2+7dzKaIsf^hYG޲JI !, -CN&"d<ީ/Y:aWLxjh28n^)$UG9 2ti9&hDXdyq _3tt"2 1BVӃ]}7AuzҨDAZwm_JhTKi^\L==~`4*,#;S;uV_=ʦBFgꠕݢ 5eQR#FEO3zPyOp3M/xq)& ǜsLSxʮhB$.d"BX?C⊹ Y3@(xLAu6tŽi)ΗdhK^TB ZjX-@1/倚`!Gerκ%Ij鳜SܢrRꕉlu9>C0lc LɻB'.zX,ǟ-ke798uj U=[.mg"ż}:R8K6xE̸,,2 yXtY2JϨg)F7C-9Xn/cdzߎU-Q#z3K5EqQ`+/fLltHbPi^ea#FΏJh_uOuU,.:~ʄQd%whC7#Y(tr%gg#Mcڃ~ pԝX1Jg3bQU;xk7BSL#БtF3g,M/RbrߨYi:7h+a3ξ`,t'*AJmQ_ʋ` hjJn:)i92ˁf#T؃:/#P fe u/Uf *9 endstream endobj 726 0 obj <> endobj 727 0 obj [728 0 R] endobj 728 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 624 0 0 838 0 0 cm /ImagePart_2163 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 390.25 392.1 Tm 3 Tr /OPExtFont11 4.5 Tf (081 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 3 Tr 1 0 0 1 416.149 392.1 Tm 92 Tz (0 82 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 92 Tz 3 Tr 1 0 0 1 442.1 392.3 Tm 91 Tz (0.83 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 91 Tz 3 Tr 1 0 0 1 468.5 392.3 Tm 106 Tz (084 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 106 Tz 3 Tr 1 0 0 1 493.899 392.1 Tm 94 Tz (0.85 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 94 Tz 3 Tr 1 0 0 1 520.299 392.1 Tm 102 Tz /OPExtFont9 5.5 Tf (086 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 102 Tz 3 Tr 1 0 0 1 359.3 655.35 Tm 97 Tz /OPExtFont11 4.5 Tf (-) Tj 1 0 0 1 361.699 655.35 Tm 86 Tz (0.94 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 86 Tz 3 Tr 1 0 0 1 359.05 635.2 Tm 97 Tz (-) Tj 1 0 0 1 361.899 635.2 Tm 89 Tz (0.95 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 89 Tz 3 Tr 1 0 0 1 359.05 614.299 Tm 95 Tz (-0.96 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 95 Tz 3 Tr 1 0 0 1 359.05 594.149 Tm 97 Tz (-) Tj 1 0 0 1 361.899 594.149 Tm 87 Tz (0.97 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 87 Tz 3 Tr 1 0 0 1 359.3 573.5 Tm 93 Tz (-0.98 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 93 Tz 3 Tr 1 0 0 1 359.3 553.35 Tm (-0.99 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 93 Tz 3 Tr 1 0 0 1 393.85 545.2 Tm 81 Tz /OPExtFont9 5.5 Tf (0.7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 81 Tz 3 Tr 1 0 0 1 418.3 545.45 Tm 84 Tz /OPExtFont11 4.5 Tf (0.71 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 84 Tz 3 Tr 1 0 0 1 470.649 545.2 Tm 82 Tz /OPExtFont9 5.5 Tf (0.73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 82 Tz 3 Tr 1 0 0 1 496.1 545.45 Tm 91 Tz /OPExtFont11 4.5 Tf (0.74 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 91 Tz 3 Tr 1 0 0 1 522.5 545.2 Tm 80 Tz /OPExtFont9 5.5 Tf (0.75 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 80 Tz 3 Tr 1 0 0 1 361.699 511.35 Tm 83 Tz /OPExtFont3 8 Tf (ale ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 8 Tf 83 Tz 3 Tr 1 0 0 1 361.449 491.199 Tm 94 Tz /OPExtFont11 4.5 Tf (0.17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 94 Tz 3 Tr 1 0 0 1 361.899 470.3 Tm 85 Tz /OPExtFont9 5.5 Tf (0.16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 85 Tz 3 Tr 1 0 0 1 361.699 449.699 Tm 87 Tz (0.15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 87 Tz 3 Tr 1 0 0 1 361.899 429.3 Tm 104 Tz /OPExtFont12 4.5 Tf (0.14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 4.5 Tf 104 Tz 3 Tr 1 0 0 1 361.899 408.899 Tm 89 Tz /OPExtFont9 5.5 Tf (0.13 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 89 Tz 3 Tr 1 0 0 1 184.099 544.95 Tm 91 Tz /OPExtFont11 4.5 Tf (1.06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 91 Tz 3 Tr 1 0 0 1 210.5 545.2 Tm 86 Tz (1.07 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 86 Tz 3 Tr 1 0 0 1 262.8 545.2 Tm 87 Tz (1.09 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 87 Tz 3 Tr 1 0 0 1 289.899 545.45 Tm 78 Tz (1.1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 78 Tz 3 Tr 1 0 0 1 314.649 545.2 Tm 100 Tz (111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 3 Tr 1 0 0 1 180.949 392.1 Tm 95 Tz (-0.03 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 95 Tz 3 Tr 1 0 0 1 207.349 392.1 Tm 98 Tz (-0 02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 98 Tz 3 Tr 1 0 0 1 233.75 392.1 Tm 86 Tz /OPExtFont9 5.5 Tf (-0.01 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5.5 Tf 86 Tz 3 Tr 1 0 0 1 288.5 392.55 Tm 97 Tz /OPExtFont11 4.5 Tf (001 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 97 Tz 3 Tr 1 0 0 1 314.399 392.3 Tm 94 Tz (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 94 Tz 3 Tr 1 0 0 1 314.399 715.85 Tm 107 Tz /OPExtFont3 10.5 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 107 Tz 3 Tr 1 0 0 1 138 358 Tm 112 Tz /OPExtFont2 11 Tf (Figure 6.3: Following Figure 6.1 one step forecast ensemble in the state space. ) Tj 1 0 0 1 138 344.3 Tm 109 Tz (The initial condition ensemble is formed by dynamical consistent ensemble with ) Tj 1 0 0 1 138 330.149 Tm 105 Tz (64 ensemble members. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 105 Tz 3 Tr 1 0 0 1 138 300.399 Tm 116 Tz (a dynamical consistent ensemble. The results are almost the same as seen in ) Tj 1 0 0 1 138 277.6 Tm 113 Tz (Figure 6.2 did. Comparing with Figure 6.2, the advantage of using adjustment ) Tj 1 0 0 1 138 254.799 Tm 115 Tz (at longer lead time becomes more obvious as the dynamical consistent initial ) Tj 1 0 0 1 138 232 Tm 111 Tz (conditions are more concentrated than inverse noise ensemble which makes the ) Tj 1 0 0 1 138 209.2 Tm (forecast ensemble less likely to capture the true state using a direct forecast. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 111 Tz 3 Tr 1 0 0 1 154.55 186.649 Tm 107 Tz (Figure 6.1 and Figure 6.3 have compared the results of three forecasting meth-) Tj 1 0 0 1 138 163.85 Tm 109 Tz (ods in the state space at lead time 1. And Figure 6.2 and Figure 6.4 compare their ) Tj 1 0 0 1 138 141.299 Tm 113 Tz (forecast performance at different lead times by looking at the probability mass ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11 Tf 113 Tz 3 Tr 1 0 0 1 325.899 61.6 Tm 78 Tz /OPExtFont3 10.5 Tf (136 ) Tj ET EMC endstream endobj 729 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 730 0 obj <> stream 0 + ,,(0DDj*S/ŧ+&#(f&bx6?+Il)ذO3 o@pYkХHFw{kyPW Pp;骾f/Hkφ'Ma h+d;]{i[J\Jorq.NN@WnWi"HZ)hlJd(HJ,P3(j 93=?AGn׻* V4{xj1)u`*oFlSBDyЄ]U9 !,_5Y66]ގ{]fq< 4*Q&8A22E%<ӥ.EOad!kRyCJ.BDElO>rpLC>OQK>-r r0iiX%V{>s13ԽR:pΊj`\5*y0)&?:bCvH:cgc:Ȩ|ny9S:> y#'G(#ѸV+ⶰ]ܕ-:+4-6T<?(M<\)Ʋ]:&B(|΀FxwNŋ{O̡aN5F<fۚ$ <|f\^ -Z!FtN=Dq/0L{&ыdv a9 ;H҈~;!cDrp;0x=p-;c??5sI EPL^Y* xr ȵ_aSPP4?4 iNUW=NcltY+H'`A0Dx!~g]wcקEj_ZqOHFr;Jk힎WZo;@.)*tEHE l SVI翫')X8 6Yj LJV<<KT-1D`zSѱĶAx &׹gV6m٨>OhicQ2u S)N}k4O^'xo$;~1s̀նaQSb<_i78*ёc~R۹jQmxu@3ALv|t;)A, wjfBbys^dNM߫hͽW膚G,{L᣾n耖tUػM~1nZ'S7_-F6o@3C6O$ypsyt 5vH6FDGh襗X%rw`U=|9"_^5\4q Opl@?>VND~zM(M ؇tu^S`OffO9{7WoTvHF #%Ky >X[ɀ+a"oT Dۏ|"Luh7: 6~N$nM,$'EíZ׀|3 >c^dEPUI$ }Q FU |OJt0*kÐ(Q/ _V*vE7k E`} ee8 7j*fY~'_Xm *6u .;uc c~w2j\us_zc}UѬCܒAߞ\W'ivR)tX&$EoӸ z&xS7LLϳm|Cy-o^HuhLxIptUMx1*XLP?=$8U_9}@HƌP?!,8SFG^Ep(tz -u}`]2^<:=*lm7%SȦ\3XQPTΣMm%}^DK[n5(KаZsf&\6B<:`BGq v2T;̤Ej__V]JR]NiIbpd5> ƀ6}/ mT^o]KlJBx=5 qۖ^yD ,lϔ)BU\CỦnhizdLKq=|{@jj9DcGi6øs$ _߼ۿe{/^sŏ7 ˜yP~L) \B'W-c9{O[S#Nq3 e:W26wz) s:ge^9^`S9&xkhv7)u\ǎROF3|8ATT.I%0+NPQtjqc_vwc!D|Ur?~ =dߒ,R:O&`NO4lO?V\/Qsy0ޱM#H$_8kGG7# R1. ZNx]رeYx_3k%),J@?9G _fMY%BI}If%#VU[6)/sSǒ6T_|_Ө;t# {jN{SP"ʚGG~3̦ŅDsI*`ˍ5hMbOoe `a҈[{g]7l!oD/t`1%@I9,LS?יS+mGKtEKjG 7EXO € \6m_>X{bݦE%] h fp: ',}4c4'ح5Ӿ ?FiB$%I2!cԃUHxvSxE8 M*UdkvڱsֻMSa>4,<\K3o44dm=ԌQ%(f9:&򎸬8HrtMue+؈o!=%&Ki!s8d:[Va0?[g"b:'0p1'.U:Ssf%{q[Pfk]s:I|U:4 EHguCS^|Is*ߪ'qȫ0^]2EJ@*fae Їh8@4ܹxS_ 8쪃*fX^"2+\+p[HPY| HZW͎t_Q/ ?Gahqb)Rsj{3V,.QD&٢%~P"/T!Sqc:ZΊۇu(&_@cKB0C]Wbo ش]*:f^ܬ c0Z B)bc7x{D&@f#Gly >i zfo$4<ϣ^nյibqs`Ky6c lOz.@}Fu$s3/|4@DWڢ߬*:asX%pkj0pPd2:{#OZxw O8tiӷvZϰbfTW4k/WU<mc7(8L]깎~Br73,Esw)>➣FưϕF$ٳӯ\PstȰ8(ɶİڰH<:YER `RT<PAÆk>WBѤm> j5l`.36sfE@5H. obRY#O'Ϫ [=3&xtc5.a|n]]4KrXl@!/&a0틻jsaJ[4 :ZՍ^D~sFE::-/[jK{'33i1.Z9ϼb2pa:z* bJ_< T~ohA% LGb"El'R5P5{@\)C" w#\ ;h&$1ARݽ%w]̡JJ1,Nc6y`\:Y50L^>ZDg.¡9FuᨔҚ;Mvn,,NDњz-J0кfw$^ʃ\K+tW4T쎙EdpC=*dO ZkRm߆ik$qSZ,J/g%Wcx8k0oZ]|"Pې|';]{Bg~Imn.>.EШ~hʢlP^ryҪqHiRne^ȀĪ^UpS8WA6ZFEZ]$7_*9 O}k,-Fl^a ZNjYgz#>5-u\~N6jekB`W@'U+,FY >  ;%(ޢrtW$O-+P_Uwhl`p\[vѾdc$.a 9 W.e$y>X:[ܰ&˴89'(#1eȺ‡Bhl6*JlA "+Aׯ#kڞbaӆVXU-;/tQ_Ցay\ou2@vS'OOŐYóthI+{2% qWݸX'_Xwy[a1/Rq⺏Ǝ.lVg혵. ~#޺/妅gCZ\s飫XǏhm0h699%}0](edZx1yݢjkfN݂(\wp#v$u:*v4s"l" d6Dygϖ,5RȒ'!]νn?%t\#'&T@(sPCވw:^lF{2}MN,ZnV ɵ]sTg 2DkXLgدAtCcghvq^S3k*n"F.`CZ_P A[#+8!B~r?g(ރToh!e$5~ybe c=~%1ewb4"%Z>ܸ S<;>EyH2睭g Ml㏊t++#R#+ K8.:W<ȟ"ķ>-M(kwA |f3‡ҁPgX 9#>=0˼'e`հp{x !]'adzLI}yuu uq+m'8 NդaVݙ0nC?~"n';sn>Y ԡFTA.?o4h%8!.2axc0]- +h0]Pqm*0J{dZiwtM/ŏ2yh{P1ZQZ$V)+%JM_S Klj9^g@ܜ4ti&y75:'X_3*TsNg!կjRm)ib?,vכRE)vdݕcdA ʛsD~'NCE{ PVbPL!ld0b[-:@pNw2&*l04 2 ZeHiz+DAK(8e7y@w wa^Z#<( 5 !ݖDv5tA I_>|3$E&[sc0oPuBS#W`")ޚz7t5 ?p ~vUh.od3l!2慸le/Uuւqv٘UN8m躶n.#]f[44ڞxP~y ka9BC295?rf_+~˛އ S8~"kw'hb~=()N4lDkH +ܾWN$^C@*#Ī`/ʔS =ng($u|yl߹MXZ8|WDwg|EDfQ2ޥ5M \(F7V-*G賡eK:j+ծm4Fh-0MƷFs g%t8~+e.k˽S-ՓJeq<GNr{n~[ 2}Ko6VM}bٓ0Kye!~iA5=VaDg j&!Q(#SK'e7;*51hms VYi-aq[wp4U3V4zϕq/[BXSKK?U,5̭ݛ#%I\r`֮a_qi~xeNOGVp׷hH%WB gx̜-hՌi {dGr) `Y[et*w:Wa~;bO s+]ԇ+p1&+{T\1[8L>-Fxk钸,~oj΄ _kU)ULXy|H"B N-?Mp%dEVC=3J?U# <}9#{Heu56A'?;OX6BE)1ߤ%$7u Y72V詧h. M|{X璿L͟iU-ZLijAUO~hm7 .0I_T/z#x:j( g0,.;~(=s-(b=3Q~pj}z:qKԘT%QP`Cls79ƴ~H`DkF+ BdàJhqOҍEe>~ m9.rBKA gA.F')!X´Q繮L~'}uMNtٶL>_[)YsI'}=G-[iHYf̾'57YD;jma;dkhɁgC?(2 ;B:bG%Tvm,g2e]4sXA{$\ĢVyLڈ:!A fZE#  ]RB rۛ G ,c t51;M(JN a߳e b_MRs% 6LHKџ *֮߱ Tׇl^dnUye4@Ng\b֚?ZL J8ǏH@ -+{;l!KáJ Ƭ|Xm?c1ƞÄ֥gF星|oce὚5h,d-Lqʿ581$ UgFnOZsQ] ެ`?<&pY+{ )fPuUU`$d''&aKJ.B(cnDxωWC̀阸~y|;6yg>&|:lO{r#{ 6mϭ6iCٖŋ53uR,x53+ 2]-pZ-M׃!9%ʎE^;fIMx߶+ 3 , |@h9#ӏ[aLݼTru.귴7d{9T/xb9.aT{f 0.P}D|؎[rhMz(5:N5~C5B87&#Ȏ=ˌRjzږ1~yS)#a0K7.3ν2kv7 ]۬2,/c` T,kbݘLf]}WG?G-wv~Lsn+WW9a,! ]Ǔ<3b2C]}ϥ1+^ddNXWo`K=ga3&h_?\2c|D-$[ϮS:MEc|)lI/%?* q@1Ȉ%ȸi}jozyO$^=g)O},Ytߠ" "Q|"ɵ EocN~\QݽB霷[H!) 0-pg~3-EC$]|QCp??0߅l-vUS~5xdZTgk?< ~U8EV"Ls'hU(+❁-+<~Q`7=ZR]SXCeFG\?8|YCے|ւ+XNq{V-`߇{mDKM}yz $J + /P—2Xu|OwfڍũI.4'xVpݭ<f!$c%//\8?RKJޜ|EL&xUks *ʛqeǂCB\[#\)K}Y7m?˵ͪ'o!a0o*jqc,!p.yHlХg.ρtËn,|:})A8.UN>ƊhHbqKh]uNM^~䅓oo p)gC{WD%A!0| e4ؤMt: n6)MUյn5xbqp80X-FaWJ-TdB WMF:4ɫTs]YD(9?ܯSnWvjKLh^~Kʷg2j(*cNp*V $Ur6m?r~'JeLfWMә.GͯK#pSqqKm@l{8/OfT/؉(rhxbO`dnrP88Oi' ĀOf5_Z4:gW'^~@V?JEf |fYq[8Ya-I?i%V4w{PP샘+ L,_wn꠯^{Y ,vjW.T)AXueovs헸*# 祴^c )7N3yg`zy V#tޯ4Nsmr9*wX@2" 'Sd)[eɽT|kEb C->`KB&3AH%Gws:lr1ZwDIpW y]HQA{Ck.m~y ϙ:TY#Y7^ )Q;8oGؘ+nGDXG݅%= qbM3A}9C\߄+-RsPuB']8qh(eWNi:3JÈe RM7j(, %bD.tΝEuVȞE㊵2].I TuȎ`lS@ŞX>25z&JF46_4ipWw FhԵ7w;KEߺC|0G^2&#$SU$up ލ=Nځ[)ztcy¥p'[O]+-h#o&Q,)+ dO=U'ݲoG.y7Y އ;魵mtRNhW+.OI Q#yL9%~QY_՘ wn++SˏnlDE\ݗbJ_OLŶէ :^$ebyJ|5Rk+PtUoUi[~k+Hv0WebcNIE ǖ7p,wD23&n l%3xp6swh˄Jk>l,{'}nBs:i mП+ΖTNt ^nDPc ,ҫܯ47%Z=;t@tU!kLҺ5 8Lm09Ved?iD#VU*?.-7ʫ<7WCL!Pg92Ӑ4*Kn?!q y7W/#;{mc@Im^-,Wʠ!o@'ukB"ٻ ̾;<04~.lkOsRL>B4u$w*;憥hK,Z:(է̂~lv'דHbwfJ?rS?'1WmKYޯtT[@E-z߼\N(E騯eز5D^Ȫ*RFgcȅO*5)Ռe' 4\pXk$_d#'6mz/"?|2ڈjH3L\ I K?8P?)Vk̶<lAW =#*+A\nw( UsW%8uf)lr]||ӔkGpyV xuαfȬ]ނhBgՊj^'uML!ƎaJ f>HGda6$mv8v~%IC2)Zw7T8{Uc0 vHm<H<##)۷;koa!^<)Ü"8\5TjLV-휀Βh TPYc0Dތ&'|MwzJ>]KNbyg8ip :gow 5mǩn%N|ӻ_A#zĹ\53csZf'?cўp"XeFJH@J S#}tΚ<@̢shw!UaXG*4Q#U }v?~g{,Z)[p 9:%.v!Rtw/hJCV-G#dۼ(e2p?cn7R31Mu (T,^83 h=[n:W!XE{Qȼ]âxp-ͻZ{Ti lTu}PIUp=)UvV+ZF66nєo?6b k_~ <1J7/37Wc|Hmᝫu&``!H` h(,`տ { U\01*~ցOge)eD[k6#qo5Ynm5Z[N|ܳȽ2z vU <cuޮ39 x7CP2ۯ &OJZ9ڭ){Sq3\B3\ˀNndM֍tXy m\gfRYqY QrB@jO7ªckT#_@} iF\w o.WTIƩS)jl,ܵt@\?\TAb!$C H7/.*#!7B:_Myh"ǭ(tF{鿮y> $gu PA߸5wTcigN8ғZфs{H[I]ǁ'W6v7tDY5}6d 'VY-W(PDgW1s m;\ӷ,*2f3$eD(х&!@D,q6(!&ac3&ڌK] VyyӬ&ijg…1H3,1ΝhV)CQ :,>p28-b_/t3?KnhO$=6*Ypיn9q0/0k q(۶?R9'Gg.X:U-u@PhɷõL̒O(JIriNZL8 5Q/&.qIolm } } S!2,a{׵qJuq:wXNvC(gni%dF\+a_l4{V0첵x, ºz!ҜGբւJv'[3Gr[3ȴradvCUjEҞ wDr` DgNm7'1aI1K$B^ȶRYiy<72ofJ ^L83%nOޤLʗ6)QCtJ>kqLLq?Wq(#U WG MUGX׭ĺ쏦|="ObvsiuSݶ~7/0r .5n&slOM1`8;%04$?ՖW ٧ :3L~HA$JR.wawϨknK*w%@!Esf4Ν\i欏zWaM()}.w. УAu{CR^{A!05:G&=Y7%RW}@SS ҷ HćT(d VcЩeNMބ2L͝VئeOKR@'TW%N26=)a/i'vIxWkGsX[}9fb HZfB6ջzP.J +jiJ] wےQ5V2M". w}{a ->RLԭGu4 .R4T;#%\J& MwOȔǀ8 3`QdS]1g렏st-a!-5ǏRX:@i+mdo?؏Qz?V`_ׂ>"}$c9;g# @zI-#8gC~u &2r/ <^7"G ZW8EdUR~a`hBs xc ~~2 KҥWmj4J%N)S z,^y^E~fFU#KD튩eJ)D] Uj1JqX  y^|9խQ*,? ,@Ү\_Ir"b{kҁMфuf/Sg&)\1I\$ML{R3廼ˮ K!1x*O<lJ];q+◎s?*rmTCGW1*ï+gtu/tY6x,٩C  8?oum.n_D) oq *xAEl7 2{>bʞ}1!t9#CV#L򃠨]Ͳl 507aǮ˥ ,0i{lN3'ڈ;c; &A5wyF Ⱦ Ǹkgv1>-?O"EClRʅ>Dрop&e8=Z*[1Pc"hp N#vVp=:8XҽpK;́:t%'pw&ȅ 5-}f3| ?ff?vj"ⶒ4"ܒP>˝[_ w=A4c4 ,۔^{u,3eGn~(P*ypk~̍d)IOܸ}Or/ߘR&*lp+/0 hBF mk>,/@g"]؋bi6.6٭+[v{W^);ד - 6y5bB~g8C~H~6i_F-G0/;acjF#4)Y݈V=ҸU#sL∄#%+GLze,i(B 8_t0) mOS^g,`Kһ8[+ 7m=5%z c!-yJf`]M|,ZZv| FCr}|n^""-a p >.B 'hs7: ,u^MUBs=ydQ˳NFj3Jjw*CKBbG} _Q>՗(efU^yNg;XB/wO!2ogs:T`keHOKA2JH޹%4)k 0 D#8oeIQC8vȾ|)8uJƒq3 +)&t%w[/ۂ (E]뎅G?.-2-'zy<ShA(͡7NzqJn$0]F =?$ԲQ`w?.޳y1҉bى/7}kj,J.$j뛆]x+慗E^}T&W.9$JgѣhMX.I:$1U0'- [-/#;qǠ+EZLu+knS@epsǾX{"2s;S= ]iRdžx+=:b c}'sXvmez Ќ򦤍A3Y-uӹ}w&! Oǩ"fzrhcD)l!;MuS_pDD“n z\9LD4-NwʽXOفGji7/c:;Pu:X v; Ɉז$ՠ% .8Z~ Fr{8/ zfUPפ 9go*7}єk5b!LZCyQ>FF;)zux~U( ݣu*V kҬr;!@$cqץ "e=2)et+#ͧ^1RzclM-僟"^vʣR2k}T|gVi#]L4GMIuc.zNs&[tHq (=:h7UWҸ̏">qh=d$Ǵ"я9ح&/.눐c,<); {l92P'~e-W+[#+F۶ݨ_sdൿW@vx8 OKJڞnMG&T&e\h#.x:fyH?r0_'Ѭ6fF"/Gb5e8'XC0g8h0-Ľ WnsTAnG8aSI&qW[qu?e**3 U`.l >p{)T_vF,]g}]`2 az(p*߽Z29S&(ZX»d+ssW`* ()v_H i Z߲iO;2-gHT8b:UT`!(>/mztTpY]wM{&.="PMIRDC=@$,MrN 7~Uhϵ[D%le*L7Y.DodfI>]m:kn E~w:6(ck$o98oوհ[A(U;ӔxwM6 *8Td)%i }:ko63o:uG_ЂSg3.?#/C'@:P>]S !oŤFߠ*1L9{<^t{ǬvmR{I^#&IrH=0xD,g_ `kهU # IIy6赳tEb-M׊ rg#$1<-A(!MO դ:Yt ~5Tߍw#cg3=QL'n%4,o`.})pY @gNLJC,H< z>f0 .ą}Xwt/Lp ?]C2_ܹd|]ST3XY`)tY@|KQ |mOC zŹ"DJ&sȋFu $pG~}BtCZ6b Y }aj+U}^gOs/EL=FB?mc qg2./3H~3oEG$4iHkuJ2_^ż&na1$H#;$ck 8m'䳫(5'(=Tl|'EpAv\Ӊ;s endstream endobj 731 0 obj <> endobj 732 0 obj [733 0 R] endobj 733 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 624 0 0 839 0 0 cm /ImagePart_2164 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 316.3 717.1 Tm 99 Tz 3 Tr /OPExtFont0 10.5 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 10.5 Tf 99 Tz 3 Tr 1 0 0 1 138.949 230.35 Tm 97 Tz /OPExtFont5 12.5 Tf (Figure 6.4: ) Tj 1 0 0 1 172.8 230.35 Tm 98 Tz (6.4: Comparing forecast ensemble using e-ball. Observations are generated ) Tj 1 0 0 1 138.699 216.899 Tm 99 Tz (by Ikeda Map with IID uniform bounded noise ) Tj 1 0 0 1 372.699 216.7 Tm 101 Tz /OPExtFont8 12 Tf (U\(0, ) Tj 1 0 0 1 396.25 216.7 Tm 103 Tz /OPExtFont5 12.5 Tf (0.01\). The truncated Ikeda ) Tj 1 0 0 1 138.699 203 Tm 106 Tz (model is used to make forecast. The initial condition ensemble is formed by ) Tj 1 0 0 1 138.699 189.299 Tm 99 Tz (dynamical consistent ensemble with 64 ensemble members. Each row of pictures ) Tj 1 0 0 1 138.699 175.649 Tm 105 Tz (shows the comparison for different lead time. First row denotes lead time 1, ) Tj 1 0 0 1 138.699 161.7 Tm 102 Tz (second lead time 2, third lead time 4, forth lead time 8 and fifth lead time 16. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 326.399 63.1 Tm 87 Tz (137 ) Tj ET EMC endstream endobj 734 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 735 0 obj <> stream 0 , ,,9j*S+|Z?T~ NKC H!%d,7!${*$VPCYwi:bQ`K4g0vЙFyoS-&/XULbR\1 jAjqtSM [mEhlFSbm (J+(WrUf3[C)NzQgIqjN>!_ |߲2b)aoEUhFN9JbM8u@d%ɀ;3Gg<;go 1q(,K8hL/]C8ts gtW:j׶RRW92)Z~FΡe0n?2 :3۔qd&J=y#]EG"h= 𜰧'' SVo!yK5Ԏ|k1Q1:P0mHU k@w>2`2D7U$7|NCZX DA%L1֥`q?*qrW*DKm`LPKLeOCe݉JԕD-[Ҟ*#Yp ^-zPɘNe=Q&;(OO?HSZi%\@O܈o EB-=[3|/-+mQgҏzpJM j%:F |тvd!^/6XU\tCB(az);!{hWV9s Bܴ+U&۰H/RpZ)Zx<w@JyGex5>sDNqD- tFЬ''^f]B2X@"b㹤&RYԐ:L&klƁ0)ӛXs98$ny8' [ i 퓡<Xr&-.;‘BXI`}7лqv!ZDMk]g\pYϖW@[ B+ÌU2)c n&P򱀵z2?TXeYp]vzE =T7ީ7@\oP~ΉHֶv]L7@Yd :k#nTd`!Lh""FpgνqU<z$*آYm^HhR>٤UkByRG iK%?A.OaumD. Em=.H!APgwpH|ܧ,?r zщ\zT1!CP1>/ڇ":'(rUٳ̻!ٸ%7ܡau;(ІdKC tCj|@t&w󳧻bTٴ"Ϸɣ05ǹţ8 T 3rBsikqlsG{%qqO"6ρ⨓lH>Pr̮8D(.D4n 5h{td*d`16KNrji{cdeniEja:Ë}vNS*g/=|\#9)u S\yu 'Cŋj#d$֓TCMj;?^(J{Jߖ%3nQ28I…7"bW e?y[̵2)>d̲N]u`å-kCM!{7j\Zw~nD_1eWiLrk`JaF2nPh4 y)T u AH%pDjR]gU5P9د%M1DC+Yɣb@NE#v9?;U/mC~樘9L Zt2.PCtcT#IT:$YcVԲjL6+_iGe0fu)(iK_m݁nbL-o j:3(:%^;,YvG#P +N>7<'CC p';BX0ķMVvʹ"CsALsC})h ujar-razXrZ11X<8n:yA;( ߚA4UL|zױWA[:Lc2T &=H!$ly:_`(.Z؛=WXӿG'ix&x6_AN:_u_% G(3.Ï-m:2ƪ`:Lh[sn {MkF@T!PÊKo? U/J s3do2Jb@6צ#:uuj{le#/9AGFyb-Ȼl6҈38L8\~%- fg~+L/E-C9# ۭ֮ rlǺ6d/c:ݹa IÉ|THd^ lq%>`WZԳ, X#uk@к[ *W-4ԥ@0IAV8Jj3~f̡63VYrhNi} [n 7&]c,yEhތ:HkS-iKMI ^=&ʻ6{4Ak`{68BZ__N3,_$q/_xJiANRI^oDŽ _[8-oXd^|y-(,BbN^a[%Z㍘=+ʪ=~Y& kq U`aHn:YϿK_N v`֏Bz4&~N-H }Jxa7 !{5)W|\7 éD_a~Q^*Pљ]ʅv6=?v%P5N>j:f K/jԶ5} qT);,aC&KT>N'W$VZ5h1mL_rmOb,Jc7[^On;"Mь粂)ZOkVJ/eCάI{]/mGJuZlNqeOB,3=4*м"`UnpHh',Q;XJҭUD+&pn߭Br(V)[)$R-S?e4_ȍԘXܘ Y]>N hp#r=2PUkyJ/7xG3ꑩm|`]m([V_ddm} T?c_w'yݒ$pp ƍ 5y=Bi8Ƙv*5ypo|v=Jg)./6&딯QV4(>L:ڨI# !R{*]m@Nf \QIfrZE,ʧ ~OE, )@=EUHos cvkD ngD%I|o R'`O%qTg-_` E1J8Q7bJ@xP0=}8GL(` O#`c|W0re )A7J3B$b~ 6W'c]o)WRi g2/.$bw Zq>Y% 픒p--S%H6=-|n;l6cm @a;XsSo$.^zbuCQ?u]mWP8DH*~drf? )5uۣ)Lճr2.{YeDoCq᪱{e^*,ay*gg`@_zɚP'a0Z2,%9̆;zL拗 c \MD*M:6Βm ޲J3hZ7̟HE4M#_ H+> ٭}>ɲф+l=<\/e ИZlVޒqgbשAUaVP+>X {pAԊ,0˟iB<w)-R*1zŽW%e&澧٥d&T-@*$*IRC$б%QC1iF uf αX&};'`QP\2W'ք&KP#?vs]Iz4I8اAuajQ6y Z{fic,Ȇ?N$] .f`}PV0-/@a>ԍ҄<+x95E1ӘH[IKz[JOŵ̢Ts6[q) e:9X{dH'ɩ7"n6xzSd]ta1.(wCgl`@xU Z'}5wP=皟yۈx#¼W6*&8__jN.IVB n!NԲ3f(|wa7Tqd \jGDt~e Ll!M,1@'Y›`N{q36n>gq_K]ʍY~;~TG*TɤlY ڄNx %̟L'W{;2˝npb[V".b*/KʼZcewI:s(W]%9&E.Uт- JlNۮ^f9W'g~UVoR{6gdE(?ir^v *ZC`M}uW5K5afY7e6?w.'U`ZUYF' RMQ3LUP8:TD4+*;s\l2]gLZS4X^xLb Oa%by *8ÛYuʂL8:!We 2,E4`wީTI퍷N" Փ e.6v9J(/OJ=J@X jѰ۔Q/ϟtW`7zf؄c۹⍏稕n4R!Yy ҭ3O@v)A0hcJnB]:vG!Olr)@`F %[ z-0%!ccG/wM[f(2Lb`\Gؐu?- 3w@J{}0rPtd!*k2orU^k[1ȶl#LG ~O*".Ko[ᓎڸ˔.¬!$!ڿI0 ًa)nozIQ_b9Ύi\C\V(QQ`fM<_Sc+ 8滪vjWSEVԒvB'D}`bϟUN]&ZAy[,CjGHH̾ HȣMBp"fU&VFL)t[E++/2 mbvI5-O[}NO mSNҴYn[ͺipЙ.ky\1[NQJQB)@-L`HNGF&sgeudra錃&hX* P'oU,X/M9oŚLl(g6RVHԏNcivp`LVثQl9N&$Tݹ mӋ<59/WiRڨXڭRK+d? 0xrqI-VqUAƔEy,HI_,2URن m"kXɉqq8.e:A Ի x֎8`dZo%Va*1}M@mm x1$wT5ǎIH\]3}`?@e Om$\mJiguCjB.2:mR"zp:>e6TI. wWkeW,xcNBDOu\eNx!]{&DL"}d<40^O@3$+HgXۋ k5JV7*"m裳ߛ]Lz ҃v&0~#0Zc]8p_ q0 pG+]ub.ؽ%0u…_d%d|v~wa ʧkT% ^CTXZ_7r){bM@xณK_b&@{BWlQ3)8BEGu=,ĉ   hz۸^pm<<Dx&nx1 s:JMÖYefUTz}t>ݚsBs#prFZmfTcecZ|Jnzh,-g٫\9R?7m`,~F? E]HXh# \R{_%\ܴǦIUe@L[t#',"|u|[Y ʺwC HZlIǧSңy@_ (}yTAR[ݙgO~|{W8Xn0v;3&I.wDD|= hIPU b fv;4$ R}7=xhAXEC-?'9<Q=0KHqzH\gGgn+&6ˣ'b꿜{#1 ~y^<6b̕BI{((S8~{ؽ|`eX_Z>Nt`@뷇6s8U#m(π66)D%axOV$*lwJdG_-sPb僕P,ـsxрTލGE=ϙ*.O]]p{ݷ$xȫZX` !3h"V+/dz{hv=<*Iq(sJqG:˱V"Oni}1*<\XS8H•Jeҽo!1 MBUp'b6}^/RyeiFƲV@MنΩA+cVY[PnkE62/+6ep`t8mZfl:l%!uC}C U@TހBrhJ@I) Nk~jP{QFaz)1} 0w~]Q`CIGHΗVl4`_IEGۑ1PmNʻn,$xEfCtH0 ϑ$#0hV ZÏ+ܥ|fN8@Xz-4]wMC` |a%E*( "bsS3|ϷdRL*_nc&ܼ%"!=WY"MAWBY`/|6iZ~m/ᥢc.ݭ35( %iVTg4P<`};wg]fFg}P,dVYjh(#YI3Ӷ=B|HBPK;V鰇p tq '!k@R.+/ ɂ (Te~šT.mL驑8tI%SM#ykM*>AlɈL-HP94x;$X9s٫St"*Q /W)Pu%Aۡz ӊY [ {*aIOqXVbҏ6SB^%0&Jϣ*EChǝA9^{v+1k_z=un]U &>nA劕u>܄@uw6"Fж:3j4ݏ's0)i@lG,m؀=Z*ra`YD_')ߡfسx`g%Yr9懟̨C EP4!o3HyA'}qsQ$,qz E+_y[p!AVq LGZKlpdž׬ Zz 1QE{jkJ|sh)" jjJ~tξü^-.gh)ow"VFN>GXdGR0~TLRqYts P\'nL5MP։wCT" ~x],V7?iqt\sP ɅJtELATZul[Mi [.p֗~e: Au_5nߴ$#Z7Mti?C1V1֢*(-3O"xv=u6*Y8AXeB䖠k{ȥi"ekDjW,:~?3hʜ/'귓D !5pK)G7}JRX,ϧ{Vh޴d$0'yJ__ Z(%(o6nlW;^:Y$S#^ Ke|OedW3_C+ZWyXR[}#r6T(̃WbEujhUv:@yCq/kacT}j,W /ى!leN0  {χKD*Isg_rk G|F&d7cy$gT* WM EWgkn)" H+/#.h[,I E83%/9/H3FQK hϗ\*z3 +3x֪MsH lƼD H- j2ߵuf ŎVSH֪2 ך y<>/}q,S`F5Ti-\c'IvP[.Гc.IK~ro-x`\!$~hB\"l@) 3QbNw #)|F= y;IC?JlyRЍ!@.!e.?NvK1C;NkI2[ e9*um8D7*~ȁ%Ah~ӫ >%$3$ٱ<t#k`,2#@ Uv-WxeȐoj+ǹԩB|%=cYZWp<Ě DSF_r;l 9WkI,Ի9Ms/r9(!cTAέ7(̾/6&ʫ=5r뱑`߿=t r*9:5FT8S75KIYs}@945)fn˱}9@RN"`{2D_@/Tmyf dzl ܛk<92!R^E)=m3rX=tjA=@ߒJJQ 6Z2|*xf,glS}(z5fQN))p^!RWf5Q)-gʔ]3:NmV7-p9[J튽0y)gDyeZu ӯ4dhk(fܓK}$!LDa+ʯ>^Rut슱iR_ݱa[3"_wx '=짔"u:xʝr}l.degke΂:AQO@B>GFQ W6M]{<ԽyY$`e3v7DHg|PÀL%ОI A.6 >tB`Ncj韍n:wyl+,;:'r~;E APN(Z 0\.qCBDJ_dpMSʟ+Z c1zG fxA#o?zPuN6m. e GSb\W*)db(N} "n! йM@)DŬD z%<x !+*17<\ dr Vxk 8)@94bfdOc B\׋| _h}Q>{hS\u+h|| d SZbm3;95uOx/`B ,!8("J&5WR3vhR[UAK7p`\Gy*Tƞz97SHuճ1K0et4K e *oye7Iܛ=nDXGP!ȳL\IMҴ 5vxCS**b6HCI%aqtB9EB?يmOdܣPeB;q*x24kwA6N ePסU &%˄ <uS)$oU4]% O , /+uc%5_O^WHeW"g(ft0$=1=\c&*$ljcX^Fv;#Q9>BA:NscjI[@N~y'&e*\G}!]護[X'ؔqsq?R >j]#錗F$!Ssoi?@p^Gw=XVMQ G_Yؔ%eg9p}zL{p3Xgawhx :}XNj+VngֶL A&qϲ젷9-\XuVLOJ%բuƤ2raPk1lކfPQ^J|LV~SDFC&q ЮH[k (xiBtB]_  Arx*܄ċl\P ݙo|kjPXʼnj % ?HY t$GB˔~ɀ01h=f]!K1:y8\6\"s^؅`p ˅\{U85"f>5Jµ& ?K)x!x+dY? ^x#,4P{c;U /r[\)n<4)wo袈.p5[\}g_,K/ҞG#H/J?U )КUḥe327C\1vKWRX*?+ ?sV5'EQ$N~u C;oDwWH;>w"3@]:"m1b-U)T6eȫ2zR+Ӭ5hMWK8J63woGXs;c!x[\tW%n܁~8*wA+.rg4TZfg^y ؍W懁EMjT+{0IQ :)p$" Qs,C4IF R_٠ꇊJX&812:)m۸#BCB@r#zMvƒing5,x5= ԵY.wb_ӻ5l}Wݒ󒝃^Lڵ *Ŵ pEgrR4utK ǃ;>1*gfL*>N:*~,j02$ U{u0#IpfRVWφu⭪ON}m|B ]WjQ{): ȍR3IRyv0HZר HǙ1xzAOYX~4;;e!X@CGkӹxP@_@mA>-}xz>/e.!y/SqH%p#K>t|)q=P]V4$L;*`w7:ԅōBͲ#I1iGaY{UvXvJJ`Kg k(4ypF$Pu| fGs/$ZN {ֵX;(5c% fC1W@iۯzp580*Tjf񲽪eF5/^8En)T4NZ,?-- RދwiMйs@^z^.#in <+n'ˌ$r׶jgL6xξV '{ۧ$?CݤĶf$4GMxќ'%k0j+sd7kOH""1.bgTLs;bRڽ~Yn3j,2O5.H+sӨY.:.w-IcH7lG)pA.3=א/8Ʊ-5dg(h[Љ7Ȣ}%2/i uav=uo/yQ2QȣB*QlS@ǰ?,̵t)yUm~^y)>c5aya[vG/v'=\t _a ʯ%jP?kyN\#8w1FjLWt%JB@ .K)w͈Nw}r܊-p g6#6'Cp@g$>͜dE2ek P[RuY$ C1򯬗&+>8AWȯ-Tz"@LsI/*|I7 Z7lC*oOclXԼyU " YVYms IXfln΅Q3oX=a^{%oՓ=Ϩ{[4y#P=UoQ{(EŚǦc4N8o-VHl&؞Z\drVQ fMj >$ڱ|DAEr~I!/2Ys$jSsl$]I u3)֪#\Xn]"c;ϥ:a[ourvJ %KHf)\n<˾|w#Wok-a% p86璼Qr+yzM⹆dQ T-<iYPχd@~~tqZ}[blyv9ĬwY9jVy{Ek*sX"ViEFZp\ /0>kC$5hٲPa%pL ŔĽ~L!OGHcZ X[N S!&ܮ9oNrA Q(.R-Y/l.N ˙^4^ IJmAHZ6dB-d?vxDoJ|ݲܟUofKxF\}ƀ(߷1 "~pSX_V@R^[xiK vCJ,lAbG֕ tӅ'ZFh~w#\_>( Y!&Y~S&boY&#pql428Ob5E []#`W}z]`9wMD/a/IJU& Kҟzlj)Q^!wwYir/:M7x= RF$d`ѩ˕7JJ9R?cYU" =t €YP:Ăre08{J=R(rHŎb\H/* ^)+qJDP}FnNzk 9Uާ1H-zbt4{|I6zٿSޔjء'vӛ@HZa!o2Դ;Sæs#&a֌XNJRU"cD/xo`gVvA -|J9bɺÅl\,w endstream endobj 736 0 obj <> endobj 737 0 obj [738 0 R] endobj 738 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 624 0 0 839 0 0 cm /ImagePart_2165 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 311.3 720.45 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 131.3 677.25 Tm 90 Tz (around the true state. We now look at their forecast performance at different lead ) Tj 1 0 0 1 131.05 654.45 Tm 92 Tz (times using the ignorance score. Following section 4.3.2, we first transform the ) Tj 1 0 0 1 130.8 631.649 Tm 89 Tz (forecast ensemble into a probability distribution by standard kernel dressing, and ) Tj 1 0 0 1 130.8 608.6 Tm (we use the historical observations for a climatology which is blended with forecast ) Tj 1 0 0 1 131.05 585.299 Tm 90 Tz (distribution generated by forecast ensemble. we evaluate the final forecast proba-) Tj 1 0 0 1 130.8 562.299 Tm 91 Tz (bility distribution by the ignorance score. Figure 6.5 plots the ignorance score of ) Tj 1 0 0 1 130.55 539.5 Tm 93 Tz (three forecasting methods for different lead times. In panel \(a\) the forecasts are ) Tj 1 0 0 1 130.3 516.45 Tm (based on an inverse noise initial condition ensemble. In panel \(b\) the forecasts ) Tj 1 0 0 1 130.8 493.399 Tm (are based on a dynamical consistent initial condition ensemble. In both cases, ) Tj 1 0 0 1 130.3 470.35 Tm 94 Tz (the forecasts with random adjustment appears slightly better than direct fore-) Tj 1 0 0 1 130.3 447.1 Tm 90 Tz (cast, and forecasts with analogue adjustment outperforms the other two methods ) Tj 1 0 0 1 130.099 424.05 Tm 93 Tz (significantly. Panel \(c\) combines the panel \(a\) and panel \(b\) in order to compare ) Tj 1 0 0 1 130.099 401 Tm 95 Tz (the difference between different initial condition ensembles. From panel \(c\), it ) Tj 1 0 0 1 130.099 377.949 Tm 93 Tz (appears that using a dynamical consistent ensemble for the initial condition is ) Tj 1 0 0 1 130.3 354.899 Tm 90 Tz (only slightly better than using inverse noise ensemble for both direct forecast and ) Tj 1 0 0 1 130.099 331.649 Tm (forecasting with random adjustment, while for the forecast with analogue adjust-) Tj 1 0 0 1 130.099 308.6 Tm 91 Tz (ment a dynamical consistent ensemble initial condition can improve the forecast ) Tj 1 0 0 1 129.599 285.1 Tm (perform significantly which indicates that the information of the initial condition ) Tj 1 0 0 1 129.849 262.299 Tm 90 Tz (is well maintained. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 146.9 239 Tm 94 Tz (From Figure 6.2, 6.4 and 6.5, it seems that c-ball test and ignorance score ) Tj 1 0 0 1 129.599 215.95 Tm (do not indicate a single best approach in the case of comparing direct forecast ) Tj 1 0 0 1 129.849 192.7 Tm 91 Tz (and forecast with random adjustment, especially at short lead times. Comparing ) Tj 1 0 0 1 129.349 169.399 Tm 90 Tz (these two methods by 6-ball test, the proportion of wins of direct forecast is never ) Tj 1 0 0 1 129.349 146.35 Tm 89 Tz (smaller than that of forecast with random adjustment for any size of 6-ball at lead ) Tj 1 0 0 1 129.099 123.1 Tm 91 Tz (time 1 and 2. By comparing the ignorance score, however, forecasts with random ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 320.149 53 Tm 76 Tz (138 ) Tj ET EMC endstream endobj 739 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 740 0 obj <> stream 0 , ,,b7 (#Ȉlg䔾AЇN~|ۤM,Km՛VqZmޒQ_Sox=?sOF;ٔcަT!_d\|:ũ@*,1)2= kDGldlU䧟oD,*鳄r֞"nh:E:JX^IdHś%b)g6wߵ@% ']ǎrɴg.[8CgG9liis](g+j]\.CN\F\3DX5MXe$_Q1~ Ѷ-؞RFԂN̅svuKC]fF;䶛K%YPW禤y) O51pz$fuؤjKxͩiWw|?Eﲓ\b1]ϸ en% 2Qb$Oֳ6NӼpİYZrx~k5oˌ/M@ wss?ZyQQ\1B-ed,;0+X3q :J > #~.Z_jiB\HiA'hM4)G3B)S_bצiF.Bn*HUMZ]Nak Hx9 Jb2D=hS~@j?IoOAgoN_/0 A `Dڈ:?s}<%߿gtq6y!T z"g۴+7j%k:'Nb(R Q:/54Y3m(X_zUiLԴtSA812h0+GJ&ޝ2-h'{e1&#l>7aάs:z/*3W-$l%ĸݘ5J@ 4+##DB;$>$³袢ř?|8(2\,w2vT|! Ks(s/qKIsfA:LJ0PHCQd)5ݳh7i`QәL$tnXvքj`pxua^a[@]2-@KI#MJ 0m LӃct]wA8_j|\> " ,:5! SW9^Ap XĠ=.9:˚7R7.9u#E+K`2H2xa$g͸)[jUQ!d 3̌#E cX Z>7R_)S&DQ7@  3DoJn }di`:,6yPV6`%.:_W29*: guE1S8%۳c1PpUo;Q&u4wY1߁I<"O_fŒfm:cVwǨd՘1 G |2dUcB׹{)2}Xm0]dHYöLjX=i.Q0Bwp1m7EY wB%P^0\{hjfpsrH_Lhc:B2~QKIͣ-YwmO!KE_XZ[q}i=0_Yb2$S\,Qrf >緡ؿ5<ֽqN0OaL4-{}%Ge:|!~h]8LZ/vq/@K~>؟Mfi_2^bg(I wx๊rim_(aʈ~a65Ag5R' V~Sm+FL=.r\BZ]*QvYBb_ rPcl+'Id7fo5?狦=ޖwhe:(?i2 7Hvپo=v>x4d2ȁO4(1Rѿ\3Ug??ݝw?)k mO `Y UX)՗EvHR>ށjXx/ZP!G9䤫"]+^e]~iDR~}Ϲ|o5bX*ƱtgB d1Vqic=Q?k:y` Wh3 7-Wf ]QfL#ӦP"zW>.tR۷Ӳ|-ki>.M0!gJ#Jr^>JzP=r@-{70̈́\^MncD(:\6_nDYae׷cqkJ&-u; HKNҤ6] ALuFOR{V.`>-RdM%]M\6G![xTXV "Tڀ\w r`f)7ho;c+R ]+ԃ :=:[3]'sF.f9 TϰYBnŲ;F)[0YOwb,~./⳿XַV߯g9u3~k.0J?^I mL'%Fo+H;E8z``' t=wPn56qEkGa",ƁY_z9 jۣךo|dNbEeZu eA Jѡw_†UnM,+1HS>-90tZ ڊ`+cm5V*9zH] ZI~Z`U;wy Ɨ4y)ב{*JBfQ[x]:3Ljb4,0&a I. ~,+. iobc.8U`MDF8Z'Kn@XuhpF_ ")a3`zڷeD\|Rlٮ M>>CB~Rɦ•qN DQ{?5 K% >SPH)L?ᥑ]lT?2[88Dt\"B"^iC=o-tK_ϓDfTmٱ1^Ğ~=$R;ĶAӃ+xV|AgN_BR0a$nSA4Fh (h?[ī%VG4;zV`0a'D=9\)D[8sU\|?AE `5P)<F Hf!*SoQ=@UȡG9PPUDd(He!I<@se/.35P@8 eb kl;lP`='=TrNzo`ѐ/Q0%` 1Pʙ:g#(4Ăj_|rb.xi_т2ʃ^QK/1^o4۪fR_a-hsC8FojxFj5db/;85l^lkj[{+$圽gٳ/Ѣa[jsΤRzw$iz D'\FT.ә AzD|z[$vRǥdhnmv/Sk<ڥ8;B:+`/WJ(S>ҢrB^FcF / v$P #lAw]< 5tߦ/'`q3A5<"}f9K h>TiP̥ v9(T"ÎfɲVΡ!57_}Mp A?EƟpaD4 :^஄6}*na*_X]e_(> }J s,^> \Ϋ٫\Iw=xvý-V.b-)uʥC~Bw*NJQJҪ*KxHrdBށ4{3r-jiqu~BAG0}ފ7zd'tvWk*@;O$)Ne O[$-x=\Z jBJё–u`AK%g*:xcEF:u֋B nqw*{0!ctK <'m&c M=>w%ɪ趻S`- a-N,1<.uC~&<5ta&rFE|M\qi ]*B=UoS1DKK?:6w)#"75X P +X xQv!tZJ(VDMzy"]ԠQN⋦(' HZiΈŜ %"Gz2n"3~k<*=~]3ok"#aиcW.:^|A  , +u "څ ̚ 1XpjKm嗩AX@H0j̨&房Q^s=˙U#IR;ctoWP@DWXb}w < %=eýY͊sHU";,B-ߌ]\+4L$2qQV욡15A9,*6`e3/r׸1y3uIS,>BϏ_v_ asw [V#Y%mo}he(q6w !*GR2]E\CՇYL WUD'8yzuʲP:CeKWAP`W -4+&wxXJ Cvk6 $a&6(iǓP lJ?Iqyq %54PGhXG=G䤲kY# DhZVJ[ =̓*d<3Ȓ%,w?\Dc_F5X~HC*Q疡m]b,mhu &hҷ6,hoyK$GLTd7A N[-*}6kV\PX_v`竟Y};-Ӈ03ÿl]#wTq2j}Y /{schHz7AqF4}DZxF:s\>Ȃ%c@$[WԘvm8Dzt:`9bSfD > [{pr$ NTϙ1YT>\P- \YH7'N YM*h,NjThnjz.y16뒍WKP.z] 0X M[UhJX6k_6±{fB5SK73}ÏAHŠHW5PRm@z͝d\`-E{ i *Ws:<\ jQ^>{(aNA'FqFfYYeUj}^Kq!JfC.&5Qm S :vdNH_'VS^WbZD (_jVW^ n,ĪQVO\@8ٷ\+x-?hs?1BiM*W^ 6iFʒ:dm4_Zo4*X"b'/Y3m7y%jۈu%8+Bnd/eeCWU@nҷ[L5M#6Z+c3 ¥/<KY!U8 n&? 9B+4r4R C=x'i 6~'svHƭ0a!|1G,s/m\0 MHwS}1g5dV2a8f vFݕ[2r[(&)_~,Y%t2'"geR 6ȷ`eE7Md=3ǿ/+l; jGik-8x4`9cH@wWsf:ArM/j|LF%Zͤfx"i~x) Dbl lȵGLP mw7Cf8Yg"J$XR-dT ¿trP%zM& <M__^ӊB>Ƞ dF4=H Oo)cm_] Nţp~#44o89ܟ(><%ע1l~jdcnWxxFg֪K1s-YjPk5K#8A xrPʂ^e/1+<4V͊nmD xq]j0T]`O-jrxDv>ԛM w>O˳߽{NТ{{uI? a*c: P(มES釮q.7H^zS~L2QXOT;?r vQ=x(cΗ\TCQ+%#Qӑ]i4;]7&X.(6jOOK]q`: t D;B'w 97-ݟ\N^H|ETF3 :( ĉmƥ1ucyފ(; pb u#9cZPm2@ož9iR%* sg(ӯ_j&h/^sVcf~~) 'Ѫ@M.[sT8ź%XGקaTxI<_1~#pTq:6NzhӠEBP.T35ׄxUN4f* n/5 }B'ɮ,Gm4dċDF?lK(P:kC*܃dKr!qSn'fU',t#Z4A%,r5e4هYG`ͷ);[i$"7v::gTjј:opTOw3GͲ1odw|/ ([>O°Ϩd 91kUUƬ >fr.QRS9 jv㞫f~O1USH-ylT^(3@[*A-wDK*JQ@Kʑ%(?5C:U6ī#['hG=uz C7IpKd7h=ef3 %lzaeG^GV[s}rrb{.r6;ނi!֚U&5?Дb\7-wDY?KLv[dF$[S3hh=T'I\ﵢ В3Z WRA. fqOïx4a)Di>NDqRr55BO?hk7`+ikSvqnݎ߃ϣE>‚P/:4xwd3ĕPn ר Ԋ?$o?qY9,GAP'0epEo(J댒g9 NQt,kf%+#nIAn4Q@K梐~f`P'?G;ZjWkk\kgrc0*;3FIJ䷤B nB[՞kGq3H `; *{ɖIhSޛ MXrj endstream endobj 741 0 obj <> endobj 742 0 obj [743 0 R] endobj 743 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 487 0 0 802 0 0 cm /ImagePart_2166 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 60.5 635.7 Tm 90 Tz 3 Tr /OPExtFont11 4.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 90 Tz 3 Tr 1 0 0 1 119.5 550.7 Tm 96 Tz /OPExtFont9 4.5 Tf (-) Tj 1 0 0 1 135.849 550.7 Tm 103 Tz (Direct forecast ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 103 Tz 3 Tr 1 0 0 1 119.5 544 Tm 97 Tz /OPExtFont11 4.5 Tf (-) Tj 1 0 0 1 135.849 544 Tm 92 Tz (Forecast with random adjustment ) Tj 1 0 0 1 120.25 537.049 Tm 851 Tz (\t) Tj 1 0 0 1 133.699 536.799 Tm 93 Tz ( Forecast with analogue adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 93 Tz 3 Tr 1 0 0 1 57.6 527.7 Tm 112 Tz (-5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 112 Tz 3 Tr 1 0 0 1 60.5 514.5 Tm 90 Tz (9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 90 Tz 3 Tr 1 0 0 1 327.1 551.45 Tm 1195 Tz /OPExtFont9 4.5 Tf (\t) Tj 1 0 0 1 342 551.45 Tm 152 Tz ( ) Tj 1 0 0 1 343.899 551.45 Tm 90 Tz /OPExtFont11 4.5 Tf (Direct forecast ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 90 Tz 3 Tr 1 0 0 1 327.1 544.7 Tm 1489 Tz /OPExtFont9 3 Tf (- ) Tj 1 0 0 1 343.899 544.7 Tm 90 Tz /OPExtFont11 4.5 Tf (Forecast with ) Tj 1 0 0 1 373.449 544.7 Tm 108 Tz /OPExtFont9 4.5 Tf (randan adwalment ) Tj 1 0 0 1 327.35 537.75 Tm 927 Tz /OPExtFont11 4.5 Tf (\t) Tj 1 0 0 1 343.899 537.75 Tm 90 Tz (Forecast with analogue achustrnent ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 90 Tz 3 Tr 1 0 0 1 263.5 527.7 Tm 79 Tz (-Et ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 79 Tz 3 Tr 1 0 0 1 333.35 510.149 Tm 95 Tz /OPExtFont9 4.5 Tf (10 ) Tj 1 0 0 1 338.149 510.149 Tm 2000 Tz (\t) Tj 1 0 0 1 365.75 510.399 Tm 95 Tz (15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 95 Tz 3 Tr 1 0 0 1 338.899 504.899 Tm 105 Tz (lead lane ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 105 Tz 3 Tr 1 0 0 1 266.399 514.25 Tm 81 Tz /OPExtFont9 6.5 Tf (s) Tj 1 0 0 1 268.8 514.25 Tm 80 Tz /OPExtFont10 6.5 Tf (o ) Tj 1 0 0 1 270.5 514.25 Tm 64 Tz (\t) Tj 1 0 0 1 271.449 514.25 Tm 67 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 6.5 Tf 67 Tz 3 Tr 1 0 0 1 301.699 510.399 Tm 95 Tz /OPExtFont9 4.5 Tf (5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 95 Tz 3 Tr 1 0 0 1 397.899 510.149 Tm 88 Tz /OPExtFont11 4.5 Tf (20 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 88 Tz 3 Tr 1 0 0 1 244.55 362.55 Tm 99 Tz /OPExtFont10 8.5 Tf (-) Tj 1 0 0 1 265.699 362.55 Tm 80 Tz (Direct forecast \(Inverse Noise IC\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 80 Tz 3 Tr 1 0 0 1 245.05 350.3 Tm 99 Tz () Tj 1 0 0 1 265.699 350.3 Tm 80 Tz (Forecast with random adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 80 Tz 3 Tr 1 0 0 1 245.05 338.8 Tm 99 Tz () Tj 1 0 0 1 265.699 338.8 Tm 80 Tz (Forecast with analogue adjustment ) Tj 1 0 0 1 245.3 327.3 Tm 928 Tz (\t) Tj 1 0 0 1 263.3 327.3 Tm 81 Tz ( Direct forecast \(Dynamical consistent IC\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 81 Tz 3 Tr 1 0 0 1 244.8 314.55 Tm 99 Tz () Tj 1 0 0 1 265.699 314.8 Tm 81 Tz (Forecast with random adjustment ) Tj 1 0 0 1 265.699 303.05 Tm 80 Tz (Forecast with analogue adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 80 Tz 3 Tr 1 0 0 1 215.3 249.299 Tm 70 Tz (1n ) Tj 1 0 0 1 220.8 250 Tm 2000 Tz (\t) Tj 1 0 0 1 280.3 248.799 Tm 77 Tz (15 ) Tj 1 0 0 1 286.3 248.799 Tm 2000 Tz (\t) Tj 1 0 0 1 345.1 248.799 Tm 83 Tz (20 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 83 Tz 3 Tr 1 0 0 1 227.75 236.299 Tm 62 Tz /OPExtFont3 11.5 Tf (lead time ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 62 Tz 3 Tr 1 0 0 1 151.199 248.799 Tm 74 Tz /OPExtFont10 8.5 Tf (5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 74 Tz 3 Tr 1 0 0 1 78.7 300.149 Tm 119 Tz /OPExtFont10 7.5 Tf (-7 ) Tj 1 0 0 1 85.2 300.149 Tm 51 Tz /OPExtFont10 8.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 51 Tz 3 Tr 1 0 0 1 70.299 293.699 Tm 91 Tz /OPExtFont12 7 Tf (C ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont12 7 Tf 91 Tz 3 Tr 1 0 0 1 70.299 286.95 Tm 59 Tz /OPExtFont11 9.5 Tf (rn ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 9.5 Tf 59 Tz 3 Tr 1 0 0 1 78.95 256.25 Tm 114 Tz /OPExtFont10 7.5 Tf (-9) Tj 1 0 0 1 85.7 248.799 Tm 83 Tz (0 ) Tj 1 0 0 1 88.549 248.799 Tm 51 Tz /OPExtFont10 8.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 8.5 Tf 51 Tz 3 Tr 1 0 0 1 87.099 325.85 Tm 315 Tz /OPExtFont9 3 Tf (- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 315 Tz 3 Tr 1 0 0 1 212.15 680.799 Tm 95 Tz /OPExtFont0 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 95 Tz 3 Tr 1 0 0 1 63.1 510.399 Tm /OPExtFont9 4.5 Tf (0 ) Tj 1 0 0 1 65.5 510.399 Tm 2000 Tz (\t) Tj 1 0 0 1 95.75 510.399 Tm 95 Tz (5 ) Tj 1 0 0 1 98.15 510.399 Tm 2000 Tz (\t) Tj 1 0 0 1 127.9 510.149 Tm 91 Tz (10 ) Tj 1 0 0 1 132.5 510.399 Tm 2000 Tz (\t) Tj 1 0 0 1 160.3 510.399 Tm 91 Tz (15 ) Tj 1 0 0 1 164.9 513.75 Tm 2000 Tz (\t) Tj 1 0 0 1 192.699 510.149 Tm 88 Tz /OPExtFont11 4.5 Tf (20 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 4.5 Tf 88 Tz 3 Tr 1 0 0 1 133.449 504.899 Tm 93 Tz /OPExtFont9 4.5 Tf (Lead t!rne ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 93 Tz 3 Tr 1 0 0 1 34.549 205.35 Tm 95 Tz /OPExtFont3 11 Tf (Figure 6.5: Following Figure ) Tj 1 0 0 1 184.8 205.35 Tm 72 Tz /OPExtFont0 11 Tf (6.1 ) Tj 1 0 0 1 204.25 205.6 Tm 93 Tz /OPExtFont3 11 Tf (experiment setting, Ignorance score of three ) Tj 1 0 0 1 34.549 191.7 Tm 96 Tz (forecasting methods relative to climatology is plotted vs lead time. The error ) Tj 1 0 0 1 34.549 177.75 Tm 97 Tz (bars are 90% bootstrap re-sampling bars. In panel \(a\), the initial condition ) Tj 1 0 0 1 34.549 164.1 Tm 89 Tz (ensemble is formed by inverse noise with 64 ensemble members. In panel \(b\), the ) Tj 1 0 0 1 34.549 150.399 Tm 92 Tz (initial condition ensemble is formed by dynamical consistent ensemble with 64 ) Tj 1 0 0 1 34.549 136.7 Tm (ensemble members. Panel \(c\) is the combination of panel \(a\) and \(b\). Ignorance ) Tj 1 0 0 1 34.549 123.049 Tm 88 Tz (is calculated based upon 2048 forecasts. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 223.199 25.1 Tm 75 Tz (139 ) Tj ET EMC endstream endobj 744 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 745 0 obj <> stream 0 ,,$j۫9<@t\ѱ:ёr`0G knU-"%9 [4q 2E.˂7pTya M]&$5g 7eêu:CZMӱ?nplRH9u_{Gnƒ՚$YU;>rE$><#mQ#)]( ^D6W\b~5yvc>%>[_?BSv"a^o׻Ja"@Ȝ9ifN9).(/UՈjnbڞdDnDbxJIt-ʍF(~IZWe@!l/":{U6KR,.oBq}ĜDt6Ev `Wjh:*`& EE]b_XS9LRV<;ã5B2f =u.tKh9qzgςDP{5a*N"=f![QmsycD]r6>rJpE(QExZӎ@cƺ| ְ<:a\_:Ҭ8f8xުoS &2-m &g/[")r3 ͉BaQ]3߮5WyK4ֆtAW' /&;x_c@{V}iTұ~` fRNn[MjO23%ڰ-:Ǖ x͹ Z>XR}rޟk"7!-QgMȵ ,M)`l[NO Sľ݁ ,C׊4UqaeD0uGs+(Oa@+B\||!#xو1;V9wI W 3}- aC]tU6u;\SP_Ci5CG̍ŵ֐V@h.p'~*b=AG@- Eu!nԯvn&{Ѫ0}ٳղ!\عW,նIJϽ޸ߋ>I<mMBH[f.f`7iޫ|P?F#5>x NaJsYv@&ò^֒*w!mK_ 0Q]|R(.qKAݐE]?rTsFQQL0؆qt#)+lqyؚ (ɬZbf-QF: pm]m4nW'#>Cj9"?-zyq0}jX?k;IIT^@^3v oB҇+ I"SN]wwC%@A-!NnEq-%lp'uok3gz9vyyCl |x*/ACvb`!5%0©'e>C` ׮_RϻHYPw%ӼW|6u/>ƧRa9_dK! C1I9l!;3S Y8Irڀk3~ޫwÛ!w: vb v}8 ?<6ǴMhwcu*g;~@[to7Arv2ե9UVgLŷ N#h;@f_BOOD`5Ö{up J ! 0}$)ˉ*#F"GY5~MTZ Xy5 v/ZwĂLJ=&!5D, 2RƨZc yB EUZ Ju"S9YJ+ sqx K~SuT!G7ٍa&aLYըl9+i` z]iU0v:dCz$:V2`#c0^'5 D^$ DQXKJ)UT")jA7Uؑ` s;ί->U>腖zۃ|./=w*X޴ h&#X 1.w.-q X().V`d(!50 mH yJRms.w];ި ~ Sj*L A$o~]b *f5B%kr6pbgȫY:тl52xL>tOt~ʤ+mí?w;;k;h!C{&$o~:V'L8S 76r du,Ciq$ [gC{FbmM6Smt0@)aG+TGSOb*._QLDM]^ۈd96|ŏZ(–LEܕSxJ9E:j{#AS!qQF0ì U)gGD u \D=X޻`>cVkoAZ,ڐ7h@6PyUŝXt,}X,Ant*~sSxW CV1%",p`(b@[|zK. pl cb~'nw<4czjX D 4X#p3l>0I`n4V,!y] 3W88`5Vl`,._GSH=N.<&tޥ//l0_}١¤;9t\=Mĥ?`~&9dvB#ٕj\i4L0{՞gV=Q6/>|dީWu TCSC7Jd0nbt7۵g'n[^#y^z޴񺫢#q.͂؜tLj٦S*G1caN~3]T.\䌎ޯ|ҮR4/. R{GFy`pDg! nGxt*D%j\O󔲺`9_ֺS  @z{¸o[~dtI? D' {_Ȍ*J4m60W]t5.es,y,BPulp[ 75?eprbGüOȵTX`QA5ZYRFIBy&]Ӣ:{Be2ͱC$;C"'1GB!]HW"# b3^l'[ @T*>v6 [ _>,er:f ֿx+:zPRRMn A)O.'+T =36#8 ݭà@;8 .La">,2*&_%Y`B܇Rug<,t+W=Mb8kAj&2L"Ҙ W7$Ae8&xMP:"7,-"%Ҷ3 hd?ŷ%W @&rtQdIHeZtT(pY.Lb^2xj}Iu^ ]-Ʃk4l^ŀ4$Ul)VHʎ& KWl't<]&2Z ʼ71ٞKͅmg].2M-~gG3;;0Z6oSP'"$21>Y(08_PT cksٙO'W1^KtO h#e &zi Aa8 ڬI#$IvZ2@wEhh ^cȳ8URr?xk9UFܟWz]kjGcA=d v4I,P; -~ g& i+xU&zIrK'x re҉{. AN)+4 &1$andl9AyjA  5FMqϑ)]h.5KwWB؊wd4Wއ; QCJnxG?e4SK!I^^ӲD]T 5*Vh߆Q-+ 2u~[3Iʍ ŋ;TF)1(Awm8 J6 'ᶐ[RG"trP@m4\<9WO C߱SN{iGKD}ƛZ:'5 u%[^hf?vVV]2x>rtE)BcS޽/(ZJXBok]XT#}t_f ?Q{{'I ho q4@A^ؐ!%X4JѮ`7q U}K ;~Ww_-DZ`9w ET̼`'~ &hE޶[QoH_9[ߘBPKyJJrR=_e֗#Ƚj`YpfD7rOk)=,j&GoIR+ l{葂2ڈ22Z9zҿ֬(yVog!T$i ݂.sN$gw.ᓐ;(ڛ%f&^YnfcG{r 5 { Jlq|tAV4 ZO aQrCSdP^8u Zhc2, "r qrg mn?%%6OQ7!zIe6^owo5P4@_5:R81^KUmxlѧ,]* \=HlAE ڄ-4BN/Y*)yK Z/LQXM.'@Hw0Ÿ&f䎓׈&%m LIQ54lwx]bRb>8l > X'cӨ)Z !ee~xxYwxdZ~l-ZKw;?doyRcq#T ~9TDO+`֞/9>r>o142ꚧrix!3U٣BOE_X0' Tpț(^!ɇDO̩!'Τ{A:r Sa]_5Op(Iz"IP?q.I(B'=#4E$_FPs2&nR![Lr5V=Zg| (Ҧ~Hj7e.)ԉsky>4F>'C~s.$FיX/ A˦βll4%?Z;ЯI}ؿ%ƹRI=Bv9{z'CtPhfoѢ{VcjW%js2t<+7U)D]-n#˽Tka8w#h+ D2+p̈2W 'YgrlFL`i.D(s}/t h&veD7jX F;/zHڵTIgkrYgDʭ6B _;8훫-d̀1Kq K 嫍=LߢA*_=9KqM> V5?zb4 OeS-`8Umfi||Ѩ~մX&⹷]2N̬E-g鈲x Sɋ{?LeF0"bd3R7'^VFPf`=Wmp?A]A@ ~zN{׆+jw[ǥVr O`ǽ(_mCqß^+q6{s=M-/U":O0\m$e$_t,-趎KN)ON.@|.@r/o`iJI_:h]IX3pA0Ϗl[IQ @YqC:KG6gE )zugL?@ahL>+sW0Ot!&'t[kK x9!kf YH;43=Ir2%Ҋo9KƹGiSC@""t_2kdj[}I2Fs iW/ro7yTT1}R7qŐwiVőL`e|- Lg*'L:ej>~B5Dmlh٢J̅@4uqi.i{7Ew1%'4㞘"!u)R`H2[ HAm +m;χpC(W[=K/9]Fv^h9m{`Fdր.F L75}2x2c"UM bQUݱǥKTH:ѓ\ Ֆ8hl|P1)gqė,32zۼRKy!jH9JnCx Z1a-rL`ߴwd:{ >1+fqeY$Q9#^ զZdd4{VgP9W X #&g(!`_WTp2MޙH6_Fa78Vlj#_\ľPg>Ayı4臕«l.=ݐ#<9X$+tю-92-8d>󳾹k%j$fx7%Nvcl_cn*Ě]uoJyp |wOŢ"Y1՚H S`j5x6w|WeAA*[^Gl݌ ީF@ J\_]82ϪL84͊ K0|>ƮɄVe@M.Q73\Kx0?Ly.Tz7 U ߅z>'$<.o9;plD-luK`1Gx\nhN}Y?^.vhj5n%L)pKD|-\ 4#8ou/bk$ƦzϬ-z9Nt,|^Kh9wu!&,QXxc%q3} \鈑5[ۊg C  Q27z rn9I{fQ>+$pu[^A΢j .8)y*..8HuY0wy~N&[Z sϐ7)tKs ~e򧅗tyHd[OsjX i?փqT=.(Ú+Xmf &Vn -GoSjj̗_"6usj¡mnFW:R"\:ZZ;pP+i_Vhv9"q|Oкi2*6xƬͨV?BQj-L_z۵ WQbQhA9EqD-vʧm{?Ev2y-I@Hp1g'75z0].+7VJR)o\F8)МpjhiQ yHЩUkspC7qQC, @ħ/R`0-N"vN; G$r︀}I`"0 |L { |;;@-0uZQ7@@ ^0a.5XJ{2n ?hnSTZ@;hs7B0(XF!&e k!] x8\w^P7/4yg2 q2 J+47; h| 0O@n+ pE0v2GY2T 7h|֐bv۩ƢȽ JRNBl7]ǡTpmhѯ.&O[v8CtId8}~! a ;kBcIMeX C:튞Ha9Ҷ wMP?z!Bq >P?|>^ Ƙߚ$8UpJIajmWPZ~[FH 0f! \[b;y#"9P^-YlqΣntH[6 8˥8{oR>na2qwՍKqW& }[Ƚ^iݠ,XOoW`"BYM79[nR1HOǢ&0lC.gY]絻rnHb(vI04 AsX 2g^uI.0aɽM;aOIyݥHkʎ-8 mfy9ы-_E8pY0َ4ZFQ.9s)GuxvbZ}2[ŝ.62LIC GU:`ꃁœ?}em3ƽF4/]4\B_juZ s}SĔsSF7t~dws%udāgNb1"XUt6) #nܟf=Gdy\c ЋmPGe$d8>pa@ yH\:ze ~ rmJ;.*`2EMkzFG7 D{"[vuO`*:=!k*`H;JMu,tΡ.4aF2a/D-9N繗[TSfNp|8z}tZv|RI۟ p]I^nֵR7c.P+n`W3*^)L_oQ\1K*V=C;GOW~0it Y>KkO}:j!%#_e4n#$D[ WV-WN[͑K"ZXuZ8. ys @3e_!.tF0d݇4'XGuqAix}gEI--knȱ/H;qD?.Iإ%q @WÀ~걓S D0v*NMm  nxw0! ~:Rbd)`h"4]Td|M 1?|oF0ߠ١~XbrD[PUDZkGM v=Wצ|ev =z,lyUEuoGi{Q_(+3/xV*3ϷFR.4x)KgfC`ЉU}6z8;4v(-,uhm␲ST.sbNj@ᲀ'Pp~zQZ |Є)F\yB8 Q%0zAxRSMh[@.4"4b+^zo-8`S#wʻ ^n,K+1Y*TgBV &V;bX{&s5.YR5j+&4a]6s?˫UH c45,9(g<ީ:"1S*Oo͐`ڄȅj'[:ˠ@uu ?U|XNޢr58m'*b8ÅZ7.kK*ζX{ݝE 7Jpƺ9_>#sAD`Iß B_, R$5r1.NU\N0ۅ;`7Ow_nheϏxhթdw PA n yrsޚqބ1rR8:m "z.?/y^ޥ߲$Y#}ehC* ؉rha5z Fח]/<+R4M-[=D;] :O] T!O y lau6 Cx^=PpN9kwP^~B@Ʀa+*DŽ S!R[R0eW09. n@eh"{IQ%2O%> 5+5Hʲ洇HJY҇^#4uY-VOoU%P.CN19̓5cGlw>ʥNSB@ _iZo ޚϹTS.k't[4Ml^m0^Ӊ-/!KѤ@(Lݮ_ =.BŴnм˼?wU "%Φ^ &)>khD*z?cFHV佉""oO5]!-P,5ՠOfs9 S.@b+ &7‘*j>P?8H>U.* 3=t״Qq2T((\N϶3t^>HoE@p2_b0u;`9 Kϸ_jT4-(.r)"9iPk?({Ȕ]ԑ 0$1zxX\2G ,@̴9'5kRF:^k0;dTJXBV'q/i3z|Lf$|,݄~fxN[IXXNΞ&)'y)Ri#3ߐ3*3"Ð%.*?bk'&ϣ&ceP_gN. C ]:m6Y;H)oC}xgI6TIw+J̀#4#!t~I;-f.Fx;,Djƻb]5y4+K7a^ g ֞n{^[0ѨڭSuM_u[C٣X(q0%H> -+cx;ػ}umҵ8XϺԣB{c)SAɁ' fpAhGi&sI@$}̳&f J4^R©ԙEiVGC!ѹI9,sEׁP+$x?mNЫVvQA3J}X""-5WLAL:R|,єط9{( 㛜`B'ZOwޫfv`)Ҷ, 5δMkZ 62jU,uxcGRi͆򼈡i3f; KH\EEԂ2 ߀[fK K5C3~Zq0y4麲&pՋ5{XuvڅKHe}E)V(!@BI!U"QҕNW~g"(4HP̈́Q 6WfJț3ܓ> endobj 747 0 obj [748 0 R] endobj 748 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 624 0 0 837 0 0 cm /ImagePart_2167 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 314.399 718.899 Tm 103 Tz 3 Tr /OPExtFont3 11 Tf (G.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 103 Tz 3 Tr 1 0 0 1 134.4 675.95 Tm 94 Tz (adjustment have slightly lower ignorance than direct forecasts. The reason for ) Tj 1 0 0 1 134.4 652.899 Tm 90 Tz (such inconsistent results is that there are fundamental differences between these ) Tj 1 0 0 1 134.15 629.899 Tm 89 Tz (two evaluation methods, as now explained. The e-ball method measures the prob-) Tj 1 0 0 1 134.4 606.85 Tm 91 Tz (ability mass that stays inside different sizes of e-balls and counts the proportion ) Tj 1 0 0 1 134.15 583.799 Tm 94 Tz (of times one method beats the other \(on a tie, both win\). For each forecast, an ) Tj 1 0 0 1 134.4 561 Tm 90 Tz (&ball test only counts which method wins regardless of how significantly the win ) Tj 1 0 0 1 134.15 537.95 Tm 91 Tz (is, which means e-ball treats an overwhelming win and slight win the same. The ) Tj 1 0 0 1 133.9 514.7 Tm 90 Tz (empirical ignorance score discussed in section 4.3.3, on the other hand, averages ) Tj 1 0 0 1 133.9 491.649 Tm 94 Tz (the ignorance of each forecast, i.e how much one method wins in one forecast ) Tj 1 0 0 1 133.9 468.6 Tm (matters. In our experiments, although direct forecasts have a lager proportion ) Tj 1 0 0 1 133.699 445.55 Tm 96 Tz (of wins, it loses a lot when it loses to forecast with random adjustment. This ) Tj 1 0 0 1 133.9 422.3 Tm 92 Tz (can also be seen from Figure 6.1 and Figure 6.3, where the model error is large, ) Tj 1 0 0 1 134.15 399.25 Tm 91 Tz (direct forecast miss the target \(true state\) completely while forecast with random ) Tj 1 0 0 1 133.9 376.199 Tm 90 Tz (adjustment may produce some ensemble members are close to the true state; for ) Tj 1 0 0 1 133.699 352.699 Tm (this kind of forecast, ignorance score punishes direct forecast heavily. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 133.9 308.049 Tm 110 Tz /OPExtFont3 13 Tf (6.1.4 Forecast with imperfection error adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 110 Tz 3 Tr 1 0 0 1 133.9 277.549 Tm 92 Tz /OPExtFont3 11 Tf (It is clear that forecasts with adjustment using the model error can improve the ) Tj 1 0 0 1 133.699 254.299 Tm (forecast performance compared to direct forecast. Unfortunately, identifying the ) Tj 1 0 0 1 133.699 231.25 Tm 89 Tz (actual model error is not achievable except the noise free case. With observational ) Tj 1 0 0 1 133.699 207.95 Tm 92 Tz (noise, model error cannot be precisely determined \(see section :5.2.2\). One can, ) Tj 1 0 0 1 133.699 184.7 Tm 90 Tz (however, estimate the model error and use the estimates to improve the forecast. ) Tj 1 0 0 1 133.699 161.649 Tm 95 Tz (The ) Tj 1 0 0 1 156.699 161.649 Tm 116 Tz /OPExtFont8 12.5 Tf (ISCDc ) Tj 1 0 0 1 196.099 161.899 Tm 91 Tz /OPExtFont3 11 Tf (method we introduced in section 5.2.5 is not only a state estimation ) Tj 1 0 0 1 133.449 138.6 Tm 92 Tz (method, it also provides estimates of model error, i.e. the imperfection error \(see ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 324.5 51.5 Tm 75 Tz (140 ) Tj ET EMC endstream endobj 749 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 750 0 obj <> stream 0 + ,,>7ٕ<:ՁK9, c# H0 obmGT,:"I݈(mWv+n VdH1`Bz|%G+;WSuE[>&r$s߮\|%; vO(@xC37a4O8ZoR옴Dz[]P͸3߶Sf-h2RHJTS+޽SA~j 6H[? jC %`șśLe nA#LtB]V+E18 8eSd 2]!X8L`|H&-ڲv7S2Pn !<8}?0C.G#)϶żSmbEw,$9_Lbfr">_26֦FZt&߳ǬhrIYb7. JR_T+P %q&k˧*Y[hi8M\1e4vKlA C<,R)Wt3n@8rX-Yč1&z.:~H) `$GzQ#z:訓$YTsx<Od\E Cj MLJ!mݲ8X"6_89/?ţM<'Oa($w.v0zTdw"襀aPg٣EG!i}t4=cv b(y>`Z9 ^b,"'lq? z7Gzɦ?CD^H| {+7QTŗ_R'-(GB/_*OGEBU'Ȋ6,79%_ _!4a4( SsghOVI㶭1ftnT0yOnM!EYG[ŦT%u=?80wsMd/fD|TEF*bP D9u l,_Onr]biu Rf18pO6ۂඡ>V6c3kj*oPM~D+ރ }s$e"yy XbZ#a[1'hGF9cm,FpƷq5 ss2k`fvT=̳w.%+u*(],\XFNlc"o x?J?czFP)zϙWܿt{~;‘nj!=G.byNG݂.OqkKeIgڮ>۱85-r:|<ƞUm[߬޽m+5CvHi|3E|O|ZSgUvQb;ˡ8*v''E#釖1AB> K[H \B!G-4R"zA큆茠^<`~)ztS$|CXs1\=~-sCvVMN*_a=lp$ﳙ.ՏV3k'4/km$!׹m{k\A% $)M]qMY^1Zƛ{'0aY BN\|WP& xEpW>t(,Z47&3zDs#70p{oB^@3jSO`  NroKrmbRPP(4$}5 8ne<`K_˗\IbEQf-NB9 [yoLZx7tb'%cωxbjiTvBeSt4#p_J&U<߷8w K^UfjW7jH!\ֈZG0&w0͏BuOBަ]"udC GgQD[\ \4;reicX ˆbeMu39~8ݩQ㈙͗Ҿ;1* S~fLI4t sikXP՛7HDT*dd]-U!'+b@GzQ v7ł ?H[¹'^HPa_i(d$=b|-uT¿/O7u+ޫxpFBusU|NE4D`+7ףވE58e%9>.j\#GQj~g0Pu?]EC{c 9lC+1d/`4֚3a(okuvzf%Ӊ16Dzf60@)"Ks#JG~Qa+ͼ8{fa哺&s60wV8_aŷEF:# *de4~Aa H-c_IpQB)dw `#.hC:eIBdleVhWHG^- 7|HL-h?AVU[ _ZaQVP%Mxs<*4fm/T [ ҕk=X]Hlԇa,=4fynK1'h?$Xb ./ ]?9g°: 8Nti牸]2RO'.9S}Rۢ@/%3,[8#p!A$P&y^}*-u`C5gcK_GrBqfZW#W3IQ 2|N/.*ȏԛA4T. i"1P(f3) itǥHq--#_i=s+k~$ȃy0m<<)A.zKSgG\46/s-=p枋3'_ R$'_9['JV,ZlVePNz β+$qҿ)O!Hso?oǏ㢼\G xrFVb%wQ ̬C7gZщYlٽ4ζnՖ!Rmy{KAQyf ࣓Q%B& ~)LbqN$M,?Gvyv~tˏy"?v\͉^G}dyteA&#f`x$`?=oc yvb_ {]<N"QrnuW7FB鞊$n5N~;? y uj> Z .]OH<@rĜem{+~N"Э92ZR$jTL]: 6Oݍk&4HZ_[L3%?#!9FV̋[,l|H`7}'27 \,ԭKme4ȼyWB("K=J~ C B!&o)1LJ-(yv[t`!n։l'hastRh¹x3e6ڭ&5W &鱨U?W6+,Ӳߞ0cX:ZxG,k_ڛi=vjY.22ucuﭘE]nivj_W#Gt'{A^D\͎Rq)ÍKZs#1m)B38{|hE v7xXʗBn<~8*ÉOUcQ`fgL}͇C.h*~5p F(p/!S#@<ќpZEg=h@[$42֮227 ά!0:X"%WB t A0n"&_:vDZ$=*uV`0ƥA"k@J " RM!TY99O2RXd{ Cnxr;z35P=94>t(Aê@lHSgx xdd-ClnQRkp uJ-(Аu7Yv+;ŹANZQs K 2W;Yt!XZu·z=]V2ȍ8?CLRjRДWhԄS ۋ  + +ˍ7ֈ}ZeM6{ M( I(O9 U 2TFX}~U}hz࿂BI&1xό햪ayalru J%HD+mn~,CJd8,ʎV .1By\8mb/~ r 7a-VCq;/ я3n?_P9Su+ubV1ZRFlSF,6I˓X Ċ9.Α8CX8gwJS+/7'֮M SE41 t 6ӱ E%@#Mo~vQxHM ]Lt "-bad\sgO';W.z}^pJ:*Zws)+s4m 0<цIXȰ;WSb\(p+~j04Toi ?P0Guʐ!!/M)~B4|懣9wNK<|c 'Խd5{:1M&it|,fuP6mOb214ݶ@Ev?[;#mW"Q_eXb/ ^6SoSJT=εGI+0NGCݝĭ- _85|IJ^9ŢLмc < }g"-r3uM Z׳=/w)^%%}yg1_N hk45N~,bTo}WILM3/eʜ;Hi0=~!UfN Mt-h\#gٯ}/f^0Ťd}X{]Ш(t>",K Yhawk2`f=Mm왈 0avf~r;Hl {ة0b1ޕSl-kb w=>T.FݯBVrEY C~*5buѼxll1RuՈ(6mpMg)& 5(-لf~PYsb6mFE(Y7-uYbZXp%BP\gcƴ^30obHO+]8Jx!wHZC( Մ#Vk4HDrU{Xֆd0b@5#O +zetyL/`, q3JktlLHHyXI53JT&R6)0h;ד5s~p3V$L8TQC~+0K&9fqf5I=%-nFE0C9q<-e:qrOU&p&Bh} $,%U-G6 ;us]m[;d J&}OE"̮ XnS }̈uiH:/OGw /`%Ҕf"4O~7NƷb&ƒB c 4h+=r~0eI:N`y/{M8*ع 3!X?nr쎵"1g~oඟ')->|Z*sKxfzbBf4+°Ru []s8Hn""/QhPyss~Z39o!lYWޯ:vxp-Ub05[F_2EР,Y8w1  =YXkyb< 0NzTҐ1)2 Oo\?x*ǭg0>=@ՊAFCܝsBKetCss)= j/A%vjQUNCמ; |gf$' Ghf`LA#֊1]ϊpzZd? eY8BA`3<%)n~ 2|K=I( *HVUF - T)YZ\fs9ь2 "+%c%;U* bɯ>b'd濕tZI'nj-^ޗ?1>UwG%l7*#XmH@~lnP o4^{P ۹mM"9ާmy93BB 0|=OC*Ο=Cy0"c};Z},,Pӕ#c_q6Vȝ;; 0!ywK  ` ?rIk6 '?0%JxY1X)KoFGzd36;9 npҺVˌX#N(F× 5:; *N\|tT 1pgwf-|72 vis+H>ZagАb4i䳼SĸL˘t .x9یR>*C*4ocYX>q>Q+>{//Y|(N÷]0g6]71[h&x3ơ"|3lk@Lecp4 V}ͲάqRd#*\]aA~eYW'ynQ3"$ҫcP/D%U#&ت2Qt~/ʍ~PCt9•ą5"&띨 '{{\,"2pR 08Hdl@!]:x/j>s'xy@>?[݈!=w  c{(_Ĕ瓢ԨKCe6?;ahDPY^9P?mEEi 7~P23{R&6͏ > Ke>Q 0&ZRYJkˍQuz;1a f޹ endstream endobj 751 0 obj <> endobj 752 0 obj [753 0 R] endobj 753 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 624 0 0 839 0 0 cm /ImagePart_2168 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 312.949 720.2 Tm 104 Tz 3 Tr /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 132.5 677.25 Tm 94 Tz (Section 5.2\). In this section we consider using the imperfection error to adjust ) Tj 1 0 0 1 132.25 654.2 Tm 90 Tz (the forecast and compare with direct forecasts. The experiment results discussed ) Tj 1 0 0 1 132.25 631.149 Tm 91 Tz (below are based on initial condition ensemble obtained by inverse noise ) Tj 1 0 0 1 488.899 631.149 Tm 18 Tz (1.) Tj 1 0 0 1 492.699 631.149 Tm 34 Tz (. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 34 Tz 3 Tr 1 0 0 1 149.3 608.1 Tm 92 Tz (Figure 6.6 shows six examples of the one step forecast ensemble in the state ) Tj 1 0 0 1 132.25 585.1 Tm 91 Tz (space, the initial condition ensemble is formed by inverse noise. Instead of using ) Tj 1 0 0 1 132.25 562.299 Tm 95 Tz (the actual model error we use the model imperfection error obtained from the ) Tj 1 0 0 1 132.25 539 Tm 94 Tz /OPExtFont8 13 Tf (ISGDC ) Tj 1 0 0 1 172.8 539.25 Tm 95 Tz /OPExtFont3 11 Tf (method to adjust the forecast. In all examples, forecasts with random ) Tj 1 0 0 1 132.5 515.95 Tm 94 Tz (adjustment still produce ensemble members with too much spread. Similar to ) Tj 1 0 0 1 132.25 492.899 Tm 90 Tz (Figure 6.1, the first 4 panels present the four cases where the model error is very ) Tj 1 0 0 1 132 469.899 Tm 89 Tz (small, small, moderate and large. Forecasts with analogue adjustment outperform ) Tj 1 0 0 1 132.25 446.85 Tm 90 Tz (the direct forecast as long as the model error is not negligible. Panel \(e\) shows an ) Tj 1 0 0 1 132 423.8 Tm 89 Tz (example where the model error is small but the forecast with analogue adjustment ) Tj 1 0 0 1 132 400.5 Tm 95 Tz (ensemble is unable to capture the true state. This failure occurs because the ) Tj 1 0 0 1 132 377.5 Tm 97 Tz (model error in this case is overestimated by the imperfection error. Panel \(f\) ) Tj 1 0 0 1 131.75 354.449 Tm 94 Tz (shows an opposite example where forecasts with analogue adjustment did not ) Tj 1 0 0 1 132 331.149 Tm 91 Tz (capture the true state because the model error in this case is underestimated by ) Tj 1 0 0 1 131.75 308.1 Tm (the imperfection error. Figure 6.7 shows the comparison between three methods ) Tj 1 0 0 1 131.75 285.1 Tm (via &ball method \(see section 3.7\) at different lead time, the forecast adjustment ) Tj 1 0 0 1 131.75 261.799 Tm 96 Tz (is obtained from the imperfection error instead of model error. Similar to the ) Tj 1 0 0 1 132 238.5 Tm 94 Tz (adjustment using model error, the forecasts with analogue adjustment almost ) Tj 1 0 0 1 132 215.5 Tm 91 Tz (always outperform the direct forecast for different lead time and different sizes of ) Tj 1 0 0 1 132 192.2 Tm 93 Tz (c-ball. Direct forecasting outperforms the forecasts with random adjustment at ) Tj 1 0 0 1 131.5 169.399 Tm 91 Tz (short lead times while underperforms at longer lead times. As the result of using ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 148.099 148.5 Tm 99 Tz /OPExtFont5 11 Tf ('dynamical consistent ensemble is not employed this time since if method can improve the ) Tj 1 0 0 1 131.75 137 Tm (forecast based on inverse noise it is expected to do so for other initial condition ensemble and ) Tj 1 0 0 1 131.5 125.25 Tm (it might be too costly to form an dynamical consistent ensemble in practice ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11 Tf 99 Tz 3 Tr 1 0 0 1 322.3 53 Tm 98 Tz (141 ) Tj ET EMC endstream endobj 754 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 755 0 obj <> stream 0 ) ,,ٔjut8n^$k0ڈAVB_9ޏˉK"9ԕHWO7GUn!S ơ6x&sN\jq L8 ޤG$Hs,1cMQa +a(eYQ9)AW,ab@~hG $Q%释w c'__6Mw(ݥPkoMt|nAݿx㰕.wF#LDӢMc,V'k^F^}j.] ;/[ 2&r/L5.=ѦwyoP|IxsL9 }rgÚ<ޱpt8c)hp}X4u7XU m { -~(Q+6VX@r4?)X]P|}.L5nrJ_9~w儡P@۶SQ x% uf75! $AU#"3R}!_OV:,/PpWP#5R8p g8*K8̝Xo:swI=ƍ@?ߥcۅ^ߛAK^2ii]EoDr2 qItKD+S5kSw̤f5voVOM32_qa~P-!K6h&mݰX ͠ S'f> W#'࿾? !M#0W|%I' ;_ڸJ馲1(GO}Zv6Lsvα*ogT:6..6[ƖXtu[ȭkD㸑w7̗Y(0_ዤs~5P IWk蘽;yۢI̜Mϲ/b@%*iǻMxɡWyhŞ+!ʼl8ReORhi=oU0KbRܩA5eUIx@Q˘#OAT Zxo| !S!APxEIJ7s&ᄼcD1W?rOư]U.pg;;FHI6f C53G?漙*/\Ӛ7n W7^q\x M@0SS8.apA.O`C>; }{v@-GIl!(z,fIp|Tk+d9ɚ=]jNg24ma#A6bRB!ze^fj)xcdy|  vc5f꺖JC͵ .Q [Pwjbc}|LWn^"`Uu'CGoиye.|g:ɷ>{r!3.kɩy>ya/G{|L`H{ف 4pj` &!tﲍ3LX͆SD^LMRqOo}Ip^ d E~qc6`ߪNmpt g2 !9!ݪtR}rOV-*ۼ$qvtؚP@o0yW܇0>eܑѝ2hꨜo*Kr.ԑX UcU? .ag×bgE9eUB)~btt>ꢉU&K]ԧrخpO&1L =o=? GC2; ֏G{,ƸUK)چW6 VԂTǺu]dꠖO(suWnuLelv#?X=ܸ,T-d~MZkNNƩ:%) 0X:GqOTZhVT9(d=Jmig6.s\Hl0 oaZ_>l~ ;!!uiɋR n{\M T[bzH4Ęi HTU ӥ<͞ li93<Ͼw",U'2> ˪b:oǩjD,k mN:RU(Kxn' \{:zA H~F&.+Ry秌edJK==G ₇~ڪNc8HóEm _2b_A.4׷νo*ד9;!!=FDcz:2LH&f:н$O,G|fԤޠAajrÞT%5xz[_bE#`.R/H=KFjBJ&"7%Jl}8 h̳j-'ZI>迂q g9*!tJQM[0i`]tjJrvX,* xtńl!=9_Qnkh'3yLg_f,Y-eey*<;prΗMsPwv箪%M]v$pڦ*6nynK>(0ki-:6 \LRGrfcO0~WԶ{GM}HSfC*U1dU'S>M b4\my<*0 OMN]"\u>:dwM*0Sذ{|8GULЬǠc +7_3cB!~?CjXk9·7}ZR=&9?[g8FLc:,,+'2)0u Jqe2?x g#ʽNk>D4[e-Icqr(ڈ(p:$YG )lq@aKbGM -wjDn =(?3i]St tT$~v(2S̊J@|! t3^єq=,Q"rOw\h;HZ@u@n+_g`Xf J0BT<O FiĎRagDb}wd|Xsxh6F6cJ|a39\=[*Sc~p}=7}% h=("Wկ`8/V zn(#^:GhΈQ=D}5EꀓsYԈ tv}Pb[ ` F3^TP ^[66?c9I4$3Í~>ݴ.xů)>0V^+̘-P9 Ma1! @2Uz\zIuͪjv?YsF#cJ ??S_{ƺWD`_"ۖ6 >A*~O`HTIuGG_ zIY }`ئT@Rh{*ǐ~^(⿋c;~F [d^Zy2y0MD$BH8\'}rwCLlbXDTɍmaN %vm} y]EWB[L|8(|\`\?DbZخ@E_ [2|XF&_Fn]tq89N_Swv猫pnRt8TG}CΓ; o`tMK6Ќſ? -=fkDs7Q,;4rJᗩ /.9qÿ)u*T ǿq^72θOwrN rЉW5(1TI7AofAa dYߏitX: )sȜaǕ]h^w;~}k]1o+)sIyr] Y[cn^7LBk8M:Iz]$;K*x 6ͱP|ZZUՠޚ&VƖB#BDX' Hs36se`cm~+.?- `^]9q5([9\bݹa?`(+;.ob)Q~|s$oa0 |ۊ)FTp;hGJqdt: kA*FahwKyLk$~\Z5'TYFjqjqmV|j&LAOP2e" iz3L'3xQ~a6&Ɔ2 t2QjHR=$+r&uڈ q|ХIVa E#-U =-՛>hɀkI@"H2;HϙrXћ\!}V_Yk !U m_+_m]8hjy  ) *Ɋ80ό6 ~-ѐ:4e nv'5?ϻQ_Rk "@hAQMЌk+?5ZpS6|߉: &w([2 G[#S7؜kNP'2mS7kbEÓ8Ysm,fOJ1"d#qF0g-ƴn:D,8+ fp̟vFF(=M\<ԝ\?9'}ZܷCS[= wg4",|Ϸ~{k*W<(WI[ Zdb˘K3Jh'$GeYmL_Mb\r/ᏐPTh@BG T,sFPT֮e$I+Iˏ>at!k5ylnƘ!UNg%Cg?i6#F؎lѥ$[K)v(&QZ5P+FQ 9F鬗}FB{P/ѠJՃiȐzA䮥HZdNN-!:~b:QF&zoOc霐T٨I ty \ܕ˖;HU~w6 9:JGGFUKY%#)?y'Wy!mO\5^kZe%%iA"=t)d a[ >}QqnVF|٘BiGO{|Xz+iWXZr8䮰v䪆WL7]J2143#"~NK3Vi lbӊ/1v}]SZ$*wi,޻wPU[<>Irr@ s`\n$%v5jv_5}=:z/<Bf(i'b,]$f Bm'jPoYSz͉>d(l6k s ^ܐ^gJfJ sseQn Oc\Fo?* kg/Mffw)g+7bHPW`3L.9Da0FrY"7v6 m37N ,L^D4=R@E`Ҡh /ɏvɥ2+SVQe,Wh!Sb \G]0NʟlԨ@Uq j=2ře^_ns?RzxeV jE'Lҭ" +6mbV&–mB UI #"0U3;9Ld+w]hJB/X%%hCrDڔή1eo[9C|LPp] Ë:KiSF<`"1MQٚn?r8F$G*akPp4EƮ/Wc "r)6Tƭ? Ѡb՗־Q9fp_A>/4)Q8m)8mbOd'' V&\/1k+MpC%޺Y?GXluM\@/E!G!5-jKɣD5!۾c1 GٓT4*\w{ьWkn(xtN 'ӫ/ :Iˏ.%U҅^b.}dEC]G($KJ;:j"kaj ̖Z{ QSvc+ X3DVL-۰FsA཈#1:'j_`œ)Ι"6j͉N 7'o%T|f%pSThc)7:0IW!!BWMk-3F^vhEPΗ@1Jǿ>"VmqB_xᵄh@}A䲼`HwΝmuAr# PeuH 4f91u6׿fץ^t7$b<(Q?y!B2z~aN)8<5$^ p/A}FNbz-{{+xi֔Lonr;4f>@ A\֮#R֒kE_mHDOP0H9XHuHl7Qo״f(k|GM#}> Rl1'تz%aソ#-tu?[iwB^ 3wB*gHMQ%,eKr$j4Kw.xr1k[ba}}+K}󎎆3 ł~HI$7C,gBh֕[$|j7FxA"wdthVr{ +O8q7b1]Yb6 n.1Y4ui]hNj?TƐ[>.y9CA5^ԓϣLFG7fq1qgƪPu5)6s1JuINR%QGnU'6V0ϕ Ļr_W1ɋg"v15$g37(^B DE2N[Z&՚tńoxTN!{5,=wh> endobj 757 0 obj [758 0 R] endobj 758 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 497 0 0 796 0 0 cm /ImagePart_2169 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 65.299 644.299 Tm 136 Tz 3 Tr /OPExtFont10 4.5 Tf (0 29 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 136 Tz 3 Tr 1 0 0 1 65.049 622.5 Tm 129 Tz (C 26 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 129 Tz 3 Tr 1 0 0 1 65.049 600.899 Tm 139 Tz (0 27 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 139 Tz 3 Tr 1 0 0 1 65.049 579.299 Tm 126 Tz (C 26 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 126 Tz 3 Tr 1 0 0 1 65.049 556.95 Tm 137 Tz (0 25 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 137 Tz 3 Tr 1 0 0 1 64.799 535.6 Tm 140 Tz (0 24 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 140 Tz 3 Tr 1 0 0 1 283.449 634.95 Tm 133 Tz (0 02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 133 Tz 3 Tr 1 0 0 1 283.199 613.35 Tm 144 Tz (001 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 144 Tz 3 Tr 1 0 0 1 280.3 569.7 Tm 155 Tz (-CCI ) Tj 1 0 0 1 279.85 548.1 Tm 157 Tz (-0 02 ) Tj 1 0 0 1 280.3 526 Tm 172 Tz (-003 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 172 Tz 3 Tr 1 0 0 1 64.299 309.75 Tm 121 Tz /OPExtFont1 5 Tf (037 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 121 Tz 3 Tr 1 0 0 1 282.949 314.55 Tm 124 Tz (025 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 124 Tz 3 Tr 1 0 0 1 282.949 292.5 Tm 103 Tz (0 24 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 103 Tz 3 Tr 1 0 0 1 64.299 287.699 Tm (0 36 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 103 Tz 3 Tr 1 0 0 1 282.949 270.649 Tm 121 Tz (023 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 121 Tz 3 Tr 1 0 0 1 58.1 265.85 Tm 106 Tz (,,, 0 35 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 106 Tz 3 Tr 1 0 0 1 282.949 248.799 Tm 103 Tz (0 22 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 103 Tz 3 Tr 1 0 0 1 64.099 244.25 Tm 120 Tz (034 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 120 Tz 3 Tr 1 0 0 1 282.949 226.95 Tm 112 Tz (021 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 112 Tz 3 Tr 1 0 0 1 64.099 222.399 Tm 103 Tz (0 33 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 103 Tz 3 Tr 1 0 0 1 286.1 205.35 Tm 129 Tz (02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 129 Tz 3 Tr 1 0 0 1 64.099 200.549 Tm 103 Tz (0 32 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 103 Tz 3 Tr 1 0 0 1 222.25 698.299 Tm 95 Tz /OPExtFont0 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 95 Tz 3 Tr 1 0 0 1 87.099 519.5 Tm 118 Tz /OPExtFont1 5 Tf (005 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 118 Tz 3 Tr 1 0 0 1 114.95 519.299 Tm 87 Tz /OPExtFont11 6.5 Tf (aos ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6.5 Tf 87 Tz 3 Tr 1 0 0 1 142.8 519.299 Tm 101 Tz /OPExtFont9 5 Tf (0.07 ) Tj 1 0 0 1 152.65 519.299 Tm 1299 Tz (\t) Tj 1 0 0 1 170.65 519.299 Tm 115 Tz /OPExtFont1 5 Tf (008 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 115 Tz 3 Tr 1 0 0 1 198.25 519.299 Tm 118 Tz (009 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 118 Tz 3 Tr 1 0 0 1 227.05 519.299 Tm 89 Tz (0 1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 89 Tz 3 Tr 1 0 0 1 315.85 519.049 Tm 146 Tz /OPExtFont10 4.5 Tf (13 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 146 Tz 3 Tr 1 0 0 1 342 519.049 Tm 86 Tz /OPExtFont1 5 Tf (1.31 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 86 Tz 3 Tr 1 0 0 1 369.6 518.799 Tm 96 Tz (1 32 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 96 Tz 3 Tr 1 0 0 1 396.949 518.799 Tm 115 Tz (133 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 115 Tz 3 Tr 1 0 0 1 424.3 518.799 Tm (134 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 115 Tz 3 Tr 1 0 0 1 451.899 518.549 Tm 118 Tz (135 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 118 Tz 3 Tr 1 0 0 1 280.1 490.699 Tm 98 Tz /OPExtFont10 4.5 Tf (-) Tj 1 0 0 1 283.199 490.699 Tm 137 Tz (0 05 ) Tj 1 0 0 1 279.85 468.899 Tm 118 Tz /OPExtFont1 5 Tf (-0 06 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 118 Tz 3 Tr 1 0 0 1 279.85 447.05 Tm 99 Tz (-) Tj 1 0 0 1 283.199 447.05 Tm 101 Tz (0 07 ) Tj 1 0 0 1 273.85 425.449 Tm 117 Tz (." -0 08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 117 Tz 3 Tr 1 0 0 1 280.1 403.35 Tm 99 Tz (-) Tj 1 0 0 1 283.199 403.35 Tm 103 Tz (0 09 ) Tj 1 0 0 1 282.949 382 Tm 108 Tz (-0 1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 108 Tz 3 Tr 1 0 0 1 64.549 476.55 Tm 175 Tz /OPExtFont10 4.5 Tf (-0 ) Tj 1 0 0 1 72 476.3 Tm 95 Tz /OPExtFont1 5 Tf (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 95 Tz 3 Tr 1 0 0 1 61.45 454.5 Tm 98 Tz /OPExtFont10 4.5 Tf (-) Tj 1 0 0 1 64.799 454.5 Tm 123 Tz (0 41 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 123 Tz 3 Tr 1 0 0 1 61.45 432.899 Tm 98 Tz (-) Tj 1 0 0 1 64.549 432.899 Tm 140 Tz (0 42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 140 Tz 3 Tr 1 0 0 1 61.45 411.05 Tm 98 Tz (-) Tj 1 0 0 1 64.549 411.05 Tm 140 Tz (0 43 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 140 Tz 3 Tr 1 0 0 1 61.45 389.199 Tm 98 Tz (-) Tj 1 0 0 1 64.549 389.449 Tm 160 Tz (044 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 160 Tz 3 Tr 1 0 0 1 61.45 367.6 Tm 98 Tz (-) Tj 1 0 0 1 64.549 367.6 Tm 137 Tz (0 45 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 137 Tz 3 Tr 1 0 0 1 90.7 357.3 Tm 127 Tz /OPExtFont1 5 Tf (-003 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 127 Tz 3 Tr 1 0 0 1 118.549 357.05 Tm 111 Tz (-0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 111 Tz 3 Tr 1 0 0 1 145.699 357.3 Tm 107 Tz (-0 01) Tj 1 0 0 1 157.9 357.3 Tm 96 Tz /OPExtFont25 5 Tf (x ) Tj 1 0 0 1 160.099 357.3 Tm 87 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont25 5 Tf 87 Tz 3 Tr 1 0 0 1 180.25 357.05 Tm 102 Tz /OPExtFont9 5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 5 Tf 102 Tz 3 Tr 1 0 0 1 204.5 357.05 Tm 147 Tz /OPExtFont10 4.5 Tf (061 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 147 Tz 3 Tr 1 0 0 1 232.099 357.05 Tm 100 Tz /OPExtFont1 5 Tf (0.02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 3 Tr 1 0 0 1 302.649 357.05 Tm 126 Tz /OPExtFont10 4.5 Tf (1 36 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 126 Tz 3 Tr 1 0 0 1 330.25 357.05 Tm 130 Tz (1 09 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 130 Tz 3 Tr 1 0 0 1 413.05 356.8 Tm 98 Tz /OPExtFont1 5 Tf (1 12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 98 Tz 3 Tr 1 0 0 1 440.649 356.8 Tm 93 Tz (1 13 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 93 Tz 3 Tr 1 0 0 1 90.95 194.549 Tm 96 Tz (1.34 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 96 Tz 3 Tr 1 0 0 1 118.799 194.799 Tm 133 Tz /OPExtFont10 4.5 Tf (1 35 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 133 Tz 3 Tr 1 0 0 1 146.9 194.799 Tm 130 Tz (1 36 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 130 Tz 3 Tr 1 0 0 1 174.699 194.549 Tm (1 37 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 130 Tz 3 Tr 1 0 0 1 202.55 194.549 Tm 127 Tz (1 30 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 127 Tz 3 Tr 1 0 0 1 230.15 194.299 Tm 98 Tz /OPExtFont1 5 Tf (1 39 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 98 Tz 3 Tr 1 0 0 1 303.35 194.299 Tm 151 Tz /OPExtFont10 4.5 Tf (116 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 151 Tz 3 Tr 1 0 0 1 330.949 194.549 Tm 130 Tz (1 17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 4.5 Tf 130 Tz 3 Tr 1 0 0 1 358.55 194.299 Tm 70 Tz (1 ) Tj 1 0 0 1 362.649 194.1 Tm 216 Tz /OPExtFont1 5 Tf (181 19 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 216 Tz 3 Tr 1 0 0 1 376.55 194.299 Tm 85 Tz /OPExtFont25 5.5 Tf (x ) Tj 1 0 0 1 378.699 194.1 Tm 747 Tz /OPExtFont25 5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont25 5 Tf 747 Tz 3 Tr 1 0 0 1 415.449 194.1 Tm 96 Tz /OPExtFont1 5 Tf (1.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 96 Tz 3 Tr 1 0 0 1 441.85 194.1 Tm 83 Tz (1.21 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 5 Tf 83 Tz 3 Tr 1 0 0 1 44.399 159.299 Tm 91 Tz /OPExtFont3 11 Tf (Figure 6.6: Following Figure ) Tj 1 0 0 1 187.449 159.049 Tm 74 Tz /OPExtFont0 11 Tf (6.1, ) Tj 1 0 0 1 208.8 158.799 Tm 90 Tz /OPExtFont3 11 Tf (six 1-step forecast examples are plotted in the ) Tj 1 0 0 1 44.149 145.35 Tm 91 Tz (state space. Here the adjustment is obtained from imperfection error instead of ) Tj 1 0 0 1 44.149 131.7 Tm 88 Tz (model error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 231.599 45.75 Tm 70 Tz /OPExtFont0 11 Tf (142 ) Tj ET EMC endstream endobj 759 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 760 0 obj <> /FirstChar 0 /FontDescriptor 761 0 R /LastChar 130 /Subtype/TrueType /ToUnicode 762 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 228 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 228 272 389 0 0 0 0 194 272 272 318 0 228 272 228 228 456 456 456 456 456 456 456 456 456 456 272 272 0 0 0 500 0 591 591 591 591 546 500 638 591 228 456 591 500 683 591 638 546 638 591 546 500 591 546 773 546 546 500 272 0 272 0 0 272 456 500 456 500 456 272 500 500 228 228 456 228 729 500 500 500 500 318 456 272 500 456 638 456 456 410 318 0 318 0 0 272 287 456]>> endobj 761 0 obj <> endobj 762 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (ArialNarrow-BoldOPExtFont25) /Ordering (UCS) /Supplement 0 >> def /CMapName /ArialNarrow-BoldOPExtFont25 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 14 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <2A> <0027> <2C> <3B> <002C> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <203A> <81> <81> <2022> <82> <82> <00A7> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 763 0 obj <> stream 0 ,,j٭ ncwl7uI r\rΗj"/(]*MϳwB"=|f>m+e) 0$E2F22Ԑ!G={*~t$0B{on(2]@"CO%TFoHLp^Oe aj±햃 ІV"fɼ8D}/.b+Y 5DIc4;ďpBsؙ {sx]9sv"#킢csFקhoҡKҬ*vg}w Hm':%ٸw@4B)rFHX'C Z5ƷKP{;4 yz,i&FjgP MHtudM2Ll,6WtfQ[zA.9[PzL]wэW&~`asQvNN5rSƊ- /rEn=MXKBDƝ[{ siBmL}c32^. t!#5l^$ښ@]}L_]"to \)Kٟۓ"m&OyݨDBhDHV=/,VR;g$႖Im:㷭T:6 E0ET&> * njnס4,i.L0GȎZ/HtV: } W:C ˹||ԛʖdh~ڎ R/EX.&@eХ Xw a|I9K~&B P$dENc#4ܠa5D~rO_//z*(K=oH ~ "Zra11$ewACcRҌ?cQzY'Jƿ⬜.qp7C=:+WN"h9@kEBȡb bLЈyfJf7rx}ͯI(hVpjQeU+ߗgQ ^:oZRuU! Oƽ줙U@[K)l|(tʨh +GAN?H~Odޘp=$M0H݊1krx5BB}_ZQo81'4hwN8+`&W]z0?[M=TG2(׭=p97N!wWŚ_9 DܺsբEq0'!؅ΤL6}K}H #Rd-0Md.H>YDZoπqr-wQ_a9@uMOxG6TNbI^چu\YeZcLJSB@ab1i`뗈/!OW.AQCީhw_ GZ|d)[ ^VYHk&m$!hBWN9Y%S &X) ԫ<14)ÍJl-FQpAmJZ Ŵ1"j`2.~8\g7eapf¢)]vD87:aZ K\jr.cKu6<*E±'h6ti6@d]ZkSXz pX2(P&<ԍm_N5h XWLڧO)&QB̶}3j]QTqrFe`xe\q(u')u8PLPr׷_Ԩ;]Wb +ѰJlxq҄cgm 7f s)oH[%ID[-= \V&^vX?(-3\7,Ծ1ѫ {!|s4&b'./]?~y=QW|uE'ndpGrrUMG 4ξd@ +`ɜ$ջ'=Ȃ8HX̆@F NR [1<(oEmrSlXԳߩEO#oŲy\(,v޿ۡN} ϛpo?n5JBoUtitеPLj/+A!S}d~,jԥ{NycַJ`&} LA\zG9Ύ&`W!A;>$sd;4ڳ02;CkzŧtgT݅!:C LHH_ tPsa8`5" Ff@N4߸.`q]ne2;a! 5ͥ3= N |䬚H' Z@ٸiGJRm?AQ,g'ֶ= :a~i#ZGTxt@Iyܤ],i`ZPk AUNwC+؏^/`>"nfb ~3̼jU{]Jڷ~T]:mzO ςFw-}.j@v!W\Ty̭ g%B妜,(N{IU+o(o:ӝNŒ]7+^4.ssE eЃd GXBq>3r6ꁆt?67>Ӥݲƭ#pܦ0=c64-DE 6 ڎ9ճȥGװr ^ԽތiLc]} #A ݞ(ÇDt_n1PC!%U6'鞥MFpNEq `ߦKS&׉:J S[k v{ J}} }Sa~h2 !Z"h1!}~{mfǜ'OsPT]b`,?Ny @ܘWFLkqS\%A[]] N&5nY ?c2yYT7Nk9Lpm (O=@|M'hթ7d OdT3mȌ\aAswKl`uç) `3_   ()[kK43 z6bbu4 Yİ_dzq8pIPbOVհC3,ŹTlK),qQFVrKI1zL*kXLeѦ #T6?ëZ^#1Qgl~,ÑGYO") |c?Z*2*vȓCX xwe:ԯlg`1κGe$9:qT=!Vw-tNѫlSYKF2'bQ욅 -&i `ׄcvo 3"F[╟% U h>M a#'^z֢v,d?M:ImKW,i x"Oa0wPJs9rmiٛSM6PR0 uF't7P=Kg.p=Rl&@ޫ`<Lݴ7 4'N0CYŸ< UZ+(d6PՕFqyE7] v xZYմXxHv}i?|\Pa52Ix,&a7ƱjϘר)uBdz5 ߍO:౛i᫫8Ozd|zWCB4K~H՟ߐ0v18 ;FӷB[u١e9닗/&XXa6r=88dl 3pUl*@ٹU_)!j@=b&hR~^/TzMkunoⷲZbωDe|&62O{v Jw "s-2Gd#q=35#[?~}y#t!c; k`Wn[ .*2&&"XF%jUNP)i9\Hy1w /z^-[% ~6rZ5Ng?UH>`Ugiduݷ %VF-?3V!U^=@-`CN*2,gq쫱b̠E e95L.{w,\41ChHn"<9~S1-*q>5B*GҧHqFAN"ib|nqdnB3LB`l w%u"F\nnY=LvsZ;3^ztf2)d0U3]kzTGw tk05xo ~N-nj`j_ƌr|HyYR=ZVod!“Qetp<+a[ <M Hϔ96ـ*`x]OSZ91鲟\D ?.͵'Hc%p#qGTrqIpC3] #U7yr@,?yRʱ_Irh}׫F ouB/! jס`'DbV<:ӟ/ZDrV(#.|o+ Oܕ皽e(`<VA@S9V/zwNwM h]4%3MRF9 &m{]ZJsfnj9 {{@%aqѪ`9F2FnM!/*kIY; %*A4f .|y$ JWo<o_> ҙJeo'Җq*ҳ~( q@Չ}jczפP[{QH, lKal|WVNBAV"L :U3uwO?UXI  $h21Ž Tڮ-ܧbI!v]ҍZ ,q;cydҰ~x_S , اՀg`KFÞ4憜wuwS^9RՃam;,Egb>&?I|$)&bᱷsŵ/$Dz':hd#=%8ը&b,*:đH,d'9󘢰Ԃ5+`^(G7i+>51؊ִڿaȓɀ'<)Eɧ\Љc}_jr1ݘCȯ[=+b\Y?HM5.yi@{' bT F bu4Q3{n4YM-dth+ڑtq.Gpot@G8 RM;AlE`@#PSQv^1H7WY0' 6iU|vT|Aʔ.  % <O!hO?Gm2p>QaOQJqC S~+I/}P U{r8Z '« Q=~#+Pd @QJHMp rW·3!zdX.N+z?M@K_ΫEޱ`{JA3F9$ `cS?ܻdJ=њn.5g7ǫmDDO`)Q&Z{ӧkulI˧ix׬Y%4AD/Y͢ )"d{ρN"G}/L׃?vxf) ? эȷ'!e בË 9 =P83g0̴X3ρa [1*Mdfwt~#Kd9mfP:7g'# B7ʲroTr  2MT 2Ļӽ4Ak"+,\Yqw/Y1.D5"4\b姾 C8qIJ]/WfciYBMNzڟciu&YȒ90e6ytϹ,àC0:i{耗aH7?1hh9rԩxu=bRXN[ 3ЈyIP{]E:dT86l/Yo0GgB]\c.P}3r_ɳF&T\\2Lj!BWA?tVSWkHґz Bj#{ܓI&ۏ?f>(aCE'5{=#QD 2`<Lh2jȆ|WJ^gan<|X6195Ь\mhr rlg  rF?^[w/Z3 ͝n1Ŷ r+Ti9++.plYl@SY@_UZޙILG~酉"W3Y*̴GR|:I/s>r! kV:8 [lwYɄl NOE]hJ flf0.\lRshbA9)Jk$MSr0umh5WQC}X닁 l#prAM:N}r)ǵ>: {|e;55Dl'ζFxdlA'k@q{Jor+"Ibh& 9<1Dyk%Y)CJqU"N׺qA0TiwԫGʫC!eMSjNn{4x` )X0}L-( MBH@^4|?fZ0K/ @\V0WX0{dP^:I$*SOKBl-}S5$ [$+ >@M5:WX/mD%XIF&>Nt:O65Kwq-He4HP&ҁ/ 3Ȍ7+FCSh[N"4wΊ ی_;K{/ÕK7r+]  %R!t4hG),nU'r#D.– ~7M[d_MQujLYS'遪btuReF3IPMt\c@1,X*ZrqYNX:\i3MDDuuKV`h Ng~MP1KJHt|u*HB0{$011%6@*֦x~ٛ@9IXvf2P {+DQ' )lluʇ3 7Y$w&VX_|Sl'.uζhUm[*f*dO< Afc9Q$S妦ϥ`A_cֽcUKxe1]Bx@rE $'싫0MƏa6ܤO*N*B1waQ,>Ͷ9(;v衽mXa9Rlc0"vx^]^uk?Vpȋ6[DLbߴQЁ09{Y,Zq=4! Y+mn_(9pD:]R3WS7U8m1s\iuʿ endstream endobj 764 0 obj <> endobj 765 0 obj [766 0 R] endobj 766 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 624 0 0 839 0 0 cm /ImagePart_2170 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 163.9 362.35 Tm 133 Tz 3 Tr /OPExtFont3 3 Tf (0 2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 133 Tz 3 Tr 1 0 0 1 369.35 490.5 Tm 128 Tz (0.8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 128 Tz 3 Tr 1 0 0 1 424.8 433.149 Tm 136 Tz (0.09 ) Tj 1 0 0 1 433.699 433.149 Tm 1700 Tz (\t) Tj 1 0 0 1 450.699 433.149 Tm 136 Tz (0 00 ) Tj 1 0 0 1 459.6 433.149 Tm 1729 Tz (\t) Tj 1 0 0 1 476.899 433.149 Tm 131 Tz (0.00 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 131 Tz 3 Tr 1 0 0 1 438.699 429.8 Tm 134 Tz (017. 01 000-) Tj 1 0 0 1 464.399 430.05 Tm 158 Tz /OPExtFont9 3 Tf (8) Tj 1 0 0 1 467.3 430.05 Tm 77 Tz /OPExtFont3 3 Tf (011 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 3 Tf 77 Tz 3 Tr 1 0 0 1 369.35 293.95 Tm 244 Tz /OPExtFont9 3 Tf (V.- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 3 Tf 244 Tz 3 Tr 1 0 0 1 405.35 275.5 Tm 625 Tz (---) Tj 1 0 0 1 421.899 275.5 Tm 35 Tz /OPExtFont3 13 Tf (0) Tj 1 0 0 1 424.8 275.5 Tm 48 Tz /OPExtFont9 13 Tf () Tj 1 0 0 1 430.3 275.5 Tm 97 Tz /OPExtFont3 13 Tf (:,=7) Tj 1 0 0 1 454.3 275.25 Tm 44 Tz /OPExtFont9 13 Tf () Tj 1 0 0 1 460.8 275.25 Tm 95 Tz /OPExtFont3 13 Tf (""") Tj 1 0 0 1 475.199 275 Tm 960 Tz /OPExtFont9 3 Tf (-) Tj 1 0 0 1 485.3 275 Tm 515 Tz (--) Tj 1 0 0 1 495.85 275 Tm 15 Tz /OPExtFont3 12.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12.5 Tf 15 Tz 3 Tr 1 0 0 1 192.949 277.649 Tm 17 Tz (I ) Tj 1 0 0 1 210.25 277.649 Tm 1847 Tz (\t) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 12.5 Tf 1847 Tz 3 Tr 1 0 0 1 319.449 716.1 Tm 102 Tz /OPExtFont3 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 102 Tz 3 Tr 1 0 0 1 142.3 229.649 Tm 103 Tz /OPExtFont2 11.5 Tf (Figure 6.7: Following Figure 6.2, comparing three forecast ensemble results using ) Tj 1 0 0 1 142.3 215.95 Tm 105 Tz (&ball. Here the adjustment is obtained from imperfection error instead of model ) Tj 1 0 0 1 142.099 202.049 Tm 100 Tz (error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 3 Tr 1 0 0 1 142.099 171.799 Tm 109 Tz (imperfection error, forecasts using analogue adjustment outperform the direct ) Tj 1 0 0 1 141.849 149.25 Tm 106 Tz (forecast less significantly than using the actual model error. Figure 6.8 plots the ) Tj 1 0 0 1 142.099 126.2 Tm (ignorance score of three forecasting methods for different lead time. ) Tj 1 0 0 1 483.85 126.45 Tm 87 Tz /OPExtFont3 11 Tf (Similar ) Tj 1 0 0 1 522.25 126.45 Tm 107 Tz /OPExtFont2 11.5 Tf (to ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 107 Tz 3 Tr 1 0 0 1 329.75 62.35 Tm 74 Tz /OPExtFont3 11 Tf (143 ) Tj ET EMC endstream endobj 767 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 768 0 obj <> stream 0 + ,,8j~^lHu,4~P7}‰b% ahk`&ia}OvRڤCy\O|x7/|UB! !]!Bk ifp y&(˥Go52E@j9_!7¥!=eT 00g% p175L|D<#Xu)-}K\3{d޻|!pYeHSVj˥ 35^el/]z+H;GںCy"+]6'z_Y >Ot"E7S0n@G^f'8Qv"; {56;I)G^X0cTԌ7 W-VĘT(e< |6HY_*;wZx 7^a*E>/{PUlG"# K`BÜSO<TV?KSbW<"rE [7}-#{"֧cIVE1 0n#T (N9Of[]q_,v%yj%@n!rFrZ hq0gGԍ|^SV6ea@+&=}>o5J~U %n Ӓ)'qr+<8Y C z{2mQO^ Ԛ-<ځS );h(&d`=WU;")ɭdd Z΄D~gRe;anfHljÑ(s&lZzi^]/_úz]v٬1s7\9*UX |fC4US~Wbmf;7?9k[fy?!ȸǖ;#"طLJG6L6)|4)$y 셍w&eЛnMiW @r* OvnBA&iv_t<& 9Q2D[%6y0)/ m0V.I 'KxSty1)qn dgFh:bw Ip]Lsx;!㉇թU۞X*WoY,`VOV:pvWEwEgڌCg0n*^6$  *-kuP^0r8$ož@ 6~ĊP2G1i-N߶U,qA4s|h?FG D#B<I[Fޡrm ?o'&_/v /tF%ڴqS_5XW* `2l= f;[^ܖ-X0!dg9鬭K\'`8%iݐƾ%|21Y|p`s, _[iu0_,E28$]?o8;)}%x$[A$=8 kdMAZ,vЩմӪ<ɀn;AX<ΆNY>0+V +HmdslrHm_:pԮmYmp;Կ;T1 ኿5yНr81=7\. t +YٜC}j`iY_ Ko"/nEk,]ٍ.hl΃6Q22c<.Uc~n;~cOE]t.O`!fTuKI`m7rJ.x fDz{֭+SZ°[B#ʗj|R"y /55Yas#t('BI;CMTX@Vo$}aXL1k\nb)8I4 :z`F%|H LrwdkA:|1mqفSI{Oߥl:8Y7ιٯ/2iM{g>us{gcTZ =ƞ+'izh0HCVb|K74ǣO_։pVl8@VlX~'y۱YaU{d&V.$|W}ϫlUF%Z#+V:,qx J|b;si\5i*^ Ǎٲ|^Arې(UΜF(&>^9*J B*l}1־Z[ITzfa!pߍjmܴ{!R rCسE2I*;b2Vr)l)MVm_nh}lA%QJx)b1]w qT֗Kt@.c""zIqb^I1mE9OGuUڷ`O*Xq3a'Xauގ}J8Kz^Vf R/$!s6l TNL{;m4[>588˴-ݺש*ɭ1շ%U/)j.˶فɰ(%Dz%c*۶41Ż6Jհ"ٶ&M)>m!Xϥxd(V|qv}Kk=DPl Z[w9I)80HDZUJNl;8g8 tME6 (EApb jsmsWn.VpK3q^lZ/;kŦg2 iĶd7\= SA9h@{l{w۔K]`^_ pct9Fխh8Mo30rinJ)9Y`'q(n jB[H, ԡiȌ"56Ԇ^'dq ;yo [/ 9B*$Ŕ펠ᚄZ/\$("詣d4}J+Pn i&θ?d5FU,͋=?K/!A m˥쉱童qGհH<@&"I}0[Lߣa `Ή6l2hb:7m5zƠJI%'cl[ h FTH:6ɹduwrĖZ^jo4~gao F꛵ݖpkE4EÀbkadD7$wE g:g6:aY+EbH[Lר;*e@z/1Tڏ mLZُlDv pQlu+:`z)# LՂ@~2vB2e 1xE;L-DH4kT NdPkVYĈ)Da{6nyWrE-;0$U`ѣZO\m#N0-0 LuGWtPC$E=EԮ@"]ycH3,eQUϴkF8|Ww*zNfVdс (ڦ 1p BmTnymJ1ZIT)SF-vuS(" ;qגtPgQùqÍ"zW!dHqaGmwx%F>#}Glbpua >?9ClՔ *:+m"y; (tj8؟(Vmj4rlhA0IJ}xq\< fIH=1Aud7BZ94>oK%)Ģ 7$@+C&ؽW*6bRՕZxwr8yXՆ[ 4@ƑW}nyzOELUhs^/N'8ţk[Y:Ϯ>Z%H_ug0c-9;p2*q$X핮 &q|914Ű]Tda4C(mlRs4~WՙIu'z[Ὓ]T"_!c,.{mRuYA|L'Q^~j\"\VH(-{^-Ag=ejפ{[,VHЌ` J~Ʉpm;ޭescQ޲| \YqnNB .;U 9vm _~_S?Bx}$Gt# |t")/@$ WRfrD4/p_8ՔՃ=赲R7^|0&!}YPHbpB"m5=V^:G3Fna j$0ߛ p'"X'_ xcvLd~'uY?wD +7M'<(DuԝX{)Za8#Wty5¡Q<8)(B0AE,QJoo4nC#@f3QXaW3*r:JL>`bZDB54۝IaJݴ7m┎>=!k홫}1w BiU_^Q!֙f|zx;E(LLc*[hg]/X3˗hy24i6TbCYvb{N+edLE.5ay֡Brz+dWN%F~ԢHj^URRMLr"h`RU_U2EpP%bj?Eld%H3Zt uI]ZNj}9'LS<~O1k YX|nz)n݆ 5 I\/?~k ;1Pگс{km,ſy/K.aGwgmK<$+Y:2T9$Ol>5qN=D,a_0 +0Q*G ͒@#}Y4O6k_[{ c S0+x63 I,J u4ж\ӏ`gJt2}sK0D/䍹AR_t'3(2Ϗי g`A(6> Ƃ1g4f&۲bZb:/b HaaGW˵NX:{#rFX˜E;;'f/[} $Aup,*>c)5kWeuJocA=疽++plmZ"PRwG3uټ^Ggnj̲e$ZDVV}j~[8+7[ \zsY"/cQKmWǔF+wv;t3֢)1~ @.2b=' bKZmҿ\3 fpuP @AaoŷOP,u\3pg_Lnv`C քן)M~VJ%ԟ"3#{[iUƹ:Eyhݣ8tͼg'ոȼp)sFSW#˷aq]1Ib9ftYf7jBj~,9(Ot;mK )t[PkҠ?~W5G[ J"f|[ hH,GkHFoH8h "i F3y4NRZD K"$CF߃r s7ltQarJP+㙪ZC5A¬d7Ot}rzN)\z & #Yc7Oд2Vh/S-}4uE}f׌+۴vD}mgcqߟJɗH;a>C P.1<ԃ/ D+i-/`%X#֓h# ϘSChF>[ڑ'"nn5ʼn"Nf~ [(Ë;QTiSEcsS/)܎(I@NH-#S?,ܠ[-yoX=0)W×ΊpCa[agمп5C-HPpd 8㪩Y?.Dz.1^fF JR3{4g*X6ngoպDW\Ӗ!dm՜HJj,Ԯ5'CQQNTHaՓ "p:90}\-q:S#ϨBn{zr Wj."YVGŽXdi=j{ڛs5d|_+Z6Q܂/cZ-OWÍJ l a 썺8NfhO'LIA\ܥYGu%xr.MzO5/0e]+CбySb\NIaUSfkΟ%jzI8P;ىqy&W(3 +7*EJm0|}Kx ^WRDH!u1Dӹ}J c҈3_0c6q_@}aXmp0-_4}3 VW+s>ׁgذ?ԬY?caU6=&&F9W%Icx>U3U\@f/nTgi/P{A:4)PPF"`1%sKz~.&MVދCko?-xp( s<;dRq?^{JnX0bD`3W-r3)o:n{eqfK&"e"2(|!Զ4iJg61aw)uw%7~]PyZ*Z:! ȿX5o߀"eJuhsH)cCbKPQg!ۅ}8ciLִuC锻ReRyf;12Rt|5S d76uk-Ohb#ev@h]Q`SԂ7cVq1B#3D᷼@1WwM^n@@Z KbU[I r$ 9d_ u+3C[T]*.e@,ĺ/7{eShFR)O0R1]6|N[P҆A Hw7EU]#|`F倞ڎL^yLN>Orf(ӭВRfwY$i.d[] d|sҗʶĉȳނ@+ŧ֥5ϊצ()5*Ә,Øw#wV<zM( vg f icr&<FT)?j%z,բܵ`q*8/zװuڠd+D&9仱N10<EwLP߅XUULbqeug,N7J 0(?47arZGiY8@[L9|9$;_O^VZfwŘGƜAymt6 ?k6@ ;Yz(ҫ";h_&I)(J_CO -ЌV%T"US+m=\kJ9Ns1C؎7 J+%P3!aO 1X}kd k ȴWVÖ8ŇH VgmKmu`: ;\T'{M &=Xo32(CIruW:&mPi#g=sT%m؅3x,]v)Iw{t" ԕ线t?/2Lj:-ǽOnfk|__ zvzu'a.j2(B$5Q# CY'ŭ·" W>!Ycd4/mR[o;[;`kG_"-z[3-9[4Ԍdo9Lh'D#fJ'ɂ47 x!+p $t:ɿ!m8g>w9$֔$^ ,GsL&|v&UP<` ׳g+,MA"az.s*U FRv쵥_@[2YTR {NdF! ocA)ցMmG7qyY"S$ګ \`ck9UEd`nc/+jJ򉻰?EUwP+Y&RipgOϞ̌q_r WvMqFrAʙwxkLOKB 9} V]zu$dޅFո; KwF: 8A4?)'2\'(%Bu"y.x=,&VИ]=@,*?} _T./vDprЦUbf"uϞ-gbfO ]q~: (١GymTݑWbSd^1f'9;^KM^7~7)B'%TM*dp }%6̃pIV+jܿpz+G/ }{g ( b4ztE/bL(hXP!@AK/[Ys/WqxgW <5lZE cukӹ&#N±.Lnfa\ߥ$G% 6>du{\9xHةEMoEZ|$@CLV]ߤ|*s-Ed0ޔpGOZ]_sp{# MU_QS #X_LN%tgٺL & N%Qj#)qȒE\a #3T[:U|¶GUDl+TI|BJL-hSu€adϷ@ɔc P:+ T*} x[~jjTϯGb gT]dꎞa΅ 1Zf_O`  JE2=X"o׭-]!wmp2S01vL^i3MR9YQ[ǔv_{+9'PvD8cq5gdZM$?5Yhq'a#)5@YPJKgكN :;*|-{cF'1'oDw 7ŒqT x7pgJLLՂ9= =qKوܩDq$ճ-vdzE*B*Cg<}G@ڞn&bνƎtQ|!#Ԑ9웞R wM;~!T  yiЏBŅdo<0T[>pU=?p:o?vP?;ǹG%tTJNX3SIXA?0Y2~!P7VM 3dLʵ]I2(iZ(%;c6|ҡVTRTͮɰ ^<ޑ~gr'UCv;E*x`#y[hxYH1۬q+# )tsf$La:w)xZ/_W3vۖfp3EK4& (U%h_ZNNpZV᭰(? v/v"f^mfSPςu2[ǷZfi Qd=حJ!%~rvksJkJiQE< `M+{ :d x%YSr))@<4Ng2`oWo[Qy?gt{0xR{86F}>dܹB:d}aβoH> Hu$w$Deu#rNt3tZ s\{%:Mʡ\`ɴ>!rJOrY尌Ka$B(0K"{Tv v-{/)F7d:e}-/y]Ž]o|-rԓnZ&  ?lwYr/dg*NN)؇ c@qӤށ:\V<tͧr6`X-[Xh%L2E*21wPΕ6[=m,n(ⳅuMF͉d(9$KU5άJǛk J.eZsfVh::CS@6R>>u[n3fus]΂zh]1RGh;WjZ荗LLzhud Q0+适_vš)9XVGY &˪M"&s􃆮ӎB #$x^ ϲSӻc+0 XS`.V C endstream endobj 769 0 obj <> endobj 770 0 obj [771 0 R] endobj 771 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 478 0 0 788 0 0 cm /ImagePart_2171 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 222 519.45 Tm 91 Tz 3 Tr /OPExtFont11 6 Tf (Direct forecast ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 91 Tz 3 Tr 1 0 0 1 200.4 510.8 Tm 878 Tz (\t) Tj 1 0 0 1 218.9 510.55 Tm 92 Tz ( Forecast with random adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 92 Tz 3 Tr 1 0 0 1 201.099 501.899 Tm 845 Tz (\t) Tj 1 0 0 1 218.9 501.699 Tm 93 Tz ( Forecast with analogue adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 93 Tz 3 Tr 1 0 0 1 210.699 682.399 Tm 95 Tz /OPExtFont0 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 95 Tz 3 Tr 1 0 0 1 170.15 465.699 Tm 92 Tz /OPExtFont9 7 Tf (5 ) Tj 1 0 0 1 173.75 470.5 Tm 2000 Tz (\t) Tj 1 0 0 1 212.65 465.899 Tm 78 Tz /OPExtFont11 6 Tf (10 ) Tj 1 0 0 1 218.65 465.899 Tm 1766 Tz (\t) Tj 1 0 0 1 255.849 465.699 Tm 82 Tz (15 ) Tj 1 0 0 1 262.1 470.5 Tm 1742 Tz (\t) Tj 1 0 0 1 298.8 465.699 Tm 85 Tz (20 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 85 Tz 3 Tr 1 0 0 1 220.099 458 Tm 90 Tz /OPExtFont9 7 Tf (lead time ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7 Tf 90 Tz 3 Tr 1 0 0 1 33.6 427.5 Tm 91 Tz /OPExtFont3 11 Tf (Figure 6.8: Following Figure 6.5a, Ignorance score of three forecasting methods ) Tj 1 0 0 1 33.6 413.85 Tm 92 Tz (relative to climatology is plotted vs lead time. Forecast adjustment is obtained ) Tj 1 0 0 1 33.6 400.399 Tm 90 Tz (from imperfection error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 33.6 368 Tm 92 Tz (Figure 6.5 forecasts with random adjustment appear to be slightly better than ) Tj 1 0 0 1 33.35 345.449 Tm (direct forecasts, and forecasts with analogue adjustment outperform the other ) Tj 1 0 0 1 33.35 322.899 Tm 95 Tz (two methods significantly. Compared with Figure ) Tj 1 0 0 1 291.35 322.899 Tm 75 Tz /OPExtFont0 11 Tf (6.5, ) Tj 1 0 0 1 314.399 322.899 Tm 92 Tz /OPExtFont3 11 Tf (by using imperfection ) Tj 1 0 0 1 33.35 300.3 Tm (error the forecast with analogue adjustment gives higher ignorance score than ) Tj 1 0 0 1 33.35 277.75 Tm 89 Tz (using the actual model error. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 49.899 254.7 Tm 92 Tz (As we mentioned in section 5.2.5, the quality of the estimates of the model ) Tj 1 0 0 1 33.1 232.149 Tm 91 Tz (error using imperfection error is strongly dependent on the observational noise ) Tj 1 0 0 1 33.1 209.35 Tm 89 Tz (level. When the model error is relatively larger than the observational noise, then ) Tj 1 0 0 1 33.1 186.799 Tm 93 Tz (the model error can be well estimated by the imperfection error. On the other ) Tj 1 0 0 1 33.1 164.25 Tm 89 Tz (hand, when the model error is relatively small corresponding to the observational ) Tj 1 0 0 1 33.1 141.45 Tm 93 Tz (noise, then the model error will be poorly estimated by the imperfection error. ) Tj 1 0 0 1 33.1 118.649 Tm 91 Tz (In general the smaller the observational noise is, the better the model error can ) Tj 1 0 0 1 33.1 95.85 Tm 94 Tz (be estimated. Figure ) Tj 1 0 0 1 141.599 95.85 Tm 76 Tz /OPExtFont0 11 Tf (6.9 ) Tj 1 0 0 1 160.3 96.1 Tm 91 Tz /OPExtFont3 11 Tf (plots the ignorance score of forecast with adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 123.599 632.7 Tm 76 Tz /OPExtFont11 6 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 76 Tz 3 Tr 1 0 0 1 111.599 576.1 Tm 94 Tz (E ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 94 Tz 3 Tr 1 0 0 1 111.099 561.45 Tm 130 Tz /OPExtFont9 6 Tf (9 ) Tj 1 0 0 1 110.65 775.75 Tm 91 Tz /OPExtFont9 15 Tf ( ) Tj 1 0 0 1 120 561.45 Tm 121 Tz /OPExtFont9 6 Tf (-4 ) Tj 1 0 0 1 110.65 542.95 Tm 62 Tz /OPExtFont11 6 Tf (11 ) Tj 1 0 0 1 110.9 778.649 Tm 77 Tz /OPExtFont12 13 Tf ( ) Tj 1 0 0 1 120 542.95 Tm 102 Tz /OPExtFont11 6 Tf (-5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 102 Tz 3 Tr 1 0 0 1 111.599 532.149 Tm 142 Tz /OPExtFont13 4.5 Tf (O ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 4.5 Tf 142 Tz 3 Tr 1 0 0 1 111.599 525.45 Tm 85 Tz /OPExtFont11 6 Tf (c7, -6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 85 Tz 3 Tr 1 0 0 1 111.599 519.2 Tm 128 Tz /OPExtFont13 5 Tf (O ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 5 Tf 128 Tz 3 Tr 1 0 0 1 111.599 512.25 Tm 87 Tz /OPExtFont11 4.5 Tf (c2, ) Tj 1 0 0 1 123.599 507.699 Tm 81 Tz /OPExtFont11 6 Tf (7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 81 Tz 3 Tr 1 0 0 1 120 489.449 Tm 99 Tz (-) Tj 1 0 0 1 123.349 489.449 Tm 82 Tz (8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 82 Tz 3 Tr 1 0 0 1 120 471.199 Tm 99 Tz (-) Tj 1 0 0 1 123.349 471.199 Tm 82 Tz (9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont11 6 Tf 82 Tz 3 Tr 1 0 0 1 220.55 29.35 Tm 75 Tz /OPExtFont3 11 Tf (144 ) Tj ET EMC endstream endobj 772 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 773 0 obj <> stream 0 ,,>j{G}w&ɽ61{b4q*9\ܮU;1jr׽ɱǤ>9cpC W`䊇К ^h^~yI0+0+idue,d?@4+TCw^}[ `9g'rt>Jܠ<+2Zf g0x xY<c %Ifs V28xN{Τ. pAׁr6M 0q֏ y=;U38mHh(hm+"L4Fe'iv+6vYkiE=5J' Ҏ9WJ|.= LiX6d|QEirA"ޅö +#SlaW.]/)0#J?ȟ2_M<1RM !mvՃ8@ |3r&X'7y-8vPcZ(yh4H(]3su2]3@Z$xU LCtH6ug 3)P]ae6]SV|-J,6!FS=->+~bvF`=E3|DW~n*+-NwRy}|we 8m0D"Wy>w˟2< ˓;LƎM5j}Z[xi{ s0ZFTc\ ?Wԟ`SLX]?ĪC0_$csW;"rswdȪ;O* f91ޠ`ۮ2u{ }wqfuS7pؽXi&;pgP!]@MIA뫚SUfwm;!hD 8%#I*Cػ+3E<<}=-"+2"P-LQG}uv:[ _SD JIW>Ba]> ŝ/`xq˛f&F@`#o"#y 1ܲ^]il^(^C ?QGs諲{fQb g.>kwn(}:dx];Ce-sb(D zSxf?$!j[bcx(v=lR!7Xm~+$(:dX(u |LP)!s4|&BoE g.TDlpcHq-F]Nړg LvI ЪC%9?')t$yiHRx]O'=•B~'(wP1xHD`T ;`bР,yG{V{Ր}tl؛_ucq A*zZW y('N[]w*tBleܸvudOhN;" KYV?D3۩(H"KDAꂑ#ؕI3iش?KԯK&:0=XZ$PXN)nJNdm;_<]e_X4bll ({ok7YMw y ՁIJZGn!;۱:"iB#@Nx?y!jb"}Aәچ ¬ R[kR2(~&Kk@ftl3SV-m؈pהIY0(eBKɅz'm!:4p}A$(e!TV޹EdR1@$B0־~Ve 61.yBEEjbYgo)DZh;.':wG9H 2ezou OQy.Yab[orO Ѝ"0[;B x BW;x^%E8PX:)2F)f6,- YWQy%cCu%u^@HVvU8O^^<+F鱌 + e+mPH/,UVjiÜf٫|ֳzWRYIՑɔL|1-;yXW@]ǮpDFTDM |xA@>y(&ټ8$t٣:ڞ*6.ϴٴǴk;w靶ĶxUVuD7S1*P-jcvmC/Q&ɬ"e~%sCrE+%lX[@ǿOg.own]Zb6b\Z1 iWbX&l8 QzM{EnK#0Z =ÙҾ*Xܡni|H;=G-uΚ('mHUf`c蜅O?/VcPW/TLct^  ,yɉ2-BayuL[vk[ƌi;hao=Me+=qI[!8E]"}r\?}'&X"ЩUO|NɅl3tJuEoN1%ɠa@m ^?cF\Srm+˥L y.gѲNc:Xx|Oo?*}<f!z2O_qϸ_AȑȐ`UMˍ'4>Q_\c@( 7@]NW5>[kB%!x@.)g]XWt'㷮A$ѰJb,Ǐ^H{U].Pc>bn };;P_ fC"vA~a񂷳vdu+u- hI{Q,~cm¤%{egVd@~R^4/Dd%+{pa. 4xlNSz7<:*ȹ;}=LZy0xH&$i}(;kC)׺;ud*O]!Ze퀽%6KStaE?^ -h 4S$x[KG$1ŷ~ҀANpHq yKn'-s9_ CO}Q?~2YXu%Q|4idciK^C1,qBC7⽃hܡ~ #++ylI\]lQ-HOe4"S%/.{R=[+0Zb9R<8ZP ^ }oLטX.`ޗVCc&U߷1[HpzUNr2%goKL.}_N rQ.Cޝs;>i|kZ/J+=-`ɡ)oyg!pqVXpko4#2yvf_Z@o22/aPb56LuA2:>)- VvBv1W\*u-Sh,3鳓>Eu|ӝ-m;ٲ\4teil*;LIaUd[/h2u+!JxKU\MJڪZ/ `ӘYyP_fe7faUz9o #Um3NƮ(-I]YAB!P){ͨB[]l~˛*֟ZmK۲7F&1} ,6dvEKkUo5 -r Ld]K?rkނ;cc4 32mN4?*7#>1,X ' 4rLSnAO`UϠ``QcIٟc0J[*8gUbZpeҷ_ Y@>jlMp#{ģdLuڍ#l`dYI:9`qv?r lqiqWyۖf*'r.aW8Ȟd##h|\c ct׍/.2 ֎Qaռ PmQ4G"2}M4+ad?s#-Sc1|>"[*ƒ;B 3#cc-7Hw\ ty!nA,%ag&"ٹW݉[ZTt2Pvrč[myknލ|w{')K1l.^T5"hG'fA|B@et_~gvX KRxn`ВZNoQkH"/;NnNM*,HX)VDkD [;;wĝߘD4~|1c!ܽνrTc3uDNF9")h"\4JZяM7`qy9.r_aDov.h +]~*;_[ ȿ>-O{#,ED7[nVD0Mt`~tj/xeQjЏ9k;Byiqh}()E!KlQn׆b*"qF N&͙\Tӗ1eakfÏYV{Ky6s9PܥYy %/{BTR/3%Bc}\čOW ژ0 E^BBĴ'Ћ\\kT+~uݠeٸ~c?Wyخ[ffM`~nwu^@o1W A8^F`PQkObf]?9. JpgQ$L}J\3 77wr2s5ou\=#bELpy 8? h| DeNPIi%'W[Oګ)$†s|qijixK{.-R5Pȼ%TRu/,.kZ&1HW٘1ʁo*#N@ v퇿r3dLӔ ogPM D?q[PB3 cSY9Tm"WYW038+VUtv >`L|3g ?F0$u;~`X#9Z_ j  Ї9#C?lb྽7D<ʸqX7X;ɹǛoTJ!SMFRM<9ǹv3IopV~rXA`*0ZBq SM?[{qp'xBίհmC=`3 ҍ$SlDARo ,V`vжgWn},S4t"!IɩI˲EIx&p-Wė%÷k}"6cFh]B ڛk#m6t,(z-OMK79so䇋uM $*׈v_iU]Pjg$܎mb>h=fjWIˑ$^0SJf;` 4> )<?J;z`ǧ>ā qt8 + mդexڬr6FV\ ue&-CR;9X]5J~bJˆ՟gUDכRHkSfd5~;]'& ǐGRGV4 C{:g=ocDdnnl4M~Z]6pd To&P_NY_"$_ 8]b%|K HӪ%x_.\)%|jx/6vqAluv,xjRIRiv?k)f=ǓȭM~A :$y7fUKzThQx˃dxƌ biٖ4*]MFNh DQC"`4:}_!= 杅߼Dn; 0}u ٞ=`w?L)=9+6U?LE5 ǫ]|%ݫ3<@eNS%7LRlՖ.?ab@~"=EH 8U R2jxQLTҾsmoa^6j1gqzB8;]'*#`F7g0yڣ>rو"Ѡml[C ynI;:5$ZZf&&^1-7Sgf#C8@I )4S}Cu? ;P!={UhrfR{wEzYtHml\4()f^eK}հߧg{s X\xyje+Bn +~Ҫe T@D"`(-l盟hz=d,qEVbw2vq =ͺ<Țc{>nXYxR@=pD}ş+XUJqNM@6dVFtf- MxqDƂ@ӯw+~l\7}SsnGC6lY0x^)럾޼ϊ4}yө Hڥ$ȷUN:9䰾y+ _huvNDghTWITWSRFeOD~XV&``O9ix]!#/-j>>*^H@|o{H(Մdt '6~-(8Vwp>2ԨPHӏYw!ib, |.PB|Y !U;_zsx )jQ&w]{ Do8~vjZ%f 8Yg Įd /Xw<0 }pOh?ĩ36+,L20GY;=:RgA)a-o['He8vm56hŁ->4hޕp0rIJz/&\fw7sPks;\6- 0ļP}n~KrfTAد3GJZ.QJ~B{Ǔ[(uޥ6i BytYL'ߔ+N/c~#Ս<2DFc6ә0$ݨs[x"Ei, Ps@aowkSRotv@tGC5W#<<ZH*vA&ALd@n;\w q[xdaEx9ȟQH )p+t_e*OԂN{\ twK";>VΣOJP*\weʔ(b ,&~iӯA5 n,B@EAXyM=GLomP" ͷj짓i#H)Kŏy(iQ#`ďMgL%JOў"95>{_8ctNEW }L)yzuP=.N|HH`ɏ>䖋TwW *g,87? ,Ģ؉_J.ʥlZ7;-N/.r2:q hsNy=ovЎI\\ JYt#_Nr5 LblFfi т){Tq5 6&Au۴ v]t@Z814}q W~#1M h4yu+e`C\2|7s3o kjҢ}$ǭo{-eV¶Zo*k5?z2H/;UfcseK Aٶ4 IME` em@O`Z嵇AxT )0umY:_TjyD 7/Wן)A0?6-z _J#SAdY?&G\ hH}pE+\;EmSG[rKt54ku<"c+ըuY' ZzF%"3lL+A]7{glo&ɯ8g{yc Ywh?ouwXRdkE`8y.ɋo!.26Jmg~Ovc׼z/M]V >^ov?>HQ9!')WhG6-[R:Y^1W (S8]GLs1Ѷ%qHz=jc"B@V##yĦӻhSl"G.Rj2Kz=^@Rh)`F4ieW"6=6qEH ?T]>9ϴ4m"1Jt>l`0;+RZ$ii\#F5Ptm6@һFX&r?~wO}[^Ũ)օtyN" sЗE^aP+c?wåEo=N^-9 SU/ f 4?sˉk5-kbt$:_!u36>+Ğ8B/ŋ4k:Ű=-Ѥ50(YA> endobj 775 0 obj [776 0 R] endobj 776 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 508 0 0 804 0 0 cm /ImagePart_2172 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 385.449 560.399 Tm 99 Tz 3 Tr /OPExtFont19 4.5 Tf (-) Tj 1 0 0 1 401.75 560.399 Tm 78 Tz (U\(0,0.01\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 78 Tz 3 Tr 1 0 0 1 385.449 553.7 Tm 99 Tz (-) Tj 1 0 0 1 401.75 553.7 Tm 78 Tz (U\(0,0.02\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 78 Tz 3 Tr 1 0 0 1 385.899 547.2 Tm 99 Tz (-) Tj 1 0 0 1 401.75 546.95 Tm 78 Tz (U\(0.0.04\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 78 Tz 3 Tr 1 0 0 1 222 681.6 Tm 95 Tz /OPExtFont0 11 Tf (6.1 Forecasting using imperfect model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 95 Tz 3 Tr 1 0 0 1 176.65 556.299 Tm 127 Tz /OPExtFont19 4.5 Tf (- U\(0,0.01\) ) Tj 1 0 0 1 176.65 549.6 Tm (- U\(0.0.02\) ) Tj 1 0 0 1 176.65 542.899 Tm 954 Tz (\t) Tj 1 0 0 1 192.949 542.899 Tm 80 Tz (U\(0,0.04\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 80 Tz 3 Tr 1 0 0 1 0 804 Tm 65 Tz (\t) Tj 1 0 0 1 67.9 511.699 Tm 99 Tz (-8 ) Tj 1 0 0 1 73.2 511.699 Tm 2000 Tz (\t) Tj 1 0 0 1 275.75 515.75 Tm 75 Tz (6 ) Tj 1 0 0 1 279.85 515.75 Tm 78 Tz (\t) Tj 1 0 0 1 281.05 515.75 Tm 65 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 65 Tz 3 Tr 1 0 0 1 0 804 Tm (\t) Tj 1 0 0 1 73.45 511.699 Tm 75 Tz (0 ) Tj 1 0 0 1 75.849 511.699 Tm 1955 Tz (\t) Tj 1 0 0 1 105.849 511.699 Tm 82 Tz (5 ) Tj 1 0 0 1 108.5 511.699 Tm 1906 Tz (\t) Tj 1 0 0 1 137.75 511.899 Tm 75 Tz (10 ) Tj 1 0 0 1 142.55 511.899 Tm 1798 Tz (\t) Tj 1 0 0 1 170.15 511.699 Tm 79 Tz (15 ) Tj 1 0 0 1 175.199 511.699 Tm 2000 Tz (\t) Tj 1 0 0 1 278.399 511.699 Tm 75 Tz (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 75 Tz 3 Tr 1 0 0 1 143.3 505.899 Tm 92 Tz (load Om ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 92 Tz 3 Tr /OPExtFont13 10 Tf 1 0 0 1 5621 5688 Tm ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 10 Tf 92 Tz 3 Tr 1 0 0 1 342.5 511.449 Tm 75 Tz /OPExtFont19 4.5 Tf (10 ) Tj 1 0 0 1 347.3 511.449 Tm 1782 Tz (\t) Tj 1 0 0 1 374.649 511.449 Tm 82 Tz (15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 82 Tz 3 Tr 1 0 0 1 348 505.699 Tm 102 Tz (Mad ti* ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont19 4.5 Tf 102 Tz 3 Tr 1 0 0 1 45.35 477.35 Tm 90 Tz /OPExtFont3 11 Tf (Figure 6.9: Ignorance score of forecast with adjustment where the adjustment is ) Tj 1 0 0 1 45.35 463.699 Tm 91 Tz (generated from the observations with different noise level. The initial condition ) Tj 1 0 0 1 45.35 450 Tm (ensemble is formed by inverse noise with fixed noise level U\(0, 0.01\) so that the ) Tj 1 0 0 1 45.1 436.3 Tm 95 Tz (observations with different noise level only affect the imperfection error. The ) Tj 1 0 0 1 45.1 422.649 Tm 91 Tz (error bars are 90% bootstrapped error bars. In panel a, the forecast is made by ) Tj 1 0 0 1 45.35 408.949 Tm 89 Tz (random adjustment; in panel b, the forecast is made by analogue adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 45.1 376.8 Tm 95 Tz (where the imperfection error is produced of different noise levels. It appears ) Tj 1 0 0 1 45.1 354 Tm 91 Tz (that forecasts with random adjustment are not affected much by having higher ) Tj 1 0 0 1 45.1 331.449 Tm 92 Tz (observational noise. Doubling the observational noise, however, decreases the ) Tj 1 0 0 1 45.1 308.899 Tm 88 Tz (forecast performance of using analogue adjustment. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 61.7 286.299 Tm 89 Tz (Overall, we conclude that forecasting with adjustments can improve the fore-) Tj 1 0 0 1 45.1 263.5 Tm 92 Tz (cast performance from direct forecast as the adjustment is able to account the ) Tj 1 0 0 1 45.1 240.95 Tm 93 Tz (model inadequacy partially. The adjustments can be obtained from estimates ) Tj 1 0 0 1 45.1 218.399 Tm (of the model error. Such estimates can be obtained for example using ) Tj 1 0 0 1 399.35 218.399 Tm 110 Tz /OPExtFont8 12.5 Tf (ISGIY ) Tj 1 0 0 1 45.1 195.6 Tm 92 Tz /OPExtFont3 11 Tf (method. Forecasts with random adjustment ignores the geometric information ) Tj 1 0 0 1 44.899 172.799 Tm 90 Tz (of model error by assuming it is ) Tj 1 0 0 1 203.75 173.049 Tm 94 Tz /OPExtFont0 11 Tf (IID ) Tj 1 0 0 1 224.15 173.049 Tm 90 Tz /OPExtFont3 11 Tf (distributed. Forecast with analogue adjust-) Tj 1 0 0 1 45.1 150.25 Tm 87 Tz (ment extracts such information and as a result, outperforms forecast with random ) Tj 1 0 0 1 45.1 127.45 Tm 89 Tz (adjustment and direct forecast significantly. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 232.3 28.799 Tm 75 Tz (145 ) Tj ET EMC endstream endobj 777 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 778 0 obj <> stream 0H ,,]]k\gmN<ŷ.8Au[LSY\2_5UZQ\<>I -)fIͺ:j mL=-CO$"4B~*+҆Uݪ> 撈\( KtMS?e_ EkE7IJKv~ve&1:%*M:9F+i&C*SET#X Oo`!x0'Z~яg]G(VBVg3z;#nņHZm2x' on!kc~pzV\|iփ!0U\ųl22Y^iay1Hk֤ܮlםqoV۸mD}|DL7}..Wc ~!s1 Y!wIDz⧛m$2t_8vkpbv# qrur;6*Et&~W}2IA?peku،vMy߼sZ.Z&fr$z';3pN͚N4 \5f]Kb f8G-u$|sM7vQqt=FU3unP͎t%ɾY0ݿJ}F5sU8\IQwA?%0=[|1׵ףɻME^KUAh~I\ Wa\6KX KZ2$v4(쨲GGdy0RQVtyu%YRe:NVIn6.\v3j,)YE }9*! w㭓w"nErif|%-E:mK $Sf&Tm>c6f;"עgu?=mQzui@3~ ]O"j%Jd[poRH!yiB$^:5HDrTk1Mp0:]>ooL݇XJmTIp& x,8oLDbڬ;ݫ5{3l}n?3Bu8BF@FbN*Iouho JOlJ &9B'_$Ri mo"8p1*gȌtjC.^Wxr7fP=G;=h-zO=+S8p2FBV8e6"(2Th,R,}/mЮwP$ A6,ҁ{okk ȆRjl:}r߬MA8S/8bqaW*D]42̳Ća#{i` >u7y^ƽyk10+v}?wRgjEg̑C5V>>if&d#ͺjm}7BŤBԇ&Z9imXA}/2cM#E= =+ Ȍ[N96=쁾#ZMGEwUℿpߓb7N5/r΂5t"Y}:`)x-e5KofUwsLͨJw//?ϔ{嶸BjܖGw+8;T٩:=vVJesKNǧ %33Wr]%8+)b]ɱ]HS=OM O@Sy"fyܾ^:?6@4 kbHVH ٿ6=MϠ"9S5U˧Дח"ΩRڶtڲų<~R@A({==z@ܟ`WEa3;>\L0vCJB̏ hX҃8 .p.[S;3q@Fv3z2EQ{Զ`i ?_π!Q5^41<[j~cb3ǻ" 1U>: ͼtnfrt02?x-B:cD79=Ḕϝ+_,wh 0-mo9ᖷ4Oܘ3sVq%h]Hݬz^.+>1(oe sYm:kF4~l1hPVK?πSs̀+0vX6PI SQNnv@%+D7le:&uo쐄R|͔{ʆ0fS[$OxĊtsDdBBh =RH8, 5bM~iW-y5˚əl&Glzv].Vn+_~ g7%,@fs>xovAuHY1JZ;y]c>tأUNRrF1`DKȗѡs V$SR+Gt$e"I ]5=D1@h1D"f[PG_< Z_IXn,ܴE읙0Ң0/_G. jJfKT)X&%DF U%Z/x?9 JUW,⢾D{j05.WvWFKY| h* ,؊%Ԥݢbs7mt?9.Y ,3V_I %{?#:PԄvj)KU+{t aKkcs|cTdߧNlDžԋZRt=W$Dɕp.`U(Pٗ0t%|QW3 ?DA T@idŐ30p•k=ޘ[`L|bqB硫JdE31vuv Rp͖H7EKqϵ'FzsSV5M*RJVk Rq3_umbqP@ν͙YgMWl͠U:fTȃIr*د5XȄgBCđ?*XaX:H>lRIN-|vh37rCvK͌9is&kp}]-Vc,MNryHj®RGO݇ãoyZX=b9BWkni֛7u*Cy/׉[`r#bw&òYkؒ;:XoOخeSOX8"sp̏CpR86&`yq/:d{t1 M}'W؟/Y{| #J 'I|zvOAFBZd^s%,>$zA׼dĂr )^IaJ>k]~mH*uRG _rShչlN4R)-?z}#5zuL(4ײ2¿?/Mt}Xڊq/oiǮg6p3$1a!&m8SSk` ^utzU#ڭsꊅBs3$ So 2+?U>}¯fs%M>"ΗN?WHHWIeR&k9?oE+&ڻdNsE'$*q==9aLrth~~ͬB_8%4 Q*b NRrС \ k Gzs@r ~/)*COLۍB6\G ;bM=TnX> % I 1_>ݳp<*ӷO߀& EV,zCɩ;F2V_˷Zp$W\+@ Y )ViZ#.K`\Sdvs>?q)TaY!Yol&mn*Kڧvz:2/` di.K\^\P2Lt|tjA:2+̧"#kAa8&E2 n"+G#Gkhx"*,~Tvr*HefuRਹ|I@ 9׿-V DXOyI@Sz|̖gtĭyE U"3V\z*Rd겸t>#&L ۹E3>c־ʯ}4铆ـYT%?{fH[>"U r=HyJOj2n*Ě)+(2wb~QM7Q昆hC_ /'.O' PqXQ=*dWBV8~()+Zit%W:ծ#6cNyUS+–nJc֔J' },YxX / %D Kw/`\ޠnA])Up)L& #<ýͅ󸷪-112hn7N8L ׊#4u)u`G"x?Jm*Yt*}<.ږW^ Y;PU&"kQuhd=MWЗ# 6Ͽ Xi{N/ޛ=GcPi]4v#hS!ʝ84AʮɅ-'NHuAn@&tOeѫS#}]wP`2JqԋVNt*%+lWG}>{wɊr*BAgD'pm7XT PWƻs/Y8}spdj,e$"4fcBR=3rԓpd}Ւė:qXHKyM\Vn0[`?_I9U Ce7Zu`ST8(d}bo 4Wvy;bRL%9TY,LfA'8O^u*MxlDߧi2WT n4. @S 5QkK壨* H  Ffv <6CdljjYԒ ` =#Քt4 C}NQ0&4(IZ(w-֛&Dl\sǨX (q^O>⁗"3}I$8|2c4u"g @>b9o7a8E/YSXwʼn/ƛ+3NAZ6KyN> p^DNS3FCGRl>^5Ӭ)9/] paoԮ52P/I=L>k;Ж9;)޶z>FQ.(2AҰƤ05⬰rxWSܗ0Tt7"̣9<0.|̯!C߈MT_UoơP y"rĖ'%EN˓ ZtP'evݲИg#aCc+8|r!<ܜo:FZxBP= d€`|΀`ضGU.Yjٰ<d4D}x1ta υ.jzid{N༈#ttcJQ#MlR~Eٕ^ۤ[XP,Eg.- K(+(62:(- 2=U9$] vD(7_EX#E/P㲱|L׆к}"5kֽO)tS[WS1tgQo kG=sqL9uO1 C1J܁~Qc،&Ƹ/'&%;( NnRB,ELj8 Pw_Q}l$}Q'5)e; Dp_<ԿDzmSN?t,#$YeIxpq" c#!25"(Zc򡽓 %x&;R uNHR PWNH;G`!B$+V$Հw{eEɘDVV;`GBEf%ILo$~Se z\pRqbPȺ#Ue>d#Z4RI94=[15Yݘ+V:I7MЎ");d{;w~`+N¹SPyx跂_:}e-D LV& @2Y۾\m59RB8_:52,pqKD+l&SN6Ƒ_4gE9u  2g<@2?!M9lK=tb#5xo#0 d`(}{lj7ǎYBZQW]v$)-a< uAs)1mJTBt"u(HPiAk^oGs$ !<-Jhp,t}.ߥ;*fJǩ2_d#ӟ Ku*޻" Oe5K m :1萜JTŽGgU *yͻq< r{XEA6&Z(c}.6gNs.(ӞjW= g2\,[tuv虳{Jp;XH՜A#4B8M8}8j7M~Bo64IT^y5Qd)<6yS{()ʖ1׈yw;zsNB:4uNqonoZLdfm, [ ȫwMbBUG5k˹F(¨k+N̖JQ=Pgyѕͻ}KҸ"Ր'-֪s͋ۖBb?9t/bqA2\İ3_RXJWsΊa.Ϋ!A79~`㦪ZȎn"KNl'Mېx7b0J'-/{eCAGg\*sPvFzdz8aG7] '2rrC\&|߉D|׌5Ր"Uod)_(XI-?) [45qZi/e!꼝ys= XG:#ߑ@`CHIk- )xV $v>款(ϻ A=dU3,p XG53 {'])㚬}xY$ [44"RUٝ4KQ1Rz+tge98Pn`4Pdd MJ9mbLj;I1ҍH'6K>{5UD1>i, w&cYIՎ=j9 H|TotNcг ˠ 4d edԢbC n"AәP0#tvQŏPo*@Bߴ#DEL~8A5&~;_~g2bXH&9$LNtʨAr^4u,-cgih E<'v. { |Cmf4pRxr\ O䤪ϕCNjM -f`y0M)7VM7KI~iyiZ4>MDnAB 0ŔPy\))썞C`o~3c##f0,VE[ȔGSc~cK!F'VB|C /TRg2֏tҌJp4?hf2.EN9 .jlDҧx{nq}#4_r؍A뱫L]^h:4ʳ,?VVd"uk3D_g6U3D|qQd=95ا) H`~mkD< op(E9i]@I|@υm Mp` o6ޙ#_pOwq*\0G߅h)YHdvl5eKsO ʚes>pEس*Ԫ _BC@Zgm܈HrZ76KnK)4'7v6 5w|Y.i5-bNG+9Yib2PTT۪ Z,Ѡj>(s+7MK £ƾwZHLI*\yۂ)E"!'ƚ^z@! |_wa7jͫV\3sy{ʓ &Xr'{-Zy$Y1n"xnR1"1zBUlH{àW uD"K*UA|ZT+W ش'fa|(eү#ײQzr9_GTOG^wxۂMC$_/b&q@ QJ>+׳Gڨ@>ɘ<a|.i=LxC:'a)-B"#곳h} !B('̥:zWl] aK~Og  л_\wQʚ1,2`5V9~I;+JU֛lLtgj<]=GQAAMJT8kχ iFz@!iYdbzL8|6+Z/F2NaCY=Zh)XB0Jj |eYNa}ipOdu1'Ί`VV܃^Zte݂8h“:A9r+($Ӡ9qzq;R?(78Xn^!ڭekdψNµ:۫Iyү4RF=Sl%ƃ0pg<]Aqx\/t$H!L3k 3+f Y s# e:Ѕ:ߛr蜺lBO#qy.L0l?0TFL-1C4 fS*/+Nd[3, q!cF vRFUЎD>|J͕|w f숮Jna ,ZO1Jtћg ʑ*S~.ڣM}sgszbxl0я$m/$<|J|BP$ [fFw{@)SJ`%Z\Ss@@r-=B^LJN0C}q&BJځko+''W59:@N"A'^752p@ ݰMQ$YTO&zChzWwpWzz&{,6rP1P E)mb}PB*p Y١kO?mN 0t#XE^wJ铪;EI{O*^mG /T*qN:[m0yFlJ6o%|08 t[alQ-s9&΂̀Y;WtPaUD/1?qF]!X;1qw?Ws\[[ ֧7גZiS-d:7sOxlmGϛYCᄱD=p|edf8Ԅf A *vߡO2\7>mxNh=Z;ꨦ{9aCPeiqQu]Nρ}ދM;.9pR|0$UOYM.\OaKu{m+l*mrV^ 4:9;kO?b`zu96&2:`q`3}?[z& 3$z::hOap2YcB#E{qY.e6~8M\v B(oj3@Vu`!dS t޲< ֹ#DH5|-Ae !MUG'"~B :J{.9VSA*]u"[w">elj˃|l=4(;oX' ׄaWHZ52:&^~gp=n3WNW{\UD&lާOλjz/=i((16e7 Z3tv^Mlj"i5pXOVO>z V#foEMwÈr3~Zn"U[K조ʰk}lhrRQ=Y Ν' f+d{+_!B-i%{쏿X]BglމQQ)L1VGae)&3T@T(W`b"9?9bUI3Yp9urJ sdX0ᄾJ{7tSϳ E%%3/jVf9 g1Ynv˅wrZӅm^K4mZ]"nãs>ZI`{BJ8_K Ox@ࠕұH1 ~xe5CsIt&wuo@):-zߊxQ̲`p0XaBL$./+06 5@I^ΔmػӭW~O A5aK:ʤf: UO+_'4υ}.*B=#oMӺXkm Y0uf0iUȳ oHhyH SfNZ@~(ѱR 9-L݋|?ZFz"ݍ^i JGXx99L9F:6M,gt!v_S_6P}DTO$ ݂&梫6"$zv_mnSMe6ƟXFaml@2uNOqxH}|nꯀ~2P5̍RI$AQssZvt=_)wMh/pp~;VFGgmC;$<%Q +el=*3JRvG!1ukmn㓚͞:IN+" P$<58cг 5Da\~";W endstream endobj 779 0 obj <> endobj 780 0 obj [781 0 R] endobj 781 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 636 0 0 839 0 0 cm /ImagePart_2173 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 355.899 719.7 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 136.099 677 Tm 115 Tz /OPExtFont3 15.5 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15.5 Tf 115 Tz 3 Tr 1 0 0 1 135.349 642.7 Tm 91 Tz /OPExtFont3 11 Tf (If the dynamics of a deterministic system are completely understood and the ex-) Tj 1 0 0 1 135.849 619.649 Tm (act initial state is observed, then there is no limit to predictability and the future ) Tj 1 0 0 1 135.349 596.6 Tm 93 Tz (holds no surprises. When there is uncertainty in the initial condition, sensitive ) Tj 1 0 0 1 135.099 573.799 Tm 94 Tz (dependence on initial conditions restricts our ability to predict the future. The ) Tj 1 0 0 1 135.099 550.75 Tm 93 Tz (well known Lyapunov exponents \(3; 22; 68\) measures the predictability by cal-) Tj 1 0 0 1 135.349 527.7 Tm 91 Tz (culating the average exponential uncertainty growth rates. Lorenz \(62\) discussed ) Tj 1 0 0 1 135.099 504.699 Tm 94 Tz (using finite time Lyapunov exponents to measure the predictability of high di-) Tj 1 0 0 1 135.099 481.649 Tm (mensional atmospheric model. The weakness of using Lyapunov exponents is ) Tj 1 0 0 1 134.65 458.6 Tm 93 Tz (revealed by Smith et al \(82\) by comparing q-pling times which reflects the time ) Tj 1 0 0 1 134.65 435.3 Tm 91 Tz (of error growth directly. The q-pling times are used to measure the predictability ) Tj 1 0 0 1 134.9 412.5 Tm (by directly quantifying the time at which initial uncertainty increases by a factor ) Tj 1 0 0 1 134.65 389.5 Tm 101 Tz (of ) Tj 1 0 0 1 148.099 389.5 Tm 95 Tz /OPExtFont8 10.5 Tf (q. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 10.5 Tf 95 Tz 3 Tr 1 0 0 1 152.15 366.199 Tm 94 Tz /OPExtFont3 11 Tf (Outside PMS, there is not only uncertainty in the initial condition but also ) Tj 1 0 0 1 134.65 343.149 Tm 93 Tz (uncertainty in the dynamics. Measuring the predictability with the assumption ) Tj 1 0 0 1 134.4 319.899 Tm 96 Tz (that the model is perfect will simply overestimate the predictability. Without ) Tj 1 0 0 1 134.4 296.6 Tm 93 Tz (knowing the true state of the system, q-pling times can be used to estimate the ) Tj 1 0 0 1 134.4 273.799 Tm 92 Tz (uncertainty doubling \(quadrupling, etc\) time based on the sequence of observa-) Tj 1 0 0 1 133.9 250.75 Tm 94 Tz (tions. Knowing a particular q-pling time, however, from which the uncertainty ) Tj 1 0 0 1 134.4 227.5 Tm (growth rate can not be simply inferred, as discussed in Smith\(1996\), the rela-) Tj 1 0 0 1 133.9 204.45 Tm 128 Tz (tion re 27) Tj 1 0 0 1 200.4 204.45 Tm 54 Tz (-) Tj 1 0 0 1 202.099 204.45 Tm 60 Tz /OPExtFont2 11 Tf (g ) Tj 1 0 0 1 205.449 204.2 Tm 98 Tz /OPExtFont3 11 Tf ( may not hold. We suggest that outside PMS one could define ) Tj 1 0 0 1 133.9 180.899 Tm 95 Tz (predictability being lost when the forecast adds no new information to the cli-) Tj 1 0 0 1 133.699 157.899 Tm 94 Tz (matology \(82\). In practice, this is to say that the predictability is lost when the ) Tj 1 0 0 1 133.699 134.85 Tm 92 Tz (forecast skill score relative to climatology is arguably zero. Lyapunov Exponents ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 324.5 53.25 Tm 75 Tz (146 ) Tj ET EMC endstream endobj 782 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 783 0 obj <> stream 0 Z ,,#jQq)4KKk}9A;Fi㒜 ]J9L}`ƨ t3/#!\CU.m$%> p>JR3t4fh˩ BlO_O"cU_U DnxFZ^54 ¡?~]CUl;->A ESya CnXXO 7;I"$t!ρGԒC([,(VC#W}宰[4<w%?d9;kZZtY88R#ui^#7*f/%(e.JC#sc@:}/z3_= ZHc<͍㓊e>\;%?"Gn 6t^_CՏ_ի` bMgb rIYX'K%}N&XqG联aDLM@j跩#`?ZFXOU֍w(u\oW~K=o~֓EuyPhdG6aH@J:j-2!D۠zoYX)uT4@w:NG8Jn\~qG;2|C|߀M 6#~Xn#n8y/MLxRXxgRks33Vi&Uz ֮ fg^)A0BD\G/ t,hoN =3N"w匠\RBs UsMA=;IRhDrI+aFqq~Aώ-*B3IEl9# *!}7*8抾o[җ kDbƑ S}h 20wnfugY~Z[HaضND rlzx*oo &.2#^.&|I9%Ѹ2罴Y5j|k1q7Arr?4b;BI2R75#%]֘>{۳֊rgl kS$lEQ"%ɠpU] hc'- 2Ӫ{!o +goh'(M!>q<۴nw0Y* "E)%vjݦ,(?@;L{5p𧯂Z\V?s| /lZr9$_ Gq}L.jU߲=b՗t&6>gô3~ 6ACfݔDcקZdW-=@9 7y6B opB ] ~ţRԠSf=Ӄ"3LmPn[ X,*!͌bH *5.~.-:Qk#'4T2i~օӹ%PCr+A|CpF oVo DQd:cl\E~»G?)={ #|U:iM<@Vb32*NxcPivhF> u~H:z:$tl_clp;fN%tbǚhg^|\` $F^FbNW\Z_o5L仺b%Q S8?WH,R>1}J x tAz4zx)JU:7}5`@}B-0JGݹ;O^38]?kq E5Z A z)5T+d7ʬ,jnr# .'zJ3ɛ4f'2w3'G dExX虍юџbZހ4B6^4žm\6?W1rA]%v:wYxakva%Kg/)OC̅(uPpVpQݰK^ݮT.59Ru0e9@ "6WPNf(ͮwj'2uxNpۇhlH=d*Ks/FO!+L*+_G),X:Ýg ?Xw'Ȗ) bps7 *+5!zҿҴ^+$ӆy~*3IT]@(SznY,M{9Zhe H'Wdϲz,@i28(*0{cj4vnzB.| @[ ܹ=_XˀAie؟=r* TZ8#[9W[N\#G3@\q#?ҥxe8a0rJ"Nry h)7|B/xtYݲW򀀥|Tƺ ã;Wp4Kiuͩ"aޡGK)jiИHKbjs9d4kԛ$,v}u/O=f!5/ ?sp Dz|^6GO>"Wҟ+().!%#ș^41=D?ϏVS6<y[zc:j\0iQ"ؕXj2("pISe:D|CzA8:e0!V@tI#TR% Noז_uH"&& Ļ"ZS_Kt'9%O%|fQYH-YNfk=t+fIٸn,g"(ɯ[>L%dh(8+k7%T6^ á$pQ,{XR6IӔЯՇNKY%CGRԴ~ Hƕs;~2#LCVnx{[Zr?+}j6W]l$ | fIMA/nJ?yTv8?2c_B|258"xR=&|za3v]3hд">ٱ y+ FMBf(3ȍ*x~KhdDa_cU]~024ܘC.D'5,ҞٱZ+]: ,5 Ck@B]پvۘx*[4}/(jZ>rr[*%q'³٥x=sݰf#l"ЩG>-(ꁲϸ:/j?|9Q[GRԴM ƵLbN@cszgͣD͚#^>gϜsp|J/8$ 9=ZfҔ~[o`\Kpj5dR'^kмz4dn4#GX)i}"$[ߨT-ѐJqp^5;耢,&S<kSsKR߱ҰJڸ<>Zz#?|XGlb` }2H>_P 9'.rJGo7, !?.pѻ%#cGY݋iG?x# ʛi.h/A;lT絻nykûy3Q!u܏[pZBB^Nm^Ѕmŭ]J%aF?\b+i]hgƂ;/TjrS#j Qa}Q(mKK.% i(ҏ|E>"2<BwT8: z-;Ao1?+lņfELƫEoд)0!6'2^8U Q< cLӾy+Qf?-$S2*p"e${JvMjJa Xo=.\9^,Lob;/>ԙR0!0 S}Ovmt+Oq$ ^mxۥ,͖q+3VbA0uYٴv  9ssSG,\|`WxjH8Mvpt8*82*NQ*6cE[%RL?Q>ڄ,}97?:yɶٗ*=.!(#Ң<=m)G&qfHQlD:n0v_ڣJf[9k8:Sل:m)2I(Q"PcA~G%uLo#]If:1foAv+Z )(cXWK\(CsaX+v=˔`͛'x[WSyt)UYQ#0]G8x?&1- /=7*TeL/\U+#>iuGGF%csB%b{V&_]x_u(Uqa K[?:ٽew"IhS;^Z9Q7+`"_ [B;u0zcއ~ɚ=ܵIq=72A5%wV0 :*(ӓ0,sUAAU{/>?{a("s"{TUD^er(b%nn | {ƻogTMk봑%XU|\&FYf{B ;omG;NEi|T5fJtd_U%EDo?Qy|pkw0 2SH]]-CO"!}32rŹu"86뷼u@Dy>?bf|1a8a}C~J3%Pʻ(iE?>T!\Y~j2`w0 U/CүxM#gDɹEx]o䏆jFss [AqKФ3fTXOUucT[4NMfEL5z/w&?tc^/DPpq)W7u)պJ <=KNGԤЛd'gQsVS9r h3!ʿr,{G`NS 8D$pVɍ>V71YUVD s4醫v?@^eB&-fmkTK?p8R闥a"Y}(^ǥ?$.KDlĩ OD/a$Θ`Cxt^ux@QGNu<6yhjgh9Jrln&06(dZ-F%xZy(a|)9|m6O);g.&sSst>Fn _wXp/GPSܵl9ݦv6?SGdD-`+` 1Ж )om+!g]~UY߅#t ֬m-K ~oS$eϜX"NzR]+Y_%j1eYRIDV!j5% H`Bj{7Kqncj8`tZ} _n>7ʳ)r8>qٻӷb%`ٰؾ峦ʪư7ڑ<ŝãTj0Oq`h$}S/bϽi!,d?RWvhnGs)ýeLZlDj sid3~)|f Ή_#^[=J3膎R卨%hK<h %\-h:Oe]?q_INM!K0'1n' &7[ 熿r7,.juߑ$QiƿWVhϑ Ew6YvK3 *>涊ޣ4ʢ@uI-b㰺R?^o>P=_CO!K r=G@J(nL"єe鶂Df̴td~2~D"l?x7/X7nG&V|{=Gr4UGk !f* &ޡ&QWv@.Y}˳*puPp_[^0;ieGۘ=mlgߠ#8Wrs2I?00=}q 4 pyqZy ٳG1S+Ҟ9@y86:1I ٺ#D k-q9>Hm2bȎgIY g&F76\0T?a 0b=MCyNaM_$q_-l?l&+ tv\mA z lAFJn3ejxd'{WW Ӥ!DwUη+V0o& WJ~޼֤=`<\ƎmYcPy/o%b{D_+ٍ|I$_6 E~` x}gF2Dkg,nO3XPY Ex{:Ui TzP:d>̘ endstream endobj 784 0 obj <> endobj 785 0 obj [786 0 R] endobj 786 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 636 0 0 839 0 0 cm /ImagePart_2174 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 356.149 719 Tm 119 Tz 3 Tr /OPExtFont5 12.5 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 119 Tz 3 Tr 1 0 0 1 135.849 676.299 Tm 102 Tz (and q-pling time are discussed in Section 6.2.1 and 6.2.2. Applying forecast skill ) Tj 1 0 0 1 135.599 653.5 Tm (to measure the predictability is introduced and discussed in Section 6.2.3. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 135.849 608.85 Tm 129 Tz /OPExtFont2 13.5 Tf (6.2.1 Lyapunov Exponents ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 13.5 Tf 129 Tz 3 Tr 1 0 0 1 135.599 578.35 Tm 108 Tz /OPExtFont5 12.5 Tf (Given an initial state on the attractor of the system xo, The evolution of an ) Tj 1 0 0 1 135.099 555.549 Tm 105 Tz (infinitesimal uncertainty around x) Tj 1 0 0 1 306.949 555.549 Tm 51 Tz /OPExtFont3 12.5 Tf (o ) Tj 1 0 0 1 310.55 555.299 Tm 108 Tz /OPExtFont5 12.5 Tf ( over a finite time At is determined by the ) Tj 1 0 0 1 135.099 532.5 Tm 105 Tz (linear propagator M\(x) Tj 1 0 0 1 247.449 532.5 Tm 55 Tz /OPExtFont3 12.5 Tf (o) Tj 1 0 0 1 252.699 532.5 Tm 105 Tz /OPExtFont5 12.5 Tf (, At\) \(81\), i.e. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 105 Tz 3 Tr 1 0 0 1 254.65 490.3 Tm 101 Tz /OPExtFont6 11.5 Tf (c\(t) Tj 1 0 0 1 267.35 490.3 Tm 82 Tz /OPExtFont8 11.5 Tf (o ) Tj 1 0 0 1 270.699 490.3 Tm 111 Tz /OPExtFont5 12.5 Tf ( + At\) = M\(x) Tj 1 0 0 1 342.699 490.3 Tm 51 Tz /OPExtFont3 12.5 Tf (o) Tj 1 0 0 1 348 490.05 Tm 104 Tz /OPExtFont5 12.5 Tf (, At\)e\(t) Tj 1 0 0 1 384.25 490.05 Tm 47 Tz /OPExtFont3 12.5 Tf (o) Tj 1 0 0 1 388.8 490.05 Tm 85 Tz /OPExtFont5 12.5 Tf (\) ) Tj 1 0 0 1 391.899 490.05 Tm 2000 Tz (\t) Tj 1 0 0 1 508.55 490.05 Tm 97 Tz (\(6.1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 134.9 448.3 Tm (For a flow, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 331.699 417.8 Tm 93 Tz (to-Ft ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 231.849 405.8 Tm 117 Tz (M\(x) Tj 1 0 0 1 255.099 405.8 Tm 51 Tz /OPExtFont3 12.5 Tf (o) Tj 1 0 0 1 260.399 405.8 Tm 103 Tz /OPExtFont5 12.5 Tf (, At\) = ) Tj 1 0 0 1 298.55 405.8 Tm 170 Tz /OPExtFont6 11.5 Tf (exp\(J\(x\(t\)\)dt\)\), ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11.5 Tf 170 Tz 3 Tr 1 0 0 1 326.399 395 Tm 67 Tz (to ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 11.5 Tf 67 Tz 3 Tr 1 0 0 1 508.55 405.55 Tm 96 Tz /OPExtFont5 12.5 Tf (\(6.2\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 134.4 363.55 Tm 107 Tz (where J\(x\(t\)\) is the Jacobian along the trajectory. For discrete time maps, the ) Tj 1 0 0 1 134.65 340.5 Tm 104 Tz (linear propagator is simply the product of the Jacobians along the trajectory ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 104 Tz 3 Tr 1 0 0 1 223.449 298.299 Tm 114 Tz (M\(x) Tj 1 0 0 1 246.699 298.299 Tm 51 Tz /OPExtFont3 12.5 Tf (o) Tj 1 0 0 1 251.75 298.049 Tm 53 Tz /OPExtFont5 12.5 Tf (, ) Tj 1 0 0 1 256.8 298.049 Tm 107 Tz /OPExtFont6 11.5 Tf (k\) = ) Tj 1 0 0 1 282.699 297.1 Tm 118 Tz /OPExtFont5 12.5 Tf (J\(xk_1\)J\(xk-2\)-3\(xi\)J\(xo\) ) Tj 1 0 0 1 421.699 296.35 Tm 2000 Tz (\t) Tj 1 0 0 1 508.1 297.799 Tm 98 Tz (\(6.3\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 134.4 255.799 Tm 103 Tz (For a given x and At, the finite-time Lyapunov exponents \(62\) are defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 279.6 213.549 Tm 106 Tz (\(x, At\) = ) Tj 1 0 0 1 324.699 213.549 Tm 676 Tz (\t) Tj 1 0 0 1 345.85 213.549 Tm 94 Tz /OPExtFont6 11.5 Tf (log) Tj 1 0 0 1 360 213.549 Tm 66 Tz /OPExtFont8 11.5 Tf (2) Tj 1 0 0 1 364.8 213.549 Tm 74 Tz /OPExtFont6 11.5 Tf (o) Tj 1 0 0 1 369.1 213.549 Tm 39 Tz /OPExtFont4 11.5 Tf (-) Tj 1 0 0 1 370.55 213.549 Tm 100 Tz /OPExtFont8 11.5 Tf (i) Tj 1 0 0 1 374.899 213.549 Tm 48 Tz /OPExtFont6 11.5 Tf (, ) Tj 1 0 0 1 376.3 213.549 Tm 2000 Tz (\t) Tj 1 0 0 1 508.55 213.299 Tm 97 Tz /OPExtFont5 12.5 Tf (\(6.4\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 133.9 171.299 Tm (where ) Tj 1 0 0 1 166.55 171.299 Tm 79 Tz /OPExtFont6 11.5 Tf (o ) Tj 1 0 0 1 180 171.1 Tm 103 Tz /OPExtFont5 12.5 Tf (are the singular values \(in rank order, i.e. with cr) Tj 1 0 0 1 420.5 170.85 Tm 69 Tz /OPExtFont3 12.5 Tf (i ) Tj 1 0 0 1 423.1 170.85 Tm 103 Tz /OPExtFont5 12.5 Tf ( > ) Tj 1 0 0 1 439.699 170.85 Tm 100 Tz /OPExtFont6 11.5 Tf (u) Tj 1 0 0 1 445.449 170.85 Tm 140 Tz /OPExtFont8 11.5 Tf (j ) Tj 1 0 0 1 448.8 170.85 Tm 103 Tz /OPExtFont5 12.5 Tf ( for i < ) Tj 1 0 0 1 489.1 170.85 Tm 123 Tz /OPExtFont6 11.5 Tf (j\) ) Tj 1 0 0 1 503.05 170.85 Tm 95 Tz /OPExtFont5 12.5 Tf (of the ) Tj 1 0 0 1 133.699 148.049 Tm 106 Tz (linear propagator M\(x, At\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 106 Tz 3 Tr 1 0 0 1 150.949 125 Tm 102 Tz (Since the singular values ) Tj 1 0 0 1 276.25 125 Tm 74 Tz /OPExtFont6 11.5 Tf (o) Tj 1 0 0 1 280.1 125 Tm 58 Tz /OPExtFont4 11.5 Tf (-) Tj 1 0 0 1 282.25 125 Tm 83 Tz /OPExtFont6 11.5 Tf (, ) Tj 1 0 0 1 289.699 124.75 Tm 102 Tz /OPExtFont5 12.5 Tf (are positive, the Lyapunov exponents tells us, on ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 324.699 52.049 Tm 88 Tz (147 ) Tj ET EMC endstream endobj 787 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 788 0 obj <> stream 0 Z ,,}}jQq$'fr~FqSCb2d3ԜRGߧKCm W4d xzfi\W4i*WTE[;iion:3 Ld6o9Zc>8-غ,!Dq.=V=qnǠ!F e{@+-ȠND˄q4Ds'kVptE/V*d*O RiK?U쫇 !YOsH7 p rBgx,]HY*Ft¥ h9sjjVB)o 5ͥ0Y̓o?Ma }U`a\kwEcabX#ȥy+ OT?+Q^ ~p}sJȿWޭ` U0yB"J =z<>=JaTzBPg1Gṗ$~Lj8"|zcڔ0'1ԅ"+2qTi:J~9{^5%GIDf:H )@`ŒGy;f;ǿ[fcD SvO=/i`)o]%2H]JY/<.>!⧯o)ohC;׷S"M2ŁtU%K\B΍lSk?'| 4SS}yv#͍CtmIo{Tl^獭D BrON7|jQ{Styz-ʴ}!9aLir#A٥5JlbTEßzOȷxGQ DZa'j?YHgiat=C:_yYMe-WuQd8nﱢD>z(Soxˮ v{/UZ(Wӟ|b70s:Kj֟KJ] ~q]M#t*UZ 0eLE8JN<;*/^ ü{Uho+#tgp ;fK5Bڳ+FXE@#[WCx*p"E_ @9Ig'J? 5ͳt{gdHSAigw*Zg:m+v}͋0&Zu#bH@Omp7Dj!Fa}V`2Q[ m j ofIo?<03tebWgr$H*І>.:NU3 b#{Cp5- w=Fy"jkk""pl6N*Ծ\ ߑ h,]RH4OPj5ֹd T Q@4reevMGэ ga_8vV.c_(鱖jVY.ˋ"fwz!^u0z5 3Iƞr40&$)Vq?RРIW}*M4oѧ C *2|Z(/wyr}CaDO|h5=Ѹ}HɡrA1O5)X1Nmn+$ yRyg yG(C"S3&`x[G佅г +{d(Nah_6PSO!ӻ yɽBmJ Q>?xĮɑU=qr7Ոg >|:&{OM4uyf@Ǒ/DᙏG;4#+hS;W6m57-]}^[wD &/.r7}%^m/+sxTk@np|Qۡ=/@<Qbb K:ƵLYHĭlS ke=b ޘenc;s"0#]{ z{x E}vmUY2 ,=g- zݻE %H"*˨oSls:Pݲҝ v|Ԍyա# mp?Q^HP$@Tf!NZyyFؚ*OeK ^% C(a5 Pėu,ĸէDX!><62u꞊'??_>Oe"i:JRv12$:8ɡDžCj>(^\sE/39Sl®o&qfE>@pQQV[vȓ:q_zlSJffe5 ː8ȗmTn*"ڭw4FJ^9[:@;2<@"( 0T5y0icִRw6+Et]:-Yy,@5,[g䉿pǩwJ1O^. /8:z`F<`a ;O 0>#.Eשּ~eP+-T$ɒ~9LH, U1>?h/rb֒xF@]-488fNJ1W?񵦢uvaԅ)( 4f-c,&$F yx:Q-@w> ,R0Ң7{)+PtְDqfAg;$s #6ɩ-<'^Գ,L{(ZDU~ EUg(NL?ʛb߽\ݖeiYrya<5EM0J Ҹ{XIu73%QڨF΄mtrGǙ#/#LbiaS=R.z0,Μ@7]U60۷d-Y>~m=^0UVo gxo<>vMJz_جhoeK:[( oΐI:L?x4XAϊ{m[szD4 o#}=­X"U Qn Kn J5>?E.0kHŒ)KW|BIg cG>7Q'_k;ZZ ͤ`y-o)A|JSB{d[lxJV#H K{DlU@ԵODN=vDry]ّNf "p-O*+46gsK2R qkfK "MT~EwG}bf?A"N粐2gc"+#kPepPRNۮ-`)6@dGimwyEb 3 Q"Hb6rU/ϱ^`7,cʺ\L,Es( VK2.'_I7' CDM;vz po8QaiԷp"eA#!c)p-t_K=V]q7UkhĞ]ujEͲO!qet+V7rp.BʁG.i (N3 լN2{^pC} `*] d3Rn<POe9)jAK;FPt|=B.bOdUoNQ.,cZV nhcwS?$`ъI_NCX8iR=#7f?ܸK[4HXQX[`Ա(% Cۚ+:hK8Pa[% 'IF[ČЁT̳JY7Dkppf<. LJH;YMiJiJMG{BU)zRFrex_.9dXMG .)._do75Fv"GyO"ٓ6BoItpBoP?2ޒ+M-cἒ{S[7G-Z&ѣO,(8\]/ Oo$Cq<4@; 9|qiGVpLQH|] [9Vn1iZ%d{+$?8ə!/+%}8XWvrPrkxBSaO_ v=*y'u5*IWyWN!pϑ;Ārj(Ie&K o5WKH!O%?X|95=[0`=xz ~>Zy* %V~l%R"{b`isbG&,VIqoqC2}[6򵔁}o+,2++oޜ"hSs Ei~mr싷r7-5m*e>%n|yyo M̱"mJ6j~W+mqjunYʽ8rUH_)EL"laJW s`f!ٕG~Am{ߚqmߘzPȫ`.`톋nȈُ?nwXLwϺ#h+mc;2p | 9m'>G!7EJE_}95&r5 ?=ňq#\[Wlq,8|2P}809K\I<V} KG@FK$O][m(2?F60Kެ`ƚ}u;E=\-̾s/3PTaivGQ'7oi:#)w@9[)+X "lOϴ. 7Sw>G(BAC m"4WW fu/_ۨ.mP:`xOZ(";8QmWC97åK҉>%dc[b#"#iW_{4,4C*f]XNF*:%gbٜ 6M.?-bQ[a ;pdl$wEjEYQz'a6gskuɬvot&,c, n[R"rl6=ʾi7 |nee$UF‶=5/4XtN 뵿7qaS]kU';Kxnh}*mq,mnx#w)OIa'm*߭Ch@@C2'e s9=n"D-ȽOlj0Īb,ץH(\3ܖ5[HuwZK4n`.]B(W|=fU:vu(3h1E JZk5K?s[m{/nm+lmЈىK>@ c5o_Na s@1ۥg-E?/JnbOǾ: sKde92VE5j\3%Wm&oQRd 5dK^I:P~dodӁo(Ih`rmXR^rp1X3H xAOơz~zŽ#sŒQB76r TQN k|R6 7E I1,]ԗ;ֿCQct&Q3FcI7,Q&o{0 (gN~ S` _1i߿k`~n;45XTvߣ"$V@,9  B Z Έ 28iNԽuehYÙ|v˓b$bFHX<$Ci.t,exϬו#?Q൥M&GC5B3vo=Rl4M20s:VIv5zֽ@!膆`xTE1L)ꤨ\+ %>ڹ!< XioBI Yzz#A)V%vpS/dwvb$p 65ѝZSVdH`zQ=Ȑ*om*܂hXoE S>ŏUr{+z`aPs;~SCph'|EM2qqޡ %'1=FEl%@;s%KUDm{)}Umݮի x[k}P}_ bK.B_do %'_OOhpPQK?Ui_hdf>>4}3Kg ̀51l..*`r=`K9=NQ=Kngհd"]' o^뎨t$"қr(ypӧ_nƕ"(& B9-Mr畀`372BE4g0Y+LzO>B$J=|ɩO, Y+βQ옰Q*KBq="qs-F vrw7UK~a.hf;X,ďK硗T{H k; *I?mm9 w>x w7Gu &Vuv&"j4rf̟Ol({.|iyX8gȠ Wi,Lv~mX.i  RE5(~)z_I3Ag._\Ʋ>c7mi*OxUSHł: +(HIt4\)9ZT:L+S̗Dz]c+]Rp(j6G{?q>ڃ͛l>ܰ31f.ܘХʶkhy/By zFpQ!qE MYF?ޚ2?TKh5sp5fJl~JvU'r87nEf\6UL@i{ ;-o.GPwLͯcpp'4%uͲ>3b]Τ<Ҿ 2 &tX-^݀K1URlA_!&ݼل]-_)`,R?sO*kc.TMx˃6q$"5hQ#=j.䮰q*S̵c1[|ܖ!Q .m=YyW{T' } &O* yETJםNH[> jGfaTQ>] uÈ1S9+ endstream endobj 789 0 obj <> endobj 790 0 obj [791 0 R] endobj 791 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 582 0 0 838 0 0 cm /ImagePart_2175 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 304.8 719.45 Tm 123 Tz 3 Tr /OPExtFont2 11.5 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 123 Tz 3 Tr 1 0 0 1 84.7 676.25 Tm 98 Tz /OPExtFont5 13 Tf (average, how fast the initial uncertainty grows exponentially over ) Tj 1 0 0 1 409.199 676.5 Tm 96 Tz /OPExtFont8 13 Tf (At. ) Tj 1 0 0 1 431.05 676.5 Tm 65 Tz /OPExtFont5 13 Tf (A) Tj 1 0 0 1 437.75 676.5 Tm 35 Tz /OPExtFont3 13 Tf (1) Tj 1 0 0 1 442.8 676.5 Tm 103 Tz /OPExtFont5 13 Tf (\(x, At\), ) Tj 1 0 0 1 84.5 653.45 Tm 100 Tz (called the maximum average exponential growth rate, reflects the error growth ) Tj 1 0 0 1 84 630.649 Tm (in the fastest growing direction. In the limit ) Tj 1 0 0 1 306.949 630.649 Tm 106 Tz /OPExtFont8 13 Tf (At ) Tj 1 0 0 1 339.85 630.399 Tm 88 Tz /OPExtFont5 13 Tf (co, A) Tj 1 0 0 1 364.3 630.399 Tm 56 Tz /OPExtFont3 13 Tf (i ) Tj 1 0 0 1 366.5 630.399 Tm 98 Tz /OPExtFont5 13 Tf ( \(x, At\) approaches the ) Tj 1 0 0 1 84.25 607.6 Tm (global Lyapunov exponents, which are the same for almost all ) Tj 1 0 0 1 394.55 607.35 Tm 120 Tz /OPExtFont2 11.5 Tf (x ) Tj 1 0 0 1 405.35 607.35 Tm 99 Tz /OPExtFont5 13 Tf (with respect to ) Tj 1 0 0 1 84.25 584.299 Tm 98 Tz (an ergodic measure \(25\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 101.299 561.299 Tm 107 Tz (It is proved \(94\) to be true that the largest finite time Lyapunov expo-) Tj 1 0 0 1 84 538.5 Tm 101 Tz (nent\(average over the invariant measure\) is large or equal to the largest global ) Tj 1 0 0 1 84 515.2 Tm 102 Tz (Lyapunov exponent. A positive global Lyapunov exponent is therefore often ) Tj 1 0 0 1 84 492.149 Tm 99 Tz (said to destroy any hope of "long-term" predictability. Actually both finite time ) Tj 1 0 0 1 84 469.1 Tm 100 Tz (Lyapunov exponents and global Lyapunov exponents reflect average rates, not ) Tj 1 0 0 1 84.25 445.85 Tm 101 Tz (average times \(81\). Smith \(94\) gives several examples of common chaotic sys-) Tj 1 0 0 1 84 423.05 Tm 97 Tz (tems to show that even the system has positive global Lyapunov exponent, there ) Tj 1 0 0 1 84 400 Tm 101 Tz (are some states on the system attractor about which every infinitesimal uncer-) Tj 1 0 0 1 83.75 376.949 Tm 100 Tz (tainty will shrink for certain finite time regardless of its orientation, which also ) Tj 1 0 0 1 83.5 353.699 Tm 99 Tz (indicates that the local dynamics of uncertainties about that initial condition are ) Tj 1 0 0 1 83.5 330.649 Tm 95 Tz (more relevant' \(62; 82\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 84 285.75 Tm 113 Tz /OPExtFont3 13 Tf (6.2.2 q-pling time ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13 Tf 113 Tz 3 Tr 1 0 0 1 83.299 255.299 Tm 103 Tz /OPExtFont5 13 Tf (In stead of averaging the error growth rate, the uncertainty q-pling time \(82\) ) Tj 1 0 0 1 83.299 232 Tm 101 Tz (measures the average of minimum time required for an uncertainty reaching a ) Tj 1 0 0 1 83.5 208.5 Tm 102 Tz (certain threshold. Given an uncertainty co at ) Tj 1 0 0 1 317.05 208.5 Tm 96 Tz /OPExtFont2 11.5 Tf (x0, ) Tj 1 0 0 1 336.949 208.5 Tm 104 Tz /OPExtFont5 13 Tf (a q-pling time \(82\) r) Tj 1 0 0 1 440.649 208.5 Tm 47 Tz /OPExtFont3 13 Tf (q) Tj 1 0 0 1 445.699 208.5 Tm 103 Tz /OPExtFont5 13 Tf (\(x) Tj 1 0 0 1 456.25 208.5 Tm 46 Tz /OPExtFont3 13 Tf (o) Tj 1 0 0 1 461.3 208.5 Tm 81 Tz /OPExtFont5 13 Tf (, c) Tj 1 0 0 1 471.1 208.5 Tm 49 Tz /OPExtFont3 13 Tf (o) Tj 1 0 0 1 476.399 208.5 Tm 63 Tz /OPExtFont5 13 Tf (\) ) Tj 1 0 0 1 83.299 185.45 Tm 100 Tz (is defined by the smallest time for which the initial uncertainty c) Tj 1 0 0 1 407.75 185.45 Tm 46 Tz /OPExtFont3 13 Tf (o ) Tj 1 0 0 1 411.1 185.45 Tm 103 Tz /OPExtFont5 13 Tf ( about ) Tj 1 0 0 1 448.55 185.45 Tm 113 Tz /OPExtFont2 11.5 Tf (x) Tj 1 0 0 1 455.3 185.45 Tm 53 Tz /OPExtFont3 11.5 Tf (0 ) Tj 1 0 0 1 459.1 185.45 Tm 102 Tz /OPExtFont5 13 Tf ( has ) Tj 1 0 0 1 83.299 162.399 Tm 98 Tz (increased by a factor ) Tj 1 0 0 1 189.849 162.399 Tm 85 Tz /OPExtFont4 10.5 Tf (q ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 10.5 Tf 85 Tz 3 Tr 1 0 0 1 130.3 119.899 Tm 69 Tz /OPExtFont5 13 Tf (T) Tj 1 0 0 1 135.099 119.899 Tm 51 Tz /OPExtFont3 13 Tf (q) Tj 1 0 0 1 140.15 119.899 Tm 90 Tz /OPExtFont5 13 Tf (\(si) Tj 1 0 0 1 150.949 120.149 Tm 49 Tz /OPExtFont3 13 Tf (o) Tj 1 0 0 1 156 120.149 Tm 81 Tz /OPExtFont5 13 Tf (, c) Tj 1 0 0 1 166.099 120.399 Tm 49 Tz /OPExtFont3 13 Tf (o) Tj 1 0 0 1 171.099 118.7 Tm 89 Tz /OPExtFont5 13 Tf (\) = mint>oft 111 A\(56 + eo\). frt\(Ro\) ) Tj 1 0 0 1 348.949 118.25 Tm 701 Tz (\t) Tj 1 0 0 1 371.75 117.299 Tm 81 Tz /OPExtFont8 13 Tf (q ) Tj 1 0 0 1 389.5 117.299 Tm 73 Tz /OPExtFont5 13 Tf (eo ) Tj 1 0 0 1 398.399 126.549 Tm 1830 Tz (\t) Tj 1 0 0 1 457.899 119.899 Tm 92 Tz (\(6.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 273.85 52.25 Tm 85 Tz (148 ) Tj ET EMC endstream endobj 792 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 793 0 obj <> stream 0 } ,,ڔb7 E;A8^"J]M Q!n٤멱1߽ʵ"a<e:>/4nCʈɧ ~&>@fZ1*-gH nsݿabjD2ti:D*#ojM·277x=Lsv8$bK鳐avg{tf)ׅj%VЮLxÇ2"AY?w]bI]1|&&G;6ᾶI>~ұ}ghr$۽Gjwo@0$ f7q T<mI;^y.Ѥ-IȏveqrCdr*d̗lC' _0&I8<~"W~%|d(=āyK%hZBdbm%T]p ʷ 2 9bmiަj3Ȩ_Q)X >?} t: _fv:LUg$J`AtVި 5!/V ">EƢ} 8BFSJ33_{4ΰ.{؃jչz ֑sk /µV*hv)@G'K P҉L|C gUY #@-8.5p~rI'!(nA0npa{Y̠<\smYij߄ȨԀLX]"cg:Aa(1GlVkn/N]1eO_D[K:xr/omu帪!hŒmW*qR%T#Uyՠ@,=4y—mZJM|҄-Ug}zc+0 -'SH126#n̉`lVdxn -tQdj%w$hL~|C$W lGU!~}}NVx`\T)1zɝ lܐ]^YWIxC͹ PSzk[UgG$+'JͦQ{a+gy/f(d{'ɲ{&H^<5?Ƽ?|[GDbǓǏ&5\i2~[Teh7:*C/F^BiO(2`ϭi'<}T]PH@'HAoPS·mEZ fsjPѬc)|K-ZfWR:$c*aii9;+:j.ᄂzd\Z.dW>Pf܎0kkq&'QR b4|;IN} ˶%Y#eU*!@5qL ̈XSlZ<`t8[ WgRhd$R~و vcg}P/^AXXI*caս/)@KOcM,`6P]X91v{jG.dJ٩n %n|{ #+GۀD'Lf]pXiʊazwQ,&ݛb"Igq>›n]E1]I#֚``%s֟UWu^㭱y4} )_O~ԄdFtwڐx`MV}Uzz_ι8LQRqdk\Nn:*";=4Qke)Y>cl'H$+y[ū]E/.ō`}`2ik*һRe΀8簧e35dض]2bsompz߹h. v;J;K.Qwullܧ;ȆZV5J({^"%7j;áO"O3S80 AJ1zb;&=I>16.O6,YB_DG}˛pkw89z ]X=>bxHs s~Եin$;LCو3\ybkHa ^cWYfCY -|z}J(!@@l)veڸu#+p}ҋS]т |3ǰeFWV|Lv/6Sw )~葏Yz6E8G!rznk΃;ܻp٤E[GDzqomՊF-  1 S5FW ѢݘamϿfSj1j(LWo)Ih$K?PC*kGyC$GGbv{9l;_ڛ!mrYy[<R,JG;TȂQ^5=D$7_}ZʴP r*Q@!?`׆ʎnv¨,%8N&Z$ A/'_4H҃ަ"î9(ASg{՞m5 WKH3vgB'BAq {`br3͔1dIUOI Ǯ*}Ea)#1M-(v(#|gLXE^ Ӣu[! xA8~;y i vΣJl_f1-f72}g> {pdWvlK}CۖdpOo65Lq-F Z$gpS8r>,.Z3:O:$ ʕ%-48 9 KgVFMnjGK'{q_3|9C[|mgBb2Pϓʡ:o 66ÓfS#:>7Yы'b(p5^QWx(Pq;~.[&m=};jtAIы_RͰ\%OTT@J0|FG[(ʺ2@Yf0mx6(@^nT6ɱcQ&_aT;f 9,w3h*& ozy|;<E"0ʦ R)aM r7st5D$3ܨqOPY ia>R=1^RB]22}´sKW ZAm3N\(ՖiRπu5NBc΋muaĜ9ț`dވoqω&}V4}OC`䱖~Qϲ_ +ȿ-hUJ"*%X&_PlљMl*= rKW OYFL}qo ˨#*:̓/,>|JGq" JCrЏ?YkJ مtW_cI;7ĉebu9/>E*riWYos9(?+ QxeУ`SHT%\cSWo^_ i{]drDeO`%Ff$]{WٹM/.8ezHhj.pǮ(+V&szK%@@` lb{9X>>ϳ^z5ʴ~#,e,!.wT辱3˞8(>!^نy?+-.B迢z/簭:h< f!Vӥjx>kQx="WQO˷B2Hj#iһ`0IZbٹC . f&^Pu^[Č $YCl6C52nB`WՉ ?qй cip)FuBH|_EuGBL d \}SZO NDyd]W0>rvUa at7\^N`580Ef|< 7JUKUЪrK',EюR9!χBK<U_bYW`u\ndu$ ZT7;qxHwZ2fuC*!ݕW(;-GYp#ꄯ=YBH0kH rg_n;2arDfoF|EVr:5>*_tu!\xIV.$ 'SI@k{8cU1<_<^@TH=Rm85˘`gU漵 LS*՞KȒ4pI҈c zl5 EIdGٶͦ}s T/u^b[1}r#<*_Qhq=O'F>[|0p 8R ` } N3`_t%e2I=vİKK#3@=veom[j'5Tb Nkq .WCEߏ:OHk`N' <,.DU*4Fw|d> ӭ,F2\i|mHbH<{ޓ=W!wAZ8_Dr^,Cy梠4&c 5aG @M6J \/\ E+P )/[>|.d1J~d3ǐ/9#הvYaۢ-Q,iv4T/]baO $/~sW)YUy[OjWGk;AOPw6ty s=[s:A]dl iHLhZ/1QA0#beXyb9M$B3m,0d<__Hul ra=(odp(=ۢ.r9F Noe ^ yj g-:hi[D<&},2P9Sj 1aPG>/ x-鋈|m La~l7Uauuf$kWj0ך4r&jńPʨ鶯 @5jP9:5birEC%)*nVOP$EV 1XpA{I@RT4 8r^@"]اPBgB'YU5̀L_{f3ZRw@s=,̇D==avf7Wtz9]!!=kOVW(TZչR^I-\› INZu0[frT[?5`EwU9; sdp$1:.V-}w /CO5d|10-r#0SY ]!pt(D{ 3OK@+{HŶuKU1E#OLYÌjY30̧}edOz-ߐ~*5x0:aPkv[()=Y.)yyD%+"jҬewZ&,bsf"vߟU8+( s:mp$ԋ"RVDZ+emD[/)< I];?|Ҹ?BBu{ljw{T`'Uަ yWeӏX0sNRhGZ0Q>EMKzܶ]zݢrNp?1:&QD` v$r9V1sv6aqK5`8q9Zd2*^7W63[u2VhnaBw.I粊؄E:T$lT Rl^?aAw>-0d؜|(RVr"^| T\>#&u+¬W+%ca启ᶹ=ǵnհնPuJTmӄSݒium %WgvM3O"M+6bDlnO}38Z9pA}TW @(یŽ?RO꺏a;Nk;'\3p#^e0"Bչ`)嘕>7j0a߲d k ZGY0d^#·U~`voJ_lt١lKߡ+SAg.+UkEvt3/󓐴NѮ]ʌOg?q#'ٙ|հo}fJݖ5Etb0w2=KMGxJ#([DYmLP&P):Jm,QׁK:\4n&{_-fn[ $RO/>nhT8|9-Rr[Aj& 4kU G,$ #O$KsZv*Iy)̼{dEN;(FYуpVL?=4.0>AQ bŭT7rДop x,,9ŻYGJq=eQN]3zRFVYeRe,;B,դ)\u ^<£N9[X!\)p1q~$G| TsaTi*:vZTl0G*&E Eu"Ov {rن)VLtPUͪtI]piYGa_W9#@=BPwsz3Kɖ"Z-[p= s04铞 SKeh讥,츾}"A:'EHYWii n dzs-BSڝT.~ 69 6 XmߪE*b< iaŃtyR%4%w"9"gZEjIس\_B8)4x'Rψ,c /CԌ,q.)4;JphV!U9m+/ј*>Va2o`K ;}M6 א2fs׹k@>q|[ Z;n+:t&7zq 3]prq^Ӑsʸ1<fyfbgnW(7\%YⳆT0L9ֲ4~dUYրqyӛd{0|y|TܦQ3.uNf^<滈vp?H#_(.& _);]QTl@IXcLRp4o]»Wz0T!Ӽ*qrL7Oޜd+f<NJ(mFd)ON%#fv̾1h`|AlDu UJOM$P$1ArG$xFL2*nzHm2J endstream endobj 794 0 obj <> endobj 795 0 obj [796 0 R] endobj 796 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 596 0 0 840 0 0 cm /ImagePart_2176 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 318 720.7 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 97.2 677.75 Tm 92 Tz (if single value is required, the average q-pling time, rq\(ii c II\), is then defined by ) Tj 1 0 0 1 97.7 654.7 Tm (averaging the q-pling time over all points x on the attractor. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 114 631.899 Tm (Although the q-pling time is often \(81\) defined based on ) Tj 1 0 0 1 403.899 629.049 Tm 67 Tz /OPExtFont8 13.5 Tf (E 11-4 ) Tj 1 0 0 1 431.75 631.7 Tm 91 Tz /OPExtFont3 11 Tf (0 in order to ) Tj 1 0 0 1 97.2 608.899 Tm 92 Tz (compare with Lyapunov exponents, the q-pling time can be calculated based on ) Tj 1 0 0 1 97.45 585.85 Tm 94 Tz (any initial uncertainty, which does not have to be infinitesimal. For Lyapunov ) Tj 1 0 0 1 96.95 563.049 Tm 93 Tz (exponents, the linearised dynamics, Equation 6.2, is based on the assumption ) Tj 1 0 0 1 96.95 540 Tm 92 Tz (that uncertainties remain effectively infinitesimal for the time scales of interest. ) Tj 1 0 0 1 97.2 516.7 Tm 94 Tz (Clearly, as long as an uncertainty is infinitesimal it can place no limit on pre-) Tj 1 0 0 1 96.95 493.449 Tm 96 Tz (dictability. Once the uncertainty becomes finite, the linearization, and hence ) Tj 1 0 0 1 96.7 470.399 Tm 92 Tz (Lyapunov exponents are, in general, irrelevant to error growth \(82\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 113.75 447.35 Tm 93 Tz (It is usually impossible to derive the Lyapunov exponents and q-pling times ) Tj 1 0 0 1 96.7 424.3 Tm 94 Tz (analytically for a nonlinear system. In practice, to estimate the global measure ) Tj 1 0 0 1 96.5 401.3 Tm 96 Tz (of them one sample initial conditions uniformly with respect to the invariant ) Tj 1 0 0 1 96.25 378 Tm 91 Tz (measure of the system. For each initial condition x, the Lyapunov exponents, i.e. ) Tj 1 0 0 1 96.25 354.699 Tm 90 Tz (the uncertainty growth rates, can be estimated by iterating the initial uncertainty ) Tj 1 0 0 1 96.25 331.699 Tm 100 Tz (about x for a fixed lead time; the q-pling times is obtained by iterating the ) Tj 1 0 0 1 96 308.649 Tm 94 Tz (initial uncertainty about x until the uncertainty has increased by a factor of ) Tj 1 0 0 1 484.8 308.399 Tm 87 Tz /OPExtFont6 11 Tf (q. ) Tj 1 0 0 1 96.25 285.35 Tm 95 Tz /OPExtFont3 11 Tf (Outside PMS, calculating the Lyapunov exponents which have to assume the ) Tj 1 0 0 1 96 262.1 Tm 94 Tz (model is perfect tells us nothing about the real predictability. Arguably, model ) Tj 1 0 0 1 95.75 239.049 Tm 90 Tz (error may be more responsible for poor predictions of real nonlinear systems than ) Tj 1 0 0 1 97.2 215.75 Tm 97 Tz ("chaos" \(82\). If the observational noise is free, one observes the projection of ) Tj 1 0 0 1 95.5 192.5 Tm 93 Tz (the system states in the model state space precisely. In that case the q-pling is ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 112.099 171.85 Tm 96 Tz /OPExtFont3 9 Tf ('assume the projection operator is one-to-one identity ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9 Tf 96 Tz 3 Tr 1 0 0 1 286.3 53.049 Tm 77 Tz /OPExtFont3 11 Tf (149 ) Tj ET EMC endstream endobj 797 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 798 0 obj <> stream 0 ,,$b7 La~)^W<;J !l򾭲%j}tc;j)&jḘxizhұ;jq`t'E_*B VQ\r&RهF7Ja{ fca]$HYH΋+t'.yiATs˿ƴ,\(cnc}?H+a)r@<'-u 41|۱Aޛg=1=P|RaUo԰Y[$?%Xȓ~82Iog{l /D@JӼҜw[O:2#c2Dl TqWǸ[ Kf7 :L.Wmu4s%<+3igQsߵ1[UOi\(\& ^+˿We!$jzRfٜŢQgpԟYjoFB!J%Pxi;lE:2U"tGA_G!uN7׉X|}|rim ]t1.Ir^tGi(;uҜ(NIaJ~iuؚI WG`ߏ1?挐a ;N+Qe)?nr/# ZR<1M/["x-s9և~w32Q"J=HAвzug_6el!T wEIC/'h#ω;V+6PO,`<{3At֫;^Fxt?՟PeKlm^״DZ _q'9[{#2]xƸ:42/%%Zs]7m톊avxA؋'ӧŬcJlDܒq$,ۋq沒oVx=ձ+y* HUTqf:~|)x%Loq%[;)B=,0L< ">ɰ<-nZ[_Y~dvQ,dȏ M uͭw!x:k4,-rX`K|EZYmw!.0Xx1v)~u; %\;5[&?o+h,0ck~;1->$} Ǩ$H6C5_A!`1H|mL'? ,ŔGl#CR}?0dP@s𥱖}ZD@ʔ[V ĸpH1=d'fdٽ<2j76P C;XO˦WAy#BPG%ݠ5tw tѣ":]3 9tac UWSy[glOiçg0+|/"?׀l!|b|t7.Pv< ]T!-p,q%wdaj;BB躁aK;7WA.s`ɲ.a~{V&M-ވGalf8F; ]x{@U }s͉0hxB[JMٔLMʱڱ+MTG׌<5$ΙΧlw'ʝ՟JH 8_{?D,mFOO7XYXtǿ$apX=tp*4t:mvW+YF?Sixm¯G]#rf*y”Et P_;%TRbrTP9x0qդ4tkap[kvmazF:5ҫ^!+j9|_G1ΦsP~~Wc)&9_+Pa+ 9 =6,OeLYgEA uʐ!AlO~+.2%Xx C9b–لFl A6<e`2tJjNğ-Lc11TcyEMY?%(RXT^+NmL}Q-K6:>.ʨڨY׻Dndy>,TFȃ=3Qw?FpnorJ )Aɂor%.,JD|l' D5vM&T֛C4}$+IhA B]:iɾ/l=a͓Zw,TԦewC9'?ye'ݮ¨dаp`@ozji\}==Tc@gq\G24q/#!Ɋ8ϫ g0tGݏfVRy?A6(r0]L4_ Bw#:_eSRHwZ Jh}?j 49m;mgKi0oCXfxđN䚯ݕO@S,#8pJјO5SL2uenC Xm՝4!!C!Zʱ&7#\9CKuw %,LIq3LN`7*vG 'UmD)[]OGAdDnJvGxa߰rT0\Ec; v@f$& +>⊜s%J,H=v5zݚ?2JŔ1Ք@{Өъജ:8E~㑀Poa["Ѳ';L+UC}jٯß)۟Ef.ZX5 1^R Y[{ vz&f/hRwm._W/Ξ)j3FUnQ(/-&]U \ Ŕpf 1-Vnf8|F$lA R0@dY m̔ JU8 "t ߑ"m2L\8x  G> sca;vKF(֚_nʊ8I2^q0Uz,fO&CxsΣ)4/B $CmZF14{Ws zʔA0=סsѡ0W_6uWʿ‹S[z7_#BcmUZ9@a^© bM86@;6u qg؟])s_淰 5οQ {}B6QyW煮G=Ack#u4aEEs/eG 8"ˏ(Ŕ}6}+-GN9%'G1#"/bLD7p -u: Yj&^:,aj6 !~1\5-sxuQ-`CQ@BsBސTZ#+./A6/8:<[m!3XyB)MyŜb6`E '^mfb|}-9Ad+XT*MԦ ;9s[(įnL C}n|FJ+bď+g'|^wdƤF C!-3{"( X9eW9Ξt|h@zg[^PǰBEml*tt6a2k|UrY{rLu 3Ђjfu(Joa/{ RLo~>TձX@^Gd{:Š`gO=v3RI8^BEm+ArO*iG)#7Fz8Bߐx#Qfu(Y w_^a틬軀ZWG{ Ӄ} ;me&"qH6[Kv,yP=7A҂ {Q[{%<}M <#Ve?0DL 2ͨ?@ Bq@kMm'L?0li*lDV}MXJ#}`s#&{6qw8fzԗ'652C63MvdZ!sON[am9<ѶCA7(GmX5= jQL͓A90 !ȖIGT'6`XDϠnߙQLGݘQy޴9+&soב'1Q1L:ŝ['f_7D ƌͳ=a RQڄx Ý/Kl| J@z*݅&"6"50B >1?"ʲځ}&ǰx'/OOBjVld`HӆzЃ[TK anONp[8^tR|5UWgS o̬uvN }#X@:GeU _I:>]zzRhcK ' kԘrSKi qT swj2g w>E -"6JZ"m qk hu BjU.`}D!k;AQ!PWuǙ V\Ê] 6J&x'].)I?MVaT6U6 ԎKo'wA>[=v*zvwy{T7ˆcnұb,sۑ6wNOϙA n]Oq(G[?L_|#K2ݘ.F cA` ǁ_[ä-jLJ1_SnAݖ3 yH ⭉C mӽǒZH92AX5ԛUp>2E_PpWR` (L;IkKdj@bG5)@_z~ 2\5[MRBΈ,SwCgT5\m 9mŀ/~"*zf rPOOe}tItKog;R UY/bC($rj4,1αA", ~(r: 8|GdߍO6TG׵mVV)E\B1 m;T0T7> endobj 800 0 obj [801 0 R] endobj 801 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 598 0 0 838 0 0 cm /ImagePart_2177 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 323.3 718.5 Tm 123 Tz 3 Tr /OPExtFont2 11.5 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 123 Tz 3 Tr 1 0 0 1 102.7 675.299 Tm 90 Tz /OPExtFont3 11 Tf (defined by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 161.3 631.6 Tm 84 Tz (T) Tj 1 0 0 1 166.55 631.6 Tm 52 Tz (q) Tj 1 0 0 1 171.599 631.6 Tm 80 Tz (\(Xo, c) Tj 1 0 0 1 196.3 633.299 Tm 58 Tz (o) Tj 1 0 0 1 201.099 633.049 Tm 94 Tz (\) = m,in) Tj 1 0 0 1 240.699 632.799 Tm 78 Tz (t>) Tj 1 0 0 1 250.099 632.799 Tm 100 Tz (oft ) Tj 1 0 0 1 268.55 632.549 Tm 74 Tz /OPExtFont3 13.5 Tf (HI Fi\(x) Tj 1 0 0 1 301.899 632.299 Tm 43 Tz (0) Tj 1 0 0 1 309.1 632.1 Tm 98 Tz (+ ) Tj 1 0 0 1 320.649 631.85 Tm 107 Tz /OPExtFont8 12.5 Tf (co\) ) Tj 1 0 0 1 336.949 630.899 Tm 53 Tz /OPExtFont3 13.5 Tf ( Xt 11 ) Tj 1 0 0 1 379.449 630.399 Tm 89 Tz /OPExtFont8 12.5 Tf (q ) Tj 1 0 0 1 389.05 630.399 Tm 52 Tz /OPExtFont3 13.5 Tf (II Eo ) Tj 1 0 0 1 405.1 639.75 Tm 1655 Tz (\t) Tj 1 0 0 1 476.399 633.299 Tm 87 Tz /OPExtFont3 11 Tf (\(6.6\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 102.5 591.5 Tm 98 Tz (where x is the projection of system state in the model state space. One can ) Tj 1 0 0 1 102.5 568.5 Tm 92 Tz (calculate the q-pling times of uncertainty about such model states based on the ) Tj 1 0 0 1 102.5 545.2 Tm (imperfect model ) Tj 1 0 0 1 185.5 545.2 Tm 148 Tz /OPExtFont8 12 Tf (F . ) Tj 1 0 0 1 210 545.2 Tm 90 Tz /OPExtFont3 11 Tf (When the observational noise is not free, it is reasonable to ) Tj 1 0 0 1 102.5 522.149 Tm 92 Tz (assume that the observational noise is relatively smaller than the growth of un-) Tj 1 0 0 1 102.5 499.1 Tm 90 Tz (certainty. In that case the q-pling time can be defined based on the observations: ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 162.5 456.899 Tm 73 Tz /OPExtFont3 12 Tf (7) Tj 1 0 0 1 167.05 456.899 Tm 76 Tz /OPExtFont3 15.5 Tf (,\(s) Tj 1 0 0 1 180.949 456.649 Tm 44 Tz (o) Tj 1 0 0 1 186.5 456.649 Tm 51 Tz /OPExtFont3 12 Tf (, E) Tj 1 0 0 1 195.349 456.649 Tm 37 Tz (D) Tj 1 0 0 1 200.15 456.649 Tm 109 Tz /OPExtFont3 10.5 Tf (\) = min) Tj 1 0 0 1 239.75 455.199 Tm 87 Tz /OPExtFont11 9.5 Tf (t>o{t ) Tj 1 0 0 1 263.3 456.649 Tm 481 Tz (\t) Tj 1 0 0 1 279.35 456.399 Tm 124 Tz /OPExtFont3 10.5 Tf (F) Tj 1 0 0 1 286.3 456.399 Tm 64 Tz /OPExtFont11 10.5 Tf (t) Tj 1 0 0 1 290.649 456.399 Tm 88 Tz /OPExtFont11 9.5 Tf (\(s) Tj 1 0 0 1 299.3 456.149 Tm 66 Tz (o ) Tj 1 0 0 1 303.1 456.149 Tm 93 Tz /OPExtFont3 10.5 Tf ( + co) Tj 1 0 0 1 327.35 455.899 Tm 67 Tz /OPExtFont11 9.5 Tf (\) ) Tj 1 0 0 1 334.3 455.699 Tm 70 Tz /OPExtFont3 10.5 Tf ( ) Tj 1 0 0 1 345.6 455.449 Tm 82 Tz /OPExtFont11 9.5 Tf (s) Tj 1 0 0 1 350.149 455.199 Tm 72 Tz /OPExtFont3 10.5 Tf (t ) Tj 1 0 0 1 358.3 454.949 Tm 10 Tz /OPExtFont3 15.5 Tf (1) Tj 1 0 0 1 360.949 454.699 Tm /OPExtFont3 12 Tf (1 ) Tj 1 0 0 1 375.35 454.5 Tm 87 Tz /OPExtFont6 11 Tf (q ) Tj 1 0 0 1 384.949 454.5 Tm 16 Tz /OPExtFont3 15.5 Tf (11 ) Tj 1 0 0 1 393.35 454.25 Tm 53 Tz /OPExtFont3 12 Tf (Eo 111) Tj 1 0 0 1 417.35 454.25 Tm 24 Tz /OPExtFont3 15.5 Tf (. ) Tj 1 0 0 1 418.55 462.149 Tm 1180 Tz (\t) Tj 1 0 0 1 476.899 456.899 Tm 87 Tz /OPExtFont3 11 Tf (\(6.7\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 102.25 414.899 Tm 95 Tz (Equation 6.7 uses random perturbation around the observation as the initial ) Tj 1 0 0 1 102.25 391.85 Tm 89 Tz (condition. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 119.049 368.3 Tm 91 Tz (Figure 6.10 shows the doubling time in both noise free and low observational ) Tj 1 0 0 1 102 345.3 Tm 93 Tz (noise case. It appears that the doubling time estimated by assuming the model ) Tj 1 0 0 1 102 322.25 Tm (is perfect is much longer than the doubling time estimated based on the states ) Tj 1 0 0 1 102 299.2 Tm 94 Tz (generated system and the imperfect model, which indicates treating the model ) Tj 1 0 0 1 102 275.899 Tm 93 Tz (to be perfect will essentially over-interpret the predictability of the model. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 102.25 230.799 Tm 106 Tz /OPExtFont3 13.5 Tf (6.2.3 Predictability measured by skill score ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 13.5 Tf 106 Tz 3 Tr 1 0 0 1 101.75 200.299 Tm 91 Tz /OPExtFont3 11 Tf (As we mentioned above, Lyapunov exponents measure the predictability through ) Tj 1 0 0 1 101.75 177.299 Tm 98 Tz (globally average error growth rates in the limits of large time and small un- ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 98 Tz 3 Tr 1 0 0 1 118.099 156.399 Tm 59 Tz /OPExtFont3 6.5 Tf (1 ) Tj 1 0 0 1 120.5 156.399 Tm 87 Tz /OPExtFont3 9.5 Tf ( As we discussed in the previous section, forecast with adjustment could improve the forecast ) Tj 1 0 0 1 101.75 144.649 Tm 93 Tz (performance, which indicates that it can also increase the q-pling time. Since adjusting the ) Tj 1 0 0 1 101.75 133.1 Tm 92 Tz (forecast is essentially turn the original deterministic model into a stochastic model, here the ) Tj 1 0 0 1 101.5 121.35 Tm 91 Tz (imperfect model ) Tj 1 0 0 1 173.3 121.35 Tm 110 Tz /OPExtFont4 10.5 Tf (F ) Tj 1 0 0 1 184.099 121.35 Tm 89 Tz /OPExtFont3 9.5 Tf (can represent any model including deterministic and stochastic models ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 89 Tz 3 Tr 1 0 0 1 292.8 51.049 Tm 76 Tz /OPExtFont3 11 Tf (150 ) Tj ET EMC endstream endobj 802 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 803 0 obj <> stream 0 ,,zєb7'F|m5̎Ek>S{xBwz'(#CB$!sw/ƪqThxC*h)@;&mAtTqՓ-%0rMG!xn; W(f۟8LPJd9>~P01ZSWrsI}Ɵ6 Cߢ)󑥘dDɓd3~ewCY%AX`˪m8h}>(5h]&?F/LC"uSEcེgna=ujhgqs~ ec`%q_",NK{}kᏱD_\Tg +m2x-o{+&郞ϸ*f2u7vsoc֑s͂ČOEn4+:OVjGb }iܐسS;S<'k[WhPq~Ctl/Z{+&t?|Ljezj<z`Z#7oE/g!g8:taֶvЊ]wAp mM^3ăX(_|X,9{R0{)}Kz@*"&~׈.CA3M|B@,XhcL27NCMeG 9~X/N2[M(V墌k oL&#e]^1U8{ c:PjA?ϙh̓, Bi6ߎB1ɾtGV/T6ihk`fM2R'E&x\!I]ww'CUyx+ZIbK.hM), XtB;WkHX=z!l7.ڒcԃ |?aJiC ,HʀVz)!(KfVS#Ynݟ-y7zU5#@q"V|\7۳.[C1c; ˂xCsx`wg?'n<(Qaӏ(u6aƼmcqk"uZ!簭ζٷI")?P*O=k{VKS!ȇwHx9C>l`5311;7(!)B0S' Mis OGfAl$򢣥#"ő!)ȁ[D \q)Lk8Ȟ"i#ahhX]E#.B=!h_meU(}Bqcq\\ Ooy.rZX_"sSB-(vK}kt 8Y?k{C\gG=L8 K96[x}Fi\Z[PmK<U%Ԣ4 h/~Q٢nRDz߹Y&9j5Bֈ b%u0E^;zw4B8_T:Cm~ۀzP`\4;ݯA7r2?::.~$i,40tǒLN1ђk]  v> _`xFF#zĤ(b*p$g> ՗ULǗsf&L#0v&f4θ܁.&!+/?ӵϴڶ&i݈?X((9r)d \/!Ls2ʚY^ao\# Y#Vx& |naQk} PIFO]&n9$$QQ#r:C}TO$D1&r1|.[;N+9g|`_L5#Sk) HaN5 UrTiZ-\ aɟv)q +fGphn wyﱿ4l]oI1X.C6kTa C&\6~b1"{kNT]d} `/ Ql6_-66fޗn5_lQW>MV eN;}R?(K_\R@߿a*hؔxlxÐ,Fx՛#H-<jZ?~ZelʟҌ=g.b Cr.t)]).qVɞ򐈢F-1{6Q[c3"#v)lkS'}V1A-xqOo7US7vFmh{w:OKt:f̠YdۅOBP5,phdlr'oT|}8obEE9>u}IGt9# 1.X$ZAn_ק*{Cɽ 1;wAD)t0bŸ́ ! Al2,a)qq}?o=@mC;Ik%!ه,ώt4h}c?:'&F[A.ACsZ;]U,V3Kd)TO pM\ G32; ;5[FSף!,~K,w,3vN[hkDLC#G1: (}FKAB%iorTB ݈h3[Gݝgíe\`u8ѣI9r֎?bȤuleBdMDĺzLeq;?b|مu-"pvihJP]1Fp/9(B*B)_Kq*fz^ AfPajqu?//ba- h̜?<x"fr6*~"o%OWp}4m:,AHP3J7q"hٸ.pS+ߗc okltא8KR+a~^۲Gvl;?MBޓLU׵=@!%s :W ͰeiD'jzd-cDe$/6>;Yz?v' }5 \/G!s$˰{60/`vHuV Qefx52եhMgchCvIaFN@T_[fH UT$  9y:IL0|1o6M|C۝ [0c` B^H\ZM'vQʱ N'!2zә Z T9xp0/ӛ \yl dpCiwdz|&+aJN;/:\~Tu}mϗg^sm dn;w4QiVP;7_?ף펩Z+g ٖSБ50-UN3E'YY?EZok@Mn_Vaڅ弪PDkI}eRټmrϣvE/zj݌-frk$R@`i[oH)ݣG9OߐL#? RmdgErE"5g2Y%0Ù cw Sv)s-zPnҙ`y8\Ts Ad3}/E2 aP{9@>+tQ~!/ldžǾjXU3-DgMD#F.A"BS f4+G#SQ})+~G<;lOuHhGW8_Xi+^47@ySKZ"'IXJ\ξhZOuquhxV~EC@|IlɯaA  v½0 MYT65;\6`9.ϻ^|԰ 誓ր1۶eD)rrr r]ٸH0^l>Ce32BQv$9g[,\! '$HTzոM" @#9TvcW&d0e 5Szhn*fbpV!@<َ0E;:v&_S$S};xMS mf_4`E/-s?BwqۓI0?B{?)4`w"Y>΋3y8.S`" E{ ͆^ԭ=v߸]a3J`(;YYm )? +M5y`⋐*ƛX?d7r7MbD,ZOprPO-O@E8BH` ((ڶH.4C TM*;zW?}ŨxzM7MVd& -e\esēʍϙ_giP6/jJYM{)6qCyptF,7-HA 1cdH$2zt9՞Mf1r$[6<0 rdEX(,+C*?^EGBGvCذj2ԃzvg1;f.>6"rC{+3H5a)Oڞ\̵S mX`B j̜u8/"c-#m":)g.`?մfs-^3%K-4u%ZwcCnLNn =*VmJdA"𷒳#0㼚qYZ^E50$s66$lsjEe,rr0襳 5A+KhőEHˏ*)FC "eaGKTNq/Hŀgǥ3Irav@zeсx%h{zls@&)<,dO$@Xȗ)aTfWiE!3.Kŝ?Nyv (2߬\ Bȕ +壣1yIb Bz,ۆ^+E2?kDnǣXFFD>16/o尰%ܥ"!5| ;m =aڱ[hY0]%7Z0{NrG}%8-cNLyf'?vY^!lcn5[íva[="'+b[!~|Gj JCaY 0_0 \PCa$nW(!.ZtUIR mƶi%u~v"E YiؗZ,,QzJɫ:ǂ) 8.'I8{/^2^eB"PS&H{dc*D~'G&۟Pר0J2RDwv*+ڧYMzpHY   +$X(^8{o>xT\g:GQv= Nz0k5 coxJ`gUeȔע)#(h2沁 g揝:l6qÏih#4=Fۋ{=q]"0ǨY>iVkD$v)LR˜-tC'XP՞KJ+8h Y"~z.Y@%״]cy?\=t0-v9mσ%7HvlUZu]܀$ s23˻@|(lXS@KǝEM_PQbxH#㒔KV%T5S 聪[dJ1V='(WbMe$8ӍAq0,M@ @Ow-IA_$rm+q1۬vс$ a, A wX-w,&֗yJa=vhLj,Iu)|bJTƈf^/piXmx4@5ܓgGۺޱ@"H@+E:.'cNO0L-tR`d#2hRyja #IQ|>!{-ẇ2w+k{H5yzD8ȎO0QKB o4MB3d#S$%T _y#aWIڋ3EY$?|ծcaNzWbXo#v-:ı !6;A].ǓļeыȅtɊl^\C_S\2ll'ov MT-el" I=#0YO#rWAXNg R(j洝OSp]1yEt4 :P*&7WrŶ o&';q(7w~sFdE2^f#-ntU'bETӗߪE3:{,L^f*{ m`ՈkU̖ƒ?p䛌`ve˵v$vnGD&>R]HǸNiLJ-$2?.&bz F裎k ?yֽw,`y\Jg<K2ծI #Ӫa%*];^>ݲ҂ԭDɵ۳oS09?"۞+q0ś~<>vפNKGT,{͂u_KE)̄'%m h6x=}h4Zh"jQ9"E>^Xޥ~ ZhJUB|8{K`f^xOlA۵*LRníG.Rti(@h`  hl6_{ˉi nCAvqUed}fd>=>Y~}A/7;x:Ӣ{$/x;k %6 Ͳj4{#FJFR_U׭mg|ҰG62$p5}8#ׄ<sODy &mjSTӊq OBQi:KR|[E E8~V[!*2 -(hR&.υeHrJjΡB +1??e 7k*'Xȩ蝆#p/*p[ [غ bݱ4p {WW2U3٘ 1~;OZi(2'_2X`F 9AtJ7OyJ%u75:yrhdGD`4#ؒ&؅3F ZnGytHFpj<ک_;>n |:2I ;-OFM}8)vM,Qޅճm@PMN T}E[\#V7B߶CB>/Z'l,2 oΩNYa*0WRH6|`*Z;^B/l5!BEIp0 LVyE|'@N'Bɤ!;,Pou)v&Fqv(jhyG\T?o/pC5G ¬[N('ΏX3 *9 >Z#X~}{r0ZIja?)bs֝Ts 'GA&rD/[ 69xLi8"u^ᩕsWP',Ռ/ ɼ {'H>$DnZ4+GaϵD#Dk4ҍ-'yYl/Jh9f͜C M ;q =}ٛmDw%F\0}>N%V0ΩǮɁA<%؍04im$#ߕkX\݆ ou5ّ0ˡ-Q|5wT1^{tO1g'b[Ը{ϛa$.$N@ /xc:>2:!ҦLıͲW߿۳).ٱ!櫓ˀ$F;&֊$<ju[:IBUaEsc $(k& LyUX j-d(ןGVF R.IQWsaP:TNZxCG - oًbg X wcދsg8zW7§|b*t-&}GlʭȗדsMd7]Y;Kwx6%w?*|LZN{bZyи~wbL {eSٵ)CT[J@ds NO9jfkqmgи9>VDwVz&>=oZc^YK>7j=yL .A4"7иhuݵ{-I< RqW ho,ydPų>Nعš4j{h; fO[Ыfps $]ĉYwX6pDBL3cc^4*?A78|ر%jdJ;> endobj 805 0 obj [806 0 R] endobj 806 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 480 0 0 780 0 0 cm /ImagePart_2178 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 208.8 645.1 Tm 91 Tz 3 Tr /OPExtFont9 4.5 Tf ( 30 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 91 Tz 3 Tr 1 0 0 1 208.8 539.299 Tm 66 Tz /OPExtFont17 4.5 Tf ( 5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont17 4.5 Tf 66 Tz 3 Tr 1 0 0 1 48.95 518.399 Tm 147 Tz /OPExtFont9 4.5 Tf (-02 ) Tj 1 0 0 1 68.9 518.399 Tm 107 Tz /OPExtFont9 4 Tf (0 ) Tj 1 0 0 1 81.849 518.399 Tm 133 Tz /OPExtFont9 4.5 Tf (02 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 133 Tz 3 Tr 1 0 0 1 127.7 519.1 Tm 131 Tz /OPExtFont9 5.5 Tf (r) Tj 1 0 0 1 131.5 518.899 Tm 88 Tz /OPExtFont17 4.5 Tf (8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont17 4.5 Tf 88 Tz 3 Tr 1 0 0 1 47.299 620.899 Tm 150 Tz /OPExtFont9 4 Tf (05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 150 Tz 3 Tr 1 0 0 1 44.149 571.899 Tm 151 Tz /OPExtFont9 4.5 Tf (-05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 151 Tz 3 Tr 1 0 0 1 44.149 522.5 Tm (-14 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 151 Tz 3 Tr 1 0 0 1 47.299 468.5 Tm 103 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 103 Tz 3 Tr 1 0 0 1 51.1 443.5 Tm 107 Tz /OPExtFont17 4.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont17 4.5 Tf 107 Tz 3 Tr 1 0 0 1 252.949 620.899 Tm 103 Tz /OPExtFont9 4.5 Tf (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 103 Tz 3 Tr 1 0 0 1 256.8 596.649 Tm 98 Tz /OPExtFont13 4.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 4.5 Tf 98 Tz 3 Tr 1 0 0 1 249.349 571.899 Tm 151 Tz /OPExtFont9 4.5 Tf (-05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 151 Tz 3 Tr 1 0 0 1 253.449 522.7 Tm 124 Tz (15 ) Tj 1 0 0 1 261.1 522.7 Tm 2000 Tz (\t) Tj 1 0 0 1 275.5 522.7 Tm 75 Tz (' ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 75 Tz 3 Tr 1 0 0 1 254.65 518.399 Tm 147 Tz (-02 ) Tj 1 0 0 1 264.25 518.399 Tm 826 Tz (\t) Tj 1 0 0 1 274.55 518.399 Tm 105 Tz (0 ) Tj 1 0 0 1 277.199 518.399 Tm 826 Tz (\t) Tj 1 0 0 1 287.5 518.399 Tm 208 Tz (02 04 0.6 08 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 208 Tz 3 Tr 1 0 0 1 327.6 512.899 Tm 71 Tz (X ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 71 Tz 3 Tr 1 0 0 1 400.8 523.899 Tm 13 Tz /OPExtFont9 171.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 171.5 Tf 13 Tz 3 Tr 1 0 0 1 364.1 518.899 Tm 37 Tz /OPExtFont9 4.5 Tf (1) Tj 1 0 0 1 366.25 518.899 Tm 56 Tz (.) Tj 1 0 0 1 367.449 518.899 Tm 105 Tz (2 ) Tj 1 0 0 1 370.1 518.899 Tm 689 Tz (\t) Tj 1 0 0 1 378.699 518.649 Tm 47 Tz (1) Tj 1 0 0 1 380.899 518.649 Tm 120 Tz (') Tj 1 0 0 1 381.6 518.649 Tm 133 Tz (4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 133 Tz 3 Tr 1 0 0 1 252.949 468.5 Tm 134 Tz (05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4.5 Tf 134 Tz 3 Tr 1 0 0 1 249.849 419.3 Tm 170 Tz /OPExtFont9 4 Tf (-05 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 4 Tf 170 Tz 3 Tr 1 0 0 1 241.9 689.049 Tm 99 Tz /OPExtFont0 11 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont0 11 Tf 99 Tz 3 Tr 1 0 0 1 25.449 331.449 Tm 89 Tz /OPExtFont3 11 Tf (Figure 6.10: Doubling time of Ikeda system-model pair. Panels a\) and c\) estimate ) Tj 1 0 0 1 25.449 317.5 Tm (the doubling time by assuming the model is perfect. Panels b\) and d\) estimate the ) Tj 1 0 0 1 25.199 303.6 Tm (doubling time based on the states generated Ikeda Map and using the Truncated ) Tj 1 0 0 1 25.449 289.899 Tm 97 Tz (Ikeda Map as the model. a\) and b\) are noise free cases while c\) and d\) have ) Tj 1 0 0 1 25.449 276 Tm 88 Tz (observational noise ) Tj 1 0 0 1 121.45 276 Tm 115 Tz /OPExtFont6 11.5 Tf (N ) Tj 1 0 0 1 131.75 276.25 Tm 92 Tz /OPExtFont3 11 Tf (\(0,0.0001\). Note that the scale of the color bar is different ) Tj 1 0 0 1 25.449 262.299 Tm 86 Tz (in each panel. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 25.199 229.7 Tm 89 Tz (certainty ) Tj 1 0 0 1 67.9 229.7 Tm 125 Tz /OPExtFont22 11.5 Tf ( \(94\), ) Tj 1 0 0 1 99.099 229.899 Tm 95 Tz /OPExtFont3 11 Tf ( they are of limited use in PMS and inapplicable outside PMS. ) Tj 1 0 0 1 25.449 207.35 Tm (q-pling time \(82\) measures the average of minimum time required for an un-) Tj 1 0 0 1 25.199 184.799 Tm 93 Tz (certainty reaching a certain threshold. Such measurement is well defined and ) Tj 1 0 0 1 25.449 161.75 Tm (applicable for both perfect model and imperfect model scenarios. As measure-) Tj 1 0 0 1 25.199 138.95 Tm 87 Tz (ment of the average minimum time that an uncertainty doubles can not be used to ) Tj 1 0 0 1 25.199 116.149 Tm 89 Tz (infer the average minimum time that an uncertainty reaches any other threshold, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 213.849 33.6 Tm 71 Tz (151 ) Tj ET EMC endstream endobj 807 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 808 0 obj <> stream 0 ,,4L  jٶ/ I)^&JTgVz;};3AJϬ\S> |֦.n˱_{<[="gxġUY=Z<^)J y7y 6jO{ 3Ttd{e. p1}7+4q@ryӜ\ J2A3-}-d*ptҕk3C ؊a0 wLLPEdGȷIX[4}nt,؋ w|`#F^RH~,F7#1=)cx ۉ FniIW߫R˶hvV;!ұqד~zҲn_r]ӦR}6[ 19Ҟv?rP xA9ݝ}gZ2޸A;f<W'KÚN۬8w BQ3ܫ+T'ww^Wqe94H2>T^mp #">5{~[cneQ#@(yכ[B*-UjY#aomF~rRȺiC cӪQo]Sa#~[lebu Pg*0c4 e(a"bMTWn$ϧqW?S=ߔ3K^cOk޶e&RSky2ܝkRxy-S*aT&T\߀ >=2q(jnәpFˬIN{z0qK){0G|#y%~2=mky}#Ak?|zEZVX |8 A(GJ2F@Z2ߛA%y]aH7F~vT ƌxm_:f3.h@bE~;$#CG 9[`ypf*'NҢr 2:OĞz8f8ٰonC_.Pu{}vS2(BDw8`JJel?J{s' %]qkZ!y2/4/y}#^ZM'LDh}IǤJU]!>g2 B=bs| x DBE@-ܫnfGOK _ʀud<(;tDk'j?+DM<Շt9)n I+yhݴk{f$vWey[T_6D6p)hQ!λ"TIeAJ GҢE$# _VqFzC{$]&E~pF3nQ)o'OqI|c)$ŏ]bGml3tM,NUҀo͙Q`8C3Phқ%XqYc|#Ekb>Ƣy6G^Jj`fs1']^ޝCrPK;uKgN6#`=^PnOe.%4iVgP_ev]ڢhTuZWͼ,z髚\.m";Ǻkgt,4 r: E9;e3$;ǜ GAeɨ&y͓ZRÚ1tuz ªfgrKY'jɵ3c#g")qڢ!lzB|G(pOox*JM >'[\)?L5=G|*-UVy_^񒗘8CSE³k+ٍYa;Ġ%آt~\whi 6nWb71M_1g5Բ9R.כqowlmK)։Ԣl3/rX́>ڶ;5[ ^|?1#FH$[W*2.P F(x8-J.w]u6B%7e%t_PV !׸=kxYCE\!K-h>o`ԃ5Raob:N{4pV7ΨOI|EICAU`Φo0a{BOomm ־5VOzF"SFծ 6r9DV f^g wiӷ8t'%U,c yO)kj"؍ s yC>˝ۨBAdi^5T_ҊvQaWʟ?dLDV#ԉN75Ӽ ɀL1fV1mB;0mۑ0d3P4bh\뷱+i(Ůއy rGj-!@xĺq~Y_PnHF>)I[~aO^᳼ptnTIMafwHUS 0&q¾8j[[/';H3ϔ_6+}s-y{>@o ;4qJInW8m$e=kR?`XcN|Zq!5>Q`_ɫG ()Xu~j/4 aL R5PAR!ug0gxy{kL[>XJQe"9SѹԵ%"j$)B RӺ BrUAE`.1;˕nd^}p> q)}1}2QaNWK0naP %U ZS'Kw o>u" AIJh>yˊ` 6ᗨw&(W@冴!&= sd9Fd:jH Mfҽf$%Ԋ:<Ò}yL :%2ps!=ɿD mCn7$0F=6VZ+}Tћ9Eh- P4DA70PuQp |[ԥn DsKtȦ[5Ll9m} 0/wc\^E8QE qNImp~j"ǧn(;|{L̖>D-szKƃ0,픧ǰzB^B=m1V!ወhJz o?6I^'IR4w{d(s3օR2'*g6f(ZSw0B2AQ) Q>{V:5:X9-ҒU^[!A.N۩604?u_ʻa]ʖH xYm+D/Omx0Trb_ϯdθ"G,6Cf\DLi7%;V.r S$aH=4ێ*%:.쨣W V6?M`U! 򾤥]o̎0cdm|1 wzC#TwlijrD1t, ){i`#!;Eh }^C͝ LOtm9\ 1IHh=bq0]pQ*UNUѨ svr`cF-7EF2ˁl&GABBW?yf )xgCrĢxq O3 :4Y"<+',G%Aqa߁nR$hn>(U]B\X'xǚf=rx:ɨJ5Gob+3" t-)4sEg(s,5Zȼ3_OyU@Hy9?˶jqg׈IVULL~m]ӢLd!Qhem8)9#~"T&v5T ic)7|斔A㐬ePT `PUwd2CBRKdSH $xn:7Akd(I0ӽc?T`'"ёeZR(g&pFA 5yEz%P9Y8}vGCAYbD]5V4ݞ@ >i# 7n`qK/HIBm#=c?b BT:hC_#;yIF&aIeO;Wq[}{w]l5޺% \7\}L: ek\if'bi1p:.gz#pjeon%V; ýg8.Go(ϩzЋj;Ɓ  R7nae7Fl<Ŭ4O3,s:yptޯp_1I(6lTAh:lbei5!Ftp hV:CI᷂ Qs!`GaT۾r=;)'ۈ3HM5PrJD_PA"a-&xEpЄWFɗ髂oU烫FKo]%Qr6&p[:m ҃r;KH#Z p.&->ȇr,?ֲ[%\`}%IAe KAF&h  Bt}TW 4WH;7qnf˘&ϼI, 7vPGuADb!3޷bcԾaX_V\Hlk[%<~>ɴ}ʧߕȀ惥ʷdzҴ'+ƒ~=@<^O1p7sL@!y__UI8F FH}ZD |ɛpU HK"D%%,Ȝ+I!}Jǟƀ>1n=BίX~Z٬\/qfy#4JbF|ߵܿD!2/&^;r-(k׮a8g @+q݄B56*EEa;uc]>^܋-'srv4#VZI*^C4Z߾`o#S%ALWM@bVXjZb/aldExEK1G0TOC}l,}A}ᤞѱҺIEd+#Zb*#6Qq| B&aƕ@&*J$kQ,#eqqp m'V pwzZ&)_9o FHqnп"So+`c@.m:Xk u^4AH8 R8bYŊ%4 'ialE}⬣4ON{8"jE IĤ32KPsc1`ۯϘ ">'~>נc)#j446)@&F_,pQ~#/M \:?ot+9p>@QVtMmtmE-@0m"}Ɇ\нKtu\q K>*yVei劳0{媱$^Z"fN;d yE̝%̊TϢ̃6 ˭tPrbԥacxzj50}zGQ7H.H3pYQ^O}+/:7"*&{%*o<Ŵk_]c%OƖ8X\N+n_8Xq 2OdKr-Z|3KݸG~IJpovr 4G~3?9+Td{Z~Ә&Õ-c}`.&RH)cyLwn-'Jrf-)O\DTo|M0)jv(; {0ƍ_~Rd-IWh=svp=J7}fm95>@dbg]ܳNU7V P22F$p@ޟC=&w'5y .`s 7.54 WV}]XUp{ )0-X 9Zt&)ȸQJ"7:$'l޹U X)@o b׀Z@ ר }j7#6UEOpL'2:?!8pM9߆: |VI7?+x(2'p?X\xCЬz!QܪR*JVr4Э|UB{"aGIiA' GKݏ?BOBȁgzyތ}Ƀ6K0V!D'0i|qQbwۘ3Ҡs(P רȩ[n9J1q vBO~%mX=aNdRKDwE/a*Z,1)ҫx`L?V_"i1 D3I' u4u02͆-P6|UqH{#ӧsk?nwr:{\;k/E 'jZCDgvdUFZC#X B k!^ !d5> ((PR1spg_Չj"0,Jɘvk `@qGi`T%ymWvġw < :J반;c:oF!eFh'KӃ8+NZ%kX嘄1 3Z\FƇ ڱa5LblH:^Ep/՚lxHh)J%bih'#|atۚŧ04-OKm $ cY kZ!]A |nsVSR#r|M+jijG`af]v4h×쫗6xƿ6ͶI*]lI%F? ӴtmZ.PsL10{C#_2}P 8S~z]s]Z -"tHAfR(.b6SoU?`Wz.JҒ 7O]Wd'7pB6և#5\'|r|۵&Ut_?xEE1(*<4ywE"2͹LrzrSe#h0ʜQ;2Y"۾N[@'jw@s_5I~ދ{ ^@xeT9F{}}S47Y̪ j}ޕ~e3丧׿O1.Ya3Ō3UB W~ F]8~{y%k}=B:4DQ9(!g9)P2_A*%q8vd3fU@ '`rJo5]a%W1\Pz+ (5)1e,69P-c&}%%h(>rL-w m+ud|1#&?``!r2}Lslسcgw(X̏ `\Dt7maŁs^?_b$iMˬm}+/0UŦ~x^%ò{7p9*(pw99]k3y5{*$`EQ3Xv~A\^/GG/>ǐI.!'ڂRa-~C&]ʰ8<.7?jY `mF(c`kU-pWOϠJfT-8~&C3Zb]u"ۈn%{H%j ^ '+wB[QvS*&`GI0 7X6E#(9>I`{oyXYVh9 q.`)%51&k@JtK~nyC5esm9PSЇckT>)Fa [aJ+"SP.c]m֟׃R{1P4 ʹ F3dfʩ`S-=E]))+Bt/+OyDyso  .D5a+&N^u 5j?43%Y*P5:, 1yf-h&<˕՛ 7d*DL!a@@LfMAuЎ&)FĐ0I P'aQ.PX] 3vo# ĩ%UB{=>5R8H7ȯ-y:gL'VuP2ќ/<X,A9UIŨA!X4gQ4L*i6H2Gp@{7Qd'L_RkfP<͉.blMdDOB68ֆCK;.f.I]HyfDO| $>eZܝ>Y[o䛊$\)_}~-"2M Ų#1?(u* gXNdH }e錄3:MSW`k-{"9`Ott+' +`'7Q;%ߑ|RGfo^h~Uy]J T| FxPKelNK_dfw:ՕHtnpb{=Ğ 8 ˂C{kAU%Z 3HEj=x*o78yy IȢ KyuaY@4[6]Ըxpn L]V.KyR.#龩:cJDC΢+jmD〃 8ܰY(iU!Gt]qH.}:<AKYP;YwXFR!R! U{7CP-sD;8m2$O봗O7ݪ l#TmvyoNB+#bF~{ثfq#)+=<>0&Z>Yb &O sB\^a^D4hhF^`Hw_VLQ*' h^3LISK%qzthDb/cC޽p{͓.Kv1tks,}8<:>&/RgD*J.u3fD6u S&t~K3N-sgf%lRSy p՞^aa%eD7gfۢ4~yó<20:07;&l.F= 4fÅc’\i|- 7Fejq:]-JPisލ,v|h%ƈЀ7ʻ;4QW1;YCb;EׇS?Dip;B%k3hCӨ(nzĀqD:Dt()`!Tk\#7` :{ph!$ߔM^z )RfV2!MdEuf "2B6)2h!}E޻bdǷeLZ,/Z?gj8^Q( 3Z*tlP4|Qù3 ilqI;Uu 4pG¼9 dbZ`͋3!b4 A mF5fxؙ~i G?̂Ug !P;(&v~yzw3Υnnh0mtW]HnM`ƟfTvi3@"}r5X1!M\dn1P.*r ]%T1'#8qnY"+*a9ɻ Vu.G?ϪQDLXq W Bk$U3!qR%b5{"\v,>MG`W^VS~QF0_a>c M:Yn&W?m AV~Td+4gj9+SR)֘$gJwI4$7mrx"QFnLk`]S=oA΂/'!+!YRqO:-8A1ڨ)4r*gٜ{I>FN^Jq]WDjË>~ aB!Nۮ|L IzBSfY2@V^ݦ .٢D:_'RA0.Qi zBLA&stZ4-޶ػ< \u:lȪӕ9s|h ń#<a^\%$XJtd 2} {B-fczԉAnA! ~` NwQY ,R^H:,7.~GJp)Vr Vh>-vxnۑȄ 1v^T 1xHHLK LPpJt4/1W}UVz :0g_   |.iO8F[Ry[Z%.9@f;'nQ}d .5\pm)iF9cVoEې[JeS.,V%~O&[X$o/  $mg_7Bv!t{b^y·Iq#m/TD]%G b4keM4oʎWCϫH{UC] w :%xIl&O0vvy>H)SSQBi|)N=̒ᓈ01rkzM!cxW[ERN{9#3xi>F!w4kirН>; O%MKJ{c׬y; B:&izՊ)1#>KlIeJ cuj/WډP6L%`4z CͱѾ \ˣV@Qkٸ`^ΐLNdY7Saפ}%6*6&0[7p  )gwlM@dUf <+a^.f!aj^5xUkul43G- "MiSd_皖Me;4Npz h-}' _?(Lb/0S(f>B*tl7fxN \~ J/@V4Y`QIJ,K9-Vzͪtؗ'ƯmĔv%VL@̑gjgQ{vل;EeR*ATs6Ox%E( 5! ]?kǂf[Q @…7.w*B:6|;`{x),ST{}/F;-!{#E tBgd{AiU'aWv.!]K]n*Z ^;7K@#NĤ_ˑ"YrfEy@%(*1?v@BzPB!es*dz=~(ɵCN'5,3>_֝ޥD.r+뤐"<Զ2gDORLTggtҲt?IDDlA7Sf(#K"?(RD5!{~)?"x9#5-(ɜrWR|l4BRP-L!ĩbC \殺vK<4Zkƶ!GHL εƨ$͵k"yzٕ#L21)۩q5:t$`ߊn˘1zGD\Cg7'P8qᘣ>U!ŢYR4g HAì<1 ;Nlʲjfd=d.iuk0Wة`_j["Fek_8aN#st{,i9FTEDj # v׮xL'^уȗ}V`ꯦ ƨǤ"Ao|bKU’9'E| <| !-fp5$֊㓛]Alo;XO 1pۅ~?#OBPK6; &9^v}e ƾ. Gi6|/zd񿃽3y!߲?LƷ"P5mgL"d ygNh_#k5^91yZ 2{C];{XjBmߕVJq]՘0mWq6yԫC˜\ސ~_PI߈^J%8Q1Wv7Ό7Wh{m ^r ķI;j3oMD 4c> -[٠y.18+x+ơVs]}(Jɰ`.UdYzgd\BK[`4y@*,gǯ=d-? Q ?D$u{USnDÆ2B?[ã5k0%(SC`ހ43*N#H%cJ¶h6C3n+L7fYzW / FDÑtNLt$F x[@94'^a˚圝82 q~̔E[J2cj6J<}/=?"WlF#dW{~.1Ϋ2)n>~c◊x]>|1m7i"R2rBq*21{)>n*6aƃsr\3 K6 6H^4.އs]G,KmvmҧQQx厨 uHora]RHSr {8+Zv8hф毻{?UV.N'r/nhllq`"E]4KX Aȧ6.6C@ Rp dY*%?.5xP\uQ$OjF{9tF9HA;j)/D=V+E ixQ^Zi9J`ay#PN-J2@c <RbA{ sжc0T]z0),cO:>^Ѯ^ʧWEfDHPÓ I΃9SRO%oX7BAf(g Ifszgϲ1C> ϪȰ4\3ı㵸XFs;i&6[k3+Ź?Nǜ1-uԘ.<v`uF;z]>b(9 k>%Yn=|U M_؀T˲X\?G(Gr8"D}}{Bq/^(Ae&G"ҁspjA|AP0#qGZB:6t @F!*=#Ʀ㹜(I^iC]UyCk$O(qN''_V)UR=VW$%n9`\3/xw@bؕIm4t;}x{ڃEcY|cV9!4~lϿVhLqdOpA5., F^ů'yl&T־%Ҁ " W4'1róUpô3ǞIr[C'nv"2m+D)2Hp \% q[: /Nx2G)0ӷ!xԘ;ӫ:#jrKa`5xR}||9~k;E؍P2RFLC=(l0$\g sIrDJXVJNRK6zQ\]8 ҪuY: `!7Fզٲ*@/  =jo3̞3V&H oD#^t4m0-p5VԌqF7c86U:7rP_~vעҍv=oȈ6n]PԜ!i"þFh;Boi>Oq[DD6s! 6(w#K=S1c<y қB[:pt"(U}/)̓؃pׁgBF4ˢ fCE,獒Ҋp&fjk]e|Sc&,le1~]`yt yPx9\baDYDa q%+f~CI$v|lL I'mC"avV[cw=eU=$g9UOk'ڑ̌q^c> \F>'% BJVEHzO&̎TU}4dv'…*sKHJQ\^ z-ԟik endstream endobj 809 0 obj <> endobj 810 0 obj [811 0 R] endobj 811 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 598 0 0 838 0 0 cm /ImagePart_2179 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 323.3 719.45 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 103.2 676.5 Tm 91 Tz (predictability being lost has to be defined, in advance, upon a certain threshold. ) Tj 1 0 0 1 103.2 653.7 Tm (In this section we suggest another way to measure the predictability by compar-) Tj 1 0 0 1 103.2 630.899 Tm 94 Tz (ing the model forecast performance with climatology, we call it forecast based ) Tj 1 0 0 1 102.95 607.85 Tm 86 Tz (measurement. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 86 Tz 3 Tr 1 0 0 1 120 584.799 Tm 94 Tz (As the average forecast performance degenerates with forecast lead time, it ) Tj 1 0 0 1 102.7 561.75 Tm 93 Tz (will, for sure, happens at certain lead time that the model forecast does not do ) Tj 1 0 0 1 102.7 538.7 Tm 94 Tz (better than the climatology. We define predictability being lost when this hap-) Tj 1 0 0 1 102.7 515.45 Tm 96 Tz (pens, it indicates that the model forecast does no better than random drawn ) Tj 1 0 0 1 102.5 492.399 Tm 91 Tz (from the historical observations. Such measurement can be applied to both per-) Tj 1 0 0 1 102.5 469.6 Tm (fect model and imperfect model scenarios and places no restriction on the initial ) Tj 1 0 0 1 102.7 446.3 Tm 92 Tz (condition uncertainty. Comparing with the q-pling time, the predictability being ) Tj 1 0 0 1 102.5 423.3 Tm 93 Tz (lost is better defined. Although the measurement itself places no restriction on ) Tj 1 0 0 1 102.25 400 Tm 91 Tz (the initial uncertainties and the model, the model forecast performance depends ) Tj 1 0 0 1 102.5 376.949 Tm 95 Tz (on how good the initial conditions and the model are. Similar to q-pling time, ) Tj 1 0 0 1 102.25 353.899 Tm 90 Tz (the forecast based measurement measures the predictability given the initial con-) Tj 1 0 0 1 102.25 330.899 Tm 96 Tz (ditions and the model, of course, better initial conditions or better model will ) Tj 1 0 0 1 102 307.6 Tm 91 Tz (have more predictability. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 119.049 284.299 Tm 94 Tz (To evaluate the forecast performance, we use the Ignorance score \(see sec-) Tj 1 0 0 1 102 261.299 Tm 95 Tz (tion 4.3.3\). Given an initial condition ensemble and the model \(does not have ) Tj 1 0 0 1 102 238.25 Tm 94 Tz (to be perfect\), the forecast ensemble at each lead can be produced by iterating ) Tj 1 0 0 1 102 215.2 Tm (the initial condition through the model ) Tj 1 0 0 1 303.6 215.2 Tm 21 Tz (1) Tj 1 0 0 1 307.899 214.95 Tm 94 Tz (. To calculate the imperical ignorance ) Tj 1 0 0 1 101.75 191.7 Tm 93 Tz (score, a forecast ensemble is transformed into a forecast distribution by kernel ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 118.299 171.049 Tm 136 Tz /OPExtFont3 6.5 Tf (l) Tj 1 0 0 1 122.15 170.799 Tm 90 Tz /OPExtFont3 9.5 Tf (we are aware that one may use different forecast scheme, e.g. direct forecast and forecast ) Tj 1 0 0 1 101.5 159.299 Tm (with adjustment defined in section 6.1. In this section we treat the model and forecast scheme ) Tj 1 0 0 1 102 147.75 Tm 91 Tz (as the forecast model, i.e. forecasting using a deterministic model with random adjustment is ) Tj 1 0 0 1 101.299 136.25 Tm (treated to be a stochastic model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 9.5 Tf 91 Tz 3 Tr 1 0 0 1 292.8 52.5 Tm 75 Tz /OPExtFont3 11 Tf (152 ) Tj ET EMC endstream endobj 812 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 813 0 obj <> stream 0 ,,j]F0:TKZX]t$P`m_U4%4¾mUزn54 fWICkteqz/9Gg#m!|Bl8iYNcL >w>$8W1)ٰ&2Zڴ&zʧHAQ{ZHxqrNyJp;\yS \6`:3u4ݩu]y{o4o>ڨ {qP|9!u\k_GưMo i}L?F }w9iķ/0Þb{;}W wiSFƨ1]RܚF[k9_+ch"dQ"82~a+Oõg0׶*]bwk,1(v}+pw+%ŷ)ʜFFwff G*(N-^җ#u)c8G`[_Z8!NÑq7: U͟|:cہ ae 8%v&M^?~2Rnބ/]deD8FE3 : A=_ :$Ow琦,5'\8%G7̡ö)jv|@CA[xjG :Kds(,x1 rMϊ`DԯOó_ig~\5={.?b·Ģ*Xm%\c~lm_zTy$U.oj"4}Y!`xf/ ֲQ߶ڨq}WO?q9³cΘ H<*#4M'2.*mC>a~ucɤ5ؿmYLRP`p'Nr"u/G7[EfN̷zêEӆ3\ R Zh8߁/ 0P (Y) H')2O8#õ'UOeC !pat1<5^uj7tRNQ50+gs,G4hZz- yfY\!dzhXw% Y˨@}QѶsW6s|gaZqϚ@8e>-i  秋.*̖\q$ kȶck)2q SyvfX[HN‡ipz2NKS=1FQ(7amsB8e _3`}uJZVgG4 V(9!D4|8YpϣhLfǂy Ee5xbpd `3#vM!\7wsB ض朸FL>P`[e3H3+;Zf'Wwz^}$':0iOWbɢǝح~Xuy_i Ӧ[bE\LDDO=~dO'58v0Ni꼁$>&0P`SP+G} ](""])鳩Ia]\-G˖KTʢrp'i oS@a݄ No2HrͰanҽ|B:L4I~Ε++N*HddlfägTkEx/ɊotB@t8UUdbVڶB ĺ++NV~Ё0d>\Y6Dr?2M\,#񼢑!diGW+up8Ui Yݽb`T Y+6kɶ! a j/Ǔ ~|b }jx<b!r0:Z$lva;WZ]k5*'ei<ˋ*3IRvz(mu+T:([2磟J@—_6#죅VEš̩*1^ad?<,??^t[K1F慒Wþ{bW]y`!O֖؞7ŽZ@+fXL}!]~-H?EDM:OJ<9r2>Dřåק%SO)žz\\º_9 Rf:w?R֘ާa&çA$#J!/ɕ3P46K\I6I32-7f]w;Z$o9 Y:Io3 v ':u$C4_zaݪaRrA0wMM*V)P&?v׮w`}J>γGMQϲ5;|j({wBAJW0QMm2 !,&PA.IדMjn.,'/!5 ӫ{"*>%_}ܹ97@4fjIk裻o VJWzZbruE:yT'cH*kzܒ b:psȺL=v KzWs  |R[uEHE Chx:8"r᯸eVỰ@qc(ڵ3Ul\%HS'g4e@6e<&rd (i'ƪHK1ڲ2F|is_ < 0dYF%ɣUHF_W˨eO砣A'\s~A) UuQ'N;mL;-1$o,zN-͇hS ab6p^?.lŖuҋ4egR`NI~J ޤX'")޶Fu'Y$ʛ|s+!bN@nuٟur'9[d'[`M|u4?6O9>j 5d+pIQ|24JYHiF:{zL~h_}S\۟MiL {ӊjP1Y%/N %y1&_.9E%"'lN*pwx3Q471-Mԣ0 œ8ź;p ѻFԠ($i ub)Q賭-gqIIśFŇp޽lI? ƅVX] )'OEfZu-Fuτa UV$ӛlf݈AQmB»(y2KKmt"K'- 8SՍ?`q3rjZ7{ihSkPԢMς:lp0G_"5y1H+?$ޱj ,r.[c6Avr+u7cg̬;k_W;'}=*DŎ*5y/ mG4vkXES_eQaJQ΅+emǴ] _i]F^(wHk_ +- w Dδ1 CN芆[fXAS(lgOjKob8u*K SZ1ˉTBfPFK|#{o{= )ذEUrnzfN̼NX{z.3LŹae(mʑwl!Ҡ3}w(xvt&aY-RZQwٔ)Y|LyN ;^ƥQy<՟Z;jGw pcMu`;jK?j߲)ugas }а^X# .+aW_SV@&^;WRZ3cȥW8f3uvETC{0KW~^7@opHZ~t ]( T|PzޜrRYS:mzH*N{h:Kn+CQ/RVŗ4=!~86.u':YE6p%8 7Kw1l'%*B}1ӳ|$(.nP(7׵Zni{3&[\~c[XVM[5ȅi> DtMP2%Pz-)hBE4}k{^eNƍP5ckKiw7bJ]e)p 2V>dn:W6#!\? c@$3jqtv )wb^}WLW#U`%/5s@&^ՖK^L̐`9X ._:$3(͝ #8C[QH+L1J^ʒl83kVQo}tAHDV8d | @^ K[(=ws,L!bϧ8 :I?V6{-čDPBTߥ@DߌLbF , W s*1M5*sxk Fz ٯvBQ.Xql~`[4(6aS}_"OpoHDAiYn,?*Tcl_-裆XddQ֩eUaZ1⋳ŬhK-ZdkkF*j¢r#@D)p ԕ޸}6TpW-# 8zq h)p=hrZVmbB b(X{|ͽ%xMw 5vnk.eBZjQT&*V=Dc(zcs ƻLOm6lm([ӄ)#P,%MĬE W+pA d/{:^8y_F%;L3;bqJz k+ݣnGrZ&G ev9#=ѻuEov:BVa=aVfak$=-´IDt [Dyn ڰ*_@\fo14ve y< qe7 .܅}Á8jŪ~73Rv"Y޷ 1T,-EvhꨃR4䰞{Ds[UN{Y\. k:>@ IsPў}P#y$ >)^iV QeЛn<`oL~b"ѓw 9 > !1VI9@& Is7}XzU\n\?ٽˌX5 O!]DpW^-&msA1 G͜4K<za90f8_x=KnГFIHy@1|a;A}̀fR5Y[lV9g`Vۭ[0o 4u%C/phxxk+eFD>$~;pٖ>R@i3iL#.=[)tKfuk\^*RzȰ1mÜ u y{7 ӋZ25nJ?=yB"ho^H #(˺f\~@FOD|&ڮ /:jbuI>ϰ{"u,ԇfGo֢-Nm#aT7I>KcBobRefd8\IW Vljʍ4KK*}9Jb$v{~ӯp'b}\tƍ'ie;":9 A @/ ÷&cY ʒ36XѼZV7-Eefm!qεYc0#*ՠ9nSpXKyUMZ7cثʢ%(!(p"(ݧ 9zmL>-WմʇԴǰ>)"k<ց}c:4_CATLԙ, &;/yxFa:y8p+"GD#S bߠEA0r1^ *R+ݣwY֞I]fG~8GKC0Ntr5Zs ;o2r^:LV]Fu e7$WӲCV$MUݚ%Ql'8=gd7*͋2IiPDt=\4%bM_Lڂe͊ oK-Y\kXJ urt!+зNV|^cwB8o8. 5ý h{LdulTW~ſfp@cf`ئ8xģw 7!+3+]oLuBo WzKδ5ҤMk--'~fT+) ?p7+w8> endobj 815 0 obj [816 0 R] endobj 816 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 598 0 0 837 0 0 cm /ImagePart_2180 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 324 717.7 Tm 107 Tz 3 Tr /OPExtFont3 11 Tf (6.2 Predictability outside PMS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 107 Tz 3 Tr 1 0 0 1 103.45 674.5 Tm 90 Tz (dressing \(details of kernel dressing can be found in section 4.3.2\). To simplify the ) Tj 1 0 0 1 103.45 651.7 Tm 91 Tz (comparison between model forecast and climatology, the forecast distribution is ) Tj 1 0 0 1 103.2 628.899 Tm 93 Tz (blended with climatology \(details can be found in section 4.3.2\). After blending ) Tj 1 0 0 1 103.2 606.1 Tm (with climatology, we expect the forecast will do no worse than the climatology. ) Tj 1 0 0 1 102.95 583.1 Tm 91 Tz (By looking at the Ignorance score relative to climatology, one can measure when ) Tj 1 0 0 1 102.95 559.799 Tm 90 Tz (the predictability is lost. As the lead time goes larger, one may expect the relative ) Tj 1 0 0 1 103.2 537 Tm 91 Tz (Ignorance go to zero asymptotically. When the model is perfect, given the sample ) Tj 1 0 0 1 102.95 513.7 Tm (climatology based finite number of historical observations, we expect the relative ) Tj 1 0 0 1 102.7 490.899 Tm 93 Tz (ignorance goes to the values that relevant to proportion between the size of the ) Tj 1 0 0 1 102.7 467.899 Tm 89 Tz (ensemble and the size of the historical observations as the ensemble members will ) Tj 1 0 0 1 102.95 444.6 Tm 90 Tz (eventually become random draws from the invariant measure of the model. When ) Tj 1 0 0 1 102.7 421.3 Tm 93 Tz (the model is imperfect, we expect the relative ignorance goes to 0 eventually as ) Tj 1 0 0 1 102.5 398.3 Tm 92 Tz (the invariant measure of the model is different from that of the system. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 119.5 375 Tm 89 Tz (We suggest using the forecast based measurement to measure the predictabil-) Tj 1 0 0 1 102.5 351.949 Tm 92 Tz (ity as outside PMS the predictability should depend on not only the system and ) Tj 1 0 0 1 102.5 328.899 Tm (model but also the way initial condition ensemble is constructed and the size of ) Tj 1 0 0 1 102.7 305.899 Tm 94 Tz (ensemble. Figure 6.11 shows the ignorance score \(relative to climatology\) as a ) Tj 1 0 0 1 102.25 282.6 Tm 93 Tz (function of forecast lead time in the Ikeda system-model pair experiment, fore-) Tj 1 0 0 1 102.5 259.549 Tm 90 Tz (cast based on two different initial condition ensembles with two different sizes are ) Tj 1 0 0 1 102 236.5 Tm 91 Tz (plotted separately. In all cases, the relative ignorance converges to 0 after certain ) Tj 1 0 0 1 102 213.5 Tm 90 Tz (lead time which indicates after that lead time the information in the initial condi-) Tj 1 0 0 1 102 189.95 Tm 91 Tz (tions is lost. Using the same initial condition ensemble but with larger ensemble ) Tj 1 0 0 1 102 166.7 Tm 90 Tz (size provides more predictability and delay the convergence. As the results shown ) Tj 1 0 0 1 102 143.649 Tm (in section 5.5.2, the initial condition ensemble formed by ) Tj 1 0 0 1 383.05 143.649 Tm 99 Tz /OPExtFont8 12.5 Tf (LSGDc ) Tj 1 0 0 1 422.149 143.649 Tm 91 Tz /OPExtFont3 11 Tf (produces better ) Tj 1 0 0 1 101.75 120.35 Tm 93 Tz (estimate of the current states than the Inverse Noise ensemble, the information ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 292.8 50.75 Tm 75 Tz (153 ) Tj ET EMC endstream endobj 817 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 818 0 obj <> stream 0 ,,zzb6|W'JOi{XRWF'I<;^q&Y% ҵ|N؛7) ѧz[Dҕ* h9ɡ Ps&>i0)W`_}ʒVҫx'8VI T9]7^9x,Z.xRW9VK F*Z{=Ҁj.sDf3B4Sm `ܒ_:F /ն<]E.m/μ(ORWs9CJFk N |o R]Gjߡ&H!YuxF9OD:uK.ǵ8Z2?9Y\Ɋ+BbuxcYSG-y,PCsA.낉Occ̦ݷAڲ0dBg[#ߢ"Tvh .)- +Z\X>pRpV#ds3/{\?% ng'~] 6inIt}8ӟUoH=]۹z$K = 3 vE™gB!pIz A2,Vcttp~=b&| /Gie!gY9@S== <EPI:7.ju.?d=GGͻh&yCXT?59~ƢLN^"yfKt}UMi\vT,Pz!A &lrֶDb _ A 舠%:H 'Hi 4/1_7N$@Ff¦p 1aHcC` VuYс@|!4c\^,<p sI)^Gś~^ r89_Stl q[5L54زu\$]8.ǘAnoFD֙jn!ӧϾ&[TB8W8ilVXc~aWY<0"W#n>:вY2`1.g8ˢͰ҃⳧"ѷ>g?(=;ؖ38ϰ`<RɳLp(0]kuO O=A0Hə-l| ;{Ä ^{{zp^*G4ACș3]?JUJ@c\ĥ03K3g @gn,pZ%xjwDK4uNw623nV“yhԆF2Uu @}nM` Y=MzfKZ z7gUt_ܺ.-qFB9?S!L6x OEМW)z(+mW+C/C"M6"ch\<;6}TlZHUBRs9cPur6.3T< ^6j-Xρ\iMu8\".3p# XYgāz}ffT[z]bd"gHRn.#> ym0_c#̱ fPRZs'W qҀͧCZ{b/D<8"x]s287\f `;kp (Ь1bZJGԜy-mLcqs,:#*~߇>pHvBmJRM?Ez2hN6\YGIyc/y8^q:/*Po]I`AwͿd4uҖ, ^'sɶRgKq#sÚaJ/L;;ҫ 1͏ɵDn\uWd9$~ PC[v[ܑR gIgK;WP͕r|hKΜ 4u_R=[1AZa3{#XdHrȜgpQ3oqm6_|Ң9i۬n;ylo *isFV te; ;Htob` D2 "~]{p#.žxFI\@31TıSj;W05.%mC73'-qg1j4 ӮHqaľYQiZ?APk!M3=8N𔭴,5*@]HA4vKϗmv`]ԎƬ/)8DnPIw!6 0IJГv~3Xl6s)ÝqMuړdo-ay3?JoKX/Lc$hqX]t 2,QlᢉۭCWMiB9AT~9 lvixeK?==\~0@Դ߽eĘ#̌[R:ġՓa&XK5xǻ[ @[CC'}po3{3%f`R[`W5&Ay5 /"S01G$ߙ?{ːm6R3!ʹ[X)4gt.V<΀X{qνF :B(y*Bx-\䉮 gw-euyK߰k=?*F?TWJ\% n8;zVS>(|/%ۑ+O&2k,MCe#; NX4Q6 ؑqh=R3|{1Fr G-pX/Zbɓ]v77bSH|)6Յ]8|6R]> '7md֘K PF(ɡ/=5Yp0EJ; >)VFY.HJ5QTcS)ݛFsqq($'v @ˠ|:(۷nO7qiBTvq J3͵m5t:dպ}^hv7zg&U0Oa=M+N@Cu|.Jxa]ʟQHEF^0,[fغH+.K(+Oܭ뺚CAT]f~GڻmC7P LkTi:z|t5P=*a*]`lF+?^ /K`Z(̷Sþho^HZ/OR7,5za^Vb=E엑:Rvcy -ta S'Mș?=;z k+wZ%5,mT'43RN ݀Y^'pfk<.\V$hK"f-㋷)cp$LuJLFObR_ ^rF{A(PkQwz_…*j$ӿq808`R}fO?1٩D!,$D6lt# X~_Зu_3hl@h+q@:i~@Q-F&hC(LN= ls,E}뭾}l?ܭZR]Wnm1>Zf23ɤ+j$f1 շ>]3RTJ,l%e\Л,k'S\+pv͇e 91Tw N{4bDHFr5噹YZE("jBu&ZJjR:.!s[D:]և OP Aك{͏5+ 'Fjw[L$\. #_D%+qw!W;- g.ҏUB(,;bi"* IoוY ľGr;G/-vn> D4c/-g-Vt:W$696~?f5ApZ};ԐD4 Es/}1w4ؙ8ԾDn"Tan zI\0;{N1 &O" TWs6cWH./8e0}?wta'=%k`5udo ;B1Pcj[\^\2]*%T vm"}QeآH]:I)Jl8LQy 5ѨEH@@oAlk .;(G_@Jr}DV "VR}8 B ;h<&̎;:?? # +_,Doفf}B5M-ǭ+rUg0Gf-+o{14 H-.eI&oaCv%b(s^ g+4ۻ .`HHkSL䙅wߏk(E07CJyP7ȵi.^|t`GBS鞭=u(ȑIѺ(,  }ۓXW Tʯlѽ۲9sUzlups%=xd!Wrb~ jqb:)I L \0YE-i4UhLJh՝O | SI%]uwm aw@}B)[OLeP8t,#DShyWvLNg D1W/'3P*"u\b0 ΗKue?̂`ogܙ99a.1;vF5@²WFhX"S#`r{eH87G~Ѡ'3jH0Z5Q.k*xA:&Tz K,8MfL15H{|?Lds:jbjY$ϵoC qX Nc\8ϫd23c t̛ sH8U4[R?O}U(A輥9X$Gr mvrK'8DMLm8:*Z|:^ gZ'2⬾@'Af!lQфQpD)Ce}Tٽ?[ kb! NJJi+q_(?T_1upcdm$bo`T(ʕ߂/g{H*$2JxWw4Tn6UTpP̷qzu--~rWF86sqЌG $ąLYgvzL{~"@Jt"}odlgv#HW!sSښ#~c)ӽ  :`eFO'}&ua\5չ9t)=KMOWuK]piE\ TP◁@T26ЎQ79Mfq/ 9R@>/yЛ5@؊`2Ө$|ƴǮ(,S3 TybRE#x/'7;',3PBݖt":B89{WB-Gj@qo7߮3A@E񋊽*eoBRͣ 촻~M i۵ dWQ-٘˿k<%2nFl#~Đb&ʿj,=hŦjG#=aV['HGO9]s˙iB0^h| N#U]̓8dy;Ij=|bdz8eWPH,<. JZX7}ҖOY.h`QEwyP?eWg7?x'b ɝlu<0e%Qt!kfxU@ِ)s]\YFI4lK 5|Fxdϼcː`Bݷ6p(>V"$R I \^tL6n>{ ֗*8z[yt{hCJ~ blp?sO }!7,zF~ WƑ~~߶ԿUEZiܳ MaG]|'b6^<`!tM1QgT۝9ѕ~ 4c\}iK4t]yN]"rSTCؾ` KRoQ8~Cq{`'JԖ7t2%㻌OEt&i]mđ \ uhfYbδ,se /K2D&ڀ x+Jgھ/ÔB٨2`r0NLAw'l3-ٷ~*6FL/iGnߪ\fn̂]ؠ R,ܨё2(([#ZUMUΏT0lzlDRȱsb|!dN1*|pd 2p휺OyfN a.5P]}[I8g})n7evSc85Ltx"jʈ`-V@:e/V6SWO/;B%W+[-"(画Xp.Jlho}IY&JNGmlI #$L!컨&?0!G >7\ !0+.[.=F&Yhކau]Fij&\ 'UjʼnM1L )Jҏh(X"M?"j$tßIGFT0~}>֞dpAҺ|;(ڡIւQ,9LL='%Ty||TˑPF(`FOx>Ljexe œsԤ]+;{ՠF#j1j!ah LO}װޜ ASiwT˜ҟŠF2W%>m1,Zuդ3f>Ar.8(‹ڷ1|:갨ȃǁ~=/<+%ZݽZ2@^cyjB`w;TN"^G:!wcvN`2k ۆ>1p9c[lUy5y%N endstream endobj 819 0 obj <> endobj 820 0 obj [821 0 R] endobj 821 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 498 0 0 789 0 0 cm /ImagePart_2181 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 323.5 428.75 Tm 115 Tz 3 Tr /OPExtFont1 7.5 Tf (12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 7.5 Tf 115 Tz 3 Tr 1 0 0 1 362.399 428.75 Tm 118 Tz (14 ) Tj 1 0 0 1 372.25 428.75 Tm 1398 Tz (\t) Tj 1 0 0 1 401.3 428.75 Tm 117 Tz (16 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 7.5 Tf 117 Tz 3 Tr 1 0 0 1 284.899 429 Tm 106 Tz /OPExtFont9 7.5 Tf (10 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 106 Tz 3 Tr 1 0 0 1 129.849 428.5 Tm 121 Tz /OPExtFont1 7.5 Tf (2 ) Tj 1 0 0 1 134.9 428.5 Tm 1638 Tz (\t) Tj 1 0 0 1 168.949 428.75 Tm 127 Tz (4 ) Tj 1 0 0 1 174.25 428.75 Tm 1638 Tz (\t) Tj 1 0 0 1 208.3 428.5 Tm 115 Tz (6 ) Tj 1 0 0 1 213.099 428.5 Tm 1665 Tz (\t) Tj 1 0 0 1 247.699 428.75 Tm 109 Tz /OPExtFont9 7.5 Tf (8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 109 Tz 3 Tr 1 0 0 1 231.099 419.649 Tm 124 Tz (lead time ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 124 Tz 3 Tr 1 0 0 1 229.699 505.55 Tm 127 Tz (4 member ISGD ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 127 Tz 3 Tr 1 0 0 1 230.65 494.75 Tm 125 Tz (16 member ISGD ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 125 Tz 3 Tr 1 0 0 1 229.699 483.949 Tm 127 Tz (4 member Inverse Noise ensemble ) Tj 1 0 0 1 230.65 473.399 Tm 126 Tz (16 member Inverse Noise ensemble ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont9 7.5 Tf 126 Tz 3 Tr 0 1 -1 0 65.299 488.3 Tm 88 Tz /OPExtFont10 9.5 Tf (no) Tj 0 1 -1 0 65.299 496.699 Tm 89 Tz (ra) Tj 0 1 -1 0 65.299 503.649 Tm (nce ) Tj 0 1 -1 0 65.5 514.899 Tm 100 Tz ( re) Tj 0 1 -1 0 65.5 524.75 Tm 83 Tz (la) Tj 0 1 -1 0 65.75 530.299 Tm 76 Tz (t) Tj 0 1 -1 0 65.75 532.7 Tm 88 Tz (ive ) Tj 0 1 -1 0 65.75 541.549 Tm 96 Tz ( to ) Tj 0 1 -1 0 65.75 549.95 Tm 98 Tz ( c) Tj 0 1 -1 0 65.75 556.7 Tm 93 Tz (lima) Tj 0 1 -1 0 65.75 570.35 Tm 88 Tz (to) Tj 0 1 -1 0 65.75 576.85 Tm 92 Tz (logy ) Tj 0 1 -1 0 65.75 590.049 Tm 1 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont10 9.5 Tf 1 Tz 3 Tr 1 0 0 1 85.9 625.549 Tm 93 Tz /OPExtFont3 7.5 Tf (0 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 93 Tz 3 Tr 1 0 0 1 72.7 601.799 Tm 98 Tz (-) Tj 1 0 0 1 78 601.799 Tm 104 Tz (0.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 104 Tz 3 Tr 1 0 0 1 80.65 578.049 Tm 98 Tz (-) Tj 1 0 0 1 86.4 578.049 Tm 51 Tz (1 ) Tj 1 0 0 1 72.7 554.299 Tm 119 Tz (-1.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 119 Tz 3 Tr 1 0 0 1 80.65 530.5 Tm 98 Tz (-) Tj 1 0 0 1 85.9 530.5 Tm 93 Tz (2 ) Tj 1 0 0 1 72.7 506.75 Tm 119 Tz (-2.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 119 Tz 3 Tr 1 0 0 1 80.4 482.75 Tm 98 Tz (-) Tj 1 0 0 1 85.9 482.75 Tm 103 Tz (3 - ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 103 Tz 3 Tr 1 0 0 1 72.7 459.25 Tm 98 Tz (-) Tj 1 0 0 1 78 459.25 Tm 104 Tz (3.5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 7.5 Tf 104 Tz 3 Tr 1 0 0 1 80.4 435 Tm 99 Tz /OPExtFont19 7 Tf (-) Tj 1 0 0 1 85.7 435 Tm 91 Tz (4) Tj 1 0 0 1 90.95 428.5 Tm 96 Tz (0 ) Tj 1 0 0 1 95.75 428.5 Tm 48 Tz /OPExtFont1 7.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont1 7.5 Tf 48 Tz 3 Tr 1 0 0 1 343.899 682.7 Tm 98 Tz /OPExtFont20 13 Tf (6.3 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont20 13 Tf 98 Tz 3 Tr 1 0 0 1 41.5 387.5 Tm 92 Tz /OPExtFont3 11 Tf (Figure 6.11: Ignorance as a function of forecast lead time in the Ikeda system-) Tj 1 0 0 1 41.5 373.8 Tm (model pair experiment. The observations are generated by Ikeda Map with IID ) Tj 1 0 0 1 41.75 360.1 Tm 88 Tz (N\(0, 0.05\) observational noise, initial condition ensemble is built by using Inverse ) Tj 1 0 0 1 41.5 346.199 Tm (Noise and ) Tj 1 0 0 1 92.9 346.449 Tm 98 Tz /OPExtFont8 12.5 Tf (ISGLY ) Tj 1 0 0 1 131.75 346.449 Tm 84 Tz /OPExtFont3 11 Tf (ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 84 Tz 3 Tr 1 0 0 1 41.299 304.199 Tm 92 Tz (of the initial condition ensemble formed by ) Tj 1 0 0 1 258.949 304.199 Tm 109 Tz /OPExtFont8 12.5 Tf (ISGDc ) Tj 1 0 0 1 298.3 304.199 Tm 92 Tz /OPExtFont3 11 Tf (sustain longer than that of ) Tj 1 0 0 1 41.299 281.399 Tm 88 Tz (the Inverse Noise ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 42 230.299 Tm 114 Tz /OPExtFont3 15 Tf (6.3 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 15 Tf 114 Tz 3 Tr 1 0 0 1 41.049 196.2 Tm 91 Tz /OPExtFont3 11 Tf (In this chapter, we firstly address the problem of estimating the future states of ) Tj 1 0 0 1 41.299 173.399 Tm 90 Tz (the model outside PMS. Directly iterating the initial condition ensemble forward ) Tj 1 0 0 1 41.299 150.85 Tm 93 Tz (is unable to provide good forecast ensemble as such method ignores the exis-) Tj 1 0 0 1 41.299 128.049 Tm 94 Tz (tence of model error. Two new methods, based on adjusting the forecast with ) Tj 1 0 0 1 41.299 105.5 Tm 90 Tz (imperfection error provided by ) Tj 1 0 0 1 191.3 105.5 Tm 96 Tz /OPExtFont8 12.5 Tf (ISGDC ) Tj 1 0 0 1 229.9 105.5 Tm 90 Tz /OPExtFont3 11 Tf (method, are introduced. The first method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 228.949 30.1 Tm 75 Tz (154 ) Tj ET EMC endstream endobj 822 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 823 0 obj <> stream 0 ,,99j*6)If*{ z[N [,pL."IaObe.l?t3e!(BAm[fZ0M4"Y3H\JRiAFhz0h(L|%S 4 y;kG_gƍ}eYm1iYW!wDAj9p cAߨ O"Ճ̗XhF_cnϖRwT][UOpY5ϞtvnDP xQa+J;qgjzz8Վhgo ?Q}:Bx\-A| h?Zw%'St>ٲ"ѵ6ؒ\/#ə5:"a71ڶ.ҸQ\⯪z+hώъѰ< ? vC,hƶ=4aMkOY#Y&vVɬ[BfOͧ+=6vy[׶Ph>Hh]' bnc0C MvпbvdxA:e:we,7 YYxPFD=!o6yThk:yhnɊG<|@ A}=6hXoS|#D?bE눚߬4&BP?OtLIy᠟?w9Eom"*36:7Dx2wj"i ;0[+oU-pT4W(úpI5кEDd,_(\& bp0O>L(0Xiz&ϙa=4t3R~w%Ajs]Γy:@W$l6;m61iUʔ9EM*7It7e;QχJ+c] eW. kbwnQdFJ``' 2*Rm;fh#P\@߅~).>Q;;a_H}޳exV}1Ǐfy^@ƽRo^\p4e_ %~ e;tV[P!MZNqYᴯf4 y֢ϳXw5i{P-Mfl,Ij*3P)y{Gxpl4UY/\VR> ӘY#6 !H'("VxA2T-Rt}UXok_)iuq5GT,*d,REh=vQr*kfIF֒HqNv} ϲ,c%&F8ͺWn` &jkd}$44R1T],OC~_t]( l0s"[xs)= 6 yqZ800OǓwfsﺽ8qRZ@*LSӓK4U(w:ޠ3<)exO X%vX-0DIG @PAFDט~EV~u?Ed/E)L+W"sgIxtp q<hywDbMY,*݌C3pK2We~%2CXv^t=d Ry.|2w3xJ:t34ݞ1Nxm QY ;7"u?U<"4߅+mPčm):D2#I:Z&D(p@FF' &2WG'+\=mFšcPkЕFq_u|^ \] GV!_ /L .Bo3FK`%$nb!fzifO|, KUKu9۟:1) bb?ac2EaL3Bs貑R2qe5;YK ̱٥6\kn\{O>xN&fZp$CI~CEYS Q.A#Hv^ y-s j?7HcbmÓz(n-:Ú;^F w-0Uř>NaS6ݸܰ쑙1mՍyg3פװ<%q Ѻa;z3c“a둍iȬI7hN!Ͻ|>@2F3S #~z0e1Vs ~GʦgIUmA3R`ݖ ơSuai}x9DK-po뻄(z3z5_(j2v~y=@ ]z6Q7*ŜUcNbX]6igG|=,m@1E-9@1q'~Gm?G /qn- 9 6ӋN.z_a^-7C|B'rN&W!_x^ב1`"E[еG$7}K(r+v_N\DJTA~r"`֯z6R/s[NB%y'̈`]- lXέ G5D֡@2[FRU^<~Y i^4(i ֢]>M ~QnR}YN 5%D))#^C4;C)Q걥Ǥs3@f"1~Z.ís=ۉ[zs>(!Z Q٦D :_ T?VxZSC׶Z^AQm B8ǂodjm:7u(Z :\\&=y?ϴˆ,sv#Cbx2҆:O*q9.L4_\jr\B@cYx<ɰKk:SCM|hz[CmL* `H{ v~UP۝?l1,,raBhR}&s8yMFNwJ=?TBKC{ hFܓq3oM(Aź lz`k$G޵9Lr̎L hՎ#OVA %+ f(;B_$sdi>\Gk>TT* HlċhA{I] o B'oE`q(.S 6Aqg%D03dqwr5ڕ}Zed]i0fƶk}$4]J 0B L$ w`SQBE*'})TK0惬%)ID : ziQ$eWphMyT_MIkDgmC%X*MMNyL߁hSk10gi>8Dc+a`+׀KT ZSKx蓆/|1{o", Vh bYQ2W@v z ;Nh@#l:9"dp/P ]$e5t`ᱤ>@ 1E 'p Oҕ:Y]lyCm%rNl7m ZH欑_o7wL%23*ć@z8MmSTynݱԑ,0u NhMzYF ۡg?+V80-tnx>$jk^>YqaewKjYǦ#PqN ;NHOsfҬMEcZ;V& Zz*Zcs'C~&:`Gj!{Zߠ팙hOBjgG\pC vy^Cw0C /QjJTbRbEN\*UJk "ͩc#8#yٴf͖Hu >N~4z!م5t)JSQ&IU Lc,k \Y *W1vTV¹wB"U*[Tz/s?1RU2YHݶMUD'H#rP)e!%uqN#CVt"y/|)p& j<t:Awq?#n~?~aGnyϨͶ" qvRY=ΔaEH:1݃lP33H)X4/rkZPۏLnᙛ*#bpT6^Xz7OH7T <ϫ ܗcyΔ.sQY.|X rєWùoղRSޏ²/]Ŵavލf*T1p,s?Ǡ \WT@'P((ݓ+`Μ}F H;ŲX/ݫI̘&{1aGtGwO&``J(,![Ұ<XJpTxy=k\G8ЄXoS=A 3YƮ)Up<§/#^|%dbחA+kY./Yٺzf'"2V;`U;A@pxW*Hdu}h{›)iГj/FOu *}ESDБfBFL3$v򩧺z5k/]ko8aAmHKbʑ3@r1b˶%mIҍcZX^"Vw`@wa.|#FB/fŸIyt}k*ziVmKG{_h] D%1cEgQl _8s#ٟ`#'ˀ I2) ٨GN*ۺ rj zݻ@1?p9VLxȬmIK[$2iHfBVd@@,JٙEH.OҊ+Iu0 z*a "~:1pYY}F18CFZz\ʀxVu˓~zj`TfϒțQ]fi6u.iztbH1WZ6~SpduC/A#Ayׄ)qɮ:tD߹fEqAe\V%C&E29 8" wue(}\XWPgίX 5:@HP?]*( Y[z+O 8g~<E RBv#g D>ƶ՟AKbhHB݉bdu7Y }=@z6 _գw  wÝ.8"TOfRXS/1t83TMcMrrrBOBfE@oo W> R-xݔ`hڄ8W垄)"\4Ke?kRenpTҔeը[*(*!-s~߹lFtS4ȔeYNYAЩ:a|** ]1$L8|DĨC+NK$-1pXr88fĕMmV=;}Di䬷@ }H,DӞsOQܻNfcG><:}qID~)20) ċxP HDRW?Wtav0'b)C+P=]d5m &Rx,?ᓻˉbjuࣃyYLb%{7(9W 0=njw`:'>{y5A00;ۦOAmk}JrccOQۜB!JO{p-_NLL?\} EIl2`'id4Yqo[A4NGtmrqv|:U_ʼc;N0 ݠ;};?9 zA8ye\fe,*&Ľl4Y Ls}Xb:m<^B@gؾp+-1`,Q7z9U#=Y͚gkBbw܊5-h-7\V>k6 w&Vr.qSUc 诺@%\³kn!Xn8֖%C` D>(DNER3';JiiJ9,%b=](3(Ͳf3t%.ͅ=(\WϷ(]yU['- 4J`D/%~?\iC4>KSmw%'폖d?j=; uvO/&he$e!6  FŨ@?]޳`˶X [;g 9f ]',$1<] e1&S-[ozk d|n^QZ`C 77uFQ[yR_k ܨT ̿E;¤==i=Ěϑ nT, osWm̉_q2Y&gi%l F hFbrܶDV'?~G~EtV(yo)mn5 K|guEw)D.P@>VZnFzչd \/-|'pv14a"JA9q)H k`4<'T@GK9Dl#$UC[Sі"qa(J^Iap5o +I0?qۼnrZsR+9lx< pcDɏ iU]IT4lQBg{ ɬPǩN=Ab]|o{"R}F2뀈ZZ>r7UҢ/rF _ݬѬ!H!qxوŕwsU1/j |XWуU- >Pmwj/PѪ!`m7ܐ ;);{U?NBW̻tQYz =}`o^Y'8 H>?SEgD̾y4Oq }Ulg،nF3Y]e&.@ +UՌvZ@ e>J(T۱ړ1[I0[ܤջy/,<~闙u a0$#ƌ{X~;şzz&l1+ Fd\Kk PHkp2o"Mjx+*9Щn`NKR5~d@k =6F@fǟ7aEfͦ5>j8 ~kbJPt6+Y5'4Y{*B*UMm.BmO>Rv~%e]48'Wsϒj|;ڑZt gzLxPڒb }r&p G%j#R$Q`We죆 jr.8zD)^=:kwgg /jabl:q>-DsyRgmͯy{EDgyyʃ֕, OT - X2`g=ݙQ` UfA([q{= r;CA->d5P() GrNmk$Y{-I aZ) qV0A..Lb9+z~vs}Fɠ_sdA+!J`_;5M^}|wm_Mk)/ CNY#Gopns0 ^}AT`8_7<fK/8JJ$NrxaC\Gh!̒HE̵W@}¤ڗ0:i@)("by q(&$SB3G1sΏ39k7pOf! h=GAo,1Rlµ5ÛY|F Ʋ%]u8p6C{r/q@F[ruvIwo|[$Z.87P_+@*'KnFV.. _>K ֝C髰J֐V ܹK"XS=ҺD nu`=E+Ղf+S S(nrٌ 4;ݭgаX-!ќPl61S3$]*d}}p."!h/#=<=Y~)ԊaCAp-.2,wn_V=Imy~YQgbB|7ZH2<^? Q`=|Y,UV]JU5u٫Y)ڠoKv@KQPm:qIP<--⻥j-ts7}4I9?զFŐU;6nGϰ7׸Lp,ûKlp;iVW ~x@ 1ZT!ѳ~<*ϐtr`#Բ"~j`k.#` œyH3qūhCimʦ!E]l < nzCSJՄ?D26 wK^ 9r'S-+e3q箩il*jo`*:WfޠHKpSׅyi"nz7NOdWuuf(3JuoWxĿ?<߷M@[Bt:`03rE~mIlP3~$9ou +k.虿 ;G(M)h/ZMoGP%J)c2QTHQ'(K &[gGr{3egFB]E^|/EnjÅ,Qz\5 endstream endobj 824 0 obj <> endobj 825 0 obj [826 0 R] endobj 826 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 599 0 0 838 0 0 cm /ImagePart_2182 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 413.75 718.7 Tm 95 Tz 3 Tr /OPExtFont3 11.5 Tf (6.3 Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11.5 Tf 95 Tz 3 Tr 1 0 0 1 105.599 676 Tm 94 Tz /OPExtFont3 11 Tf (adjust the forecast by adding random draws of the imperfection error onto the ) Tj 1 0 0 1 105.349 653.2 Tm 90 Tz (forecast. The other method selects the imperfection error using analogue models. ) Tj 1 0 0 1 105.599 630.149 Tm 94 Tz (Applying these methods to the Ikeda system-model pair, we demonstrate that ) Tj 1 0 0 1 105.349 607.1 Tm 92 Tz (forecast with random adjustment does not provide significantly better estimates ) Tj 1 0 0 1 105.099 584.1 Tm 90 Tz (than direct forecast as it discards the geometrical information of the imperfection ) Tj 1 0 0 1 105.099 561.049 Tm 94 Tz (error. Forecast with analogue adjustment is shown to outperforms both direct ) Tj 1 0 0 1 104.9 538.25 Tm 91 Tz (forecast and forecast with random adjustment. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 122.15 515.2 Tm 94 Tz (Secondly we address the question of how to interpret predictability outside ) Tj 1 0 0 1 104.9 492.149 Tm 92 Tz (PMS. Traditional ways of evaluating the predictability, Lyapunov exponents and ) Tj 1 0 0 1 104.9 468.899 Tm 95 Tz (doubling time are discussed. Lyapunov exponents measure the predictability ) Tj 1 0 0 1 104.4 445.6 Tm 92 Tz (through globally average error growth rates in the limits of large time and small ) Tj 1 0 0 1 104.65 422.8 Tm 95 Tz (uncertainty, they are of limited use in PMS and inapplicable outside PMS. ) Tj 1 0 0 1 492 422.55 Tm 107 Tz /OPExtFont8 11 Tf (q-) Tj 1 0 0 1 104.65 399.75 Tm 95 Tz /OPExtFont3 11 Tf (pling time \(82\), which measures the average of minimum time required for an ) Tj 1 0 0 1 104.15 376.699 Tm 90 Tz (uncertainty reaching a certain threshold, is applicable for both perfect model and ) Tj 1 0 0 1 104.15 353.449 Tm 89 Tz (imperfect model scenarios. A certain threshold is, however, required in advance in ) Tj 1 0 0 1 104.15 330.149 Tm 91 Tz (order to define when the predictability is lost. We suggest using the probabilistic ) Tj 1 0 0 1 104.15 307.1 Tm 92 Tz (forecast skill to interpret the predictability. In that case, the predictability being ) Tj 1 0 0 1 104.15 284.1 Tm 97 Tz (lost is well defined. In the IPMS, such forecast skill not only depends on the ) Tj 1 0 0 1 103.9 261.049 Tm 94 Tz (system, and model, and observation method but also depends on the way that ) Tj 1 0 0 1 103.7 238 Tm 91 Tz (initial conditions are formed and forecasts are determined from the ensemble. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 294.25 52 Tm 71 Tz /OPExtFont3 11.5 Tf (155 ) Tj ET EMC endstream endobj 827 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 828 0 obj <> stream 0 ,,FTTb7 \js,x"bk♸r\9ŇeB%[:`ABQdx ;lu(lm𦹨((u6>\"AY@}`vV8{Y?ɷuCYRe$凍p ˼Z ":}~QfoC`U}NCo!q|a%4WK-.J=^)UL>κѱʰ7Y埱Ұ'!`X޼dJܱ(;o3C< ǎMk M`{2dw)GۀU@8@vTnΙ.` @Ej F ظV\W1MX+;Il`:c8\p+[R9@傞X|4VPQ ''?r#8m]io|o%Q[/uMΑ_^p\'L>?nxc`Z/nTC cA\v zejx\Xc1~ ppTM䮬JOzA+NEaP4)@܍yӕ'qr1sh{- !:%!qXI@Z2wOʞ]7&0]`?A9&L("F'Ē,-V'GAlߗbM,SyoKR]_1qb*s+ {ٱ& ~6>$ljN٦\W&[y)eNS4|R3i50 #Nk7t$ @ѓ|<#Bq- 4@tϠ%X w7gm?C*IlD"ߍ*$N&vAE3e3KkpøNyWH(ǚy*NJ g '0; RH3O0Dpgϊ€Y}":&;u}i%eЩeI3U$ d.sSb4;bh [ԣt=7"(_O-A1b=x›{[( =f8G#IO/G H}w<0rqYOmE-I6]a',(mYT?cC<&07>pݘFܝE{0E+򠏖7ps YR_ϠQKxf3 j$!wg9b~"|Å뿄jGg|uh߮quJs'M@|jnnvd1?(.>ZtA(Oh_ot .֜Wl=riھJg7}d% AT G빳CCB%8Rt;@m6nv9%\S.h*|>jp?o]HJ8'r`p>wÞ:sF)pDoWh`L};)7N=(AN-boaa62%\bl)כn0 Թ沽zn.[EU>sU(mWmK;)9FbHmkߴ*k6@r丘]Pap!߭z3Z1O{N_(Ga '9T f\<$r ҄Mԅ=MEyE޶ .0ZP,,xb*]UɚaM񾓥ygYST|N)Ton 2 W>dԎ Ļjч܃vKAiYu.,LӶ$xN7:@?PWK^IOO@jn+aH}M6WWs6&]/l.]mJX f)<}C/#tw'P‘IJ"0p[?bC5OqCpl HZ<"ߋ,D }J+;߅x% m M ᓇa+7\w*¿ ֥fؚK* JL0$=p->^?*$K|ClZC·XtuKY{0_|U,@yfv xp>挤 LA^ C'XB`HpV[$ƫ>Φ# ̖B[~{ ϫ9[*ԉRZNOÝ8+䪲8<ܜٝs5]+" ZOVvUvj-MoBPi>c2Y%:D\PQȫdkrr>(lsD@dXqRiL\mG0kOpH1rVѕ3+`e>Zh,.μcb1Vw0U'@.pg-wZ37$.)dAmnB)[y'V 6$au0(NǹgF0w;#M䬏Z\Y>('XPdw\EGwl&O=mfqE;-ӭN^ X.f+@ (j S[x֧X%U|Q~pЎ [ϖ F޺<Ǽ% u}fэ yuqXYh1z̨+gwUJ7g^lgr !5I7JGLH1O{FH]UA+"{Oԟd4tt. [ p^h1G]\4ą.C12m;Kc(U;`]YOJ(V,kT+X 9_<|,]oҸKuz(g0wN6$*#uqcBT>ɕDÃV 9EV20rrhy$X1`Zm['V$#>VVԘH6[ D389޳jI#wN GL/}9mO@J3?u'ĽX8f$9 :pX$:> 3+溒Ggl[d"oEjY;y}"sy2JwD"us:Q:l+Y>el ](4Նʫv1p\=ѹPzt+c,S`î! (45qY|J{K٨WZ+*Q&V<߇w3l%Eco \8|q[Gft SwXV M%8b{c6uJ zDqz-Rs"Rh& ?x\Lhs`rY zv&)0]XR$֤M Tt/>d;=VyrjmT9XxOUX'jߣ%6d'%j9|= Zzu$6Xӿ*ªx]ӵjDBg3T[#Z%ZywӨ8~4(LgJRJq곦}G`|RU3#\ W]062wR7m7~RE3QaQG!jZM;t/4Ji¨+k@æ#bc\Yۃ![JB^"ca~ U2U/6Tsȶd⮔`ɶ-nTdUu,U聥<5d-g[ i<;%)0@L$ɥۘ2.֑B*(Cnl?8"{W6? }i[s Dhe E哋)T/ 9^aoD)OIw%R {%ʁӤo|0cjHT=3б@RHd:U%Vf+r^~~fc9n0n %gG-:/qfktD_yğS p|pFRaL&m!'K4,#T{~L2t9߷Lx&mĜA8-(еN(wG&a۶"^O@|YǦԉd4^f5wΝt]\kV)NeG8-3b cvq1+p 13j냡K(Wy0UxTdٰq xK\a9zCT*;bjAwޜO?M2l#[jIb CQa㈦F{CEؚiN],u]QҴ(Rh)3giº4c9%"zJeS[0B,DήQ+v_KTQ1J;.F5^V.\US&9CōW z1&,_iW5֒zMWmQR I]OU>|cXU A3 6K 8",]/뻺k2nP2X{SfϒER>{<0`t(]vL\gRIvdy8  )LJ fѬZig7ob1 m!2ؿѧmy(Ԫ̊Vn 'iW^nx@(kJ"*s,G&9ZU8t9Fpc)6k2G@+ Ieڝ$f]ݴhxYsZS[۶*!;"kHR |kM"ݤp;$WKQm?Ȩ}N)hSl,L>A$ؿ?CULW>.LJUn|Õ4'.e f7\mBr^ \i˗paWmM͈tZ;Z(J~4bhptCI[C::cslD,A\b>pӛuDw9[4xlna}?nOY70XTkQ5e} ώڋ'Ŵ6;|^@r4Vf(f$I>4b)ƤUp#\gRzV?ဒYZ)7-@ʈTob#߾VԹ[5^LS넱rlzCXAt.Dbtd)=7D{ Oa4s][ tesWe|0eޫyh_e@doraI{$((cR\$yeYꮾ!,{?*SI@dEmsyћ fH_qC-bS8qXK LxTy MbR `e;>x3q9"*J2aE9zSvQ3at/S" 60¤?C5"O"Y)B^+jՅڶO.2bb-sL$d"my9!^\\6~=Wo:qnw z?y$>`aթHJ#GX2wP!̭Yr{5_On6d`t!kvXOIyt7zh؂vj@.n Fc3& i*,Uģ䉵yC 4=>"@E.Zp/R?GcZo/BZ*]LhvPHIF[ %bcHS_g" G )EL 7 h %cXc|[u<kd{T$m `,[tKk/T=S$ac M\dj[E׏VJ7K"*?jW+c>;}{ գZXˑF}pO.y@dĤ m);[0Qe0#ChKmdK =T*WwQ^W9;8 DJc{3p>x;n[{Wl&^^I"@s$dU4{imzuWC-ꉐQ5jPx#!F7쪁t̾sך4}i4A)ŒOa*Q8vO|c塺T2R1=+0)iaQ+TFMtRUX&#.& ~ތ# ;9ښB[%]g?^/MDo ?F3 _ U+<(g*5MI3O c{. 6#b&*DR{gsg+>ij`4N.1OoBELE;T4[+;[Z3k+5]s[V_lmA:Z24{S"#ìtIHXœ ǹ<#[Y`7AJcQd FE [oFꛈCj4ΕC9kW.;ih5•cd(Ջ=*e;Z<v[|~aUϤ=jgTz~U8OȊh_ M+q m8n01<ʮiɴ,[s,]-ʴUtO=BQ7}9ˠnaA&!\LvD*BAҦ4h r+e\A7*@ \v|īVF * ^I#ӮS_fDt_x5{- endstream endobj 829 0 obj <> endobj 830 0 obj [831 0 R] endobj 831 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 599 0 0 838 0 0 cm /ImagePart_2183 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 106.299 599.45 Tm 106 Tz 3 Tr /OPExtFont3 22.5 Tf (Chapter 7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 106 Tz 3 Tr 1 0 0 1 106.299 551.7 Tm 101 Tz (Conclusions ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 101 Tz 3 Tr 1 0 0 1 105.099 490.25 Tm 91 Tz /OPExtFont3 11 Tf (In this thesis, we addressed several nonlinear estimation problems by combining ) Tj 1 0 0 1 104.9 467.199 Tm (statistical methods with dynamical insight. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 122.15 443.899 Tm (Methods based on Indistinguishable States theory are introduced to estimate ) Tj 1 0 0 1 104.9 420.899 Tm 95 Tz (the current state of the model in the PMS. By enhancing the balance between ) Tj 1 0 0 1 104.65 397.85 Tm 94 Tz (the information contained in the dynamic equation and the information in the ) Tj 1 0 0 1 104.9 374.8 Tm 92 Tz (observations, the IS method produces a good ensemble estimates of the current ) Tj 1 0 0 1 104.65 351.5 Tm 93 Tz (state. Our methods are applied in Ikeda Map and Lorenz96 flow, and shown to ) Tj 1 0 0 1 104.65 328.5 Tm (outperform the variational method, Four-dimensional Variational Assimilation, ) Tj 1 0 0 1 104.9 305.45 Tm 91 Tz (and the sequential method, Ensemble Kalman Filter. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 121.7 282.149 Tm 92 Tz (To estimate the model parameter, we introduced two new approaches, Fore-) Tj 1 0 0 1 104.65 259.1 Tm 93 Tz (cast Based estimates and Dynamical Coherent estimates. Forecast Based esti-) Tj 1 0 0 1 104.4 236.1 Tm 90 Tz (mates method estimate the parameter values based on the probabilistic forecast-) Tj 1 0 0 1 104.4 212.799 Tm 93 Tz (ing at a given lead time. Dynamical Coherent estimates method focuses on the ) Tj 1 0 0 1 104.4 189.5 Tm 95 Tz (geometric properties of trajectories and the property of the pseudo-orbits pro-) Tj 1 0 0 1 104.15 166.5 Tm (vided by the ISGD method. Both methods are tested on a variety of nonlinear ) Tj 1 0 0 1 104.15 143.45 Tm 91 Tz (models, the true parameter values are well identified. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 121.45 120.399 Tm 92 Tz (Outside PMS, no model trajectories are consistent with infinite observations, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 295.199 52 Tm 75 Tz (156 ) Tj ET EMC endstream endobj 832 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 833 0 obj <> stream 0 ,, b7!z7,߂Kޢψ!}$yfirF0Rkrkξ ^5XвXG:~LR\K*A".h͏,; +xgITLa\&`y5 E=xTL4LI-,tXW5[uq1Cej6QazO|x6l_z(x̦=QPW@NPgAlNBđ^Fٿ&/oG1͢$tDjdOv|j8YyJ VGjUzu c#?m%36MG TNCrU.FWP#~#NTQ~t/*U4%^z,\pnKba P-LVz 29%rh{U@J%YřÊ`+{XY)k??S:e:5(_kP5.AWʷk"k*%L>ʳ"ٱ#<]W:&^{L fmx:I]#0Ăk>9P_G'Pn)()+3 L 샮[Pe.3^oxe0 RRKpܽ#|T:=7}BvrN64Ӄj (фKΕ 7C 3IAއp<$(tp>>󥌱5ثԟ<_} ,3gJO<__BhBcUcǬaT~a8Dew%Ұ] ل\l*mV1֪L!PM%"Bt%ɼy uaעgKMuOb"^I7ȊMJ0%Cw'Lpi>馱;޴&2/|87pn*w[X3y`uj|ϮQ{0v N5u[:4j} BQP{5/gM'n.ʅhб].Ѵ-,(^a4'=uC9>S 耗쓷jh3VOϨ,yF )15qq `'ie.A^7;_]C#_*,÷`9L㙖:QLAkȋAUڏ;yZ%Cp1whnڧ9H e_;˧qFiO6ea5'Bb9ʩJC zݣ~L(^i(p4&(4( <glh|2X0S pE qTW>v .t~VQ[mk܅eÃdټt't[F} @-2<ox{۵'ixq׆EXs* Gbѿ)qh1MJOX# 'Zκ菮a*69{q.lt]; 㤤7?S#pSe؋K_qj$S?bTE[n];/E&w6FQB)1Ŵ9Qg>KT&9t8#v!YP8#BX\""Jk.—nUZ(q[EPUT;K~jl@=6'/t~P^OmGV g"U]5kǟ?o Uh³]^z#*[]_*8V"ĸv%@TTx;TvQ0 '&ARSQk9$7Vs8htC$q# CLYQx/nxxCzK\%vݘ ?EU`t=-.,$CR>q\Y^/)q>W70h.kg+S pIK.B5Ql<տFE a340Eܱu vI>ҽCQ2(9zq}zLm:ܑt~~#WBꭝ:m&Tw{DB **kW1|4b{G-kV#ݚ@Kb9 e}ydžT"  O_ݜ.'~ 3p92B>~:j<꺒c nCC?c9=0;7$5u ( ?+N|!YNc4yMW*ꝿ/u)4﹊X]JW+.fj!FUi0\"5'C3uihzۢ7Rj~]F` %ʼPDh(RԜ_ŕw&շ!y*j=wx_!h1~Q.g)- 6Gw` vOƑ&VvB)%ar"ՍK*'--:{||n}`Zd82=iلд&pۘ My!0J2eƉV2]&Ly ܤ- =o WV#f1sB~4o>9lzQڊn88(r..-9Ƞ??~+;%(ɷɴ?76\۱վҲ)י'Პy#!)ʠD8DZ#66\3u0<ܛC87/\3ka|/,{eZ%&g+O_ˊ   ⳨-j "MF2-[0Ze l r(!m]n5E.+ ^ Z% Nxg@(f]L]bm> d+bb[V:3l6SBUi9on-)'h`5 `Ci[ j7 2BR<:.]\&͛c3cy"'8V*qBadHPn{sfS2 ba?g7^Pկ,L\~А$oVJ?V;ds~𺼬pbLqGahAtրq0&.>otEL 'd,ACuĉX_k2 H*AL Z'͈ɒ@wO완c/3bn$;Q-6i-?K :^*{/=2WBw6˴bD Ě{o>G@EnkB:QV{,DIL~^ZC0&{|*Ҋf?pu8$R7z\풳2/zVzU K6k#@?j=Nhk{FF`Y b/ PKӊCտk+]5­$XtP. ~I~O#U 6L&y[I{Tp 3~j r9Ѯ`eY.ה=u%)QHkwa9lX&\_g*hEX,tmondH4QAO& 5g[gYI"-&c[I_~ j}ctT9bՠW̐:t.I+;Oa_I H42A<.$W3MzSryu2[Լ2XO+YsO̟ 0k 3?2VCݩx~Z8X?:*0`{[jlvrvq4͊9Pܗb#)aqup3mLV;e@&Yb_T}dysVjoT-&UCф|iv,UfzɽZ(t݂YQL2"vGM[MymCf?JD y[7_8sE4w&p+qAa +|rT\,3vb260@G 4Ov?WOzȌ-*L$ fH6:iSa2-d *o | c6tp]Ϗ]Epugun|0N~ݙQt}R% 4Z 滫~4M?_̓`w Qznf'۰^%-TmXRc劉$ӥSPMG+zEY4 =GU ,2A fbgIC6g>xȺ"zdN|,1Ɖn ;f[`o颛 hSګAE8QVY0/gs{ ' >Mh58^;le=ˎ&øK7.kvs{#DZ$r#D m3\cJ5Kxi Fk6= M; L%;(=AcCzJɃ)v^ x?D0f>E8A;1$\T2< Ͷ4?Paր+ob]xjCS=K E\Z4yIEh.~D0xG{}9%);\p nE݌Q @wFHV<\G%.~ɅJ[[=Ztyf$Rx7#W),\}j14hLm>5z?*󳧰웪ȣ.=%5+kѯN]:@̠u谴_鷡泑č_smʳF:1*> endobj 835 0 obj [836 0 R] endobj 836 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 599 0 0 838 0 0 cm /ImagePart_2184 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 105.099 675.75 Tm 90 Tz 3 Tr /OPExtFont3 11 Tf (there are model pseudo-orbits that are consistent with the observations and their ) Tj 1 0 0 1 105.099 652.7 Tm 93 Tz (corresponding imperfection error reflects the model error. we find applying the ) Tj 1 0 0 1 105.099 629.7 Tm 90 Tz (ISGD method with a certain stopping criteria can produce such relevant pseudo-) Tj 1 0 0 1 104.9 606.649 Tm 95 Tz (orbits. Our methods are applied in Ikeda Map and Lorenz96 flow, and shown ) Tj 1 0 0 1 104.9 583.85 Tm (to outperform the Weak Constrain Four-dimensional Variational Assimilation ) Tj 1 0 0 1 104.9 560.799 Tm 89 Tz (method. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 122.15 538 Tm 98 Tz (Given the fact that the model is imperfect, to estimate the future states ) Tj 1 0 0 1 104.9 514.7 Tm 93 Tz (requires accounting the model inadequacy. We demonstrate that using the im-) Tj 1 0 0 1 104.9 491.699 Tm 92 Tz (perfection error produced by ) Tj 1 0 0 1 250.8 491.449 Tm 110 Tz /OPExtFont6 12 Tf (ISCDc ) Tj 1 0 0 1 290.399 491.699 Tm 92 Tz /OPExtFont3 11 Tf (method to adjust the forecast can improve ) Tj 1 0 0 1 104.65 468.649 Tm 91 Tz (the forecast performance. Forecast based measurement is suggested to measure ) Tj 1 0 0 1 104.65 445.35 Tm 93 Tz (the predictability outside PMS. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 121.7 422.55 Tm 104 Tz (Main new results ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 104 Tz 3 Tr 1 0 0 1 121.7 389.899 Tm 96 Tz ( Chapter 3 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 145.199 356.8 Tm 100 Tz () Tj 1 0 0 1 157.699 357.05 Tm 90 Tz (A new ensemble filter approach within the context of indistinguishable ) Tj 1 0 0 1 157.449 334 Tm 96 Tz (states \(48\) is introduced to address the nowcasting problem in the ) Tj 1 0 0 1 157.449 310.7 Tm 90 Tz (perfect model scenario. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 145.199 282.899 Tm 100 Tz () Tj 1 0 0 1 157.699 282.899 Tm 93 Tz (For the first time, IS method is compared with 4DVAR method when ) Tj 1 0 0 1 157.449 259.85 Tm 90 Tz (both applying to Ikeda Map and Lorenz96 system which demonstrates ) Tj 1 0 0 1 157.449 236.549 Tm 93 Tz (our method outperforms the 4DVAR method in state estimation. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 144.949 208.5 Tm 100 Tz () Tj 1 0 0 1 157.449 208.5 Tm 98 Tz (For the first time, IS method is compared with Ensemble Kalman ) Tj 1 0 0 1 157.449 185.45 Tm 91 Tz (Filter method when both applying to Ikeda Map and Lorenz96 system ) Tj 1 0 0 1 157.199 162.399 Tm 96 Tz (which demonstrates our method outperforms the EnKF method in ) Tj 1 0 0 1 157.449 139.1 Tm 90 Tz (state estimation. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 294.949 51.75 Tm 77 Tz (157 ) Tj ET EMC endstream endobj 837 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 838 0 obj <> stream 0 ,,FFj'{9k{oٳi2&-27x8UxÕ3`qtFjpiU+&Q'*'V'><·氱4v5,|B(7s h-|/'A1AF-Q`kC(C_bbc4)/qSRV;h|'4\bPtDXfxZeaPiZ2WTd>iˍ@[8Qv- 0x:x7KŚ^Q#|S&96Q۲:{6K :(/s)~P\[TLa6ܸO^a:F((#E߭w:O"9xS_ :oJ4JI Lf=42 Դ"Zzn@1VvU\RQ:/ܐ*<;DꑆQ?jz81\Uiԙ}8[ΑeL=q&v!=XJhKxA8Xoqi? ~CKiخ^>k]MӦ0xL+M0Ȉp^_̻y30oMF"h-Gw!bJ|9|qw!K/8l{\{ N0LȸVc^fOBS~Bѷ$.&WP>Pe1M1A(8֐}*$%$SHHrqq !oH4ߊ'4RP4-6k;rv]pN-(9hL5[ObNxX(60 t2H yNc6t5 }6T@ Ir6&q*g8ָ`>WGQ[l íZ''s1DB򚤬n! ċ37T wO0e>C!~u%Ca`p q5ŧzB:dICk8l?w ڣxsl`{(Ѫ˳ GMD_!(u5~NJhfuKGVT7<*{)Z{rL>ˆ^UVtm㉔i,%*4Ԇ z}8XhfOqڕd),e,3@@6 yfzc1<7q9蟥,]ʇ* 9Ebψ=xՈNXdaVixLUh?L*$2P, c;rCE[+mR B>,9]E´7~db-C߆Q0s v5pk>o qkrS6dΰ]dY 0br{z<`AOM(G>3L^{8۷N Fx'@Oͦ{\3lRΦ*"1G颴u. \X 6ɜ%@Y*~Wѻxѧ-X?IiE6 xk QJ~X+ 4\+#ƿf__,svb};=sZdqYa5 uU؁I7P1dkyD ufR{ll4||ӻT"&337z42jkT/WV8FzdU=NADgQ~R?WeY~g90IbI&j2Tݾ8E'$h.zݐKM؊B8'7{}Kkl=5Vx{M7v촀q`U=fm֗Hi +#TG.\>(6E<,f3 wW fT^2@@|EuCMUs|d oh2BTv` y pvxiO%[5Ͷn`18<͂Tў`C%e1ZB wq\9@_Fv Wn]:lIeieߎޡTer!1p-k3j4^%N*)If.Üe>+;N͢!FУ,-5>ꑾb4T(kA>}k_Mm,+woRG~Kfz~(C]?g;jq >LkYyϠ.{!(O& Ղ]c:Hglj(;C_"/j1V}QAO%uUDMLՃiέ}-W , !7N!*ҠXeUh#V߫!¢8K['?>>bd<ؽ\>ӻ}`V)HAcZ7x DDWѰh7(:H>ES~>Ee)Ի+8M1E'>ûלTv[wƭ)P'絢i?9 m3b| kӔlk_Svi^1I8x>8083^aюĈ<7ZzH\bm57SzQPFw4kZTXaE g@^k2uudG0o:CI ϠVoI0'ADOtBTԷTB>K;к#},ɴӺQ2sCxx̩Wж(o6 UcY5-JQrKSSiё˓@F~71Tʖŵq8MsZ0 4a&3YF-aAJR[q.h?#=_ܾyz ߏFLxf)1eǗ''{-RJOamH5b6[&JbQ8o,;&"3 FIXI|9JWA4,[^ibrn]$ J5{Tz\D}?#)* I!摼_($fgz4}dE0!p a@EdZ2~~6UZ5 'ǃKd*.9>//Xs5/UI }iyČpg.s a|UۓRQk2{ק(zUFCoD&bG! -IQ#8vo , K;=DžۻٌВqMz92}ijREmV=N𑗅-յ/'[+p|Lcv]~Z!fFTҧL_+Iw'Йʵ#PD hW+IhxGd^y|B&-5 w z #}x1VQ).nwCqGεﰏ1h4W)RrXի"-;ˁyv;B T,>>^, S|YE;z Wq_~ո20]ѽw):as1g^V"u&| mbLSI9|F$I WqP,hv K흲0]&ϕȟRA}ҁ`&&=uCGq383aPB]"EȀƁ<F<16#-LTҬ=[Z~DwNIlE2IgfjFDLSNA+=*wB) )y~93i_z%7ҐUԸmLE0VM֘Yh5O+^()&O]hE9` V[nJRprgɁ tq&[cBv[~,@p҄K>_1@:MAdw ]tf] 4_"^ySឈ N:٨? r*I #BQ Ks:B%@T| ۞#J 믺VQN̽mr\'g^J<0BE-zhML䇧CL7Fi0m@4{"Oo)a5(8` ~ߥwy拭@e*caLȑa^bt1p}'宭A,8i:X}$x> 'Ik@%,}zL@]qlb t52x,y-g^EEFMzIJ`?E]m&升 cr Jt|x7#5XS7| /o zӉLRG[Ǡϫ9ho QJ{`uGmiZVzY`.,uU6qZĈ7P=q \9ӻbq'b^jb3pvT}U)yņJbӂE^zRq\ b (`:$m9_2`8.|hB9y6mTqDתnms |7Đ)_AͿK(3ox0zr\ĆK:MDsZrU 艁pґ!kc7Ґh=T$֬ar9ke8M+ٹM!ZNR= qC$S]}*=־$oBʮri_:FqHqfr^k?H}K~c,q݇=Rfۘii9_-].lF NNEFB#v `}g6fRttS歾$IP_nB,K@ p?l+p:tsdppw,S+]{}@^?I…ԬuY:uҍN#7* \6nޏC hmVR]M(){]X߷De(3#yW+x0f:e_\/ZLñ试QHA|LL=*S G;[RXP|0= YpJ5P58십WYpQ捏[DmRV VV[Q4L%+CGpQKJ UX5V}4 k.~WB…393AB Ó!U':jF[ =]?k5 Q C[LJ! v+J,9ḥz}2ӭE_&d3͑ä's[źboXqF-qȒD_Q;RиIedIJ2:RiC^-Z~jT1ׂ' 3kCd fl{y`tsvKO$$ŧDg͇rTV ۝B9֊df6ɑˆ?/pi̷< ~bZ]4-e RĶ6B@߳8lD^f0>k8>RљKY㇛H(TԸkր endstream endobj 839 0 obj <> endobj 840 0 obj [841 0 R] endobj 841 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 600 0 0 839 0 0 cm /ImagePart_2185 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 147.349 677.25 Tm 3 Tr /OPExtFont3 11 Tf () Tj 1 0 0 1 159.599 677.25 Tm 89 Tz (A new probabilistic evaluation method, &ball, is introduced to evaluate ) Tj 1 0 0 1 159.599 654.2 Tm 88 Tz (the ensemble forecasts. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 123.849 621.549 Tm 99 Tz () Tj 1 0 0 1 135.099 621.799 Tm 90 Tz (Chapter 4 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 146.9 589.149 Tm 100 Tz () Tj 1 0 0 1 159.349 589.149 Tm 91 Tz (A new parameter estimation approach based on probabilistic forecast ) Tj 1 0 0 1 159.599 566.35 Tm 88 Tz (is introduced. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 147.099 538.299 Tm 100 Tz () Tj 1 0 0 1 159.599 538.5 Tm 94 Tz (Another new parameter estimation approach, which focuses on the ) Tj 1 0 0 1 159.599 515.25 Tm 91 Tz (geometric properties of trajectories, is introduced. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 146.9 487.399 Tm 100 Tz () Tj 1 0 0 1 159.599 487.399 Tm 91 Tz (For the first time, IS method, as part of the second parameter estima-) Tj 1 0 0 1 159.099 464.35 Tm 90 Tz (tion approach, is successfully applied to partial observations. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 123.599 431.699 Tm 99 Tz () Tj 1 0 0 1 134.65 431.699 Tm 90 Tz (Chapter 5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 146.65 399.1 Tm 100 Tz () Tj 1 0 0 1 159.099 399.1 Tm 90 Tz (A new methodology, i.e. applying the IS method with stopping criteria, ) Tj 1 0 0 1 158.9 376.05 Tm 88 Tz (is introduced to address the nowcasting problem in the imperfect model ) Tj 1 0 0 1 158.9 352.5 Tm 85 Tz (scenario. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 85 Tz 3 Tr 1 0 0 1 146.65 324.899 Tm 100 Tz () Tj 1 0 0 1 158.9 324.899 Tm 99 Tz (For the first time, our methodology is compared with WC4DVAR ) Tj 1 0 0 1 158.9 301.899 Tm 90 Tz (method when both applying to Ikeda Map and Lorenz96 system which ) Tj 1 0 0 1 158.9 278.6 Tm (demonstrates our method outperforms the WC4DVAR method in terms ) Tj 1 0 0 1 158.9 255.549 Tm 89 Tz (of nowcasting. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 146.65 227.5 Tm 100 Tz () Tj 1 0 0 1 158.9 227.7 Tm 94 Tz (For the first time, we demonstrate that applying WC4DVAR method ) Tj 1 0 0 1 158.9 204.45 Tm 91 Tz (will face the problem of increasing density of local minimums. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 146.4 176.35 Tm 100 Tz () Tj 1 0 0 1 158.65 176.6 Tm 97 Tz (For the first time, IS method is applied to form ensemble of initial ) Tj 1 0 0 1 158.9 153.299 Tm 92 Tz (condition in the Imperfect Model Scenario. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 122.9 120.2 Tm 99 Tz () Tj 1 0 0 1 134.15 120.2 Tm 90 Tz (Chapter 6 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 296.399 53.5 Tm 75 Tz (158 ) Tj ET EMC endstream endobj 842 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 843 0 obj <> stream 0 ,,&&j՛ K#Qi ŸܮrD|{M%SAn4Q`:ߩ|V~3'g1ʆz[6:]"4޼]|d朤Yvv{s.%g#LX@X#&kMd@]j-ք tz2-J}Ar 5$h8joNX_`M-] zkt'o grp~ q oyu .FX c{ı@!}X2AN֔EI&pIݾ @u]8J#( l b^>;u^n[c`~Kŗ Bw_ZGDIe( 0O=nuӪx"o~%><*^9ʻ1{VQj$~%ԝ@{6V'5Ft>rqA[bHȨ L#̷W/E8<]`!M(-ľG8w\M)mv0`>-[]kClseR^2'zBp VV-vyggvMҰF# mx ı"k(>9 Db?#v\@Ġ/&CYc[{n?]2_=j_Ky-;Y|&]ʧU4Zj\xP(Fs!MMC&ثhƤ?\d^j&M* Ji@^ǹ]#4:$0Ok!N7HT%xՖ-]q/Jۤv'\bt+mP-[LA(IjAg.tdIi5Z$K@SfC؏l)_H2R7Dwp<8}@WA{ٙ Ra1A<{PaB.0Il*_蓺+uzؙ37k;c ˸=ODC-#>'q$c JVLM'eJ ?7K$!˲&FMikKZ|S`9 XO&J*#LpC+Γ 칠,8xEK|$+i0J3Ori`)L/*cky$II=g7 =t+Q?a`h %a;Z-~=bmD9~O^>9LBM/} ȫY/~ƶFB7|=E6Oա>K-Y5 ,(0_BZ}.G IDMGm*4%ۑ$t0CN6O1x1pAdE(Ji{`Cw1 ֗5=>cjnrO M8?԰Av6ˆF}3eT+m¾du䩍{tMa'(#-C-,-֓WUZt2X!>ס~XzRQ#lR}*1y7%_Y J *&{F ʼzo}7 [5r$0O Wt=Sǯij%2.5ĵ&)±-44٠Dv\\ׂK yd4羻?&gа'0cRe,ި1VឆM"(g9Y2y{uyoXYͨTöQ_"rFiY`#战8 ;tk_H0Ţ<=(a2G}ALBzcݯRl&!6Np,λU_ czqHɫh屦ߔo )$0ax  i7}I)0nwD&Vq՘{ Ag`+Zr ΆILϑ}hNsy29+{1h%%PÓP,^έ]AFJqo,i~3\׹Wjѭ}g>˂au,%x5g9Bj 0]"\BOAI ױU $H5ܤ;E"!,}V /8 NX6I4;0i| ob8`jZqZfõ^@ 9M>J%zPI^7 [,j訣_Ii QƀM'ۢ<T@0Dl:bi^[F zi$~Lmт*PP+zE֌"};raߩa]}4"2G{XLry>':řEzSiB7GNp%'iݖV)@Lju;r @}Wnq)$4 z*i2ԵLiVRdR]]ewʹ4o@g IBV¾n5%BZC;]2n)GV~\5.ZV+H:ZŔ1^]Q#B2g5YOR'Ȯ3ׇNVLc8` r֘B dw yFp^Mz[6¤247$j4x2y} * #¸,~OMb܄鹤 ^q ܐ8#ı`S="GQMehjGHȓicF]^ܵ-E"N# a\k`X##J̉=ͬ([U@B4 AP޵#ڪ; %<]chF٫qqm&І XH7A$Grhb*Nȹdh!F7-mZ)8{ { !ʈ?m֍V %RY#f T'Ȅ}j͠X5PJ DX+?*U䆩F.xaI>XѼ!.ոiL n0"0cu6ۻja[%2Б-y\/d޾~ORx;*ײS{]lwP~$z^7\VOrh&CnaP}J6MFquatW4 =|rt+l7v*]N{ E.dcB|rC sg3@eD+Ӵ5bLumM1y4 +|tx]e?alR)Ӳ LK*dDK|[íK~a~_{liik5kº딤ObW! #:wm$8^Ro\kT7,"k8%annen3jG+j) QuL!Q-Q!u ]fJwb/˷Ԯԧ9zGx07#mXW2,|Ҵ:/S{LħQ3hRjA( @Р%<>1 _x Qf}/+pIz.(_桰ǡzt_&0 _'M?> tUW5BrSO,NZϛlK`܆f=7Ax4&5Y!IU`(Jֳ;h(R|;bf'*o:[; Łx\(U.H&.-W3gl͎uBV(ŐaՏJy!+nAf. Ajk-%iЍ#=ыl*yOOHy~ ~Mʖyaw-0mm%$qOn<6 MQ2\˯Hn31ߝeL:~Fje@Mܧ1 Y.Rbh×8]apdqdIw|yRƧ|E}ILtE.> endobj 845 0 obj [846 0 R] endobj 846 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 598 0 0 837 0 0 cm /ImagePart_2186 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 148.8 675 Tm 94 Tz 3 Tr /OPExtFont3 11 Tf ( For the first time, we use the imperfection error obtained by apply-) Tj 1 0 0 1 161.05 651.95 Tm 93 Tz (ing IS method to adjust the forecast outside perfect model scenario. ) Tj 1 0 0 1 160.8 629.149 Tm 91 Tz (And by applying in the Ikeda system-model pair, we demonstrate that ) Tj 1 0 0 1 161.05 606.1 Tm 94 Tz (our method improves the forecast performance from direct forecast ) Tj 1 0 0 1 161.05 583.1 Tm 87 Tz (significantly. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 148.8 555.5 Tm 88 Tz ( Forecast based measurement is suggested to measure the predictability ) Tj 1 0 0 1 161.05 532.2 Tm 92 Tz (outside PMS. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 297.85 51.5 Tm 75 Tz (159 ) Tj ET EMC endstream endobj 847 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 848 0 obj <> stream 0 ,, njeˉ󃶳X܊^fJ fuF!*8KscvZzlD]d83(Q2u =O̎B1W I*%H-y;h чTGSm,H|Gg{٩M f!H1ʲY\5"ip"mE f]#1,L/ha6GFEdMLD[Ԣ)"h{)5 V֯|֘Juu9j`9goҾk``b=%(!`XKKSg*FbxUJg5$*Wo=¨ ;2֩)#i6 oYTy4m]K [h^P =GӪ:!@S`r 4fd$ƊOve rVt+| 1&aucN 6lw/ûDtѨ|ԫ"( @[t P5̰3l A.ɃzJdNמ>ٹLJ'i}=:nRY93qu?SM.E^֒*GLZ jT`sDr ?/LmڷY -cAf)ڊnb)FA`,${k\SlhȲ]eeO] [10oc@})2S&*}t/ !q7-o w֡W $ta umJ5XE/~ [ܜ&{(^eq*ܼv?;^ @a/$VTRSM Ϝ }k~  4`X`6űB&wg֫qSj.ۻlRSTVVƜҽ%[BA$k$xr90@.!*) />=.g yHtqJ4 ﰭ_lL>q\q{ohW_hgIYb5:ә&8l78-'QC7dΰRAĐ׹ 3gl?",ž +qAو m }IޅpZXR (o. $4-< y2u0\{e/n*ob=ca >>}}9 $,#wP,D{Wqan<#z 8޸=1J'>6\f^2ʦ\>pkRhBa:)cK~ u q-t9Ln{P,1&|vN*^)qĊ8gt)q=p}~a~:ۃ?7O7UP7!m_M;HAaP5 *%Q OY?Q)&o\nfaZKXK&N){7)K"͝]zUW*>}6=".̧FS Iޙ 1=q2otB09{N785aAe@X'1s OώU hhU1fI~Y7p2Vs^W4SiMa`Ru k%gRqpa}1L*H,4kkU {lY\eПf 'Oʒ&+TEkuT=1N|J|~f5 y."vd3<B[т}Q'[P)"gsB#Vc8w?a뚺&zL^eaΟK:SXL5$[i?,8O({pE >!j:me20:CMEF&O-X#8oTVkj&HooW""–#w#}ޖ(-, ,+]P_‘־)fAxL,؎Ksʹ?(>^:p<]W<2P,Q CwlxE]{hTC-bLdJ*ѭ*HOoDǃʹ VK ؚq㡑aZgH˚2u9Gσ8EgPa06wf L_9Y;{d O~jSZ %%Kzwu/Ջf(,]];Kf:x>V7mƳjӦʠزy[(:ٻǮ> endobj 850 0 obj [851 0 R] endobj 851 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 597 0 0 837 0 0 cm /ImagePart_2187 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 108 579.95 Tm 113 Tz 3 Tr /OPExtFont3 22.5 Tf (Appendix A ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 113 Tz 3 Tr 1 0 0 1 108.5 512.75 Tm 108 Tz (Gradient Descent Algorithm ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 108 Tz 3 Tr 1 0 0 1 107.5 451.55 Tm 95 Tz /OPExtFont3 11 Tf (In this appendix, we review the details of applying Gradient Descent \(GD\) Al-) Tj 1 0 0 1 107.5 428.5 Tm 93 Tz (gorithm \(48; 50\) to find the minimum of the mismatch cost function 3/ given a ) Tj 1 0 0 1 107.299 404.75 Tm 87 Tz (sequence of observations s_N+1, .., so. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 124.099 381.949 Tm 93 Tz (The minimum of the mismatch cost function can be obtained by solving the ) Tj 1 0 0 1 107.299 358.899 Tm 91 Tz (ordinary differential equation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 260.149 324.35 Tm 87 Tz (du ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 260.649 308.75 Tm 91 Tz /OPExtFont6 12 Tf (d ) Tj 1 0 0 1 277.449 316.45 Tm 92 Tz /OPExtFont4 11.5 Tf (= V C \(u\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 92 Tz 3 Tr 1 0 0 1 266.149 308.75 Tm 123 Tz /OPExtFont6 12 Tf (r ) Tj 1 0 0 1 331.699 316.45 Tm 29 Tz /OPExtFont4 11.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11.5 Tf 29 Tz 3 Tr 1 0 0 1 478.3 317.149 Tm 96 Tz /OPExtFont3 11 Tf (\(A.1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 96 Tz 3 Tr 1 0 0 1 107.049 274.2 Tm 97 Tz (where C\(u\) is the mismatch cost function. In practice, we initialise the min-) Tj 1 0 0 1 107.049 251.149 Tm 100 Tz (imisation with the observations, i.e. u = s. After every iteration of the GD ) Tj 1 0 0 1 107.299 227.899 Tm 91 Tz (algorithm, the pseudo-orbit u will be updated \(for instance, one obtain ul after ) Tj 1 0 0 1 498 228.1 Tm 146 Tz /OPExtFont4 10.5 Tf (j ) Tj 1 0 0 1 107.049 204.85 Tm 92 Tz /OPExtFont3 11 Tf (iterations\). To iterate the algorithm, one need to differentiate the mismatch cost ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 297.6 51.7 Tm 75 Tz (160 ) Tj ET EMC endstream endobj 852 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 853 0 obj <> stream 0 ,,b7 ["L/1waheap "n Ŀ=l|Őh[SvCg0o+@3Q[Gl :/*ƿ3H a`6ƹ93;N>پrU7,/cBh>/;w4"G*[֬gq%7fY0d;NYlEU+0wrY\Ħ;bZv 8DR*RW: K@|ɡCIqm|?S;d7YIu[*.AC֛m208J :)C CX]X:m"]]? `J8pFFIȕdR+&Sp1jQb8,ێ[Lʢ] $VSWd cF1rXHsBQ4|i X *d2f$n\1LUC%ɺ >  \oq̮'yYAT;Et*}H`f) {5sjQ!)ET_l )սu;3pS[Yx i˵+yȐj XN22i*ՁJ^X1o<]dzSfpv@%%D;GR{ 銀ox d@A7w*|v} ̂ &_k`6ދ3wBv 4w_?]T9e8DF[&jw" }gHZg;f~38r1zB51=B:&L2ˆ,kcnUlpK6/s,̤z^C~:I+V*CXYmao5R? <2J25YжoPhXגTmlӿ3s>۪t̜Y=q(tV0_W?g.mwٲ0}MZ;iT%JLf \˃{wBr~ ChPTח$ׅR mִSz€~ź;k ^q+掻c,|=SZhj2=<3 3~@ލ4Im0?οΛblKUX'-eom~7P1y>q-ӵ&j}Yҝw~߆9ȥ?GuSܮ8_0UuY$1BdTN3Og(-9)Ҏaxws/H`?A.ڨ,~{FK"weO zuz>E5+(gbPl曒|:?+.!Hu%rsW;9)bށ?'M' dj,ef<=mM7Ў/pel"'r?TcXd`ԔNپ-G Д޲o W-SO EXGŔj r5=:J+&٪ _~$s*@)-@ѵɉ@eG/CFP"Vy|ع fnn[CڸFguDMB8="e3+fNnQI0\fjnŶ72&e]UX QolKY+ha3ǀ Y錋L#r$[G5K$nܓ{-.ԫL(Rh0QGDld;&+|?([+R1+);̊OlRRfx#lU /Ң誮}H6 C5\K-cEs;_!*T$-ȉ[ +'p70`p~8 TBK/'y8cɚj2/H HpI#4=ͭW{[viL0?7L6}EWL2C\vg])Yqгyr^ 0tĂ:5pq`|.+/{KH$|}+L_`'\t*Jք>.-< |3ʦgV;<H\la+}9wm<% q*:Ko3XwV6xQR|J6Maɻe hJ. 2V9'.5K6e7<,xRGTr,Z%`lNQ{3X֓<؊lY_+kN'PzQ^>*:7ız,ϯ'zя">ìb4*޳ <5Ifצ.+jܲ…97`Q+J\l)l ?T9 0uB(K01T  TC`>sx"}NYf{@|pTCc4 ]3-^Ǿ1!'cٲnAeM׽FUWk> = CmwRݼG8F"a?f)&p#nmpb譲V=1z͝픇⻕ P s̚4؉(&a[?Be vH$kP.⟍? Pr>K&7G383}GϾL+T)TNi'bVi 6n !ưߪh?%*ZqSwY ᐂ-JW7ehkcp%TBQ6^t=Uϗڸ^Ai7\H.mN9r`e=@lE'wX~ld|fgQ?ƒ+Y5;Re$6NOwIX=lכJ A^ݹpSͮK]sk]yKkA />?N90O884Sq7W]0d ML{ 0{& ;OJS~Qng}\G_Ś~&>K?,͵1#S,iW쟗`\a5e-?:+GӏS{sXW45'& Q|vWRBR/׿@W=qlk)4=Nګ'TildSHbK`>f1huS3). CDwJ`ZgF.vS|Vz0pů/%ꏦ\! Xk, F SwӛP\`j%!J8P0GmNH,^ ]B >T%{8}@ ?Q\V4 8 |.:{ %A7.K6ĺZܙN=% $d3TPmۮ^;_ 2 Q׽Cq)@uhy >)i C-&m8;Q6 :Q|s9jg'޷!PpʲCxb{VCBx(9">=_j]d?d4{Q2=.KtnK 폊~XGOC"QLl hiN7ڈ>`Z&%s:f>GeiRF .7J;NP:RJвT 07ھsV(Me}zs7tE^KZe#!V=hKzTlOc81<;15Yul5C9 @Y׊8P- Y/F{p lw> rh6c.WJP )&}wm&Kvr!f~3zJmMTMz_Ʉyo xZUEBaH:8ZoꦬƗBgj5<~:{—@(cɈՑ=$<.Rr3~w*)g ƞoꦷ"%JB"vIrP3G2%Tm2'2\5K;f#UܳguAv\Ov=[RYw&=x pyhD3A:~{5sap+=DSM14g},Ȝ4"D? s];4Ge[ȳ ?^"fŜoșx;{$o -:]52nbC>;B ůH3)ka^&m;sg?n;qH>-#1?܎عY}3AUI,AEmr4ȕq"=W:J'8\ sV8mȏNlsm!mnvJ*]yfteꢭs֭_ɔAKwj jr: yvk컬6m R»A~{e EȹO j^/·&-;I8 < cnܜF< ~--E wnZe#@ ;+ XK;tE4V$X٫IQaG ?`xzD]ɚ endstream endobj 854 0 obj <> endobj 855 0 obj [856 0 R] endobj 856 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 597 0 0 837 0 0 cm /ImagePart_2188 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 106.299 674.75 Tm 96 Tz 3 Tr /OPExtFont5 13 Tf (function given by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 107.5 622.899 Tm 101 Tz /OPExtFont14 13.5 Tf (ac ) Tj 1 0 0 1 122.9 622.899 Tm 627 Tz (\t) Tj 1 0 0 1 152.65 623.149 Tm 93 Tz /OPExtFont5 11.5 Tf (2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11.5 Tf 93 Tz 3 Tr 1 0 0 1 108.95 607.299 Tm 77 Tz /OPExtFont14 13.5 Tf (au ) Tj 1 0 0 1 141.099 607.549 Tm 114 Tz /OPExtFont4 11 Tf (N +1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11 Tf 114 Tz 3 Tr 1 0 0 1 201.349 634.7 Tm 231 Tz /OPExtFont3 3 Tf () Tj 1 0 0 1 210.5 634.7 Tm 94 Tz /OPExtFont5 11.5 Tf (\(ut+i ) Tj 1 0 0 1 249.349 635.649 Tm 132 Tz /OPExtFont8 11.5 Tf (F\(ut\)\)dtF\(ut\) ) Tj 1 0 0 1 318 634.7 Tm 2000 Tz (\t) Tj 1 0 0 1 414.5 637.799 Tm 101 Tz /OPExtFont5 11.5 Tf (t = N + 1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 11.5 Tf 101 Tz 3 Tr 1 0 0 1 201.599 614.299 Tm 93 Tz (\(u) Tj 1 0 0 1 221.3 614.299 Tm 77 Tz (t ) Tj 1 0 0 1 223.9 612.85 Tm 99 Tz ( F\(ut--1\)\) + \(ut+1 ) Tj 1 0 0 1 335.3 613.799 Tm 118 Tz /OPExtFont4 11 Tf (F\(ut\)\)d-tF\(ut\) N +1 > BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 11 Tf 118 Tz 3 Tr 1 0 0 1 106.549 554.75 Tm 93 Tz /OPExtFont5 13 Tf (where ) Tj 1 0 0 1 141.099 554.75 Tm 78 Tz /OPExtFont4 11.5 Tf (d) Tj 1 0 0 1 146.9 554.75 Tm 55 Tz (t) Tj 1 0 0 1 150.25 554.75 Tm 113 Tz (F\(u) Tj 1 0 0 1 170.4 554.75 Tm 67 Tz (t) Tj 1 0 0 1 174.25 554.75 Tm 82 Tz (\) ) Tj 1 0 0 1 183.599 555 Tm 90 Tz /OPExtFont5 13 Tf (is ) Tj 1 0 0 1 196.3 555.25 Tm 111 Tz /OPExtFont5 11.5 Tf (the ) Tj 1 0 0 1 217.9 555.5 Tm 101 Tz /OPExtFont5 13 Tf (Jacobian of the model ) Tj 1 0 0 1 336.699 555.7 Tm 116 Tz /OPExtFont4 11 Tf (F ) Tj 1 0 0 1 350.899 555.7 Tm /OPExtFont5 13 Tf (at u) Tj 1 0 0 1 373.199 555.7 Tm 53 Tz /OPExtFont3 13 Tf (t) Tj 1 0 0 1 377.3 556.45 Tm 106 Tz /OPExtFont5 13 Tf (. We solve the ordinary ) Tj 1 0 0 1 106.799 532.45 Tm 97 Tz (differential equation A.1 using the Euler approximation. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 298.1 51.7 Tm 84 Tz (161 ) Tj ET EMC endstream endobj 857 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 858 0 obj <> stream 0 ,, yb6ߊA|d(/KˈE밂l{Tqկ ;%sqsFHi=3=R/ֵ^$u b xa._GY,7A$@Aҝ:> qBW܆[JVm+t: ep$~]V lv7eئVB;@&Lr%$ G@1WO.vBk62O%9V>wc͇}v6Lyfb hj2/5qY3h` #g`>#)#J5+?|iD2l 4YsgAjS1aMWT P%)b/saVkG,u& wgV4r-æ'JK4==73ƐU2rd5o"1*uMNkAƖ$mj?zO}EGx'h%f\'hwUlyL*gbagzM~C_'4FWS^IrR>W<{P~,!P dutt=X~ H8YH㡾]"tg 4Jl 86yl·/aZė'{EǕ# V{ùPL;Xzhm'G;#U +.ĜsnUi;ys(>bFSYF˫=;\ ;,OmJ*%8;n"Eo jU,۰^,=:6Ѥν\20ێqhFPezZVAs7x5qS'nz7Ѵvv K[c { >Qc!5RT^. %4G2I0V? niG~vh-.; u'\aFR{!g ==hsl|5!KP?zԙ34RPp^8[Bwx5@a{b)94e, QQᢦPv=>{ OZ Ĉ=Ôq\y/}9+}I8y0(D2;S]ǂB1~@8+i'7(YӠH}&_1R?pˠL, C^Zg[8RUXG9{ z`y[^@pŕ/N@je .0u*K%N.U\ Dј i9Ȗ+!$YV@u 3% RE #w='6` ʦ3z I 7M^{6ԋ*wo },]Sn7rֺ/%>K5>W yVĂm$.]agv9O}qv)8$] 56 |fL$[י0d8hQ|-YpE;^q6VQoozN0l;]K1'ʲ CPhj-~lض1 - u.SHK=a),@Ef]abmh%6̡S Ƹ=MnG@xׁ R J.7H(]%Na@-|`5]W`xYR EPdA6F9_sR1s%00 g؁ p ˑ2zasFE{Mzj+bh4{}SY;C<4`Y8daZDd 6s褍\-~LPpݻ+~M A߰y 4nG8ٞ9-kDIĎ,@v>S6sT$D$:jD7=bAwҙk0%8_vLz/"qnxV kf4wR2 L0AVXK /lI~p5 qT@`gرgRlgaq_q+lD '.[~\qF r!G ߄Wjî RP DMS pӎoq5 U#BD,<ʩ,`9Ci;hSY*PB듔b )KO =mLcR+C+9w~QLcEqMpx 2:: >#}11b_Q)k xM@V}>)-s}`":B|@hLm%h兠ABAƗGH9;Gy==KXʟ j?Š~ěi:zÇMzOpokO k4 *D0qo `wiC'z܍Mrigi2Icf»^:4i{cA_>_ cN!9i]H+Uv0M^g6mD"6[;geï\Rؽ.r:B~瀩NZB忳L|'jV(ֿ*e"eQ ''jKϚt8 !S@r|T2fSƤ|r.>DB\\+7 .idc5\3 ~jdh=P;-Kmqs<]k"u{à";e 4(sVDÖz ia5v`+S(u8>   `-W&+椻}ߏD0OT/ NIiDFW@-`nnDL0EDP׊-ŴBC@XS4 >hj%K)OX85#Vi{L8"jQ" c^%oxLϡesij/f+)nsuoߛҁF- ,b$P[yr"< \6Ƚ_aE+Tt֟ΈxܵkZX@ECQhJEY֬%ʳ߀[)(?<9Z!1 v/.xFǒd & Cꍩ@\֋Ol'\dwmm<;j6keV hU,kJ'{ G|C̦GLm옜,S.E݁"D號^ӫk61@7lo&vtGAC)eU99zzTF181J 2sAx/pI-tBe\f%{>>^pDZ1W vMb*3'^u'cK endstream endobj 859 0 obj <> endobj 860 0 obj [861 0 R] endobj 861 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 597 0 0 837 0 0 cm /ImagePart_2189 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 108.25 579.95 Tm 110 Tz 3 Tr /OPExtFont3 22.5 Tf (Appendix B ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 110 Tz 3 Tr 1 0 0 1 108 512.75 Tm 106 Tz (Experiments Details ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 106 Tz 3 Tr 1 0 0 1 107.75 451.3 Tm 90 Tz /OPExtFont3 11 Tf (The tables below define the standard experiments which are used throughout the ) Tj 1 0 0 1 107.5 428.05 Tm 84 Tz (thesis. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 84 Tz 3 Tr 1 0 0 1 256.1 404.75 Tm 93 Tz /OPExtFont3 10.5 Tf (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 93 Tz 3 Tr 1 0 0 1 389.05 404.75 Tm 92 Tz /OPExtFont3 11 Tf (Ikeda Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 240.949 390.35 Tm 103 Tz /OPExtFont3 10.5 Tf (Noise model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 103 Tz 3 Tr 1 0 0 1 389.5 390.35 Tm 91 Tz /OPExtFont3 11 Tf (N\(0, 0.05\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 208.099 375.949 Tm 97 Tz /OPExtFont3 10.5 Tf (Number of ) Tj 1 0 0 1 267.85 375.949 Tm 108 Tz /OPExtFont3 11 Tf (assimilation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 108 Tz 3 Tr 1 0 0 1 389.5 375.949 Tm 78 Tz (1024 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 78 Tz 3 Tr 1 0 0 1 193.449 361.8 Tm 105 Tz /OPExtFont3 10.5 Tf (Number of bootstrap samples ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10.5 Tf 105 Tz 3 Tr 1 0 0 1 389.3 361.55 Tm 77 Tz /OPExtFont3 11 Tf (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 77 Tz 3 Tr 1 0 0 1 169.699 347.149 Tm 93 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 219.099 347.149 Tm 94 Tz (no. of GD iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 388.8 347.149 Tm 81 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 81 Tz 3 Tr 1 0 0 1 219.349 333.5 Tm 93 Tz (GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 389.3 333.5 Tm 76 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 76 Tz 3 Tr 1 0 0 1 169.449 319.1 Tm 97 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 97 Tz 3 Tr 1 0 0 1 219.099 319.1 Tm 94 Tz (Initial GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 94 Tz 3 Tr 1 0 0 1 389.3 319.1 Tm 76 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 76 Tz 3 Tr 1 0 0 1 219.349 305.149 Tm 93 Tz (GD stops when iteration step < ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 389.3 305.149 Tm 89 Tz (5 x 10) Tj 1 0 0 1 420.25 305.149 Tm 85 Tz (-6 ) Tj 1 0 0 1 429.85 305.149 Tm 28 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 28 Tz 3 Tr 1 0 0 1 107.049 281.649 Tm 98 Tz (Table B.1: Details of Experiment ) Tj 1 0 0 1 285.35 281.899 Tm 84 Tz /OPExtFont3 12.5 Tf (A, ) Tj 1 0 0 1 302.399 282.1 Tm 98 Tz /OPExtFont3 11 Tf (note for 4DVAR method we shrink the ) Tj 1 0 0 1 107.049 267.7 Tm 91 Tz (iteration step by 2 when cost function not decrease. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 297.85 51.95 Tm 76 Tz (162 ) Tj ET EMC endstream endobj 862 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 863 0 obj <> stream 0 ,,֔b2F!7&V+D V^l#IWk)L8o/tXeOŸV2gElx W8M;JMebߠNi =mCS ;5y4+/ST;M}fjkN\S)"RZ~o82zB S>ammRV[3U NH\cQ;#6l@Uӡ͔&ʔT /~JHcRMb,Xc(c?_n颴&ſ(3q8ܺg;]!47LpmSELIc/aVRޱ]E=܋QoϥoqjQKla 2ܚ}_ZtrA pw`B62z `ީQ6wu]2t. EVSp~ᒼ:s}_- d24-=b d}[ OӫF)QP:Iw+$e{/=ELXFâܝk'l՟_*hB %5fdh|g|_fs%54@V~L?9;VɘP 2saeVRNL`-]Su/R&j>O9,%2V :]Ԩ[+2ѭKf͔{Yh~ :nm%b)^pvj֖Ox{ʃ II5M (~]Qzdef{Ogi7:1Z{)TXҟ`tyv>TDM,Âok$?;kBI(ސMli4wmn:$a0 idVenD2&>kLKa8|cQYlM9zZr44{hԬ5b.Qd&>[ࣜ0W1 SjW=tADdޕyVڏd1TGu{^ R@kG䲜Q6Y H#N9.Ϡ'zQM! \q0vaxr/o#πVm>DUaC)25(Ms>Ey_37x۽Sᄒl 3_*kRMt sx`|eX񭾣 p먥T8%V $(fn@&*ࢃ{D6U}stzqǖ XMقzW:I-`1򴻍jP;/DZ˒h A9Q^LOGV!ɴZ(ngҷ"A b]+a4m;*6:0k?haZ5wktML>˲AD)pS^ZDC&~ɨރ6Cu0&jd KT?׈)0|$0a.^+ >B@RH* Z,7W}PKHmwpE*]* /hƽ})Oл2VL)%`Zt8n 5 uc7K0B E5i)}$sFͪi1۷d.!5W/.4,vgbΠ h#OYHx C9bK2L "9=cA*5V#S1V؄ R N)3)ɼx &=wAډDLeWP'me:snӎOޞ_*_F9C^OvV:%ƨ,v{4ޠI/ee+~s{TXD1hp jwe/;F>td9!6Qvm}" sZͱdž1k6]Q+,1".ĿGU92OjFNU3aVqiâzM"k)o, 5 F}L/ځD!MJi-a4_Q m9^9 6g/Eg-mz"G@W =&cz~U~]p{%c0^*PJdNy+yK&J9woW>͗2C;d!Z>**b_=X$BL ½*Po+ v3q_4_*C <wYdb:>ǖj:۩[ 5#1UeM҆h@ĩ#UcB;t:XIVouKhgF|bVf#A"f[wt=t\^hғL<o ck|ZD?uZ35߀Y$;caT_M9P4}Ѱl4]xsms;$A T6q~7)dהLj%Dht7._i~Cq^Ů%Ʀh'I Gph: |Tn٤@1yY]2nzHSHtm"avL "qPVB[2UoCt%*K!9|pI3}'ILSq">L<aW$ÙCdˤSZ>>Ƕ7Tx]CI9s&`7)ӜIozMez1R*~k KcrwygNLYZWeA/#.J/k͓8\:)fδ6g:QX5_KRzn\Ǯ*udsI280 fjitk+끪'zLUo:!ochrG-U^|W +A~R8B < `h2o75 :O&wZZl#g94psrȝdV{Pa/]QoGd9TPC+d{"ݤ2@t{ڈcS3!r-K bvН9 絿0)AX)ST̝ ^)dRRՃ!)qNإ Fø:.m+>iތ,EqHbC)TK`7o)oaB f?7G:28 }hL>4°<4tNc$AU0z`t9vޟ + ˆQLaSM>Z͍ kږ`!o["ALC,t#ebݐRr)yN %-)sR.l+}zt풨M+`tIu v{s cs 8;UjiGXG@D{[Ub˺^FƊ0VGMGю3]_C(yf䅇ޗpqpH.(`~*<J5OB#hZpw&v|kK$$,,!PoR['9ɰ/,ߝ1؊ψ/m)&S )2LNK=0)ħkn0òN4xp WoVVzL ?8Κ lѳKW{ 0ZsvP8EkN׏mPá:tQ$V0N]jC~.yE/bvҠD$OLN0]X](/}ဥZYvY aym}SaЄ%-,PꉴqϟB/g~Ǫ;6 nU%>^}.vK} wf˂5LB54O`Xd5 1#+c)17 endstream endobj 864 0 obj <> endobj 865 0 obj [866 0 R] endobj 866 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 597 0 0 837 0 0 cm /ImagePart_2190 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 239.05 663.95 Tm 98 Tz 3 Tr /OPExtFont5 13 Tf (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 371.75 663.7 Tm 93 Tz (Lorenz96 Model I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 188.4 649.799 Tm 112 Tz /OPExtFont3 10 Tf (Dimension of the system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 112 Tz 3 Tr 1 0 0 1 372.25 649.799 Tm 79 Tz (18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 79 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 79 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 79 Tz 3 Tr 1 0 0 1 223.9 635.649 Tm 109 Tz (Noise model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 109 Tz 3 Tr 1 0 0 1 371.75 635.399 Tm 98 Tz /OPExtFont5 13 Tf (N\(0, ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 397.199 635.149 Tm 92 Tz (0.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 191.3 621.25 Tm 114 Tz /OPExtFont3 10 Tf (Number of assimilation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 114 Tz 3 Tr 1 0 0 1 372.25 621.25 Tm 86 Tz (1024 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 86 Tz 3 Tr 1 0 0 1 176.4 606.85 Tm 110 Tz (Number of bootstrap samples ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 110 Tz 3 Tr 1 0 0 1 372 606.85 Tm 86 Tz /OPExtFont5 13 Tf (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 153.099 592.45 Tm 87 Tz (ISGD ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 202.099 592.45 Tm 96 Tz (no. of GD iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 371.5 592.45 Tm 90 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 202.8 578.5 Tm 96 Tz (GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 372.25 578.75 Tm 66 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 66 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 66 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 66 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 66 Tz 3 Tr 1 0 0 1 152.9 564.35 Tm 90 Tz (4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 202.3 564.35 Tm 98 Tz (Initial GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 372.5 564.35 Tm 62 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 62 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 62 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 62 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 62 Tz 3 Tr 1 0 0 1 202.55 550.45 Tm 97 Tz (GD stops when iteration step < ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 372.25 550.45 Tm 80 Tz (10) Tj 1 0 0 1 383.3 550.45 Tm 72 Tz /OPExtFont3 13 Tf (-6 ) Tj 1 0 0 1 392.899 550.45 Tm 30 Tz /OPExtFont5 13 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr ET EMC /Span <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr 1 0 0 1 107.75 527.649 Tm 103 Tz (Table B.2: Details of Experiment B, note for 4DVAR method we shrink the ) Tj 1 0 0 1 107.75 513.5 Tm 98 Tz (iteration step by 2 when cost function not decrease. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 254.65 465.949 Tm 99 Tz (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 395.3 466.199 Tm 95 Tz (Ikeda Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 239.5 451.8 Tm 96 Tz (Noise ) Tj 1 0 0 1 275.05 451.8 Tm 99 Tz /OPExtFont3 10 Tf (model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 99 Tz 3 Tr 1 0 0 1 395.5 451.8 Tm 100 Tz /OPExtFont5 13 Tf (N\(0,0.05\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 206.65 437.649 Tm 105 Tz /OPExtFont3 10 Tf (number of nowcast made ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 105 Tz 3 Tr 1 0 0 1 395.5 437.649 Tm 86 Tz /OPExtFont5 13 Tf (2048 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 86 Tz 3 Tr 1 0 0 1 160.55 395.399 Tm 92 Tz (ISIS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 202.8 423.25 Tm 97 Tz (assimilation window length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 396 423.5 Tm 93 Tz (12 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 202.55 409.3 Tm 96 Tz (no. of GD iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 395.3 409.3 Tm 87 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 202.3 395.399 Tm 98 Tz (perturbation of the middle points by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 395.75 395.399 Tm 94 Tz (N\(0, 0.025\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 202.3 381.5 Tm 97 Tz (number of the perturbations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 395.3 381.5 Tm 89 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 202.099 367.3 Tm 94 Tz (number of ensemble members ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 395.5 367.55 Tm 88 Tz (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 160.8 352.899 Tm 91 Tz (EnKF ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 202.099 352.899 Tm 94 Tz (number of ensemble members ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 395.5 353.149 Tm 88 Tz (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 88 Tz 3 Tr 1 0 0 1 217.449 329.899 Tm 98 Tz (Table B.3: Details of Experiment C ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 238.8 282.35 Tm (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 379.199 282.35 Tm 94 Tz (Lorenz96 Model I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 187.9 268.2 Tm 113 Tz /OPExtFont3 10 Tf (Dimension of the system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 113 Tz 3 Tr 1 0 0 1 379.899 268.2 Tm 83 Tz /OPExtFont5 13 Tf (18 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 83 Tz 3 Tr 1 0 0 1 223.699 254.049 Tm 109 Tz /OPExtFont3 10 Tf (Noise model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 109 Tz 3 Tr 1 0 0 1 379.199 253.799 Tm 95 Tz /OPExtFont5 13 Tf (N\(0, 0.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 191.05 239.649 Tm 105 Tz /OPExtFont3 10 Tf (number of nowcast made ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 10 Tf 105 Tz 3 Tr 1 0 0 1 379.449 239.399 Tm 89 Tz /OPExtFont5 13 Tf (2048 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 89 Tz 3 Tr 1 0 0 1 144.699 197.149 Tm 92 Tz (ISIS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 186.699 225 Tm 97 Tz (assimilation window length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 379.899 225.25 Tm 98 Tz (1.2 time units ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 186.5 211.1 Tm 96 Tz (no. of GD iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 379.199 211.1 Tm 90 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 90 Tz 3 Tr 1 0 0 1 186.5 196.899 Tm 98 Tz (perturbation of the middle points by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 98 Tz 3 Tr 1 0 0 1 379.449 196.899 Tm 95 Tz (N\(0, 0.25\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 186.5 183 Tm 97 Tz (number of the perturbations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 379.199 183 Tm 91 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 91 Tz 3 Tr 1 0 0 1 186.5 169.1 Tm 94 Tz (number of ensemble members ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 379.699 169.1 Tm 87 Tz (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 144.699 154.7 Tm 92 Tz (EnKF ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 92 Tz 3 Tr 1 0 0 1 186.5 154.7 Tm 94 Tz (number of ensemble members ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 94 Tz 3 Tr 1 0 0 1 379.699 154.7 Tm 87 Tz (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 87 Tz 3 Tr 1 0 0 1 217.199 131.649 Tm 97 Tz (Table B.4: Details of Experiment D ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 297.85 51.25 Tm 85 Tz (163 ) Tj ET EMC endstream endobj 867 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 868 0 obj <> stream 0 ,,#JJb7 \GmT0`Ys%PtIþ3],߁龰ECx kZ? f& JoԳ"ݟoDCH뷉7V[ƚDRfDZ!뮾E&׍H5[4]~ dLHPLG |KumQhؕiIy̛۪´IkYP=| `wiEӲ%`K7-9 AH5_U6Z{ӖctϠ6a y(p4I\@lһb@E sкh`*´ʄ#4b6yHBBS% Yc>$49Q%=1# lY&!h0 '8! -4ڌ/zINgk6SS{ ն}&k߈*&heECfKƝrk szO#\ Թ|kq'/w"ΦN_ exON%<?E~XVI( Fn޲k2RjU/+<ѥ N3vokGi~KVs>ٲ:?!沪4Ᏸs*68|<C6fYLOς$&j LtI_u-S"7|C@Mij/W9yP&1@r}XeFz?PhY},r !u& GYjo'M QԞ ˃ <«>k8i_q8uiK*PSFi1EtLSZ보w׳vM ڼT-<`)/8EiB4>`ezj2|Wr03q5e\*/F;X*3F'9˜qZ! (r;wޜ0t7#NG nxSbЯ x;JEl5F 19J()mMcfQZ8?T6w3h~ 35H",8!w[ݭ?! O-A]0Ch?pЃ(_ $)5;n- y㰵x3 P:CqfdhMO(w#6JEO<0ה&bd&Oikndž/|(y_hlgސV/d\t]p7Žf^v7.L'y~oM|W#% P,qmʑCzF/ɨViI;LJ^wK}R'IHPuW#GN0s8䆈O2n2{{\>hؚOd7@^iMિ O.^-4?zV 0}e=Q׫F={R`c|s%=&7TFEfZ]?" +'?9M$Q>"b pJ";nXɴX<>qx( a?{Tݛ /?0'+D:_[@P5Svk$ ~ZQ+FP* z4^-&mQúص$#=<7 ;Fɲ^W%Ûz`Z7{!IZI{PX~ 6̹y[^Nq4_/ZO1vO̿nOZH)K#Z[e&Ps!5UTq˚ؾx򹜔ևBL'(W8Qd.bwGAé &}0x9G6yydէ+̽Lhj6gkT[m"B nV3-3悷R̗y85vw UHlZ]@IT[Z@dbO$| ube+vϞJU^q[jUa|1t*nomhW ҢƒaǥD, 뒝ƤEبM(M5I/b\yծqN/m5QY ҃OSOc:/ RH>;B *8{|n9}"YTz`dS^Nlt&Q|^A3}XӧVcB̉YCAІýq,ٷ*O M▾*m_7c̭{ܞ ;QYDj1펯!1gYx#-gE%`k(CQ[GdէJ{(&^e )۳4w&ihnJ#`$[/qN"t7s|}Fh*o9 |:ӭkeVg?Pmi^D <%Cen`3w%J,d}iU4kJ||NO4LFسy΃WW MFLX1x AaR[[BDT#C"wD:"t11> -JРIlȑ$Ȍݛ# >Wh!_E9lۙ Nܺnh}qlMŪ tH x5Fv(XbC7/8x| MU۷`25HI8,o(`293}nQQ^?ӣvɟbX^'BSM&ƭzy/ūʡUDOb*j,Cu<8F fYNe:.u$DO^nW ˝F%S1uR8~kٮ"ED1DpH yh,ɘrMSv+/ p;(>Q8ChXS3HT Tഀ ar//Eí (KBH&xeiGu}_N{5/a:Ὃœp}LǐFj1*Ab;5Թ y;Q9<\#l <߰͑14@PSI*; KyЀ YEܪ,!ʮ;PJŎ_ 1)d%Ɠm~nK~VQ!s&-"3$p4=_7_!F82GJqE.}0pN( J,M Őlkΰ'SL#If1̿ow2`)]W0P;wTm?!g4c#qeKZ3&oI>ܨyc|fX22!yй}V-7.u-wokGGz!+Tvo"+fbǁ-Q㠃T̉pA=_IK4.йp_e 3;^u ЉGG$6F`8Cok 38$P(}JV˗Wp1V0Ѫ=5H(++~A ttpJbuEU>:CT[og0d Gd"K=ڄ٩Xv+~[)Ft1@/|b{Ra4P[qBQ 0ʯ3| h釐s(ԇBZBY+%#ǙwJy4޶ >JNsbL0UP Pv,SŊlǚ`^vd>QUO`%S^X2Q㪊;G]ZLw6Bt= PM p0j j iz6wTRi Ѝ~9ˆ)7s^>ŝt&)P DzQ(t}v5^=rx 4/=FxGTްĬgxhzK 2惾[3q{鼒e'g0v!K|cyP *`v_eH$1j.,m"RQiX[`~ę^j/WRI˩@^gr%D6z4_'9q7gs5փՊN}Gn,6~md\D6~62PMd8oo{0)@L2sfl66rZWF\G,,)ak}uZp}w>y/} \ *4B8x!vKM%m(s,KۏrL ?#:&CKb|ϰId3ևXT,݅m?6ْ/,>ģ$161㢒]<_Ƣy5 i}M'sL) ;opUd{;Y~ޙ|8goDj_讖j"уUӁZ iSˑ)u̸!f%N_)ۖrIz]W)5ЖmיԲv(\\@MyQp5OTV Mۜ܁AҟO2hiVځ.v[?"Y!␄F .{j= ]J[z[u7~J`E Ǡ8Se3RMOVHCV:rCS<+}UEǁ$Rgoxz@kӭpP61"YWboȥܒU$t4 7 w"m l`~%3a%XYFQp]U+3k; α-6oʡ$2O"/j)H6{j M6w$S9:HV` ={}b% 7U}$2,d6JGa*1գ6l}q3aNy&zakV6^LsqcdWT7N5gwȤp;3p$):)DGS/ ;6\w,s[6r?%H:ڴh^Bf+fՖ;7 zbC~4WbmnW6 hOWW[ou>Ern6Iጣ ~I4,Ԕ[:SA2ptQޫ A~S1Rʟ-Zx6&g$S#>hvKowR\hUcE,J)Iy)'#{R6{%g ho cEWz+3Z]: A*wd'H㏭D2 ~ |K9v4g:(vu ϧ BAʨ.GQ3n#V~3uFRkhhf2o[l8ui+l{K PĎ9SY6ԍC0SbhLvG_[j(Pp8~::NF*GJ6i/-xNabq:Xk%"9C`=mkBcac' &+  uS --](t-T)$]iͰQ7 m'dKZ'q/(w]o&0mkkF)3 k{&$40ιv_tɡԎ AaYxj ̟\}IСQ& R-5.88 &F]}Un6}h.5,HPA mob玏,DfbL(FSS1H_ 8@0Bpu>`񅞅8- 3`%b2,CJQњr:з y2 ]>ѩ?n\Z rOG#_Hޏ.y.s.$>%KsFaz%5 G6|-kUꜩ8O~43hptLI.8 |WQ حY"AOpi0/1s.M.&qaEu^88xr3ޫ. V `kh*WZNC=o JK4njE,H2Dk#ʹ[amQ ECٔOtqÍMa',`+)R)z9G"7o0 $aic0 ƈ=Zx/c S@{]C Ra~AL.fsm\U"PDZ0RN"*Gó\DNIu1lZS&rAŴby\Қ \~dPU581  ՈW_ vysz>:܁N; x`MԻKY^ qt+{HVފ5ED~Eݷ-x&ˍ $'~KLټ&m@ܳ Qm^aƴtCdpQ/è ] X=}v3`:)ل֔AC4uy 0May#_4IjLXNbBF*1˭_7{' gR%B`@X$HcQS1PJcjYM N<ɬ >RV|jO񆺁OEcT:P(\^)\ Qh4Dosi? ["]4;0w^OBT: Wheu joN1߮x-Glٌp5/Ex4a*2F^jknیB)V9ڻz!5W 1II:|:I2Lc}`m֜7`^1p]x G_UcVQ&+T75_wWv5 Rrw-)}<F+|s_}%wW7#)ʺ1a5+;Yܪ䱷ɱ<"Pg'H4 X@(4H@ VƺB?B" s%v9΄)ް8HvoɉI&Ϋ{ %hr ]ck^ܷ" M.):i/t'=LlZ~7e>2"ej1uC .9|UYx_9fȶ%W[W6ݎ :X$ ụnۅ>9m;Sd9uXB랢^k\Kc :&79zpPl ~}=.8q{"ӂ'Pk݇1bG?^=~)X:B2ݓ@4R5㝙ҝv`csW?5E/ OΠR1e]&iQ;KY wwFw}opj5^Cq|H8a/^ѱJ?:k>@xLNjȓ[$fpȺ*N*{ X*wp-@Oן޻0qM{Eip*#RFw{RAh I*`Dj\_5Tǫi;eB7;Of7 Ũ#o-ӺieGBcz TZz1PtyIY4# EX8ŠÑ:=`HO֢S~ԡ8_[ 5-!Za#U;R3.h>\%~yxMe3$_I{%r:9kYtwp(_{sB㒒]Br҉*Mibޯ` uE)-r}]U/4Ÿ8Hko~]IL K \ =3"1aϒߣI&I4(Fޘ ]WyzufL 6#5p̚M'Gte/ endstream endobj 869 0 obj <> endobj 870 0 obj [871 0 R] endobj 871 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 598 0 0 837 0 0 cm /ImagePart_2191 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 243.349 650.75 Tm 103 Tz 3 Tr /OPExtFont5 12.5 Tf (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 384.5 650.299 Tm 88 Tz (Ikeda 1Vlap ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 88 Tz 3 Tr 1 0 0 1 228.699 636.35 Tm 84 Tz /OPExtFont13 11.5 Tf (Noise model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 384.699 636.1 Tm 107 Tz /OPExtFont5 12.5 Tf (U\(-0.025,0.025\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 107 Tz 3 Tr 1 0 0 1 149.5 594.1 Tm 94 Tz (ISIS ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 94 Tz 3 Tr 1 0 0 1 191.3 622.2 Tm 100 Tz (window length ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 384.949 621.95 Tm 97 Tz (12 steps ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 191.5 608.299 Tm 100 Tz (no. of GD iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 384.25 607.549 Tm 93 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 191.5 594.1 Tm 102 Tz (perturbation of the middle points by ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 384.699 593.899 Tm 104 Tz (U\(-0.01, 0.01\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 104 Tz 3 Tr 1 0 0 1 191.5 580.2 Tm 101 Tz (number of the perturbations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 384.699 579.95 Tm 91 Tz (1024 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 91 Tz 3 Tr 1 0 0 1 191.3 566.299 Tm 98 Tz (number of ensemble members ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 384.5 566.299 Tm 90 Tz (64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr 1 0 0 1 149.3 552.1 Tm 94 Tz (DCEn ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 94 Tz 3 Tr 1 0 0 1 191.5 552.1 Tm 98 Tz (number of ensemble members ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 384.5 552.1 Tm 90 Tz (64 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 90 Tz 3 Tr 1 0 0 1 220.55 529.1 Tm 102 Tz (Table B.5: Details of Experiment E ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 129.849 453.5 Tm 101 Tz (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 268.3 453.5 Tm 100 Tz (Ikeda Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 395.05 453.5 Tm 97 Tz (Lorenz96 Model II ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 129.599 439.3 Tm (Model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 268.1 439.1 Tm 100 Tz (Truncated Ikeda Model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 395.05 439.1 Tm 97 Tz (Lorenz96 Model I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 129.599 424.899 Tm 96 Tz (Noise model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 268.3 424.699 Tm 97 Tz (N\(0,0.01\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 395.05 424.699 Tm (N\(0,0.4\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 129.599 410.75 Tm 98 Tz (number of observations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 268.3 410.75 Tm 92 Tz (2048 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 92 Tz 3 Tr 1 0 0 1 395.5 410.5 Tm 101 Tz (102.4 time unit ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 129.599 396.6 Tm 100 Tz (sample std of model error ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 268.3 396.35 Tm 94 Tz (0.018 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 94 Tz 3 Tr 1 0 0 1 395.3 396.35 Tm 96 Tz (0.0057 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 220.099 373.3 Tm 102 Tz (Table B.6: Details of Experiment F ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 226.55 297.5 Tm (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 369.35 297.5 Tm 100 Tz (Ikeda Map ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 229.199 283.1 Tm 93 Tz (Model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 369.35 283.1 Tm 100 Tz (Truncated Ikeda Model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 211.449 269.149 Tm 85 Tz /OPExtFont13 11.5 Tf (Noise model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 369.85 268.7 Tm 98 Tz /OPExtFont5 12.5 Tf (N\(0, 0.05\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 178.8 254.75 Tm 86 Tz /OPExtFont13 11.5 Tf (Number of assimilation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 86 Tz 3 Tr 1 0 0 1 370.1 254.5 Tm 92 Tz /OPExtFont5 12.5 Tf (1024 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 92 Tz 3 Tr 1 0 0 1 164.15 240.35 Tm 85 Tz /OPExtFont13 11.5 Tf (Number of bootstrap samples ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 369.6 240.35 Tm 91 Tz /OPExtFont5 12.5 Tf (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 91 Tz 3 Tr 1 0 0 1 130.55 225.7 Tm 108 Tz /OPExtFont6 12 Tf (ISGDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont6 12 Tf 108 Tz 3 Tr 1 0 0 1 199.449 225.95 Tm 101 Tz /OPExtFont5 12.5 Tf (no. of GD iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 370.1 226.2 Tm 85 Tz (75 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 85 Tz 3 Tr 1 0 0 1 199.9 211.799 Tm 101 Tz (GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 369.85 211.799 Tm 93 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 93 Tz 3 Tr 1 0 0 1 130.099 197.649 Tm 96 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 199.449 197.399 Tm 103 Tz (Initial GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 369.85 197.399 Tm 91 Tz (0.2 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 91 Tz 3 Tr 1 0 0 1 199.699 183.5 Tm 101 Tz (GD stops when iteration step < ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 369.85 183.25 Tm (5 x 10) Tj 1 0 0 1 401.05 183.25 Tm 89 Tz /OPExtFont2 12.5 Tf (-6 ) Tj 1 0 0 1 410.399 183.25 Tm 32 Tz /OPExtFont5 12.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 109.2 160.2 Tm 101 Tz (Table B.7: Details of Experiment G, note for WC4DVAR method we shrink the ) Tj 1 0 0 1 108.95 146.299 Tm 102 Tz (iteration step by 2 when cost function not decrease. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 299.5 52.2 Tm 90 Tz (164 ) Tj ET EMC endstream endobj 872 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 873 0 obj <> stream 0 ,,!<# ZsFRacy?w+-?"Ow QFKO\9bv&WD 1MyX%> D:'ެvrS0xo=y4" lR':B?7m|T`@ۭ98H28Lxl重[4mZ[~/\?9[0kiOz INbVKEʝ*cEР78X>GbJ1A hPEoBk޹8u?NXCg.xϚ㦡w_B˜&S>F "K:fO}Iτ@ | `k`Kch aB2sݢlNxUPLfM"a"0QSF#5+l^yѝ =4QzN2 fv(N& b<ϯ R0bPZSctCNKTeR_ӮI%oI 3\}&wr8tSIYNReMiʓMp&]U[vC 3#֟~Ba9Y>(ֹ\= % pq%h$S`Lk} a\iNE<vIujbw vB%ǽ90%9QXl2oCLIH=Ke~ մgR:,2Q }ɏZ"^o\I2u rpwۍCu#{aUI'aAv!eDpXw*æc@!GӉ1Zg,GNQJٮمs3n$,ҥv"zo7m 0|ʀ%0QSQ3lK@+-L }"A : @Tdw=qPuruRs#R} \ݵ.\J6w W 3qR;es(71D|3q,/y NDtZ'Jyj,9 b~v Qfn<2nD :rSAqyq52 lwA!28KDB]+\HkƷ):VzT/Ea̯nv}OK_z$Yc5#L/lIO7A4-J|B4F3OcRfsP(12hN-L,^(>¸5"<@ `=,gȦ(VxUDz)y /ۻNI* tSy7hg`4<4X#0&":E3OyqR3`4ZK. e4Qh*!GkȴE'u2'Z$UCv4<.Vڙ\=-|3ؗ4`+S}C&W} Y\zB"1é7 OZXR h,sB@#nY tA-r`Șԗno\vyD0^ZYcƞr: sD:Q齢pnBɎVͩ~}b!Ri"E.m$kJPR*8n)cmKI"ѫ]r^:%'lb{QR1;X"~o\q+퉎[T(ҫa-PRsTa6 _Kԣc4 ##-,t F{ Vj[>/m f>~E97_O N{7&QYLL>ܰ[tP ]9"jh*X1@ʯv'켿MfthJ+qctX-6;Ŵug8{K:SF⾆7MTWYJ.t= ~8Dj`ؓ Opp9p7b ڪ?!hYSDه"i:W:]a6+|$͚=wVz[A||v /Y S"KX,XB\" $d*9||%\԰e5o.FyA,Fo ԏ$ G#Q<P yE1weB'o3>kB_fG$2Z8d_SlŅw B)Is0)}!đK! 7TDAW9d?_}{0pyYJckWFUս+IW!M9 x(] F~rEYqgC!5n^OmY"19Əʸod,<1p _S)iv dEe'T㡐H<8p`e_$` z-a#-k hkIctG m# (o1gͣYρǐؘ]J.k2@UM>''o(C!*f ם?4uh_ :䌧^s|a؀0D-)3f?smYCȐ[=1 ºPNGX ⏔IS_<>cr^[b hS\.y&M]5׽*G`sk7 +ZXWŇj&s%&nė~9qtϟ+`b I"P eTjTd\yE|}KСB4Ů>3k3Y!yD%](b( Gz dF[vúx/:՚1ۨ7OdXxB{wZ-l\9CPΐ/gl ĖWHX O6j% ߛ %nH!t,Wd7(.|F/?YaLMOmq]?XP$@ \`rjbӧ)+Fgf6zűBdQ.l,SvTaA'=3խtB*-|bILa I :CGu_G{\.].P?g5[1ަEft.z[] ƲALy $ '+:S!`/!N[bM> lA,""3 D@kwI3WtBvET[譝#  P'M/dû%,^؅g}r)E cJa:DϧbU V/b: NWr!G%kZ#0IMᐗfIoqW+҉ o#{8:?%=4$(AE5^fNps* UiCn'a9@`TU `^~wBZ_y8)hv@,ïEr@sSܔpaPpuXXZ }!|F?$N껭 r޿y!ϙAUZ+U+`c)rjeK.ʙO @:x{mpjʬ"!j.;_ L"/&eP8 yS;< ǔ4&usM1S5r3&rƥoZC&)ڵ:}FU ?/NcW#^B8NVzxd+]Hca†1C$5A 'l!@@y%aNyΌu"uҲ"--۫:-uV8{cm10 *?K̖(9rM?|UsF0BsN cfn[tűkf< H {|ZZ-wCO-.֔{8\4u{UvFNN'\&A8&g_]l:gxkw]J+ bڰ9B3>1{p#t|nB8l:Nk ( l"4 :NOL-4k 5R!ۊžzlSn]C݈Ap\$ΜR=#/#бyԱ/ @sMdvL$P ]4 ~Gu~,+ZQ6TUcJBM} xE. ޏcKDJO'`T7+ݕЛ|/;RRE7HNgy, CϻдT#ׅ]#L@%nQr\^WI ?ڐB*Tipg\{/Kc껐C$^nߑTLjSVYrm Z,v8BHtUvCU:xN}$oA;{mF#ck zMӁ֢z($ݹmЩ[7l="ţe\hF dəͩӭMt& +=$z. 3p ͡/KӖ}Y_v+UaRlAS%`#Tm{a~"^~c tq+=)w֚д~$uKJ[%#E)> 6Ib1ݦ$$^%4%^ ~4x 嵀<HS7OiP<ͭ}(SqdK8m:U'Xgh5y˟{L_:>.d_̶N"G3z;8Gר?;J#$ye؄we߽jnX̝oՔRXmzb '0#i9YJE#} WQ|.u#,*!Nl%:Gj\pS#UfQ"``tARNjG m/1Q"2I;}ujZ ƍ=9 3{ZwU9ɽ,6Q!xNt][16'I րtnrB#.9x2{Rx_Wr⛈j/T~f6TۆvK^q%-}eI6MStWxQ?d~C{OjF87gk ϥ&JnN"~g0$Qr(=R$96nb}9hmma*+DS+:5 iaPGh$K̨km ,*1 qBҨFDH.ϼjs3l*.C>C:U'hTk1 Fxտ:ÑJ et`&Uc>2*%t)ĝZfPNS4iF\YmO̕]˔ ["͸!H4%o#)VIfH;N C_#e6;ž[]h0qMk;P&:Ю!KD ܹu4>DI}aD!,!vΫ.ZyXgĿ{WMŶ H3){Ğ}ö ?XC/ieMW22N!5a~R\I"lhiΠs:i{ ,`y@HRz|6+[9 xsJYp&g 8VDӡֶW'FB ~1^ҡv~ZCԠ< ;8i{`IwIقή'z~k<sܐ.~ZL,9~|@X2Y(+Oq"7 c bO19:oOng$LƎc0c̚ _nj0؜h?ٸ;_yW0n::!}U1a԰Ȇ{x" kb 59&p]>n8㩯9LZO2mQBawt}T)ۛ>ee 8U_9lfXO ToZ}[E쳾aϤb<"Mz_XH;8 ];ʀD1pOWPF?%~V6 >D\р [BHGjep.+Tq9Zۨw~B\QĆ> oa[8'}mo38 Ѭ~V.h !WI>9L;8$QG2R08mў {gn6`+|?}ht ēެEǙm:s5d_(}9 a_U}Umq@@<%fc(+{-90)u!J#ZUΗFz>+TJ YғY<{[4/O3C wbЅ }FԘq:h;23 lqJcyB?6n,ĭc))d  MON܂XS/6: Aܯ z?ɒ0d³a8^%*Aâ#@mGQkEeA> א7M8j/~>a|):ЅP& ne[jS5kB[Lr~&rpg˒ ^?"IDQJ޻Gqp :~Y 2-wY"%M ןɕOɛ^/7ﳵ>2+IU8]xNm -h֯II߂BC\'iQWKĂvM`vU jʋӀI&[fbbKG8w8ӖLU೴Z= [jc =K+}iG 5Di89$֓jНп|7 5=,i.i@k?z.A@Dfqt%T\vdc;܋zpEÆ>YgRg60!w4`FX'.2S"Hfen`kLl~?.C .j^'1V(IG%hC+ X>bWD5 (h}(^BF|43j~PdL}\ J_cUvN~0Х!AdM'zyLSi8sR%`p?T\ R]q΋*^$|=8-KcD2nz*,GJ)Ū iEu` Ъ} ~ =})Bm %Iln%(|DZYXpN}L@',V/8%z $1{& UU!L3Qf:24[ 42)bWܠJt-$nS^4m]\<ҟӎ#y TNWZ#A/Ra%2ͮ٠x5"wGtۮC, ofS"FE'} 핓!cx۠VoLUcrga g4+sR7zQMIHLh-CifR1Q"CH!`˖V0Zg zYm}Zoj&"VFҋk``qMj,bPq g9Z*p޴-LcЗRJeh)u%&%/ss;XV,ȾǭZG1UOca#ì%£'89smތ6iX2ۇK9|N>8#E4Ѩg9)g5"A ܏B;ڟ yQ؞k_MKxq:ƍL4"m!cSra^8{Q0KOɩ/`ы(]? n4U!\~2ₚ =#{!XgK: 6Yk|RZތ6޺LeL|?fL{H]?* !'U+R_A$m> ⲒzQ38l?$5!ܿ<tqg llXZ[_Y?Zb+r +' 2ܮ}ɏұ<)ő#O9{n`\ ;$/67L Cн|jęK&q7᳖r1r~zdGwOPw(?aÄȖP1 9>TT%N+Di۳,(rnL/p:ӟEKCCqX` [_{!ْp#M endstream endobj 874 0 obj <> endobj 875 0 obj [876 0 R] endobj 876 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 596 0 0 836 0 0 cm /ImagePart_2192 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 238.3 479.85 Tm 102 Tz 3 Tr /OPExtFont5 12.5 Tf (System ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 380.649 479.85 Tm 97 Tz (Lorenz96 Model II ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 240.949 465.449 Tm 92 Tz (Model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 92 Tz 3 Tr 1 0 0 1 380.649 465.449 Tm 98 Tz (Lorenz96 Model I ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 187.699 451.3 Tm 112 Tz (Dimension of the system ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 381.35 451.05 Tm 100 Tz (18 x 5 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 223.199 437.1 Tm 99 Tz (Noise ) Tj 1 0 0 1 258.25 437.1 Tm 84 Tz /OPExtFont13 11.5 Tf (model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 84 Tz 3 Tr 1 0 0 1 380.899 436.899 Tm 105 Tz /OPExtFont5 12.5 Tf (N\(0,0.1\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 105 Tz 3 Tr 1 0 0 1 190.3 422.949 Tm 86 Tz /OPExtFont13 11.5 Tf (Number of assimilation ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 86 Tz 3 Tr 1 0 0 1 381.35 422.699 Tm 92 Tz /OPExtFont5 12.5 Tf (1024 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 92 Tz 3 Tr 1 0 0 1 175.449 408.55 Tm 85 Tz /OPExtFont13 11.5 Tf (Number of bootstrap samples ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont13 11.5 Tf 85 Tz 3 Tr 1 0 0 1 380.649 408.55 Tm 92 Tz /OPExtFont5 12.5 Tf (512 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 92 Tz 3 Tr 1 0 0 1 142.3 394.149 Tm 101 Tz /OPExtFont4 12 Tf (ISCDc ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont4 12 Tf 101 Tz 3 Tr 1 0 0 1 210.699 394.149 Tm 100 Tz /OPExtFont5 12.5 Tf (no. of GD iterations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 380.649 394.149 Tm 95 Tz (4096 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 95 Tz 3 Tr 1 0 0 1 211.199 380.25 Tm 100 Tz (GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 381.35 380.5 Tm 65 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 65 Tz 3 Tr 1 0 0 1 141.599 365.6 Tm 96 Tz (WC4DVAR ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 210.699 365.6 Tm 103 Tz (Initial GD iteration step ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 381.35 366.1 Tm 61 Tz (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 61 Tz 3 Tr 1 0 0 1 210.949 351.699 Tm 101 Tz (GD stops when iteration step < ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 381.35 351.699 Tm 86 Tz (10) Tj 1 0 0 1 392.149 351.699 Tm 77 Tz /OPExtFont3 12.5 Tf (-6 ) Tj 1 0 0 1 402 351.699 Tm 32 Tz /OPExtFont5 12.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 108.95 328.649 Tm 101 Tz (Table B.8: Details of Experiment H, note for WC4DVAR method we shrink the ) Tj 1 0 0 1 108.7 314.95 Tm 102 Tz (iteration step by 2 when cost function not decrease. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 298.55 51.2 Tm 90 Tz (165 ) Tj ET EMC endstream endobj 877 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 878 0 obj <> stream 0 ,,˔./t몉XmpXR|qk=h:L_p,X R1uspQ7f/tV=43ɮ =(pw>c0ƂH}NĀUKY]Y /ʚtZ[NZ{NXϷM4бG L ߟ3CeկegIkoiNb+ ȓK)*Tbf XK#Qf忣4@'kKS@7\xw9Q`<[|!( ,)yRB4BZb8O?kpm?e3nWZ|B=E]uSmZ .0*w:' 0,Y$2ϸJt h>]?/(;h OWBޒ*ϗK8 O8USfo,mwx|\eF< |vA}zԪ9Zﰈt CB8_pa\K5uv嵚k"X;`Dj 2T%T8?fDwl+h}7f 28Q߸~'R6 <MLcsL9A-_Snd5mvhQhȧM~-/T) \:o^X|0;FA@j/e(9se[T7^WwGFˤ.Y)Eg1ApsY* ׎/<5/ _(9}+?΍)M Q TNh'sM2p2QFdS)^7mM&;Տe0{?p߉~M"ViNjue FSEaЬ@*DR50~|+sghJQ7F&l;G#zy(zK, Sݷ˜D]6i7g_^W\7kr9QjIPc ~xNmPnS2IYå\(ZS- #xs gW>GD4[WU:/%{g%?dDF)7(W3J)ꀈb ز,d/\Ep64\]HЄ=.?mK1{$fO39NlT -~̄<aNXEϽfy.(_s޹`.y~P0>!K Qٞ 3n#,IC`F_m7lQL`}gzcCR qH&i/R^ ݸ!bFe(4$a9TNjxE{(>4h"+oh&X|XAq;f t`F 0 -6}!5nYㄒ;@9[$R(ak%ۯtUB98:CVہ4I4`uRCt5y}$ߞsu C?9.w/q#K7ҕ{]&']b۾}r,J4[ؘ 5_8Ʋ^ܙn O.x)[=:!Inƈ Μ{ )ѻVqw8Dݯ>7e+2վ-_Զp7+<@.G5tBEx0r}OPN:ɥy׏e58-.~E.{ nM\g8Ώ#D_bm 1Y/]W}MXqH=tנA͚,̻G׋f 6iQCP\LQ« gI+_,j'Fu "'"Yёz}o0@(2Bڜ֤^8 ^HLu0M!ԅ]XgAL'r簇}]2ZBG!~qfZ*`o˒ĽO,8;2Q 8% ?KoMû\V$3:*2>E`(S}wHOٝHK0#Z9r ۸<~3w~&9o0 UGta?@ٖ-#f}?9k?#aY#}ś&ød>;YЛ!>.mcfi[C@4Ɨ4z⋗ ZHC۪YA\RQ䗔)PKrڲꡕl&O5Xmo0}Z5-K#[۵ b'd5d5rIQM*;)QCȃԼ}'K<ψVة+Cb"c* vZyOsO)bmW6y7iSr Q5ǵÖt9Z|;TJh?%HY倮*D_%W B+!|Yws#A6/(ZZmn˹`硵 uI?H%_M`Pk%9<}oCKI ˂EJS[aUm+o3m_f M00/m^Vg4/+_LN"ŎsF-Ču.O&~ɧȼYy|[iK%`[g}uŸ;7 "z "3wl2+Jj.lvҮ!]5E[ ^h\HRUnޡ}ATZDf=P⢁3$z)~^b,?VYL-; " 7!G>d2;F:rGg$iDbn"$jJe,X!΂X(p,EԆ1l5L^!vJI-:nTz[T|nS/]73I6a>Y01z'/$s*.+ȇIOh6\o:J=y_H:uyXU?_ܞRkKʜ8#MEsA+c&KxJ5VEnoͪh-S3@.zjLٱk.(B.2TϨN o)of4|F i&'͆ #$Q4  ?-R֧dNEehj5fq-jlRZq&i+NjɐJ;S MwVý\=g/SPIѝ4I r}떢1+dG 櫲4eܐ 0:4gk_@pr$ :FC/`3AP:h1m}|xxKCl)0N_ Φ7_t’5q oL826ЪV JL$`w4+Q+|i 1ᵋf灁Cv"VL4y`N1ꂬ&J an8T[#v$Dx$jс[13Bv&C|"SDp"bYǧ /jܤ])EOy}ԌP[m*bVUH3IV~o@їB <.HYPїV"WP#!8Klw @"H8J[bO' QX{_F?!z͡M0uwB;nQ^в9H>ʑs.ܭYay(sF~y'$++&R_D4 5LL~VmL.䎭[r$U7xA+D !\yBy ڐsѸ22%0K/j  㠴>yw|o$}0@.Qɯ{{ֿR*P7Yb`@ 0^tn$Lk36E9:}+P?<kdsx!wq k endstream endobj 879 0 obj <> endobj 880 0 obj [881 0 R] endobj 881 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 594 0 0 837 0 0 cm /ImagePart_2193 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 107.75 579.95 Tm 106 Tz 3 Tr /OPExtFont3 22.5 Tf (Bibliography ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 106 Tz 3 Tr 1 0 0 1 119.299 518.299 Tm 99 Tz /OPExtFont5 12.5 Tf ([1]) Tj 1 0 0 1 136.55 518.299 Tm 100 Tz (J.L. Anderson, An ensemble adjustment Kalman filter for data assimilation, ) Tj 1 0 0 1 136.55 495.25 Tm 95 Tz /OPExtFont4 11 Tf (Mon. Weather Rev., ) Tj 1 0 0 1 239.75 495.25 Tm 101 Tz /OPExtFont5 12.5 Tf (129, 2884-2903, \(2001\). 37, 41, 43 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 119.299 463.1 Tm 99 Tz /OPExtFont5 11.5 Tf ([2]) Tj 1 0 0 1 136.099 463.1 Tm 115 Tz (J.L. ) Tj 1 0 0 1 158.15 463.1 Tm 99 Tz /OPExtFont5 12.5 Tf (Anderson, A local least squares framework for ensemble filtering, ) Tj 1 0 0 1 477.85 463.1 Tm 92 Tz /OPExtFont4 11 Tf (Mon. ) Tj 1 0 0 1 138 440.05 Tm 89 Tz (Weather Rev., ) Tj 1 0 0 1 210 440.05 Tm 101 Tz /OPExtFont5 12.5 Tf (131, 634-642, \(2003\). 37 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 119.299 407.899 Tm 99 Tz ([3]) Tj 1 0 0 1 135.849 407.899 Tm 103 Tz (L. Arnold, Random Dynamical Systems, Springer, Berlin, \(1998\). 146 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 118.799 375.5 Tm 99 Tz ([4]) Tj 1 0 0 1 135.849 375.5 Tm 104 Tz (A.F. Bennett, L.M. Leslie, C.R. Hagelberg and P.E. Powers, Tropical cy-) Tj 1 0 0 1 135.849 352.449 Tm 99 Tz (clone prediction using a barotropic model initialized by a generalized inverse ) Tj 1 0 0 1 135.599 329.399 Tm 97 Tz (method. ) Tj 1 0 0 1 180.25 329.399 Tm 96 Tz /OPExtFont4 11 Tf (Mon. Wea. Rev., ) Tj 1 0 0 1 267.6 329.399 Tm 112 Tz /OPExtFont5 11.5 Tf (121, ) Tj 1 0 0 1 294 329.399 Tm 99 Tz /OPExtFont5 12.5 Tf (1714-1729, \(1993\). 111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 118.549 297.5 Tm ([5]) Tj 1 0 0 1 135.599 297.25 Tm 101 Tz (A.F. Bennett, B.S. Chua and L.M. Leslie, Generalized inversion of a global ) Tj 1 0 0 1 135.599 274.2 Tm 102 Tz (numerical weather prediction model. ) Tj 1 0 0 1 324 274.2 Tm 97 Tz /OPExtFont4 11 Tf (Meteor. Atmos. Phys., ) Tj 1 0 0 1 441.35 273.95 Tm 110 Tz /OPExtFont5 11.5 Tf (60, ) Tj 1 0 0 1 462.699 273.95 Tm 93 Tz /OPExtFont5 12.5 Tf (165-178, ) Tj 1 0 0 1 136.099 250.899 Tm 100 Tz (\(1996\). 111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 118.549 218.75 Tm 99 Tz ([6]) Tj 1 0 0 1 135.099 218.5 Tm 103 Tz (M.L. Berliner, Likelihood and Bayesian Prediction for Chaotic Systems, J. ) Tj 1 0 0 1 135.099 195.5 Tm (Am. Stat. Assoc. ) Tj 1 0 0 1 222.949 195.5 Tm 112 Tz /OPExtFont5 11.5 Tf (86, ) Tj 1 0 0 1 242.9 195.5 Tm 98 Tz /OPExtFont5 12.5 Tf (938-952 \(1991\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 118.299 163.299 Tm 99 Tz ([7]) Tj 1 0 0 1 135.349 163.299 Tm 103 Tz (C.H. Bishop, B.J.Etherton and S.J.Majumdar. Adaptive sampling with the ) Tj 1 0 0 1 135.099 140.299 Tm 99 Tz (Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. ) Tj 1 0 0 1 449.5 140.049 Tm 93 Tz /OPExtFont4 11 Tf (Mon. Wea. ) Tj 1 0 0 1 135.599 117.25 Tm 83 Tz (Rev. ) Tj 1 0 0 1 160.8 117.25 Tm 113 Tz /OPExtFont5 11.5 Tf (129, ) Tj 1 0 0 1 186.25 117.25 Tm 102 Tz /OPExtFont5 12.5 Tf (420C436, \(2001\). 41, 43 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 296.399 52.2 Tm 88 Tz (166 ) Tj ET EMC endstream endobj 882 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 883 0 obj <> stream 0 ,, b7 %^~f՛lr>u GQFi @PLmG>K=~<U7~IM[Htc@F@UA*#ʀ+%6R3f^GgX,\Z*ĀS>U$޳~rG?=-'i[15`6֟ge\SpIPZ!B## 5$NfJ^GR[טr3uKPYzZ B2!h4b%-Dq:fa ~)5+e'Ooe$[Qah{D :k!0ÑDPY Hj#-$+ՠ}-'dma#Gھ|>3>͇"ư;C.̙R)nԲ<{mHCNGX72Ԃ/q} j򍔛f8qb&I}T1+QSO3F/g߼6߬2 hG`Qf|!t%?k|B&pwu\l;0${`*]mͿxm H't &6(Q4 xqH$ŀ Ȋ`w)CR&lcgy1Nԝ3Bt-ˏ|8NbN['-jP<{iU,zj1]W>…=W_S|e@?\9w Qn>Ĵ¬гwD<w#5M'zBP%SǶ?UYwsVm"e\18f}Jڝ>mBaՓ5]~s1Fk 6aqYcVe_r4lw] Mh0]R?zbCvUÓ"FC#e, YلRN_Au`Z].WI 'ɱr6)Ԯ'v[ƘZ[ ? bӭe~z""X:Klt&@?>ǘ+iiڲֱт.V8ڿ<449eD`G~H[t֜cӯjПgԒ|jarV|S_3 *zi 1P NsAfi!N2[[ANE6}VC}B-n^YbDۼ}]} N 0-2CV_X?SJ &s,@CJDd,LdN=u7+ Ng;_rinsx˗'1^k sO|)$:޽[ciK$Zp2s$2/ IMO+GZڈ;E_GSؙ-G82Oa'z8M^l09DNpDϙs$ι(g5 tg`Alj-w ~ico]Mwɻk}w55&p |.B̫xx*ׯz=u߲tk'Wo屛GE ,ؽC6:9֝ CQ۫WF6.ܣ,P3B(_:~=#C04cn/ b.\5M'0@-U@XyvD; P2~Ům4:9zVA}@e}HN e|XE`ƸdOI9ԺR}g]F0yVQIĮ`zK :2mƨHi5ZQXFo_uCBXE z*uX723(DHIn֝;;ݼ?AYU&Ǻ˙=FAFư4ESmt.c쓙t^cH6BL2XTLq5F?]{4C2̙dޢHwR mNeN%6Pp.rq;ā6Xo*]V VaL͠$(^ T9{ 'Ip )t$GwV{4TRSac|M<{gU,"Qq(s`Ωs3{Oo%Wg5=g~noӕQi,塬s}RǻuePQl5j\Ěfw\: ڔ4b]ǁOoҢ n$xB"DۘݽA.e _1SdQ3Ճ )㾦۩Blt2HP%y vbŃz d[;H5#ŗ| t*{ş7m5LI~{MpZ*y| ӈfu3д+9'ĤlAlłE4jt~,R#; VG.-WK %msn _vʡ`?R[N$߀#WT/= ^;Ow?X8PM22KYYӫ&LG`HXb&[b v߽7I.΂'j p[ସ7~;k&ԘYPMqCx7RS{]Va(;&h"%bVK>C˹ϊyi2UJ]5\,IhpBO>xxc3q&m؀OkɬPg@Zk[8O%ϡ3fB;~ZO 82#Ésy&ଞ zFO"WNwn7 !ߐ“U>J8N">={kU+m@VՉm_{'n0),nAηOT'EcbHyuGgaͦ=q*.ҬJC錑L  LsEj1W{∡Gɥ._ۂ.5ݴQJ3&4-4m<܅0"2Tp5{mDrcuɢL-dAdSVHβo./ZklI.)%vT)c ٧FH|=*nU5g֣t/QD6z:@]95YOv#QpLZwChCppNVN%Q^PjzV墝r)7W"!yq=p msb):{uʧp\#7N.[ϼw| 悗"^<><jpƞjJ[P h ]?2`]w;ai%ӻ-[^2_XR:$.MT; )g EUu! JpdAk%mRY,ED-0ckq2 kz@Ʉa ޸' *Z#^dT(~H |#v,S @9EOOVDHOG6-]6xdB4bsн4 F/C~bwC[CRNq E"FcĘz[κT2{Jӥg#kw{.yt! k%!L WXﭬΘfR `ms`IY}(֢Yw X7η5s q(3+U|Ѣm~r%O"gc'Z!lO Rx U %NZ:(CQ+@̄# #]vbF<+/+R-S66sȧΞh]3`GA/NQ\7D&??׻B.-xRƆPu&ֺ%\/QNuבjJTi&,xUoWiڼtʲz=Xe]Xk.c*ha&/C&$ &;i oY?|е\'p]vi?$ZW?ʯcRm6/={jr9G rm!eboC99;۲N.K8m ~ J0="ޥaEjl׶/]C~e?m]yL > ;{=)JyP=?@)/?ޏ?fVUۓV#̊$Q Ѝ/%Vׯ3BrGL!L@%ڧyj7-j"l9-V#_4]f4N YԻX !{^ll.ʔ) 쯒)p* *2WiQϞݮmp3@!6^ Z|hY* ;sr}E3+sް+F Uc7XQ*,C5lL$5nҀVxw$hLڧfZxH\[<I#"XJU>.XH?Rf.q"tr[Bk9Ya7+2D2C{Ǚz9 7w= JXfizа=IS[3  1 Ilo 읥b@qr}8V.l;WW=KRƷޭjb.af.)Ф?OK\b!H_Yۮo7Q6"?oh9ՐpA6JKSkŲm nd4Y{/Y\ж΁k咿J| VLAj?Lf:U2POa< Aӿ(*dEՌ Wü&G c G&l}?WoУaWnX Uq1T`0UoPeITNvod?Hn㯹]_Vc=%r.rq a]Eo؜2WAv|I 5~@S+6%/`(cYl$6}S[NWzD"М4~_!dfn,hؗry4oO5OA JԱiqXϻN) aLGxQ )̋ eZs3ʤQ޾v!1ŬrHkP(cQy\,@CmK;t <nHRbV1s]1hL2巶T BpgHlh`RHOGfԼ|T>pٗ)0 d4=N4nGmNI#t=pޯj~hdCFi^:V'Rڧ=,$8#IvQ !3XYU{VD+T>>6֭RQ r_! }k;"Rˎ2뱝Y^4/E6 f rS*Jk_gŶUmL3b!ݹ3/%Zz\)M~[`ڙ !_Q⾉n J[F^nHA3F(\r=$9po8 ,I|$TLˈqb0) hH98vsԛxˮkIEL ؓ@ s$=|hdRi/LFr Ϗuٮ8ML]gTʗo_tUkX`0DBUh\Q-FO#-R R_Mv1%4k sOF7iЂ, \(Y,b3(k&6 X1vA{=1"0q*<^MjPNh'Ẫ~[42k,"vI= ùBw^;lLjckWY)Z\ (IPPrmk-\LdMV?6OHj|U> endobj 885 0 obj [886 0 R] endobj 886 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 594 0 0 837 0 0 cm /ImagePart_2194 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 397.899 718.7 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 118.799 676.2 Tm 99 Tz /OPExtFont3 11 Tf ([8]) Tj 1 0 0 1 135.099 675.95 Tm 93 Tz (A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, \(1996\) ) Tj 1 0 0 1 135.349 652.899 Tm 77 Tz (65 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 77 Tz 3 Tr 1 0 0 1 118.549 621 Tm 99 Tz ([9]) Tj 1 0 0 1 135.099 620.75 Tm 91 Tz (E. Borel, ) Tj 1 0 0 1 182.9 620.75 Tm 93 Tz /OPExtFont4 11 Tf (Probability and Certainty ) Tj 1 0 0 1 310.3 620.5 Tm /OPExtFont3 11 Tf (Walker, New York, \(1963\). 80 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 93 Tz 3 Tr 1 0 0 1 112.799 588.35 Tm 99 Tz ([10]) Tj 1 0 0 1 135.349 588.1 Tm 91 Tz (C.L.Bremer and D.T.Kaplan, Markov chain Monte Carlo estimation of non-) Tj 1 0 0 1 135.099 565.299 Tm (linear dynamics from time series, Physica ) Tj 1 0 0 1 342.949 565.1 Tm 101 Tz /OPExtFont5 12.5 Tf (D 160 ) Tj 1 0 0 1 378.949 564.85 Tm 87 Tz /OPExtFont3 11 Tf (116-126 \(2001\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 112.799 532.7 Tm 99 Tz ([11]) Tj 1 0 0 1 135.349 532.2 Tm 95 Tz (G.W. Brier, Verification of forecasts expressed in terms of probabilities. ) Tj 1 0 0 1 135.099 509.399 Tm 96 Tz /OPExtFont4 11 Tf (Mon. Wea. Rev., ) Tj 1 0 0 1 222.25 509.399 Tm 101 Tz /OPExtFont5 12.5 Tf (78, ) Tj 1 0 0 1 242.15 509.149 Tm 89 Tz /OPExtFont3 11 Tf (1C3, \(1950\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 112.549 477 Tm 99 Tz ([12]) Tj 1 0 0 1 134.9 476.75 Tm 92 Tz (J. Brocker and L.A. Smith, Scoring Probabilistic Forecasts: On the Impor-) Tj 1 0 0 1 134.4 453.949 Tm (tance of Being Proper, ) Tj 1 0 0 1 251.5 453.699 Tm 89 Tz /OPExtFont4 11 Tf (Weather and Forecasting ) Tj 1 0 0 1 374.149 453.5 Tm /OPExtFont3 11 Tf (22\(2\), 382-388, \(2007\) 53, ) Tj 1 0 0 1 134.9 430.899 Tm 73 Tz (73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 73 Tz 3 Tr 1 0 0 1 111.849 398.05 Tm 99 Tz ([13]) Tj 1 0 0 1 134.65 397.8 Tm 91 Tz (J. Brocker and L.A. Smith, From ensemble forecasts to predictive distribu-) Tj 1 0 0 1 134.15 375 Tm (tion functions, submitted to ) Tj 1 0 0 1 277.899 374.75 Tm 85 Tz /OPExtFont4 11 Tf (Tellus, ) Tj 1 0 0 1 313.199 374.75 Tm 88 Tz /OPExtFont3 11 Tf (\(2007\) 70, 71 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 111.849 342.35 Tm 99 Tz ([14]) Tj 1 0 0 1 134.15 342.35 Tm 92 Tz (D. S. Broomhead and D. Lowe. Multivariable functional interpolation and ) Tj 1 0 0 1 134.4 319.299 Tm 89 Tz (adaptive networks. ) Tj 1 0 0 1 231.099 319.299 Tm 91 Tz /OPExtFont4 11 Tf (J. Complex Systems, ) Tj 1 0 0 1 336.5 319.1 Tm 87 Tz /OPExtFont3 11 Tf (1:417-452, \(1987\). 17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 87 Tz 3 Tr 1 0 0 1 111.349 286.45 Tm 99 Tz ([15]) Tj 1 0 0 1 133.9 286.45 Tm 91 Tz (M. Casdagli. Nonlinear prediction of chaotic time ) Tj 1 0 0 1 377.3 286.2 Tm 97 Tz /OPExtFont2 11.5 Tf (series. ) Tj 1 0 0 1 410.899 286.2 Tm 90 Tz /OPExtFont4 11 Tf (Physica D, ) Tj 1 0 0 1 466.1 285.95 Tm 80 Tz /OPExtFont3 11 Tf (35:335-) Tj 1 0 0 1 133.699 263.399 Tm 90 Tz (356, \(1989\). 17 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 111.349 230.75 Tm 99 Tz ([16]) Tj 1 0 0 1 133.699 230.299 Tm 93 Tz (M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, State space recon-) Tj 1 0 0 1 133.199 207.5 Tm 91 Tz (struction in the presence of noise, Physica ) Tj 1 0 0 1 344.649 207.25 Tm 102 Tz /OPExtFont5 12.5 Tf (D, 51, ) Tj 1 0 0 1 380.399 207.25 Tm 88 Tz /OPExtFont3 11 Tf (52 \(1991\); ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 111.349 174.85 Tm 99 Tz ([17]) Tj 1 0 0 1 133.699 174.6 Tm 96 Tz (G. Casella and R.L. Berger, Statistical Inference, Wadsworth, Belmont, ) Tj 1 0 0 1 133.699 151.799 Tm 92 Tz (California, \(1990\). 66 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 294.5 52.899 Tm 77 Tz (167 ) Tj ET EMC endstream endobj 887 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 888 0 obj <> stream 0 ,,ɔb7*G(Z8w:fC(o ̯BFW1ˊZX$7=~ʣ*/8ɁPϿB/ mʗ ~^5Fg\.A{QTz{C)`ļ)a]өlYW簤RLV솧% U9ko0F-m.+ʹ[Gj Dŝ*Ր+\ZY(XDM`{`WQe$2N4A"+~.)22fFe]ctmXQ,.q^?7hH=1ۍf3cJ'l_K#pl'vf`[+(* o3WͭE!򘟜'-0, ) cCe_o""/UDa.Fhz6 :bi GV*.M߂a@)(-eX=F# OxN.ngт#~l@).7i)":B Eh ݯ&yvݙl X<ȺYX#:@za# N2 l* jjgk4`eKQ-inH .\iw8bQĊNmTBhC/ּ½bo<s:b߭dU9[SO@4<(_|rZTOEd~g)9jb1A72/>9G.>BpCrzsu?y|oHz3ilS;8E \ynpK(+8ڞN ℿav04ATؐä,]l>,72ƥ$)ߦ@͐q@yJ exJ[NAEd,3G*/F..,B-[jVf**&^]g^i\P~ ˨Noz  4|oq!nܞZ`AndT$p堀PޤyD|ɯ[#PĻ$;Ec?h ~7@+bMEH1q#=ԯ2|𩅬,QvKPَ,9;kWY޾!6 ?KAr-7lJ:Ť :R*f%@YKuȳOCk sg>M.=M%ub16ۻk}A; Uj OOJ?xi# u2{ wt\|*aE۠heӯ(@a2赑eaEtQ&&x!Y`? ]v1?ؚƌ9T&@.x*jA͜D"-k݀5‚QFJTJE`LtK1źXʧ/ly#K/24@o=Na^ QkE:`^&RI}%hCEz5dG&L5sI \tj`"崜~>+a_x~Ve/R!#Z-×^cyȱu[m# 25C1і@ጂSl *vfHK½0،^ VfCy6Bs5Z"{㶡(=ruIEDg|p6bTɄ^Q&z$Oh8f /p ǔ1y9kw+빤24RQ!PpGQp NA!J݄t25Ç_$NS1jA ocv&/"$_`8 n #v9S`ܕE%cv(ܖPn?Ts#6QD aKe ?s 4tmw&F4ɯiڙ=tHL,.<ނx?+7vBI00TcOKR=r 7VZgHeOä;ڝl&|Y 48:XF렍/E*!~qBHH(ꇫ;A H^~ mАU#Xk*M:r= i?c u Jt2wĮG"Y*`k=J;M=iȐ#\)+wfWeA:=llўU#2tMVmChyojȶpZ-Ckl:6}dhFD (]#6Yh8Ź)39@Oprezi5qفXO̸x}ҽy$G n!\V^IMpDEH9 *)!ז ڑXC>ӌLZfB-@nakh?S"X ŀȘ4i:Sqx*_w~7Y=zkuL!(jl 4-^*=Mԕ4*بTMjrǝQj-*EoXt#}bԸmeԱN>8q\7y|dKۢw`q鉱:ښV/rd& {P[kA@9)xD*[o92<ޤi 9y挒Ŧ+3exI)gj9Z7]E̾IwN阩6ϡQu]d՘;˹91&{ȏUlJ#;kJ|RL ;Oa12пCaqf9$KV6|6Z)W>:Աސڵ#R繏\?/I{zIc2k-'x?2Nu--#^nݓm97J"֕7ڋ\0/9y6` nH%u1֝AO`} czᯰ q?7+FMLѱ(ū\opy\c0/75\Z\HAڻ ry+LUrԺ*09, jR|JB?|n{EX=X ğgALH(/(2uXL„)I:A4޷-8q1*J ?=/=c%=w)⬄ClJ.s' /eeX]aNW'c֜T&763 zYHyka)v=ۅecVZw^Zap0 U"8 FgHܠSxua_AC,6NdNjS}/}WQy^_N0>Z&{y?w{qQ_5qe%sc;J" +~%\ԎQ*Q`юkCMЛFL(H誑rX~B:p'Df#O}sIriOٚ2fK,Uj cs`ߦZښ>! vsg_-l.Wyqkhc`G5sl0COP\9FugFLt7v-nu9pđO PD#Iϥ@ :R&1f,"skCFm+hCF%)9/#3fP+"YWgyɡRJ~#+t3 nY1j lxb!hy)ᰉU z){tԔ /3W.9׽b3T}O`:d|MBF:8TYQaF*5\rdC NP2E%ظ0疐YmY66Zq"7w`Sт6=-'?Bs" h%4OIwxxHY= g ^ IUr8Ӷ^b,/UKB'ܗ~%xXl'=5;]h"upQħhWCan*j_ +n>A,tVDV#K + <,{2XSǦ:]Mn `?AV{VĺTE>-Ъbp+&vsq#?.LĊ]YAB> ZKbbRëJlT@1YN^c3%3hj_O&3sX:ZxFXM"7Tm 2oyG:N^Z-I3<1u<#VՇzEg>0v0e?/ӥy*p`phpfu~drr3Z;Fil3_-*e?v:@ Y%J\`A?,Fgjw y7%12e/o*Y=X*. ߦv{ S^_N*l5l܊~(Z!B" ,XwijuޚDi@*o4(_uB&!.oQ~W?,`;\^a:lb%v)Bܞb.^sʡ[d gq|]*T6p_1L^gŎ)vG{t-KpAHfAL0>4^LLJ ;Ⱦ\kƐCrĈBQEr>+ -Vt^l_|-X\ kJ഼VKǁ cKypd*t/>[LtSl{FI.RwykиhPylp;~'^}.HzIz,[Y݆MN|~4)ft@j ϬNnFD{pطs6"vy~W}v!Ͳmk~ͮ_Q/-tj7 vS|A~z;Pd-Oxhw93 L=oGG6 3 䭳~8slɃVR|=c$tCYhҲLе>09ژ( ^8 ~5cfP.H3bʧ u,O.:΃ 0sxMc@u gzy>vLTBK(^  ds#!&qJ0љI=uo0sH,ӏj ܱDܒJy1nͮp蛋"' !^3[=yNq:dyLV:.ԉL(znsMDJhŊMXQxaUb<ה@ҤJg  \y5Q5k>B/%Apn+W',YN>ZQu{|X\v^;3 }LZ"qWw8X>c׻9':~*`Z4Vq/[p2B7v﨓3 h_>e'#*$6:8w[ģ]jǔ!a"#d`8ʱ`NU8 Q>]^D~_f)L‚ծ{NFn2,µ92vڎy.y@Cyz9z)K#s2+l\%KF[rMulX }Ɯɒ v|D=fqiMvQ/5o n뚨G[Ԙ @e-laJTjc>J ’UTO:0el؛}`ǫkD7ȴ_6uJtp -}AW6[:i1C2 KMYj`OI%>ٿ"³٩ɲԶĉ0,sjʶDM_0=y?OE^li'Ƨ̊$C\۹1oO3OG1L 1iS!ۛ0*~ˎR$gr!p;_۟0,͉w/bRFѪn>sk)[K!^NZU`s2e&¡jfkFǐԷ R`ZI 2ȩjRIn>͙<xtx %  Q4ޮY|WT=] }z<_Gn=LɬW$o[ekd s-Ï{2$Ij\%J@%}a]{4$*?u٢zXh ҈XVIsS2ۣUh զ~n]@E[[&pG$Tۤ$qCg j]ɡ7|r B5ѡuJ`'Bo8}hWUMH=ymIqb\ҖZ厰ߩQU1t'ڥ\yWձIķcמ~84UHP=?YBfS"?˹6ͱVVb8 9YS8j'F%9ٮf:qpV'W䃓QQQY3W زmuKN-lTy]FoY20(pGF-< \/A}Rg5O~*)?I+:z&6,(~Wi,ȭ-LeOgJ3`׸p콂w' myw0ovJxt Vbګ:j#^B"SR3 .$h_t[wO'`X=Ǘi޴2 V~P>:M.!?5!m2R)ڙPօ˱sB^$ޭǹEFʡ*/jذ20n/H kԳ x43X"ʥ$xdz OXT͟e d{a&\)"9Y~|FU5I< 2'`^`={*Qh-иJtT鴎Dܛ}CY^Ц݂&]eX*ur˝I{GQ'2SoUjÑ nָ)ڲ`'xnT$^,?:u -cTqG"ڙrѻT{5w;)T l\#9EU  d3"b@ *X8@༴4 W |;x].Ł8I6R ӕ{p@ef8׻ h΢|`exĆW.֐ YzoG`ijelpNx2} 9AD5fBQ`ٽ}ƻLB3%ZL]B2  ֣jb7%`y!țМuUOLqBi͠WRYfk`Z1jAyj^ѲOĥ8/j9 Zǽ^]@x}gK0T|kVdqfͨezR;rL[X o +7M[+=8ȥƓBHn,a)x>^m^ THTHϯ6i/.lz8#elz>[v~t@H/.])L򕨕\cPìMxGx$tUt Ҏl?gIќMMi(m B%i=ִx"pO訁S/PbS5+ endstream endobj 889 0 obj <> endobj 890 0 obj [891 0 R] endobj 891 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 593 0 0 837 0 0 cm /ImagePart_2195 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 398.399 718.45 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 113.5 675.5 Tm 99 Tz ([18]) Tj 1 0 0 1 135.849 675.25 Tm 100 Tz (P. Courtier and 0. Talagrand, Variational assimilation of meteorological ob-) Tj 1 0 0 1 135.599 652.45 Tm 102 Tz (servations with the adjoint vorticity equation. II: Numerical results, Q.J.R. ) Tj 1 0 0 1 136.3 629.649 Tm 93 Tz /OPExtFont4 11 Tf (Meteorol Soc., ) Tj 1 0 0 1 209.5 629.899 Tm 100 Tz /OPExtFont5 12.5 Tf (113, 1311-1328, \(1987\). 32 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 113.299 597.5 Tm 99 Tz ([19]) Tj 1 0 0 1 135.599 597.5 Tm 101 Tz (P. Courtier, J.N. Thepaut and A. Hollingsworth, A strategy for operational ) Tj 1 0 0 1 135.349 574.45 Tm 99 Tz (implementation of 4DVAR, using an incremental approach, Q.J.R. ) Tj 1 0 0 1 460.3 574.7 Tm 94 Tz /OPExtFont4 11 Tf (Meteorol ) Tj 1 0 0 1 136.099 551.149 Tm 87 Tz (Soc., ) Tj 1 0 0 1 163.199 551.399 Tm 100 Tz /OPExtFont5 12.5 Tf (120, 1367-1387, \(1994\). 32 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 113.049 519.25 Tm 99 Tz ([20]) Tj 1 0 0 1 135.349 519 Tm 101 Tz (M.C. Cuellar, Perspectives and Advances in Parameter Estimation of Non-) Tj 1 0 0 1 135.099 495.949 Tm 102 Tz (linear Models. PhD Thesis, London School of Economics, \(2007\). 66, 78, ) Tj 1 0 0 1 135.349 472.899 Tm 92 Tz (82 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 92 Tz 3 Tr 1 0 0 1 113.049 441 Tm 99 Tz ([21]) Tj 1 0 0 1 135.099 440.75 Tm 101 Tz (M.E.Davies, Noise reduction by gradient descent, Int. J. Bifurcation Chaos ) Tj 1 0 0 1 135.099 417.699 Tm 100 Tz (3, 113-118, \(1992\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 113.049 385.3 Tm 99 Tz ([22]) Tj 1 0 0 1 135.099 385.3 Tm 103 Tz (J.-P. Eckmann, D. Ruelle, Rev. Mod. Phys. 57 617, \(1985\). 146 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 112.549 353.149 Tm 99 Tz ([23]) Tj 1 0 0 1 134.9 353.149 Tm 100 Tz (G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic ) Tj 1 0 0 1 134.9 330.1 Tm 102 Tz (model using Monte Carlo methods to forecast error statistics, ) Tj 1 0 0 1 444.949 330.1 Tm 89 Tz /OPExtFont4 11 Tf (J. Geophys. ) Tj 1 0 0 1 135.349 307.1 Tm 86 Tz (Res., ) Tj 1 0 0 1 162.949 307.1 Tm 101 Tz /OPExtFont5 12.5 Tf (99, 10,143-10,162, \(1994\). 41 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 112.299 274.45 Tm 99 Tz ([24]) Tj 1 0 0 1 134.65 274.45 Tm 100 Tz (G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic ) Tj 1 0 0 1 134.4 251.399 Tm 102 Tz (model using Monte Carlo methods to forecast error statistics, ) Tj 1 0 0 1 444.949 251.399 Tm 89 Tz /OPExtFont4 11 Tf (J. Geophys. ) Tj 1 0 0 1 134.9 228.35 Tm 87 Tz (Res., ) Tj 1 0 0 1 162.949 228.35 Tm 101 Tz /OPExtFont5 12.5 Tf (127, 2128-2142, \(1994\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 112.299 196.2 Tm 99 Tz ([25]) Tj 1 0 0 1 134.4 196.2 Tm 105 Tz (J.P. Eckmann and D. Ruelle. Ergodic theory of chaos. ) Tj 1 0 0 1 416.149 195.95 Tm 96 Tz /OPExtFont4 11 Tf (Rev. Mod. Phys., ) Tj 1 0 0 1 134.15 172.899 Tm 100 Tz /OPExtFont5 12.5 Tf (45:617-656, 1985. 148 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 112.099 140.5 Tm 99 Tz ([26]) Tj 1 0 0 1 134.15 140.299 Tm 102 Tz (J.D. Farmer and J.J. Sidorowich. Optimal shadowing and noise reduction. ) Tj 1 0 0 1 134.15 117.5 Tm 93 Tz /OPExtFont4 11 Tf (Physica D, ) Tj 1 0 0 1 190.8 117.5 Tm 101 Tz /OPExtFont5 12.5 Tf (47:373-392, \(1991\). 79 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 295.699 52.899 Tm 88 Tz (168 ) Tj ET EMC endstream endobj 892 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 893 0 obj <> stream 0 ,, b6Z .s3P|u{BJ!l WAc7V奰!E(#+N2bi\8z}A'pF#90@z2qiڷCB`\'S?^4%}˲&](^˷>᳦=İP'ģ'8?UQڱՇ.;iڠx<dfhqw}qWs4V:֍);QSizEmc9IuS&Y2j oIT||w}two 4L;)Рwv].$]  N~!ҐG4k3WE '. r:(gI3TEAO8oGa?e"ξ] 0Mw6]K˫B"iz3V A~кvk}a޼IFR*Ƙ1761[:gnZ%ܴ\So%UDRXXiS⍵O,L.N: bs}%9 {@(.<{7Gg[vQ#( * :RYp|r@Avu$=߻}Cp/ڿI3'dwMDwZ2֍n?Rt İ_i6ZD+>oQ?_\$0p(G40°1yu |<L%S*\zsw)t[fEgdU E/t +'tѠ~#hfoV?|PK?޳0C'3!NE1uat_ c쀦*pn6^ZNݷm`P`xKeT}'/jW+< 9`ؒ0,]KAq>9ۄ2-]{>[ұ˳f/bA1I((1TInKIKqԖFk^s> HS'y1L2WNha'UCnk]}b\ u0ll$dH÷$є>I }K1si+$ik.x#Ĩ$4TD!B@ߐ:lRbժPK⏄{ulx@VsCu.EБ@R| ^el<<:(w 6&4T׳-FOWHgعRX(Wg$·~&Ivc%kSyZꯜ/mfwPxި~QAcwϚÖ.B[{=KQխ#ry]i+#ta~y/Dgbqa.BEKP=-0~"%>!_;n J1J*b0 ҅O%Ș+0I+B&OP+c^fWMl)qN\@#ܣ-%0^F;x׍}gW[}*) wؚE/xx|Z=|cWv \P8|'v@D9Gҡʿ˪LR;wI_As υvU>A R%1ᤘٰoϔҵћԤ۰Bay/ɱ첹ʧOܰ%4ɟo9!b¸2< PyS6?F` KA߸@ݦbПc;m_*`lmIXHm]I(lEIsP[UY)Ա}*1>~l*Y~Etf%*T'8m/hgrfQޗ2̟mV 4% z R$AouMc]rB6w>0Uk VW&@U꣭IaǸ.5&Ua$w1JV?Gbj_dbV&XntAnOcJcE=α .WbI}E!Ch3[BD :20p봣ZS)A\oLb{}r.67}Ѵ e :Du1k]"+fhsBÙ3@?K!ipÙxG" F`_{,z4RK6Tc n7·! QIf\ς8`r/n`i-{p+{|05KHv@=RnK}~㜚{l mhh>;r<򃁭 48L[R`fұmo Yqr C5!Ru<4t}xmBp}<STR~yO01r|ǖc4Vpfb%"J$!*KyZbk- \irJt#cZc/ ^UbKÇ_ eJ(k Ċ_JgYݍxD73YS4@x&0yr{ e"KU4h^_G .Ry6ϭśŵGk™,e@D.Ira0h ]UE"*:ޟH ]x@j @x;s: qa\,~h][fθOKj*(,{4nu aV5H(pl䤙`ßMf!ZDVA% T[E׌EDN3n Ӭ_ƛ&I%x5 R1]db|ܾEJbSIm97/￰2a@Wa_ "j 7;=V@AOtlԑwTJ5i{Aҡ vZ9mTF?$cRJJ[TdB`5F |G(,Xh=0!A AzrhqDpLZ 7&pmV"L3n{R-/Ywf@ ,f%]91:K LGtjMTPOGggNH'pF"߻#E'R@hk=fZo_đ3(iZt;k-[pM|oo#QNslaX2F29=[W}e?tyH-eRH c[u:H& '|`陆E7UTPogԥznO"amЃ[Gd J1:!~u8 OnTdvdqvϢ ܰ)T{LjZ~[ѼRI!r) gk I4{0&)4e''I[F8iIu)+82\~ do7bұsy.3@_7{ɜ,YǤ!ddMvQa뛉_oS9 #GLl7W µCI>r1G?̋yaW *YC 9P-w*lV#+5` M)ةVD!&?=~|$%od m ƹ l&Xdkv/%ׇ:E~\=Kvjx|w2Vn#x;r˞X@dLu ݙ0Bp3Bchi]΋η~nY(Sɶ (mHR*L\>r<0C"33Z4#=;LW_sLWF9p>chi2M->{@,;\`xμ}uW CK'p=#^ :?an53|wLyx{ě#z, ckg+j#1BJ}x"m**u(pm=rfs*"Pnrg{̈́z_P6u`&?;#?yv!3>R&BEXJ.sE|kAII흓gl v` m b# e#M`T/ٍ ^vw{5c=ݖW"czPR1IT_!>+߿0qW\'}@aW,QSMd`Bs5EJٸ^Gi"Z%shߦ8H:#q{Х3(ЗnG!am#nڔUBg T-O|6eR!bdFTFo)7?d4%nn󇻤FڍB #e~)¤ȧ m_ݾ k6'yM27,2@c˺@=W9wL ;6r 8'(&^fRW$zbt>\NEPL6(6ljXZC9._lܶ|zڒO%*ReABB*- N]UBt%wQ?x>BNJg1no/i{Ŀ*FRh_,5VmuӑpGyDhBqWc[V p*Gt3:6}ew`]mP)qVD"s1$"s#m13NGoߜ=W(G&OD(_#zpi^mwΰkQΪsY3_o;PG f`:>  ;%c&АJu+k9Z?[ʄ$ZO'x:fzck@'O3_}P&&'Xude\QbR Ƨܬ¢fDzF+WEGF3()cV=pR=B{_~=/U!;=F>Dz_5UǏƯW-X,|UͥUJ  MZBJHr+L4X3w-5S^hO)*˘jo7 JC{zmm,V/'k=k aE">e:´b-NxKBq*2]wse}*.4Cp>%?*|PZ7G{ܯvd#":0Np|fԫ&g~U978+#}G4x~Tc#/8Vϝ)z rr\q(\bKmیi<3 L>? 'bA-DRSyޗkR amd7+|!O`15[G.C3c2m1jf (ѿПHlViy{A$2e0m4n$n!GDN,[vd =ulH)#6ofTP2NR?‚OfүVd"&AWz$NQوSAj 0CQ"gM%bڅtO $+ѥulFFn1:V9-Q@U~F{$ԓPeyzhwOgg3PLQkؙ<o^fܞn*0GF0xw%\-+5GLjqc@%1\OTD*=.Z `3?;d9s·AxS5ۍf6@9=вFMs'~1޶I2˝v#HZ ƷKطjLLөSKgm97/L5bTR&4obq&6"P8O[U@N o̧k WwVZO"U?ctTjȰlU4: bxcnSLs8jt p9z9' g`ẔO}+hjk7aiuX>U4J1NO/T5ʍ .9ˎ4 7&]o6-=/Uc3zevV+zY !%yk9 6MMn-C VAE>Ҏ'%[*lW) H<,+sMeXtD)O>76shm\,]pw Β n,ȸK0MW9\F1)i;;jnA>q媊y$g?s)= eĦm8sF!E*;̫ɤ6׵?ȫh-$%<׀Ǎܝ[L=!#@N9Jq8*fy\1b&՚zcճPoPB3ݞ|HN9HYY" Z1_6HI਍V}|NtB׊2{N0ߤ%-N!Ysefz!P}PN`gfpCAQ8)$JI]m{6vF[,=KʴV:a?MJF XwnDW[F 1  w%EPFwp40b‡a=zj!o]StJŔ ,K FP"I4|_>!>HŚZS"vk >`/8&4Y8#M%Dr"?^./; K))r&E'i$9#\c+/0ϲѧ4!oY`AMdmi od' T6K,V%g~+Ї P(9Kp-)v16ef^ T)HCMj*ɭeL*X/ *P )xIbLYa Ufg6Kmw8A) $TNTr_TEfqKvȌ* ^b\8HTG(o|^SoxN$?5 o0#lϮ8ܪG Lcw'e|S\VPQ#o G;*@1-wZe 4Z f/v<-K᥇9W 6O ի-hlt 3(]- uo;߯!ܫUhZlH"W rNR˅)DOi]WtH9bU돮:s5^C3*` &WQ+R9X2X3MJ] endstream endobj 894 0 obj <> endobj 895 0 obj [896 0 R] endobj 896 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 593 0 0 837 0 0 cm /ImagePart_2196 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 399.6 718.2 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 114.95 675.25 Tm 99 Tz ([27]) Tj 1 0 0 1 137.3 675.25 Tm 103 Tz (C. F. Gauss, Translated by G. W. Stewart. Theory of the Combination of ) Tj 1 0 0 1 137.3 652.2 Tm 104 Tz (Observations Least Subject to Errors: Part One, Part Two, Supplement. ) Tj 1 0 0 1 137.05 629.149 Tm 103 Tz (Philadelphia: Society for Industrial and Applied Mathematics, \(1995\). 65 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 114.95 597 Tm 99 Tz ([28]) Tj 1 0 0 1 136.8 596.75 Tm 109 Tz (P. Gauthier, Chaos and quadri-dimensional data assimilation, A study ) Tj 1 0 0 1 136.8 573.95 Tm 99 Tz (based on the Lorenz model. ) Tj 1 0 0 1 278.399 573.7 Tm 90 Tz /OPExtFont4 11 Tf (Telles ) Tj 1 0 0 1 309.85 573.7 Tm 103 Tz /OPExtFont5 12.5 Tf (44A, 2-17, \(1992\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 114.5 541.299 Tm 99 Tz ([29]) Tj 1 0 0 1 136.55 541.1 Tm 104 Tz (P. Gauthier, P. Courtier and P. Moll, Assimilation of simulated lidar data ) Tj 1 0 0 1 136.3 518.299 Tm 103 Tz (with a Kalman filter, ) Tj 1 0 0 1 244.8 518.049 Tm 96 Tz /OPExtFont4 11 Tf (Mon. Weather ) Tj 1 0 0 1 319.199 518.049 Tm 103 Tz /OPExtFont5 12.5 Tf (Rev., 121, 1803-20, \(1993\). 40 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 114.25 485.649 Tm 99 Tz ([30]) Tj 1 0 0 1 136.55 485.399 Tm 103 Tz (M. Ghil and P. IVIalanotte-Rizzoli, Data assimilation in meteorology and ) Tj 1 0 0 1 136.55 462.6 Tm 97 Tz (oceanography, ) Tj 1 0 0 1 210 462.35 Tm 89 Tz /OPExtFont4 11 Tf (Adv. Geophys. ) Tj 1 0 0 1 284.149 462.35 Tm 102 Tz /OPExtFont5 12.5 Tf (33, 141-266, \(1991\). 40 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 114 429.949 Tm 99 Tz ([31]) Tj 1 0 0 1 136.55 429.949 Tm 101 Tz (I. Gilmour, Nonlinear model evaluation; t-shadowing, probabilistic predic-) Tj 1 0 0 1 136.099 406.899 Tm 104 Tz (tion and weather forecasting, Ph.D. thesis, University of Oxford, \(1998\). ) Tj 1 0 0 1 136.55 383.899 Tm 86 Tz (79 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 86 Tz 3 Tr 1 0 0 1 114 351.25 Tm 99 Tz ([32]) Tj 1 0 0 1 136.099 351 Tm 100 Tz (P. Grassberger, T. Schreiber, and C. Schaffrath, Nonlinear time sequence ) Tj 1 0 0 1 136.3 328.199 Tm 104 Tz (analysis, Int. J. Bif. and Chaos 1, 521 \(1991\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 104 Tz 3 Tr 1 0 0 1 113.5 295.549 Tm 99 Tz ([33]) Tj 1 0 0 1 136.3 295.549 Tm 100 Tz (C. Grebogi, S.M. Hammel, J.A. Yorke, and T. Sauer. Shadowing of physical ) Tj 1 0 0 1 136.099 272.299 Tm 103 Tz (trajectories in chaotic dynamics: containment and refinement. ) Tj 1 0 0 1 450.699 272.299 Tm 91 Tz /OPExtFont4 11 Tf (Phys. Rev. ) Tj 1 0 0 1 136.099 249.25 Tm 89 Tz (Letts., ) Tj 1 0 0 1 170.15 249.25 Tm 101 Tz /OPExtFont5 12.5 Tf (65\(13\):1527-1530, \(1990\). 79 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 113.299 216.35 Tm 99 Tz ([34]) Tj 1 0 0 1 135.849 216.35 Tm 104 Tz (J. Guckenheimer, J. Moser and S. Newhouse, Dynamical Systems, LIME ) Tj 1 0 0 1 135.599 193.549 Tm 102 Tz (Lectures, Birkhauser, 289pp., \(1980\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 113.299 160.7 Tm 99 Tz /OPExtFont4 11 Tf ([35]) Tj 1 0 0 1 135.849 160.7 Tm 76 Tz (J. ) Tj 1 0 0 1 149.5 160.7 Tm 100 Tz /OPExtFont5 12.5 Tf (Guckenheimer and P. Holmes, ) Tj 1 0 0 1 306.25 160.7 Tm 95 Tz /OPExtFont4 11 Tf (Nonlinear Oscillations, Dynamical Sys-) Tj 1 0 0 1 136.3 137.649 Tm 94 Tz (tems, and Bifurcations of Vector Fields, ) Tj 1 0 0 1 336.25 137.399 Tm 101 Tz /OPExtFont5 12.5 Tf (Springer, New York, \(1983\). 7 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 296.899 52.7 Tm 88 Tz (169 ) Tj ET EMC endstream endobj 897 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 898 0 obj <> stream 0 ,,"Vb7 q-UrDܯ4HPpC[n%'rF@O"}A}9rh9HʀFi(1"bӠ Z7WzT_),N,6YS3*a/1?SRqTo`TW5kLjFi@(pab,&{$ 7ʼQ^`Tߥg?9ʄLkڕcPUwY!`ݏq,d< B גݢ;?od9 D==nsop!Rٴ&QO&m΋56,Z:U* 0B: i[܉ yVB{6 %k7+]'?qˏ๫ŝf`AQmhLb45rsodMsM7-wWFO1\#ŀȮ[SA^{X`a/ -඼ eUzX҈37ve9دp\>6ܤB2ߗz5!ϸ鷪rfK4‹-Wk%l$7&"ңē,-?S䇳"$6$d淆շHʰ1Շ<6BXEQP"ev~r9]'}=lD\N6LwTzԺEf.ax1bg,'rx@z?j!R`_Zoh_%5ȧ,HfD[cɪ|h~|o@XHn%%P cukRb{14 =P5=ۧZ;pb/8YĀb砽Cme#`ʽm0=FĚQ3*N^pmK b\N9("G{UЀ47Yv6GEgYQ̻x`\3},)T;+c׾ Ǡ(.V>"_e'S&.G6++m`cW6"i뻜\k׊܍;[eKO NAXs( ʞá7gZ9lېz "!p#稐>­qU|8ӕDi*?Us} -@lq.j:%+sˠ^ +!5he{"H&10b0{?B:HVO c,gv>̤j_8z`ݳ cPOP Lȭ: zU1#7ja^ρ!˱}ljӗe9fɲoWXr)F7/w+;ڂx'$_Ҧ>ʰړ{Ӹʜ̶ı&K쩩1_)yoǸ8&ނ><VZ"e8"eF,iҍ9`2K8@G`)g ^9%߁U T\i A"ؐih<uK:7W_StQ}Jb09Ǟ/'nCAAD㷁xJW٦ yl3#%?$>gR&U.$@h^ Kf)׺a5n1eb8*YdVST'W_К_<12 BA'CJ3e<)Ab& rd-j[Fl;KC눀6Lhd^SxBȞ!@L޸c{ݭhy!GQ9FOTTSb'"6&fM{ ;hnaO}}ijDKnap4cbs84[Lh$Q 3lK: S:U)-a3/Hkf;YUYZs :p,Ci8*P~ +c8~$6H3r(n33| V7˽9*I{ߥnx2EE+o];4 c_ܥ}}$2N /VQ^.Iʉt9#'wOs@0 \i=YzD.Pk4M,ڨxWrvEz~+y%2T)5f+NȓN s ZòtD Ż(p]Q0UwD9 (Yʵf$u`|Hz@c[UyV3\-(/yTZX_ԆqM bIKQO&a|1y%Dļoϛ}QZXOQzqȨɟAݭ1+WHVuxr|n7WwbFv H^aFS;A۱Etu4K9=xDZMPvzm2띠W_]>{JaЏu=*Gx-i_@XB&ؐ9Э n&:ѥvNpG82  {.2Vk OnO0߳ 6B@i' WIɞ6 yL1Vd Tw;4ND\G㻅lqeeF_ NqK`J|SS)ɫ%T3Z8+!ss%'C0G8Ev׍ڍ{& YA`f~m/`w IXΘU'dɋ@MfաE|L0zz͕EmRzU8b5À_(ƾ_&$rKAO}r 1ʗpA':U J9go k$7{**pqmh-Q;bnlX!_'cSXI[Ժ{Q)_cV)LS&s/ <5ZOB=zm)RGȣ(EcfDIQ76jUV-A]l$ خ "$1>ngXT0c'!>p>|)k ְ" |GQq ȈM*CeLN5Gm~%<8x2k$eݞt bbɁp>??Bb/d{d_JI0bv/ZYlr^Uk۞y1 W .g4&)9j:*|vv?DQ`qb5ވTIHLg›`-kU{L^Ȗtp5ib2E1h͸2B $:L- z`AYj"ŃZ|;sSFr rm $ᥐy ^%[(] b>ȺK86FߺXAIS`[[5 {ϣDQR;.CH:Y{-/wZs(xG==wEoA!?&WFs%0wU@KiN,j wM#'aZ? 5ݳ?%B W A.ۈwqC>uBUkR?&zꄋ@ș ״ntZD=q >@ jfDJ9*MrVRfcE"j@*KOgWHȨkI?#&ˢiiVt17ȠB<('ӂK򰠐[8R(ZZ}3v:4'}^`oL*Q&@QkhfΰúUNEɲ y-g? |e|D ׉,,Qor`f~Rm&Ed ,-$W`"%d3("5R&ZweBfeQ :.n5Q [\Z֪'$Pk)(5ϥO08s^$`R\=Y;F[w?:3xgg%ϽrlG-XjE YKA1_H\S y(wNmi4W:X`0$ ?BT|w /,g M!|5kzw6,!TB]7ei`3*+Y蛗]8Xc?NnјM; Pb#y\e0T "Tf)C@O0x%}]4W+~ Q#>0,fu$Ξ0r8Aֲ,ҢaJ7 djg]zi m")y -R(la5 *`Q0'\[f "Zx(qmNJ3%+>K59Fh ė́R,\̀uk/ p%}ivNe/#tir[VE''3V_ky)Vk #;Rc{eQ53~z?z}iG)p3us@T j@kdi"6g{u1*C(PnI|*pզS<S.Ln6XHGu:kI+"teUP#65kzC4|C'mobJnj‚!r~iF3Sg5ZpW3 ;<$u"7.XG>$oX,ʈ!P9w߅Zl2 j^q\Qo%I6'tԿ\^I/P]O!fA*d@(,bxГYB; Qq#=} j#[l}?q]h^DxаnC4\^h6hzGz|LtQntƸ{cfnkq,g ]4xNB)ĘX3H7{[ir_Oײ{;2Xr,_g 7u]5svjRgFl-TL g}9#& =k똎wTNVR;g)Y:a%y>Qt\A)᧸:hN { xN LgXs M?M6l bve/語jqn|_ Ɗ@uP?v1{][΅|u7Xj瓜TG,-h͝gXX;Q_ޡ4ꊟJFT喥Lrj9JRxbMSy˝Tx]X?* x{aZ0k ~A2[dIϖTj5Zt6$IHPsdm/Cfl`u)N-/1aLA[y=G{!i x6h>)i6&q#pN{W#c,BmWʏSxfj1fFr@qǿ^/o؋ (X_gH?q* ,<-AKq#` .͗ŴVd h%)?B(GA+ }f=҅d>ua4aewp/-#7>24aڃ G}Sb-x+ D,n,u؊+8Ek7ʩ]XOQ ('YLkW'-x'ײ'GYA+q)Sw~𮓥AZH`]ܬR~Wg翆8z(%*Sv*@tw::&>dC5-n@M*ÞF HgIn99Xj*6rKQ >ȦJf?xWy4VjӛrQݤR`J?h=Qn". e^\7$~5 X]ȯq66 N+X\rk֮BtPa[&++3LP2;ZoJM7]ر( !ڦO^Ag?/B  a ?G>߼/4ӥڡŰӳ0Sʣ:˜Jo~چ~U4NK 51%rә آgXyAZ"pieh5)Z {Ñ_XbO(RL9!GC04S5F*TT|UQsۢ1 rׇ_M?_2Z.`E^~b8$_‹"Ntimbv.s"(Z=*67O\=Q ;$5 2OBx)IrkNv1ΚsCXyOmk)DǪQyR_ddFfTϛ{͓3rU8 iPj iduqz/ѩ @E^HS~m`iqT3c-Zʭ3DUTVI9bXe'A}\Gbijtmnhf: 4\2 >K,Z^;:)ehaTBX~."rk;FMVI/&C ԨhQ;G5u/k :Mj3: <<SGt/Hiv^:DK[6I&-;epip_tVazkq+4p5;dUD'L5M@ ғx%lVP!Ӧde'GTG)kn^6sk g#_Vn8=1 '?6:k96mӍxcfo1MJ嬄 RK,o1v+VR|V4/xzǏ!<&T-Q@8x:7J(A脴@ڣ7f~:ʃ)cOdϿ%ucWYq^ΖretJǀV74݀kONFg6{V'QI4ip s2 yfj 9~rӥ@.e*Jlv֍w 9vsғfzr]V0-p߸% cG"/Hs"֊ދo4O~&2W&jilWxdB5BZP<$DC2wEߒ3+OcY b<)6ocyGu0כ>ocЩW1 ulmxT ?%7T50Zh(;aC=xN )ˈXϡ=ej0WEʻЉ|e iU;v]V ˥G1)]YN,%4 ɒr~FMM %ѝ ϑt=%*T`QE`ʺB^6!v&O=`j}RN+K*c`N2_uِ`/@&unnj&@ uS=K~eCj+hE`4?.Qǘp|gÝ;BN;:L W?v l{lxr5|4#2 :qit[VߏgTX܏q7n.-Q[妕Р|/dSRǜOK+JW} 5MWrK22n^Zb]XһWa@LIPpQ$79T6Yբ`B?53],u5LGGng+Zܹj{&+F.|{ؤ3mW ڟ-SgBf.o~a¬y;>F2N(b^gFS[+&6+CxO%a.Fn w0 G/-Ň^"IZZiU`A [XKed5v Z@s@TG\O!'WF#h[GV> endobj 900 0 obj [901 0 R] endobj 901 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 598 0 0 837 0 0 cm /ImagePart_2197 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 399.1 717.7 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 114.5 674.049 Tm 99 Tz ([36]) Tj 1 0 0 1 136.55 674.5 Tm 106 Tz (T.M. Hamill, Iterpretation of Rank Histograms for Verifying Ensemble ) Tj 1 0 0 1 136.8 651.5 Tm 97 Tz (Forecasts. ) Tj 1 0 0 1 189.349 651.5 Tm 93 Tz /OPExtFont4 11 Tf (Monthly Weather Review: ) Tj 1 0 0 1 320.399 651.5 Tm 99 Tz /OPExtFont5 12.5 Tf (Vol. 129, No. 3, 9-30, \(2001\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 114.5 619.1 Tm ([37]) Tj 1 0 0 1 136.55 619.299 Tm 102 Tz (T.M. Hamill, Ensemble-based atmospheric data assimilation, Chapter 6 of ) Tj 1 0 0 1 137.05 596.049 Tm 95 Tz /OPExtFont4 11 Tf (Predictability of Weather and Climate, ) Tj 1 0 0 1 333.6 596.299 Tm 101 Tz /OPExtFont5 12.5 Tf (Cambridge Press, 124-156, \(2006\). ) Tj 1 0 0 1 136.8 573 Tm (41, 42, 43, 44, 73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 114.7 540.1 Tm 99 Tz ([38]) Tj 1 0 0 1 137.05 540.6 Tm 102 Tz (J.A.Hansen, Adaptive observations in spatialy-extended nonlinear dynam-) Tj 1 0 0 1 136.55 517.549 Tm (ical systems, Ph.D. thesis, University of Oxford, \(1998\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 114.25 484.699 Tm 99 Tz ([39]) Tj 1 0 0 1 137.05 484.899 Tm 102 Tz (J.A. Hansen, L.A. Smith, Probabilistic noise reduction. ) Tj 1 0 0 1 413.05 485.399 Tm 91 Tz /OPExtFont4 11 Tf (Tellus series A, ) Tj 1 0 0 1 491.05 485.399 Tm 98 Tz /OPExtFont5 12.5 Tf (53 ) Tj 1 0 0 1 137.75 461.649 Tm 104 Tz (\(5\), 585-598 \(2001\). 48 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 104 Tz 3 Tr 1 0 0 1 114.5 429 Tm 99 Tz ([40]) Tj 1 0 0 1 136.8 429.5 Tm 100 Tz (M. Henon, A two-dimensional mapping with a strange attractor, Commun. ) Tj 1 0 0 1 136.8 405.949 Tm 101 Tz (Math. Phy, s. 50 69-77 \(1976\). 10 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 114.25 373.3 Tm 99 Tz ([41]) Tj 1 0 0 1 136.8 373.8 Tm 103 Tz (P.L. Houtekamer and H.L. Mitchell. Data assimilation using an ensemble ) Tj 1 0 0 1 136.8 350.5 Tm 101 Tz (Kalman filter technique. ) Tj 1 0 0 1 261.1 350.75 Tm 95 Tz /OPExtFont4 11 Tf (Mon. Weather Rev., ) Tj 1 0 0 1 364.1 351 Tm 103 Tz /OPExtFont5 12.5 Tf (126, 796-811, \(1998\). 41, 42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 114.5 317.649 Tm 99 Tz ([42]) Tj 1 0 0 1 136.55 317.899 Tm 101 Tz (P.L. Houtekamer and H.L. Mitchell. Reply to comment on "Data assimila-) Tj 1 0 0 1 136.55 294.85 Tm 100 Tz (tion using an ensemble Kalman filter technique." ) Tj 1 0 0 1 379.699 295.1 Tm 97 Tz /OPExtFont4 11 Tf (Mon. Weather ) Tj 1 0 0 1 453.85 295.299 Tm 103 Tz /OPExtFont5 12.5 Tf (Rev., 127, ) Tj 1 0 0 1 137.3 271.299 Tm 101 Tz (1378-9, \(1999\). 41, 42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 114.25 238.7 Tm 99 Tz ([43]) Tj 1 0 0 1 136.8 239.149 Tm 103 Tz (P.L. Houtekamer and H.L. Mitchell. A sequential ensemble Kalman filter ) Tj 1 0 0 1 136.55 215.899 Tm 100 Tz (for atmospheric data assimilation. ) Tj 1 0 0 1 305.5 216.1 Tm 96 Tz /OPExtFont4 11 Tf (Mon. Weather ) Tj 1 0 0 1 378.699 216.35 Tm 100 Tz /OPExtFont5 12.5 Tf (Rev., 129, 123-37, \(2001\). ) Tj 1 0 0 1 136.55 192.35 Tm 98 Tz (41, 42 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 114.25 159.5 Tm 99 Tz ([44]) Tj 1 0 0 1 137.05 159.95 Tm 104 Tz (G.E. Hutchinson, Circular casual systems in ecology, ) Tj 1 0 0 1 410.399 160.45 Tm 97 Tz /OPExtFont4 11 Tf (Annals of the New ) Tj 1 0 0 1 138.699 136.7 Tm 91 Tz (York Academy of Sciences, ) Tj 1 0 0 1 273.1 136.899 Tm 102 Tz /OPExtFont5 12.5 Tf (50, 221-246, \(1948\). 8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 298.3 52.2 Tm 90 Tz (170 ) Tj ET EMC endstream endobj 902 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 903 0 obj <> stream 0 ,,#{b6%UעK%yt⥪OP)Pb+*Quy!?$!AvP67Ȭ + | D ߁˰B ;^8_nuъpi3 O}ɤ=9ZNBR_7ƃk'.M kRF^u!W)/OLV,*dNcFp ],/Ξ1QpWpml߹W~ x<RO <)st r~,ΫdgQ7ޱwGQR]ÈÛxjRr|sCOeArD_- rZ⭜y# Qo2 $`΃'^DKZeM`>œ1e;"71Lg^9BUhX}89 "ǐ@[\ncyvHBݿ_ޞN֣{ K h zlT-=EE_엃`3٥$&s-O_ټ;qt%֙B;HEAؕȳ6,4|ؒ(:B|OĈ!?.\0? i'ԢxPNT 9Y\ M!ǫ<mZ=w2_ v_| *h>Ǵބ3|SRV`ƯEo"vjU@m̑eaCDF Sj?gpmy՟W6Þ'BRI#Vu_oZL$s-I>r){ v؅bo$I `~g]'[~Yd,>"2#g 5#lh */?APau9*{G0)ƥ+UM'5IbLZqjAچC[v$GVJK:U Pêu.Xi4CnF5@$#%NXo%͌VnT釙("Y.`j _%ђex.kٓu&9"8~"\$ΗtQQ܉a*0iHI9 N@Nfik%~{NjhȢl?C [t&~e'".rޠ ofhS}UUoS)~'̣Y>@WNBc)-KCv欢T9k$G-vPDD@'ZKjKqvw IEb`hm4ٲ\DRyYI7Q{$E{AX {4t4Zl'{ϾjoPVb)5 էm+ؒR'0,UȤrC _0 Utdl,(P6G@4D秾~wЇɁjr5~=9:I(ƹ&K3--X5j| Ea)L;E8&r$xJ;,OX1QLPJo䔫Saz-rٻCݤu|݋,Ʒq2  jo^D59.j3tdK ,lp H!:: 2vBp xJhl?u;M5C<4C*֏44~.=hhrUirZ'O5(jY1Au1e:g}6bvUn+IiF<ҨOm[)|u3?J{?*<ދ{?L/d'C+lכp+,+vkL|%3]T;f9Pq |9=p< x!.=c3 L'8a\^.G6BCвsѱ)48m`!`|5"Ah\I^,2rPJ2CBi@1kcz䑰Xq'@eG5fb::&׋{uџyU"#LSiuE#Hœ7JJaPk8%ŭT *b7~YR?j;4ëK{5BGMrNQLi]I6p;=Q/S2U:bs*U|.a/#~6w5>ٺB_oIXƬ.)T),EZ n"b7*CYәi-;Hp)N_LҠ ?icy[&!RȪaX;ta^$uUJۜfgdyT]z 2QX3lbr ^]~ +Y|v'}-Y; ٓ}fʪlƧʓb7 Gx<6<~e+xךGnu!!hZ1ASДX\v"zd[YiF ѫMֈI 0[=ǂG-)֫XQ eD吓oFǫ+Ny%l+P]\bo#7*YqKP~/&h=\e r/ΰu9T|*6˗)xPmŨv:35{jȢ  k 'o8u+Rd[KiLj ʂP't5WM!i}'iB͸(nMzbș0s#Z7U6fiiCěd<QT^J闙nSO[EP߂^FFXcx%*)2ֺ̺ڱMNXja@t19!iaWyF[ 4ԡ8mz(w 0u>4A(ooXe;qз2s 5̪\[RVX^&Mkm N8]2i)<ԇr=Y$n]Rh3׍8jaXZPJP~C*&q.yk Ij4 V1VERCfd 3=RV=* ?.PQ&qJ 5ƪ O=)\ڮS2Emє_lWrČd] _X W L# h9`VXT`ameZ1sFH'jxʰ&;sW9څ;Uz'@4|+ӵK`}y^x`o6B͑&aA$LZ"COxVNQ$O Ѝ`6_6G+bQH(Gqω {QYIw 3،UݶBԒQk.bc:'xg>th. yF-{ wn= [i%}]ODddc\-yMIatY0Ɔ97ƋtwF(6kK @F(Oi }F='$gr݂-aGqF h(p"Pu4iD>xeZv6ЎZ9d[=.uVB٭ޗ!:ջeVk} ~F8#x1NvQ?Q]|-BR~,[mA2KVZ*p+B|+v*NhrJNzEPbw p?sG~#o1sxkeF0ڂnco V2dmDn{ƛ$y8)+E٣sFST3B Os@+X_IQ.^^"CrlO #U&pְd9V<: .Ahr{r`] xz2^w,(P@ŌHvGt@:W; < tŧA]=巖a\Cw0ߗE $p^wY¡0cC[h ȩOrv&5]-Nk: GG D:⷇];؋Ϸf7UF%ݬ_u W,EZ~Ms}bQiٍiWF/"XNHN5֤=" ˀ/K>w =̊9#Bo|/J=SG$pCO05ɹ ьhk_a'ybQR{  kf vzOtZ("B Q&ba4F9ۇcMC{nHۛV(q@?̓ f+bpQWܒMҹኴ;Ri?H_jվQL" =gl7tN*bDDN%#%W?ˆOǚNx~4ZR!YSXlZZś=+"[+0@X3: @]_U~ (J<)g7Ay0` qBPFG& (vw$ݓ]4S5!} PʙF?b79:DƲUwc@R0\VH-Uy1}8+n|/}?AT)ňFFl0_߳Hчl<-_in{Og8 J;_omZ̴ƣyoD;fXxn6"Cʀzx.3VjHc*w@4oCU .6ŔHxx%&NyLmjn`Dz#q H%&u޾V%mtHA~):uP O$!3њ-,Vg[xq4Ce+jYhH/Q.(.IDemUxP*] L)4ZgXAɀAt[uq\^+fyz07%sq8(!Մvv.w@|B5G"&Ŋa֪:EH9ں5^%!VuʺˡpBS0VY甭a׏ks$3k뙲ٴ+sPj>,"$46my|@ ⠛S]Cg-m'!`$n;nwb%VjuV@K9CvhK@*K*]gh̹>UE¬0V|Ʊd7%HTPڧK*BlpЂ"Jw D0V!ǧ-vaNEvQ}A_D 󟭝ɲcqXに-frLuoyHX ٦T6My?Fh=[>V 2H-@vW6U$WV<0cK^T9ָ?|{LK!|q[9Kjqi !{+%1I /W}|gϫ{2`-x\zk(jIA+|z w] SEWmjw,1A>h?/ӝ+y9m`oxZ)]gBv?h &~fG0,:e&$,(.C!W=v_ޥ{0{BP X%[h4XbAA).=Is5.Y_''ջ=zJ08YbzVI=QYc+4x*&\6fZ@Mnl3:xDY,o:qO&ER{Ozj2$oNOyi-]tm:\AsxO>ƻ0$9!9ȁմܱՁ1<}INS]P¹^a#Ɲs/a$ZL?/xT-[az8| a lx `̩+2or^!P]7 EYÏk(7vGThpMG轐(Ȣ3)`2yfޣn1FHŨG3]Jd,{\w%np L_4ۋ#^L}U#>}} @x`gòR)ZF7쌉#l*OHُJ"c¢9 cNl(.&YuVh.&z@dHF%x ˔' aj$<99ȝ;re`∿gAMdnPڽWC;AqeV[矢O v@7d7Bk,^&8ΔqԌJ?F6:ɖ7mK38lmlx8>A#0#5qr neeo/no}kleQ& }Q"2 4)J5lOĞ:rGŖ_ZUn_}^0%`/ [g>O‚( /Dp7\!p 0ex\"?Yk]cb<%ɸ . yMy@^Q .ɊKxS)@cttΞu=*AYqn2#cjg^(=r xX8Byѷ}s '.!F4tzᨮ9ݽًiw8.p&Kw4Gw3wO'O dzkg>j?&.>:Lt# uX Dԉhs#ԘiM@qn[*U%שphBxղ愼;(,+< l"쩑~4?cX)ő5soilm>69&"rҖAseOgbWzA[i'L:BpU. e E"%)Y,ˁ2egùeJU(H$Πx|~zdPza,A\[m}4+e,Z)/aNm8\Ҕ$6衴EEdB`?UDp\)Y'jє߲MzWMA1/R2,>Qp݀Hiom5mJN|W8HS[Q?.EI_y ]10Кz2jP:Eɋ]7: A!c[ZM $ 3 jQq\Bܕ%w[6g2\+a51m1k 8V_Ln4l%[@y`Ⱦf4Q=m ,oA3&ETdOQ Ps([zȒRGb &7]az 77 U(WnjF<`kK BpNa%EZ} ݥO]+EHIq ((+t9.Cyj.v!ts@diFÒ+(?vUw>z!>7 c@\u|J VwvOY9 &Ҍi.&U(Dǟwt\VUW}G}?AI|T51X,$|a,QJ'Axye]|Ѡ7Нnʶfr,2xqaOb_#YϽ%pH_ xuˀB-cli ?RxWspraF&;˖";,0ڴ࡚": / M AMu L dH1GN;/I$ O^v2͵5ujIm_93e&+Nha d?P0לXW[1`"I1ds\N/駹ĬlQRnD)h ;{xݖ6vW){aw`fa챒ʰ,ӫ1)Ͽ<$N^c e\3S+S/.Sm ~_8ڼ6A ๟fQ攌9K#˕6 'VBU>38쇆-*^arUުNPQ?"w,9w@ ˕:p =C5>+,6962kRX88$4PۉV,!:bM7L;^vڀv]ΣXYeuvSV>RmMp;pQb|+AV)2jHud)ɾ2Rrb`s3u&U~ T+Hl mI ڥ 嬟ΰ{ngGz+:*+C.EFtFƑǃeNS5n>w8b?;u fA'5)o@YL߯lAl T&R) HWhp0}ecۙD%&A&vTEDPtUch6dȞfwTщɢC endstream endobj 904 0 obj <> endobj 905 0 obj [906 0 R] endobj 906 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 598 0 0 837 0 0 cm /ImagePart_2198 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 400.3 717.7 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 115.7 674.049 Tm 99 Tz ([45]) Tj 1 0 0 1 138 674.049 Tm 103 Tz (K. Ikeda, Multiple valued stationarity state and its instability of the trans-) Tj 1 0 0 1 138 651.5 Tm 102 Tz (mitted light by a ring cavity system, Optical Communications, 30 257-261 ) Tj 1 0 0 1 138.699 628.45 Tm 101 Tz (\(1979\). 11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 115.9 595.799 Tm 99 Tz ([46]) Tj 1 0 0 1 138 596.049 Tm 101 Tz (L. Jaeger and H. Kantz, Unbiased reconstruction of the dynamics underly-) Tj 1 0 0 1 138 573 Tm 102 Tz (ing a noisy chaotic time series, Chaos ) Tj 1 0 0 1 326.899 573 Tm 99 Tz /OPExtFont5 12 Tf (6, ) Tj 1 0 0 1 339.85 573 Tm /OPExtFont5 12.5 Tf (440 \(1996\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 115.7 539.899 Tm ([47]) Tj 1 0 0 1 138 540.1 Tm 100 Tz (A.H. Jazwinski, ) Tj 1 0 0 1 217.9 540.35 Tm 98 Tz /OPExtFont6 12 Tf (Stochastic Processes and Filtering Theory. ) Tj 1 0 0 1 424.8 540.6 Tm 99 Tz /OPExtFont5 12.5 Tf (Academic Press, ) Tj 1 0 0 1 138.699 517.1 Tm 102 Tz (\(1970\). 40 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 115.7 484.449 Tm 99 Tz ([48]) Tj 1 0 0 1 138 484.899 Tm 108 Tz (K. Judd and L.A. Smith, Indistinguishable States I: The Perfect Model ) Tj 1 0 0 1 138.25 461.399 Tm 98 Tz (Scenario, ) Tj 1 0 0 1 186.699 461.399 Tm 99 Tz /OPExtFont6 12 Tf (Physica D ) Tj 1 0 0 1 240.25 461.649 Tm 107 Tz /OPExtFont5 12 Tf (151: ) Tj 1 0 0 1 267.85 462.1 Tm 102 Tz /OPExtFont5 12.5 Tf (125-141, \(2001\). 2, 19, 22, 25, 27, 28, 34, 65, 98, ) Tj 1 0 0 1 138.699 438.35 Tm 96 Tz (157, 160 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 115.7 405.5 Tm 99 Tz ([49]) Tj 1 0 0 1 138 405.949 Tm 107 Tz (K. Judd, Chaotic-time-series reconstruction by the Bayesian paradigm: ) Tj 1 0 0 1 138 383.149 Tm 122 Tz (Right results by wrong methods, Physics Review Letters, ) Tj 1 0 0 1 488.899 383.399 Tm 105 Tz /OPExtFont5 12 Tf (67, ) Tj 1 0 0 1 138 359.899 Tm 98 Tz /OPExtFont5 12.5 Tf (026212,\(2003\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 115.7 327 Tm 99 Tz ([50]) Tj 1 0 0 1 138 327.5 Tm 102 Tz (K. Judd and L.A. Smith, Indistinguishable States II: The Imperfect Model ) Tj 1 0 0 1 138 303.95 Tm 98 Tz (Scenario, ) Tj 1 0 0 1 187.449 304.2 Tm 100 Tz /OPExtFont6 12 Tf (Physica D ) Tj 1 0 0 1 242.65 304.2 Tm 106 Tz /OPExtFont5 12 Tf (196: ) Tj 1 0 0 1 271.199 304.45 Tm /OPExtFont5 12.5 Tf (224-242, \(2004\). 3, 11, 93, 94, 95, 96, 98, 100, ) Tj 1 0 0 1 138.699 280.7 Tm 99 Tz (108, 110, 126, 129, 160 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 115.45 248.299 Tm ([51]) Tj 1 0 0 1 138 248.5 Tm 104 Tz (K. Judd and L.A. Smith and A. Weisheimer, Gradient free descent: shad-) Tj 1 0 0 1 138 225.5 Tm 102 Tz (owing and state estimation with limited derivative information, ) Tj 1 0 0 1 452.649 225.7 Tm 97 Tz /OPExtFont6 12 Tf (Physica D, ) Tj 1 0 0 1 138.5 201.95 Tm 102 Tz /OPExtFont5 12.5 Tf (190, 153-166 \(2004\). 90 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 115.45 169.1 Tm 99 Tz ([52]) Tj 1 0 0 1 138 169.549 Tm 104 Tz (K. Judd, Forecasting with imperfect models, dynamically constrained in-) Tj 1 0 0 1 137.75 146.299 Tm 102 Tz (verse problems, and gradient descent algorithms, ) Tj 1 0 0 1 383.75 146.5 Tm 98 Tz /OPExtFont6 12 Tf (Physica D, ) Tj 1 0 0 1 440.649 146.75 Tm 97 Tz /OPExtFont5 12.5 Tf (237, 216-232, ) Tj 1 0 0 1 138.699 123.25 Tm 102 Tz (\(2008\). 34, 114 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 299.3 51.7 Tm 87 Tz (171 ) Tj ET EMC endstream endobj 907 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 908 0 obj <> stream 0 ,,b6\xAjuT]8d3Xm؍t=7P7' ]"0J"9j!0%0jj~j1MG;)#\(ͭN<4UwAw^#Oȑ*c>Iǡ6 TR^4*>hJǒŮÏc%Ϥ[QWyg,"ozp[$19 _@CYAT^!} P!tNF㕘~Uؠ!jt8àSQiv𬋜rp*H,ßN ^D u6o|`2C)3W|d?A-%TT׉~Fj#ʔ)l捛8+ąĸ$`~Μ`@c04@|VB0SiϛqqgP[,sx1ƅ DHT7 .IHd'E?F J= <=_q$}.˧9AAy&g+fC^2^*\hm4"l: ]|% s/Y%@bd}KiL>#{6Qr<5Hx* 6`n).n+4|58pme)56*A}jf]p)caOF9~D*Sl3V.0X5U|sKZiC}!~#;G'N ;jPczһ/[w])|Hڻr~AsQq G2wPFRB;{xIX HmZslA;7\]*cWp%c6;Y<)$ \&KK8 /ZhE Rޠ[lݮ"]0rUm @TxӮ^y .;Q:ZZRIOgʩּZ $թ[EWʠ,2ִ{?;ՈM` HC%J7u~>Fv9GT3y̎B̰<6;7>̜MƚyI8ƀIg|'9I^9 UǾ6G\щh8"k\#szMr>H⅀}3 OoaY!i";_GL>cL ծD~ /G|a*Y19>̶Ġ(7#{7C#=?&9<( WH VCF@xI[0}ᣃލ3`om%BS`s4iRmo-g'rElEcnAh8ƠM|dnsUdjU)陷_5Y424.d`wF$ beF%\]s<} Tt98qDU[|v{zw{.^ÔlJ'r`!"{4,`N+K puMMZH}~/EH9i҇k7)g6?{"lBĻ:qm8^6e{W@$ӆ{O̪U:|8kdnYGp)NwDd8v?)T ! CNوP=^׷q}c#zA@pÿLa}Mu 9qXz.8|?=iܟD-8[Ė;FLb/|p k^ܾ:/]ܶrZ{d=^%gOk]ذrj/}}EÌeicMpϠwQlYMङ_+E%r8jmT?fib ٞx5:c[a;$ "j}U3_v.jY]ŽP8 s呪\DP?i6#08c v_s<,v~Jؾ& ~Rl74JlG$ 5m0}{96T;Cf ɶ{Ͻ8H"L|1?5 9ޅU 3`]7_|&R=†0if|pJp ]Cϴk`ծ(zi&ĢY5t(]&rzgrYaN ;3RCpE#mLp}i Wڵ^s|8`闇x$7v#V )?duf!lLK<(0>A ڶ_ΟBմsB#=h<0u<[btZpasW,Բ/;az~=#ZM?BRt 0CT#ѼΓ L)RM_ݮҘ_H![sn3鬒{"P8<<lvG97ƣp}RCݾJ)_`5 v_!j1¨&HJy(?]36Yʆ;_-Fy=(8ߩ<T$3c*=2@r )htŬSwWV%R0vݾJg"kvuW9|zQiiQ(wyYde1}sgq*,Os;EĨ@(ItMρlh h7+h᣺#³ԑsթiXIOrs2ZoX/ky*ѿkx~WQh2s&"6phCtw$nЗ\'~j6xA?1M>=(9 <RET/B]*;1$R, .I6gf$͗JP]ۛ|I#J1T{@g†2"db)D7ǵ/Md|~Z*,yl-9NsxQܮ&.ݵ'e4fْט؀gqi1[ 6m(!?b>'(3.ش%̾66#!4Y<7rc|DU*hhN$L곉_o}򏮮r}GsC`Q`% utgf wїo÷ARqd6N|0/孱ʫ0;Z SmO?+vT4 ũv)d(*#ji_Λժ*桜h3>j~P$].jpm 4F!%(nm%yxf\[<\'rN(sa0I 6!(qINJIDNx?~Wsj=x &hIָ8?km'_nN'iHAda`wmon6$VzM;>MVӗGO[Sх[WEzt$f%30=3f=x0CԖ!0~&>~Ʃæ"A @fc (QE}G-fڇqI1%iQuEDuݻe3AY~^}.g:=/oo瓓p ,^-(ծp=ut&/\-=Ȇ(Jܝ մW?Le@8 샯X#Tʹ3.,F7SWq[[:} oSUԿX᫤<*ZwY> 9隆D;{*CjaiQݣ lE()˖=M=d'cA {YԄbB>}Ii4^Rqb1K/K\QA~rb7`/LcWĈmOTB,ڦ G'|t 9IExI;}mw6sR~^($cPѱS!J.,5,tNhO,o)OiXw=bJez.4K,YȑdXz/l@2d.q1BВWA0CZcM3+DkIfTRSIXa'c_cs!3E*;ZA =q(/b%{N5'o,ǃL^jn[9&QFbQtO | :q$NeB9?6}H?~* 'XI?ً̀I8|8=dG^ ;hv$y&ɚSleXC8=Ԗ1Y{ U5˴}[כA~epgu\{AX 7JNݓ͡ -Ƶ)]y/3_ŇkIFP6:n$3:F;WE,?4G-Wߜ lњE}Oxہb]ӗjP6̎}n2 G>'.(^֘<p̬*#Ҥ!Wu.lf{:);9 5t=R1kcMrTpX~v'R4s*/HŌ?[QIy;U?j7-ɼp`D׭q_w-ߍe%5-u }cq/ֻd++>ڽG10ۈQQsqЂrNJ`M:3ar[鈘Bpߣm/="g|V x lؽN0O,i!Gesq5)gQd|~MdB/(0a ݡ >1༶l#Va["3$:UjP2z.Cq+Yhٰp.G"9i[me|@t")-ykDĄ,uYd2 `8>2mib{kE*F, X):zPx<[IQ xDkpن]kꤍDa3jzV r'<-i\E>aeRl0o:2`tU %&HKԲWֱezDVh'E>4m%+ܽ)<@Qz/yҝ{DROJkئh*zX;y2~I00gËE;G>o{?=G&T1_ .IKśg(4l[$ }onwBo^WpZ}]^~1O:|:<SU^z3TO0.^b8Pme:5[dUv*l&{ZD:+f7TǩʻLj%,rÓ[3tϫ1Fp$s5AU*ߪ H9)|ީLzJcQ\GčiHJ5aIU R )+K-Y#ϴbIr~fj3GGCQ f"3AHi*SR /2ZG"z++`sn]#c-tH :xFfuM~7P5_NmMW'#ǻi/GSNߡ]+!D~O% q;-bȠȌ,0;mbx.@P:^#CL\m4ky+ ٖWmyC'R((,R}S*'ꏒzf&Ղ"v )R(XO%e=e2.X#ZXuiP'A w+hWV\=wiD-ҙ;s:Da+3G&8+P7˭?Qt*ԂO&HK^)ŵT+ iW~|Q& L"V׎bzs ,<Kẗ́v0~o!>o,0Lȼ3?#vÊ-?  1 ?.lpb'ˢ,o^ui Λ2wj[Cv+A+POmbe;7j_ { k}8M;ջ~YήQKF ƨcL W)ޡO?kf)Ź!(bJIN6TA[L,pe&gqZnS=IJY|Й<ųU(o2^}u.m>uZr۬#ZW{+!5O )ܚue}H4ʓ PtwD.FkhGk\{?GgD0VB!UĒ}@R@9464PmS& kTR dkv")],)蝔Nʺ` CǝW5kwlUW#ȇza'&mO V-GRS9 VH_&x8-Cxy5݀Fqp`+B!>uK}^A^iK=~H:8 ~E5#6z<_4Ԁap[b{x=6_4Pq*gmCP¿hݷkRmӜfLR%KUdM+^u49zh ngݧ U͢UM%FUJ:~=A _/v{:2XcuL!|iCHOد+xUuNl&Jl4J_g0Y p孺m4c;q ہ&߄n#)i`9; SrZUTQufRs' cirD7 7Dg={ 0:(j P=#)D\%c|]d\lS˻5άN7zHYvrZ4Z:d Guueke7ih7d@q/{YmCP,Y|x0S.U՛8jJӤ-й |k',N1~C}l 2s'Hk{{^8|« f? [bɒ9*m4 #I<Ǡو,Ծ<^ش.,6V\ :_Y{p>u!!?ոcV#\Hƍ~foZkPLHғlS Y`\e"Ll6A +8b.3KuM;ToWC]`CەCw+^- kôe 8立7ƴ7~jhoO]N1HO Ɠlzbw`'zpPJ^˻xX"(eZ-oE|3_tt -7CgkE M@*Wޝ[ d@`l֪,ihaKDڜ{($Ъ/1^?rΏ.Υ =s3$r1=2d1e`G[kb.bZawvO)7 /ҴO؅ c ݻn'QiݶqݘpË$5~ہ/p*D^nE? -pN+U(qav0Ƒ=?c f_ĉiJ3SNf>qSA>VmϺEXi_>5kMd*;Uus(mo|}`]]݅N n߄}` 'vgۥxA'Ԫ#eXl0lO:FhNw"!)}R~K-܅T~ڲD瑒=a~и p@ɸJ4_32$ &kMy nlWy`u3gQ[d'V H*9mO"Թj=u-*Ǒ#W ''Bukwam`AI,q*#Q Z\{etĒ WR% qu7t9zAA”4zu݈z6BVJlo0P% fZ&C ¥pyD"x]8L8 `%Dz6 Ubnh#-1$v 8$Y?U}&3Yfjz0DskoO `|R3rH&ZSRe?pmry2#/FY = endstream endobj 909 0 obj <> endobj 910 0 obj [911 0 R] endobj 911 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 597 0 0 837 0 0 cm /ImagePart_2199 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 400.55 717.7 Tm 120 Tz 3 Tr /OPExtFont2 11.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 120 Tz 3 Tr 1 0 0 1 115.9 674.75 Tm 99 Tz /OPExtFont5 12.5 Tf ([53]) Tj 1 0 0 1 138.5 674.5 Tm 102 Tz (K. Judd, C.A. Reynolds, T.E. Rosmond and L.A. Smith, The Geometry of ) Tj 1 0 0 1 138.25 651.7 Tm 98 Tz (Model error, ) Tj 1 0 0 1 204.25 651.7 Tm 94 Tz /OPExtFont4 11 Tf (Journal of Atmospheric Science, ) Tj 1 0 0 1 367.449 651.7 Tm 103 Tz /OPExtFont5 12.5 Tf (65 \(6\), 1749-1772, 2008 29, ) Tj 1 0 0 1 138 628.899 Tm 98 Tz (56, 62 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 115.7 596.299 Tm 99 Tz ([54]) Tj 1 0 0 1 138 596.299 Tm 103 Tz (R. E. Kalman, A New Approach to Linear Filtering and Prediction Prob-) Tj 1 0 0 1 138 573.7 Tm 95 Tz (lems. ) Tj 1 0 0 1 168.25 573.5 Tm 97 Tz /OPExtFont4 11 Tf (Trans AMSE Ser D J Basic Eng, ) Tj 1 0 0 1 335.05 573.25 Tm 105 Tz /OPExtFont2 11.5 Tf (82, ) Tj 1 0 0 1 354.699 573.5 Tm 102 Tz /OPExtFont5 12.5 Tf (35-45, \(1960\). 37 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 115.7 540.85 Tm 99 Tz ([55]) Tj 1 0 0 1 138 540.85 Tm 102 Tz (H. Kautz and L. Jaeger, Homoclinic tangencies and non-normal Jacobians ) Tj 1 0 0 1 137.3 517.799 Tm 100 Tz (- effects of noise in non-hyperbolic systems, Physica D ) Tj 1 0 0 1 410.149 517.799 Tm 102 Tz /OPExtFont2 11.5 Tf (105, ) Tj 1 0 0 1 436.1 517.799 Tm 98 Tz /OPExtFont5 12.5 Tf (79-96 \(1997\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 115.45 485.149 Tm 99 Tz ([56]) Tj 1 0 0 1 138 485.149 Tm 104 Tz (T. Kariya, H. Kurata, Generalized Least Squares, Wiley, \(2004\). 65 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 104 Tz 3 Tr 1 0 0 1 115.45 452.5 Tm 99 Tz ([57]) Tj 1 0 0 1 138 452.5 Tm 100 Tz (J.L. Kelly, Jr, A New Interpretation of Information Rate, ) Tj 1 0 0 1 417.35 452.5 Tm 92 Tz /OPExtFont4 11 Tf (Bell System Tech-) Tj 1 0 0 1 138.5 429.5 Tm 91 Tz (nical Journal, ) Tj 1 0 0 1 209.3 429.5 Tm 101 Tz /OPExtFont5 12.5 Tf (35, 917-926, \(1956\) 74 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 115.45 396.85 Tm 99 Tz ([58]) Tj 1 0 0 1 137.5 396.85 Tm 107 Tz (E.J. Kostelich and J.A. Yorke, Noise Reduction in Dynamical Systems, ) Tj 1 0 0 1 137.3 373.55 Tm 103 Tz (Phys Rev A 38, 1649, \(1988\). 79 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 115.2 340.899 Tm 99 Tz ([59]) Tj 1 0 0 1 137.5 340.899 Tm 102 Tz (E.J. Kostelich, Problems in estimating dynamics from data, Physica ) Tj 1 0 0 1 475.899 341.149 Tm 106 Tz /OPExtFont2 11.5 Tf (D 58, ) Tj 1 0 0 1 138 317.899 Tm 98 Tz /OPExtFont5 12.5 Tf (138 \(1992\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 114.95 285.25 Tm 99 Tz ([60]) Tj 1 0 0 1 137.5 285.5 Tm (S.A. Levin and R.M. May, A note on difference-delay equations, ) Tj 1 0 0 1 451.899 285.5 Tm 91 Tz /OPExtFont4 11 Tf (Theoretical ) Tj 1 0 0 1 137.5 262.45 Tm 94 Tz (Population Biology, ) Tj 1 0 0 1 237.349 262.2 Tm 102 Tz /OPExtFont5 12.5 Tf (9, 178-187, \(1976\). 8 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 114.95 229.299 Tm 99 Tz ([61]) Tj 1 0 0 1 137.3 229.299 Tm 101 Tz (E.N. Lorenz, Deterministic nonperiodic flow. ) Tj 1 0 0 1 368.649 229.549 Tm 100 Tz /OPExtFont4 11 Tf (J. Atmos. Sci., ) Tj 1 0 0 1 449.3 229.549 Tm 96 Tz /OPExtFont5 12.5 Tf (20:130-141, ) Tj 1 0 0 1 138 206.299 Tm 101 Tz (\(1963\). 10, ) Tj 1 0 0 1 194.9 206.299 Tm 91 Tz /OPExtFont2 11.5 Tf (34 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 91 Tz 3 Tr 1 0 0 1 114.7 173.149 Tm 99 Tz /OPExtFont5 12.5 Tf ([62]) Tj 1 0 0 1 137.05 173.399 Tm 107 Tz (E.N. Lorenz. A study of the predictability of a 28-variable atmospheric ) Tj 1 0 0 1 137.05 150.6 Tm 95 Tz (model. ) Tj 1 0 0 1 175.449 150.85 Tm 84 Tz /OPExtFont4 11 Tf (Tellus, ) Tj 1 0 0 1 210.699 150.6 Tm 100 Tz /OPExtFont5 12.5 Tf (17:321-333, \(1965\). 146, 147, 148 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 298.55 52.2 Tm 87 Tz (172 ) Tj ET EMC endstream endobj 912 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 913 0 obj <> stream 0 ,,6Ԕb7 &˪)6Qxދ+NQ?.dEl0eNq&,=QP^Ea!njͼ%ԈZx]2I24i^GkҜ]O e_xV~2m䘴x:Om;@P~^=4,/ =+ qB]z*¨ S݃[VY%ceƧ|Hw l9}?O`{Eo8˒Vr "wb2[#<˕;A-&uۄ!idZ k8Ff#mFnŁrRYwi|Q0b/N-oE'H.6A }[a_:s>tGo4X)KXp'|( И/y!S[4W}>.ܘQjZ1N5e5]ATxڰҧ҂€|L2? B;qjSbO~ZMW,=O2ﮣ|a[  ^ la/ǘjҴ6@!he)ބ؞W7٪([~>V&q-nێCӔ$h JjR|:_;BW!޼ ބq>`Պ?o:rVL}(cF|m:x"9ve^܋5Dw|:~NQG ; \or?N?}xT3bbbEg}6kYXXT;.Oeq>uk찘S Ժh[A\j@:4Hs!!бΡGz[Sx;GM[G5gEWˑ/@]I&}䚁r_s9Fm+ 3|eDmIsa¹T7.P}a+{":!g0isi Qmg6=ݡVYo~@<jۣ &! JUDk)h@o--yfrDR6)sCzr 8ptf|YsAOw`pD^[En?}4i>O *5v/6c8Fr^xiH8y;]^ˤA'ca^C !IJTh6]kx+WC~x8,C:}Ml!I|?rduQd-XfL3͘uݣ!6qN>Bk!"i|Rs>y]br?Lg5Yvc! TAx ߹uOI:ygꮆbuVs$&42%9 )y w\kUO”!'p&kp,P.3$`I Y{[b=hHccu\ Bg=`vy̧1lDF:$)Dǖ#&3Մbs1}/- ^"IOa\ dt6Qe h|O;e PΐU^fBh+oJ5qͦ>O m5>K=]$Ɯ(1>/& Y+=Y>hTs_@ @ (HB htf.Ѳ">ͨ~:@ؗjwS 7g6q/QrڲW\H~TΡkXkȮ0L)]r*+d~ ׂ a)+VnO\L3cSIq;f_6:cFW?;:S&2l_,)4b i>94{ۜsokK71L!k~3̇j1Ҋl7eB;ij[>Rc/'FBE[ {h@ c7(!2<2xA-},?٩w-~L?= 5~b0>7545ⲹմ7*`")-#YηMu(<{O _Mj~$Mj;@]Qp3q2A \FN+_v`ʰSEZNVNUeޭlo*>}D45>Z&h"F.Mf\E*&/j>"G⡀tQ= 0{~(q#䩽81~a>(S?#粹ܪ;۝꫆Y+(ȴ+,ʼ܎Ō*%ʴd<:95n2w.#ގ̬Z.n:x՜,a4s\A6hΧo }ȓ> &MB6U9$h й١&;ib _<oQ@IViʅQ0;KV^rB^+:wLQ.(XSWao1G䂿xLduj44xbE=M4=Kooqɕ(t!c~ :< 3p1*?+|}qȣu?Wm^(4dqIƴDOƟ(s+DѲ*X+XKWWSkr9QdT8Yz}P?UWU<&fZup?xo6WN` QevLѡ%& v]qחY t $9T]L;<;&} nƼ|w^zZBi Ӽ۽ccֱ,w=4st 0SW9_e$&y?=^Hj\IHQb]f!e8,[pʼPM$F0:F?RϷgnulx|ݼ8$W75A˴` eNDK|07"Գd2#ed~KB91Lp{ӖZUZ>-RX9ꥂ%]}  WHReŞl&קdܒ[S*7 vaɰ=>qJ:+L /@#"hlbωҒvq[״ҏ˓- kEܽC'/%X pm܁wyN?&P<ҡ[M؛f3 $xe9N/? )y]$,`9Hz3 `gl9t8LW]2+/hdַ$,/桨#͞{i't h,KAbemUB `1t;A޻'#+#q4Ƽ7lcP>3/I0; p>#4ճ k| ba FX=".:|NP)mjK xeD;xU4PͨEa K ><?Q "\Pg1~m˝!;$>&P{3rQFGӷkA&_fفEٽ]9QiZL){)6 2܍ Ci xAOUȘl$(KБDl`e!ƶ 7\a:x(+Ėb%J"$ u^nq'qYZY{&%-SI>.? X~5ȍ؉(8fXT$o<@'2v~DmS4<3ls9(.=lKXjE!rR"~~m8ayl. O)фl!{Zڄ(4-fq8]042BDĹS]jM-O:H+Q\+I+ ,Ɉ !Lz,χF[R`SQ]ɯBmǽ,&yh( A{~gꃽ73OT̂L)sZfs{UlVc@7Xfh݃1,Q2|"$ OS6WG{I+WQFZg 7i,mV U+=!咀(x\4|P7LLI,cfRߘxqKn6 .wՐ K 8SgkU%:Ǔ>ٗ<Վ̚ig _GiRTˑl48 WD~MLJ̀'t}앰b[YX4؅Aʽz `ZҮ̟iHۀѱDt,z2/)L9KR$o! u>e}bj~VXBw] e>9Vtbxj8/TzT&;PxRy@ϼdC놥NV3HgZI$76G#rwٌ 5sZKB&ZSТzUBVRP MQF ;FWh$] |DqiLP(SA\d*+ ˡV]۩!ᓹH&ƥZ֥6S{J&hتΠv{UbQ5Su#ٿ&[#o3S㢙.m$ vYo.ȁQAS9QWn~j 9ùK.,V~_Mnޖ*JKBd~9-kV)K_&x6Hk\CV"nI_ =Ϫy}|;F2D$t1R1 *`*௤*os}G_}ȎWyOySez/Gn rk TH % %65eynˌ m~y1n-l.[~L;8 -ks(0iJ&s0`zhPARZP%* XH4i\3/QW zXS)6 (3Y?㟑ns'k^%?S>%^yAIHR˹:8 ߐ˖u'7$Th 7::tѴkX?jV37 0=S2f$Uk`llczwCԮcW[p{e1QP2m J!a]mX+9 =DH;ѐTbXm'$gt#SCӍXsDŽ9\-7"LqHwoeSS?+zkE3;aJ^˂:ю7S=+w|:&z>e0/Le~=U`7} U%-Ʋ]g,/Z[gHa$}('=\+XPhgT[EH|NyrE@A\2_="|Z M.IqDk|Fko辝j~p m=2EL*?`c-B%~3ҀvFMr{c)?KƲA/> p U1pmdD;D[\o5 aٹ`CD[ŷ+ӕ·HFcP0U4Ī«[\Gkx|r`;YD+6(P[@\3& 'X+Hmx)%isn ?黖 Y(FvI/vRh]uZd,f\掌tQ('͍aH'@=CTŋy>M}oش +t}"b@Ѹ 0lhIZjg!XH<&"znz>?yRBk*Vq@Jv wk!>t:-N,#.#MQnф e+pІV陼8 .abԕS.f_4 NvbLjZ~ƆezJ_Xu\CB+|(wOP$-Mf+ Vn6jW/JY)SVR{ Ns~ uYqSX툰fB^с;>S+ D:[cZv2ĚpIXfJI?)pkX'pf*N;9ɣOz2CH؁a,|fEXNz^ zLgh(uuԧ{7 ^ wwuؔ118 TOs@{ "׃9NwpaLOw܏OCAsÊQ_Hw1C^!֟7>`~D7eO's`ib% (,[*dznUO%\+N B8Ww7]m>an;ZlXz *5L^nPaY)KDRu|Lzܢ uYv כl-Р} +W-ʽ5?&~^~a8^O$K |gTdV>𰨡0%ٳ嗿>V_V- ;2aK!)R+8Eݱ\$!dc,:{wi[HF@2gɘup9A/s҅Պ5vгV1Dc%A:ڸl2L{x0KY>CaR`䖞cdkuh  @Cc){>3-1cPg:?m- 0䴆w@E|Inh&e?#cn. LZ,<5y.med>Il&w! F'3b[Ú[P%wy noJA,Nw{-:H^4 W5u320zƨ +d9Zؿ,qW}V#!>SM@̵N{-&"Rֆe4H  # G>l2f0gf_͇H07'[JuRFv.cA >7'z~ʷ垑=L1ذڳҟt#ۛ75߁ӷ98(%0u7\7d.?V±ʾ.'<[cîTt 4~#NSliUMLAVsNØҒ?<@F{f†j<ވW`wsLHҚ@ { I"Ԉ\DVvR,=g&ݤ7Kmdg>B)k匝;e;_̿ hQsԓ?TFNz5݅y-׹"^FLAOd҉#r? V۱q TCUf0%엶['ڱ[乹 -_v*-SvTb Ȱ Jc WVմh!}ek|2 l,H35=eMg&aEn=fV;/ 7QM N|-oļOkC` hF4gyl@1!DVsAŤΪGMWc_zw3)+%E(-QK|V [W*Q󦓩pݢ誔 21Y؆jV_Uq/>Q_J?n(ʖ_)'X (n9wd@c# <ϜUvMB*ЁDzk ߪqEnGëg5 1Տ(h1f/ײ2q:Z2.kC塦=8YJ%gcQh 1 =g,Ҫ~Kջ {l:̓m=vDTj|T'n&<)zG ?w0!C)V'dKQ2m1[jWE/ F$  f&u[/Z凥~3$XSHhlֵCucm5L'XDURh'!fbe{Οy4s A6 WK%9"|sr6J.Wד~'&s^!5 {j]iGvo@c1y)"WPpGY*+i߈m O;0ڪI!a?LQ5Z>ǵTG+>g!\J-D0EA2?ex-p0\1PPDZvVCL]6F4bb(G򾞘o 7+uÔHCg5< B="cJ,uQ2d3:j-7[O@SPqm݃ߕ ߸)ï.fÃ-_4!ɒmd2#ѱ%<*{3Ғeq-`!fSn>d<(9tp)ܤAw(ۿ×n/F{%-'f*gş&+v(Ԓ._5(,ǭꝳN? )Ԭ8g `;o3#q7Pڇ.yL < ʰ$dʒ ٕ0զ3?#M#q"U=j7]&%JOUUQf/1H׫RVBF:8W02Gޙ(d&EE #0ĘtRj @&lVuz)(ޭ>xswyi?ہy 3yiLak!7ѫ1\%㟻n[참-IY߰-4 KbS/)m5ީְKͼך5׎fC6r_6`*;thOÊe0ȵE _86֔}-"t }v"0;.6)8 qR8?b8(˾ kתLf0V{fkR_oq2Mj g#=e`}#:^4lN̄Tw;$sk1E:[Wb<$6 7akrއ8}s{:wHEqOEWPNMUIo`7Hԟ+mph] Lȑ"'wKS=7ZQT FLTT*)K([T63ezmѳNa--wC&uz9hq輎Ctq-*)lv?t}e X}}eJ*5xEajo*20M."~',\: x}87DNe+.4F ?|WY+T()D+m ^WdTawS5YKԄQx#ӛt-'%f>UQx2dT[v['O_Dfa&אu35u2f(U.%^@FxWV'_ endstream endobj 914 0 obj <> endobj 915 0 obj [916 0 R] endobj 916 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 594 0 0 834 0 0 cm /ImagePart_2200 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 400.55 715.2 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 115.9 672.95 Tm 99 Tz ([63]) Tj 1 0 0 1 138 672.25 Tm 101 Tz (E.N. Lorenz, Predictability A problem partly solved, in: ECMWF Seminar ) Tj 1 0 0 1 138 649.45 Tm 100 Tz (Proceedings on Predictability, Reading, United Kingdom, ECMWF, \(1995\). ) Tj 1 0 0 1 138.699 626.899 Tm 97 Tz (12, 13, 96 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 97 Tz 3 Tr 1 0 0 1 115.45 594.5 Tm 99 Tz ([64]) Tj 1 0 0 1 137.75 594 Tm 103 Tz (P.E. McSharry and L.A. Smith, Better nonlinear models from noisy data: ) Tj 1 0 0 1 137.5 571.2 Tm (Attractors with maximum likelihood, Phys. Rev. Lett 83, \(21\): 4285-4288, ) Tj 1 0 0 1 138 548.399 Tm 102 Tz (\(1999\). 3, 63, 65, 66, 86, 87, 103, 185 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 114.95 516.25 Tm 99 Tz ([65]) Tj 1 0 0 1 137.5 515.75 Tm 111 Tz (R.N. Miller, M. Ghil and F. Gauthiez, Advanced data assimilation in ) Tj 1 0 0 1 137.3 492.699 Tm 102 Tz (strongly nonlinear dynamical systems. ) Tj 1 0 0 1 329.05 492.5 Tm 103 Tz /OPExtFont6 12 Tf (J.Atmos.Sci. ) Tj 1 0 0 1 394.55 492.25 Tm 100 Tz /OPExtFont5 12.5 Tf (51, 1037-1056, \(1994\). ) Tj 1 0 0 1 137.3 469.899 Tm 96 Tz (32, 33 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 96 Tz 3 Tr 1 0 0 1 114.95 437.3 Tm 99 Tz ([66]) Tj 1 0 0 1 137.05 436.8 Tm 106 Tz (W. D.Moore and E. A.Spiegel, A thermally excited nonlinear oscillator. ) Tj 1 0 0 1 137.05 414 Tm 102 Tz (The Astrophysical Journal. Volume 143, pp. 871-887, \(1966\). 12 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 114.5 381.85 Tm 99 Tz ([67]) Tj 1 0 0 1 136.8 381.35 Tm 100 Tz (D. Orrell, A shadow of a Doubt: Model Error, Uncertainty, and shadowing ) Tj 1 0 0 1 136.55 358.3 Tm 99 Tz (in Nonlinear Dynamical Systems. PhD Thesis, University of Oxford, \(1999\). ) Tj 1 0 0 1 137.75 335.5 Tm 79 Tz (13 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 79 Tz 3 Tr 1 0 0 1 114.25 303.1 Tm 99 Tz ([68]) Tj 1 0 0 1 136.099 302.649 Tm 103 Tz (V.I. Oseledec, Transactions of the Moscow Mathematical Society 19 197, ) Tj 1 0 0 1 136.55 279.85 Tm 102 Tz (\(1968\). 146 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 113.5 247.45 Tm 99 Tz ([69]) Tj 1 0 0 1 136.099 247.2 Tm (E. Ott, ) Tj 1 0 0 1 176.15 246.95 Tm 100 Tz /OPExtFont6 12 Tf (Chaos in Dynamical Systems, ) Tj 1 0 0 1 324.5 246.7 Tm 102 Tz /OPExtFont5 12.5 Tf (Cambridge University Press, \(1993\). ) Tj 1 0 0 1 136.099 223.899 Tm 82 Tz (9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 82 Tz 3 Tr 1 0 0 1 113.5 191.5 Tm 99 Tz ([70]) Tj 1 0 0 1 135.849 191.049 Tm 101 Tz (F. Paparella, A. Provenzale, L.Smith, C.Taricco, R.Vio, Local Random ana-) Tj 1 0 0 1 135.599 168.25 Tm 99 Tz (logue prediction of nonlinear processes, ) Tj 1 0 0 1 333.1 168 Tm 102 Tz /OPExtFont6 12 Tf (Phys. Lett. ) Tj 1 0 0 1 391.199 167.75 Tm 99 Tz /OPExtFont5 12.5 Tf (A 235 233-240, \(1997\). ) Tj 1 0 0 1 136.3 145.45 Tm 95 Tz (16, 132 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 95 Tz 3 Tr 1 0 0 1 296.399 50.399 Tm 88 Tz (173 ) Tj ET EMC endstream endobj 917 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 918 0 obj <> stream 0 ,,Jb6)'_4ՓXuL 5'}_A?DY)"-Qr!B{F AP@&KS_'+ ?kpfɓnTnOf +hg \C&CExmjXcr&˿;'OJr8ΦZJT JwT"yHlN#K*R#q Jg]Ȭ?)1-BHDf^'D~F|XqsmE]w?قF/Kd#2P"<(mgLtKbKA0n mpq23zZkw눁hO@B V@Ih]n!n"h;Xq@ċۮ0GѩX]?҈ Q bjٖKw!O!lפ8Mw$޽ou*UL27Z8-xNRd1u݄mJMnkVv&y@|GwZgRb nd˛dՓr1709U )8rgX 8s'Lf?okrd:d>6t[/փE\ͱÛFb!djq6=ŵk8ߌzCshʶtv''-w[+/뇝sJH8E`٘6(q^ 2کzԒ҃ f}Ͽ0\.nETMZJѤ6Zi1 *OX[u|_-YnjyT/.H~һ,H39N!'hC+n?x{Vx?lY<qM)VA`[1z7RQkUUپs ` ߠ^߸|FFZ(Jyt*ؒN΢3E@Hk5X0f;χrcMƒD})G//J}Ýf˷Y|!~NCDirdP)d!CHp]&GG|U2 ·G⶘0iPS;6`*N(+q%dXE5\ء bq2)cE(WA48cqv'WxD HB-ĥ OV OIte3? Jd4y h*6}l¹DdU)2\'X( O y&C)XO(ǩ5(:B߭n,v"삹RZٜ:YObBY) ZLkg5 PPDu-GݮAs[pUzwwihT򠵜g|9-ϛqG}dZMzdo`fAQ3JE..Cȍ]<6S~bfM(i p[tJ`կzZd캤6.%6os#HY$VU*؂VzB^xΊ-y<>hc6(Jӯ,ٱ"K%8FK;?ٖ(Knl?x6K;ڌ(챫–mCIJ42Rʲϰڇ鴳mD\ܬk ΫؤDCM#taxQEڤȩ* wޟx@,%Cgй{,5lVÄЏœw2k#Bз KqjyAo3sPH؀Ӄ C'E͕ zeA>lh٨5dZ^}7ȞJL\ P*ukO BT$Y~=Q/=YVDͩݨ XRIG_ Hwsc-O-*HB( =w=Ukډwim(괪L!#hM,|u,nnJ "aObsjB0 >0/'i7_k oWhl(M*|ǀ);zj3*uҺۮ'4؎w=q774]er ^^K_lPumB=bmeO:qS@PulޡluԴK^1Ͳ?TuSB*911>AشT`nCXT[ e!]¼ZJف"5j}" ݄I ,)>|  oa _ .걠u+_Nf1*Ju0)|} #798*guVZ4Yizm0;K*2lwD2Bti^[z i[c"[^pALƱ_''!>:Yy `H]u4;o.P7%MG)TY=`DW%=yst ׾[B ,} :ՠWpAތzdJvFL5T=pS1P׈ˀ.x<Қ ySۀ H Qcerkq*C@b2,*C#Yd!5YxQt]x<.ə NEm:vʬcI cm.A&G%cH&0I Uj4rSRj&oWnu51K>o@^ZG6+W2=2AXf,zJ ='.ٶ1ڬG=AO _SҠ/<8m`uzT~2c~yʱu^>tj6-lՆT0F!qzҼ;6] ʹDi2>o_ : tE,da! eƚLEҳ/$1= kŵK@=/:j?J lkL\U>k7㶺 ~h2}ڋ!1Q, )+"~v}iV@zw_/j~m\Pnjr-&c}9kw.ׇš+++)D$mFm 7zA*$F]k%ҧXMw Jo clўqdO ξ-]8śO$1Z<Μo8̄Fn ABi>%k؆f3PKґNH{@=QH|@CuΫCvt`@+~LGUOtހaMEwڧ=SDs A.&J.2V}nFj◡i?AG\=YW}T4C/C_%F@hJ| -N+KKg %;:kñoIF%F3,#Uj pu,Ϲ+a[,ܔ a4 vLFX31FHX).",@Ƈ~U#( 6}_^q y̡.%YL=DC }MilG%U]%[tꡜ<+,4&įDaO1Q` qh]&j/)>*R-yU/w-UvmvCe) 0 [ l)r"n߭/8[Se9H0h~PeقC)0ܾ֥uⴱ{(o TZܿ呌+}NNv߅w!+v B;cp T A>=_V3$iZGdp0d:C"occ* Ac(?n||{9R`,Η?ݔJ5b)l2T_*/!#:U6yf ̹f-)' RVf(x[hK,Q>RL*VՑ96?ug,{"֦V~PK2c^L\$Szq1P`5_Ď;`N-{ԔGUpRc/K{ kl 3l xXR Xw3*fH)f,*wǗN\ZB#cySd+ri(9'rbSm|7 d55OA\T=P1* @90xAA0[w-y7qV9VM qhLqIkL#e嬌;C@6b鹒-߃GܳM sf_XP("=n jB`,sz"QJzV\snAgiK3PxLyfU.GBh(4y izhx- RU@Y;G% \٢:s2ʭ[_+-m ĵrRX}Sd!it="FZF0%WyJP4'JBi^6^Qz`a\8WkoA7Jdw5cX겘f& 2vlofkۍl ;F&ݙPA>avތ2R?)&5@;'.|8V-?5qR 1L#A &aQ^Q Lh?C:N(8-$0 9TĸXы*\zU5-S"=En9'8huaq~)E--ʁ9VJn,A}BFQ !?SVR$zc6|@Aa+|MDu 5 0ľ[-'@vɲW(-mohzT[b:M6-<6X1l hc!cgc256M:hEE>r;Q__s[8XT[48\Դԛ,hI5sN)Q񈬽jDpB Zپ{Q(~f-) s+O&q Qj=W3GQԗ`kٻ(Z9{'D JM 0Hz'{Jn:vj1U {~Ŀt%H[pNHBrkXo<[CY-^l2|,5֙V:cʊטY[>\gDxϦl$GePǃڤ`Y9ja c5鵾/V{۝r]ql}xTCvY\{ w;e߶oϹe dHl}Q5D`noDVKVQ67km8cg5,^Nh[g`oz{o&p+; 0lLJQiJجkӔ@uE^R5oWZEa}EqBʲ,'`^5aVir3vehVܜRt |1?jM}]yܺ7mE7n[Q;:eG$6*C\<&Q05QlKUdž!kCrD-6Qչ֙fD*5xxJBH|F8iC`}G %JfB1sZfmԽs^O,8-):N۶[V&!^(Z:m83zCW5hkxJ54B*;)„""h?s`F1#Jeɧ!6y0T'8QgM >~g;53Ӳ! !"nsZnLF2з0)vاo= v{PmZ0' 'PF}"O|@[f! 9@Bk0H˅pG~oT}yK_Tܲw܇)Ad9hwfz,L>ፐ,M^6u aȶ4Le|f{;GڟeUw~4M aOQPnS;-q D}\pgo ![FޠvANKG4 gwxn[0E4WQʜ @+`K0y'OXIJO]jz?yd4*了W09:*a1pGwv"yqE0k q܇lޞj ^~MUi.e{ !s_Sh/?Y$qE_%1 ^d5[!& y3\VG-߶qigF 3GO޾)(M^0, F|}P(M_OrXbW?Tݣ,}Tb^ù/}[S"}L!\fspA{Ú BHaϘZ q%rrk3ѻ4$JG 38(ũ nL놏>qHe$l 1V j MQҎͺ3)ty_5SVN=G:iB".#:Ph]LɄRoև@U^ZpU/ry"Xw¤>g~o|Rկ= ̙̹xv.:NHxRE̵ e/ZMoqcff.s݅Ǐm䶎$=zP4V RhL[LrO5USm?jZ endstream endobj 919 0 obj <> endobj 920 0 obj [921 0 R] endobj 921 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 590 0 0 834 0 0 cm /ImagePart_2201 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 397.699 714.7 Tm 120 Tz 3 Tr /OPExtFont2 11.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 120 Tz 3 Tr 1 0 0 1 113.299 672.25 Tm 99 Tz ([71]) Tj 1 0 0 1 135.599 671.5 Tm 111 Tz (C. Pires, R. Vautard, and 0. Talagrand, On extending the limits of vari-) Tj 1 0 0 1 135.099 648.95 Tm (ational assimilation in nonlinear chaotic systems. ) Tj 1 0 0 1 396.5 648.5 Tm 85 Tz /OPExtFont4 11 Tf (Tellus, ) Tj 1 0 0 1 434.149 648.5 Tm 107 Tz /OPExtFont2 11.5 Tf (48A, 96-121, ) Tj 1 0 0 1 135.599 626.149 Tm 103 Tz (\(1996\). 32, 33, 34, 36 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 103 Tz 3 Tr 1 0 0 1 113.049 595.2 Tm 99 Tz ([72]) Tj 1 0 0 1 134.9 594.95 Tm 109 Tz (V.F. Pisarenko and D. Sornette, Statistical methods of parameter estima-) Tj 1 0 0 1 134.65 571.899 Tm 107 Tz (tion for deterministically chaotic time series, Phys Rev E, 69 \(2004\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 107 Tz 3 Tr 1 0 0 1 112.549 541.2 Tm 99 Tz ([73]) Tj 1 0 0 1 134.65 540.95 Tm 113 Tz (W. H. Press, B. Flannery, S. Teukolsky, and W. Vetterling, ) Tj 1 0 0 1 451.449 540.5 Tm 93 Tz /OPExtFont4 11 Tf (Numerical ) Tj 1 0 0 1 135.099 518.149 Tm 96 Tz (Recipes in C ) Tj 1 0 0 1 201.349 518.149 Tm 103 Tz /OPExtFont2 11.5 Tf (\(CUP, Cambridge, 1992\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 103 Tz 3 Tr 1 0 0 1 112.099 486.949 Tm 99 Tz ([74]) Tj 1 0 0 1 134.65 486.5 Tm 108 Tz (D. Ridout and K. Judd, Convergence properties of gradient descent noise ) Tj 1 0 0 1 134.4 463.699 Tm 104 Tz (reduction. ) Tj 1 0 0 1 187.9 463.449 Tm 90 Tz /OPExtFont4 11 Tf (Physica ) Tj 1 0 0 1 229.199 463.449 Tm 91 Tz /OPExtFont4 12 Tf (D ) Tj 1 0 0 1 241.449 463.449 Tm 103 Tz /OPExtFont2 11.5 Tf (165 27-48, \(2001\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 103 Tz 3 Tr 1 0 0 1 112.099 432.5 Tm 99 Tz ([75]) Tj 1 0 0 1 134.4 432.25 Tm 111 Tz (M.S. Roulston and L.A. Smith, Evaluating probabilistic forecasts using ) Tj 1 0 0 1 134.15 409.699 Tm 105 Tz (information theory, ) Tj 1 0 0 1 234.5 409.199 Tm 93 Tz /OPExtFont4 11 Tf (Monthly Weather Review, ) Tj 1 0 0 1 365.75 409.199 Tm 105 Tz /OPExtFont2 11.5 Tf (130, 1653-1660, \(2002\) 70, ) Tj 1 0 0 1 134.4 386.649 Tm 89 Tz /OPExtFont5 12 Tf (73 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 89 Tz 3 Tr 1 0 0 1 135.849 386.899 Tm 47 Tz /OPExtFont8 6.5 Tf (1 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont8 6.5 Tf 47 Tz 3 Tr 1 0 0 1 111.849 355.199 Tm 99 Tz /OPExtFont2 11.5 Tf ([76]) Tj 1 0 0 1 133.699 354.949 Tm 106 Tz (Y. Sasaki, Some basic formalisms on numerical variational analysis. ) Tj 1 0 0 1 475.699 354.699 Tm 92 Tz /OPExtFont4 11 Tf (Mon. ) Tj 1 0 0 1 136.099 332.149 Tm 89 Tz (Wea. Rev., ) Tj 1 0 0 1 192 331.899 Tm 103 Tz /OPExtFont2 11.5 Tf (98, 875-883, \(1970\). 111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 103 Tz 3 Tr 1 0 0 1 111.599 300.95 Tm 99 Tz ([77]) Tj 1 0 0 1 133.699 300.7 Tm 112 Tz (T. Sauer, J.A. Yorke, M. Casdagli, Embedology, J. Stat. Phys. 65, 579, ) Tj 1 0 0 1 134.4 277.899 Tm 102 Tz (\(1991\). 79 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 102 Tz 3 Tr 1 0 0 1 111.349 246.7 Tm 99 Tz ([78]) Tj 1 0 0 1 133.699 246.5 Tm 111 Tz (D.S. Sivia, Data analysis - a Bayesian tutorial, Clarendon Press, Oxford ) Tj 1 0 0 1 133.449 223.45 Tm 104 Tz (University Press, \(1997\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 111.349 192.25 Tm 99 Tz ([79]) Tj 1 0 0 1 133.449 192 Tm 109 Tz (L. A. Smith. Identification and prediction of low-dimensional dynamics. ) Tj 1 0 0 1 133.699 169.45 Tm 92 Tz /OPExtFont4 11 Tf (Physica D, ) Tj 1 0 0 1 190.099 168.95 Tm 102 Tz /OPExtFont2 11.5 Tf (58:50-76, \(1992\). 15, 17, 131 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 102 Tz 3 Tr 1 0 0 1 111.099 138 Tm 99 Tz ([80]) Tj 1 0 0 1 133.199 137.75 Tm 111 Tz (L. A. Smith. Accountability and error in forecasts. In ) Tj 1 0 0 1 410.399 137.75 Tm 93 Tz /OPExtFont4 11 Tf (Proceedings of the ) Tj 1 0 0 1 133.9 114.7 Tm 95 Tz (1995 ECMWF Predictability Seminar, ) Tj 1 0 0 1 325.449 114.7 Tm 104 Tz /OPExtFont2 11.5 Tf (\(1996\). 45, 46, 92 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 104 Tz 3 Tr 1 0 0 1 294.25 49.899 Tm 91 Tz (174 ) Tj ET EMC endstream endobj 922 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 923 0 obj <> stream 0 ,,b3_-*->8iYkT':txqK:߄v r؍t_&uw./&1u,`z ^+C;pQX{B:ƦOU2 ک)\2U)h&KO(8jq=x~vgb=o+ZW4)!F Zxc 2P{y,a!eVt&I ?F?K[3+:?BfWS( rQ6jšgtXv);kC7ٯ|T,-J48I+>ɐ`*^Qr1W -6;,Н.>̺l:Oq;t20ʼ@OJU4Gp=Tǖ*B{?5TFVV'hͰiCMZ>Cy2N+SlXtir/S|$v ?vy/0)>ISFHu AfFSl43܊F?`)9uV9T˩^_LJ|Ӆi*pI-Bw"*SDPg? m  3@&e޾Y%81\1,t?ΝZ"H` ɕC`_z_ 4Q(eܠSJ`b1#7Z4j?y>Ӈîh#WQmHJT%~2R}/%??nzU+F4aN_f w"l,+Šv(I)~m5̿]I:QoPQo'jJr.^hYY*o%^*~Fm+,Tcwszd61Upv\&Ymzkr^sߜ+KO }AYe1'$Xop?hQMf{[ EXdFں=uSY.NR "â; ,N}%'@61^TOįjLn&GI% >ϯiC/ ,d#?DtVrs.( {Gj+uoS;S#Oiڱ18,R.QTmD1 ?p1 >vVԠ[>0%t}똮8vv T bLiV 7\8@Z `;AK^7 Cmcu'(- 'Jb4=7T]4A= dZ5\hֶ3uQj H)N=7,,aΙN_n|gu6&'KFBlWR=x39F"``LF^x)^&t.sυ-W1A!LpDL$bwvFz%!fvaqx ]*Ԅ0ڤj`izxwh0$Me4kUU eE //'?1v?1!.2_}_nT]ݏ@l|S9X⃏b@y\J<axIxLg?Kbj4&GK¸[X{ZsIjȌ}n`1ֱq2O[N/[סrqS4!:rCUΔe#L)Vx8 2L^S0 h;?-/,E% ^Xq)Ya}M@*@ _#`H&rZؘTS Y/UuFszwK2Igtx ~ԣn#:Vm^ǣV<`Ay]N:%5BLS:K >An^4.kc` ?v+ÃqqACҲK-mA^A@ 'F&0A,zPVx_(r\'"BXU/?8QD_tI9̜IpHգ-E<ߢ84u %B {O5mqH$a_6r)v2Uܧ>ŮO]iKO.NR c* &)BZDɿ4XaVõU?4BV49*>"ܳܭ۪Y"p.G:>+>$%+<{ӻI9́}Łh5] |lwEx KGh3q.m ?+wԮQgV=F8Ա8GSּXa 9DiGge@Pa'ę~ӕ%ܙS%Tϝ~ݴS O%!*\0lݽ<n.z}޾VSSܾ7a?I-+ "kQa_*laѺ`.9~XCh(NBPL!(@a2Y<]f]"&R@؛0x %%mW1 \ }ꍝf Ĉcu-s\T1Gx"~;V[׏ :[K4keğ{23ڴ9D 9E!q6"o@{W 8k&F 2qpBer#)ʛ\%"JO9l[O'든 ٗ5(JsνneiQb٣5Q% *YaBI+Q8XWb}{a1(C+Å'Irso|2ʗ}#&IzO +pZUɺJQ[6w{ߊº)r]v(/Qok%)IhM Tg'隿1%!MX.yU$ oF&E6FZT F3üvl>-2t@JAZ E4c@`s8Y_H DQ® &B A4 &]pIŵэPҏ?iA[菤靪HO0\B?;8R1<9)ۈU)2j ŘuX&d'y4-:Mc#y$~ /c*#D 28!Yw“x>z!ͼ _2[T=gH-lQ8"7ZoTpuYR3OiS Ȝ咢PgF fh$/}:z׮WDNv8|Is\ԫ\HRe*4 (ۖ o{4;vyA*Ky䈆ջgBeaSA;%hh?HPnvژ&g˦/๷^F4AlPM-T.[T,,d)DRbR8'ë5* {V6Ci;t.#T>V]YYT+|j:Qj7xD5SE6-Dž;U%RVA hp|sƓۻ% Ag1٘$Qz̮a޸^b;כ*=_Ra;*lz5S3E!̽;|_jBTu]2\k$9s1Co ] }|$I2D7nPs6F+-~x nx`/$KXoŐ9Cpڥ+ ̸=ڵHkC3'Bhss˪3` %b,}e cIi=:죔ͼ+>->Y;7<ʑ+cjK a窡bVG(jLd8W+\s/*WqP4t2VBc\CS)p/_b.#")< on2 V^5.iݥ6QXl~d$loQ"rt CI$V\htl'rm[6;f(6a&gw\4=aO?R :Yt@*ҥ jtI_gp9lQ'-8ܳkDn5>(N,k!@\77Xq4wc̐4uBс*=RVla; qAb/C |,L.Q˻Fo خn12LD!a21"IDZ\RgP>6aTk\%쐜N'nw8ɚL!FZxEzWDsM7d]3t?p,>bxFlpr/(v};UfVA*poFFxE࣡:Uk*ƶºy)Vu*^qLj4Y~iK$(̔B/',y^c5o_*|%`ۃ Z@4Ec@n2PtDZ:LaKGƌK6VghM-{'6YM? IrKŮxtMuC` i\f;Rҥ^:(V 23fk`Ѳ!_e{XT t>Eɘ&Ҧh,X/ _wxBj, A"@/ƉvdlqӠ1Rc#^`uVTx\vE\0+Sa*S L:d*,Q8mB&p ` ˖T~bd a"-_="̥*6R8sLWls \k%LbxTFt2N;l p.9Dp>h . 8E?-5~hp0 \f%}=1HӒՑAupt}u{!1#:h$@Df4uv^Ӆ?̩&7R|Rz !"mqnh}eہ#-JʋN>ue8 ֭Yn9xVjO39yЫ]k4c]a."DRjFbjmJMZ R*kLD"=&kb Iu[ >0ƍ-=5I%B];ij,2&šK/K,F3*<&үB3J8̨VT&}[)DMi°|ҁ=2ߪ3e+|n}51sDw?R $^Y>YrVq6څI2Tɩ uL[*jƧYEf׶ S?G@;0;xBsxnC | l_Q2{-Hm+ ^{B iO޿jjMYJor|A(=q{~!V}PE+1IUԲ&{!;t߼f .NtS7"' o%& ʪ1Z^ŜUg(4ز˲-ٴp30ώKEi쨳ʗ6>5!%ٹ,12":Ã+ܝJ(gb˳ZV2՝,*<r^|,Cr9c\d+,T}($NZD'B3-?/T+}xצ(ZpvHQc3VJD`"/?;&KF\qŦCi/PfK7W/}6cF`c>*m1%6rX"M{BE=wvo[X[oɬ2,6[e24bYmC_:͑Cj82v,$_ݬs7#Hv(hYmtHm(ƕ:@f4@) w!JK|0ђKG1DA75hr,Ojd],e#ҝ3 VvAxq0cU|9BL];磾,T Nw%}@q=CcP)A~<;{6ɄIכVM(zմ׊9z:H%> 18ڴ<@9- ɿZ>0ؙbx[-Y|YP)US$(#orҲrWYA:l!xs-%hnG@!~Tw݁JHoPb hE= oҢHLTg}({ raSq\d^}1;Ѓ'+ewcQCL v]TQqSqьHKE*Wt\PJiz{rxS=qyMn.J[6ek{Fo+c*.?5cGځ.D7“t/7\k]ىĘ/5V*72$Zcr!]w,DU' tZK&;\KHlGvgօCJTiP[Rle ^:t*] s7 "s.^M$r)~JF"ΣaYQ@gu-ja|N̬ބ[XVׇ}Ѕ[OD]zY3ׄ:[<-EÚ5N$Ҫe=_ȑ$t8?S3xIӻڤ2d Βzզ fD*N2p1Q7c5f]\?o7_K= %Fi32Di;t7nRsrqb /HݷO;x.E g{{E&&i:_b `~~k0j600: crS\I)fr:O?/)FO܍άrJJ?̃7CuH_N[UR6`C+͙}yUs5gGiLB|1> endobj 925 0 obj [926 0 R] endobj 926 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 590 0 0 834 0 0 cm /ImagePart_2202 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 396.949 714.5 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 112.549 670.799 Tm 99 Tz ([81]) Tj 1 0 0 1 134.65 670.799 Tm 101 Tz (L.A. Smith. The Maintenance of Uncertainty, Proc International School of ) Tj 1 0 0 1 134.65 648 Tm 102 Tz (Physics "Enrico Fermi", Course CXXXIII, pg 177-246, Societa Italiana di ) Tj 1 0 0 1 134.65 624.95 Tm 103 Tz (Fisica, Bologna, Italy \(1997\). 15, 147, 148, 149 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 112.549 592.549 Tm 99 Tz ([82]) Tj 1 0 0 1 134.65 592.799 Tm 100 Tz (L. A. Smith, C. Ziehman, and K. Raedrich. Uncertainty in dymanamics and ) Tj 1 0 0 1 134.4 570 Tm 103 Tz (predictability in chaotic systems. ) Tj 1 0 0 1 303.1 570.25 Tm 98 Tz /OPExtFont4 11 Tf (Q. J. R. Meteorol. ) Tj 1 0 0 1 397.199 570.25 Tm /OPExtFont5 12.5 Tf (Soc., 125:2855C2886, ) Tj 1 0 0 1 135.349 546.95 Tm 101 Tz (\(1999\). 146, 148, 149, 151, 155 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 112.549 514.299 Tm 99 Tz ([83]) Tj 1 0 0 1 134.65 514.549 Tm 106 Tz (L.A. Smith, Disentangling Uncertainty and Error: On the Predictability ) Tj 1 0 0 1 134.4 491.5 Tm 103 Tz (of Nonlinear Systenis. Nonlinear Dynamics and Statistics, A.I.Mees, Ed., ) Tj 1 0 0 1 134.4 468.25 Tm 102 Tz (Birkhauser, 31-64 \(2000\). 13, 79 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 112.099 435.6 Tm 99 Tz ([84]) Tj 1 0 0 1 134.65 435.85 Tm 105 Tz (L.A. Smith and M.S. Roulston, Evaluating Probabilistic Forecasts Using ) Tj 1 0 0 1 134.65 412.55 Tm 98 Tz (Information Theory. ) Tj 1 0 0 1 239.75 412.8 Tm 94 Tz /OPExtFont4 11 Tf (Monthly Weather Review ) Tj 1 0 0 1 369.1 413.05 Tm 104 Tz /OPExtFont5 12.5 Tf (130, no. 6, pp. 1653-1660, ) Tj 1 0 0 1 135.349 389.3 Tm 95 Tz (\(2001\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 95 Tz 3 Tr 1 0 0 1 112.299 356.899 Tm 99 Tz ([85]) Tj 1 0 0 1 134.4 356.899 Tm 107 Tz (L.A. Smith, M.C. Cuellar, H. Du, and K. Judd, Identifying dynamically ) Tj 1 0 0 1 134.4 334.1 Tm 104 Tz (coherent behaviours: A geometrical approach to parameter estimation in ) Tj 1 0 0 1 134.4 310.799 Tm 99 Tz (nonlinear models, ) Tj 1 0 0 1 225.349 311.049 Tm 95 Tz /OPExtFont4 11 Tf (Physics Letter A, ) Tj 1 0 0 1 313.699 311.049 Tm 102 Tz /OPExtFont5 12.5 Tf (under review \(2009\). 78 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 112.099 278.149 Tm 99 Tz ([86]) Tj 1 0 0 1 134.4 278.399 Tm 108 Tz (H. Sorenson, Kalman Filtering: Theory and Application. IEEE Press, ) Tj 1 0 0 1 135.099 255.1 Tm 102 Tz (\(1985\). 37 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 112.099 222.5 Tm 99 Tz ([87]) Tj 1 0 0 1 134.4 222.7 Tm 102 Tz (D.A.Stainforth, et al. Uncertainty in predictions of the climate response to ) Tj 1 0 0 1 134.15 199.45 Tm 101 Tz (rising levels of greenhouse gases, Nature, 433, 403C406, \(2005\). 89 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 112.099 166.799 Tm 99 Tz ([88]) Tj 1 0 0 1 134.4 167.049 Tm 101 Tz (D.J. Stensrud and J.1AT. Bao, Behaviors of variational and nudging assim-) Tj 1 0 0 1 134.15 144 Tm 103 Tz (ilation techniques with a chaotic low-order model. ) Tj 1 0 0 1 392.149 144 Tm 98 Tz /OPExtFont4 11 Tf (Mon. Wea. Rev. ) Tj 1 0 0 1 479.05 144.25 Tm 92 Tz /OPExtFont3 10.5 Tf (120, ) Tj 1 0 0 1 134.15 120.7 Tm 98 Tz /OPExtFont5 12.5 Tf (3016-3028, \(1992\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 98 Tz 3 Tr 1 0 0 1 295.449 49.45 Tm 87 Tz (175 ) Tj ET EMC endstream endobj 927 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 928 0 obj <> stream 0 ,,1b6![ P!w&d)q9`c#݅[@h md<%ojH2C`w=}8/Av2BtgulqNזЖ>QS_]jzH:-Rxhؘ&HѺ c}5O\PS"uvC͘3M`"eOFuЊV%mН7!sVpc] Xs8sTȄ9q>'foBQsx~þ7jykw8~{l@w^h;k߲Ę}:T51Xe(KLyL1=4@R0h6b4X)Ϗd:"*;wk* JqӋn֢RsΆ%$~d7>Ӣ9볾ѱ$x)L:%:YϠȝR,.!-.m<ߛȂ쬥~9$d`(t~Bī>}~`Y{qQU~6nc NJ#~Qk^P-} nnAhض]q$c[t9oz~A;(htWE<[²GOѰ]K2Gai~s}'-xJL_e5&+2NIGOOJC@/:6$E-o\ؖFd4EuS6e8zP(ʝf']vԖ?Տf8V_[q;1:/m [z`N#ݶbDe% KڇB(і',UgKq'~D a<;7᫘]RC4hsNKզg6 8(!_eJzs>-ŗ*u޼-%DKi/԰y?2°g̳82zݰ񌳾:#ȋյ|շ5ϩu%z{vQ:׼Ca'DFy6u;=)߂P.9n?"~1_:VsڞsM1Ѵ&!ငǼet0uʚbpdr${ $L<'IRH EC(OTtޘIB3RTZ3jf)B_T!-mxh\Z@CY'v=y+ 0`!k*+%tݮQ:G g稲INp8}%|ʖmL..Gq=H"9"%⦙BKIpstT;64mS!ᖌ)(a)Ǥz,.@!ǯuDko8X Ex򦇙 5(w**U%{ 2|- 6KByW8ir:B*c.2I`q%~^t QNWBq/H)i7X`NM_k2WKȠO4O<34@Ϝʽg]sѶOusX#<| q/'i#7R^S9{&*džǭӧ (Cfܤ"b8&Z@i./ #a%eQZфXT},o$T"Qw )Utư֬88cpbj/|eΏT7!_?Eզ2J&wwM ǎNـId X1:"0= )U"rz@ ë|]هDǬ}YwŞ=9(vDCLa\M'[X0ar#rEl{+R%v*!ϒuhnB淏=ZKfA{,$ffzȼ6ܕx |KhI>{&NLAI XݨH9F7(˥ԭ1V`ymb$| Źݻ5M(52G1_L/ IQUdaeju#N?u{   Ie7D:xxp썟M7r[e ZjC,ӵۛebmNP3 Cgy !Sbk:[ {IOگ?v,J8C-hQ(O`DGaZ : P׬Cv:ZC`+Sӹe{V'Aru)T1*%{x%D-S~Mwf ^FwzOoFqcVݞV{Mo!GLpAva" wZCj[9cVK aN+k"rƃ#Ky ~M4e/9T B nVWHBW1{W^R\!?p6؊tQO(fߦS7*9P"; tn٭=ٽ;ګbCLÂPz=Vz.Q婠=+t(mUƪeZk VKl=L2XܜaKq4͈h8C'Pq&~j%Ta,2/UqG5#ښ"Q#k:rPE&+-nWS=k/Ka2t6MxM5+A'(b)}~_ ±z`!$MmmÊH%~ٛpF #|O`/FߒVҔO~'¤h #d.dKƃD]uP ?6ָ 'OW&O%";82kPaWW|;ph,~imHh,GO,$^*ua'GK5 hQoj`x` )'cծȨ><^[%d4&[NwMpt% U.U>K]OT4ВPcׅk(̤iOk#:~9pa#OM}_~bGNM0;Eo к*NNN6WY!? (!s^L|aILiFI0%ݭᴵg8Yղ=K޶ā:5<Fz^#\oyJ:7d}lE[ t- ?Yc,Rtp?#*PHEyOg{0je6;)bXJ9ux~iyu46`"hs5ۜ6@[!) [|n#-ͅ#T{\q}a^EELꟓDnI1+ZZӍ8eN\I*V+-  !q>M|IFr~%\M8D*1SF.Elq+tR3 ļr)C- %jz{w+ڠlE893AH 2Vw,kv/ U̟0cLw̵^ЅLDMa]%D2- ^ȇƣߊe@Xv,BހeU Ù̚f|,2 - MT(,5_>8/:ǧ Y> o4 59M@Xp@lAmylFS͵ + h A{i2tv^6t~_Gbh~x&Ie@A]L֎G~ܕa+J/r"8]upPY R1iHh ^oK:)3NN.>a D HeO&GLV'-OE:܇pFy}Qc03B䂱jUHuuFC\`ށQe_] +D?cX^,f]{d*NKb\Ċ U{̄l)m ҿdI=4tKMB3>GBTC; qL|-y MOmExe2ALUݽ(ܜ#@@[PbHm<H g"wi:t,sE8zA⡫Czi{ر6䥇s>]2U?F.sw^ g:.[3/MЕ%(9Cu3X(2?#&P{7 2Z i쑗JaX=ܦu)a1- %!ۡbY4ns`Ɯ,I3=㸜(:ʱZrCF?넫 o;BaB~TNoSr߉e !,N?: #{cP F6Vvfcj+ "3 64=SBq#qZz}=Itɏ.QmG!{bEQf: tj;BqnXVDK:kb!~n&(CY6>o NR"FL LJ /|BfAy4!2hE#Cm kjGsTL(wRȾ}}4" rdEkq0< 5>+2DBurT-@]"R9Br )WCנ 2QyPm<zߜCz8BӍ2v_ ޿˹   >,͑$p.+/. 9~Q#Y rݠ9 yEaqtN+­LK+ڏ!x#bXvB}Q1KFEm/ l K!:%Z*nsh9 urNYgCAoF B48:[ cՑu!ն.9[LIR=AS /adf)u# c@?{띠73ėGYv ([FyP 2jaص0AiFbgv`f g)૞h)EذPUO IHKlZE*5Z10F[dIlYTdַ؀Ѳ"tP¹S/8r;?Ydt쇌hm\.^l_%Ex 1CW6}QlgģYiAEûJ7lYԠ*iVۃ.R>;ܦ<L&I0=(wdh!\64$mᦍXS' )c%`0b⟒'GY\<4KȲUDb8 5[u'ks87%"~EA9EW<(eM5,m BuFKËmw&0(L!j+5`؎K-\ ]; :Cߧq!ab6eVU%Ț!]գz`(,ыn_x:HOn,i;zI %c:GW7dٟ JBٻ{\%=1dU 6q3uu3.!{(=Ȕ|q.oKaAPPw耯.ۤos!my܈_| J7gm1D!T=k4O3--'B F[C;npOXcYchRhYB0s-~˶`GD,[j%|=tPrSuyn/W#/Cj%2xYp,!l>-䏬P4[Qn% ִ;$3thV8ʑ3" X;K.nWPR& BX\sDϘ6ZASdN inUj|+h i+Ƿ:~b}R_, ]Oc-G1Lޣ:v*qP~v]OW=A y$w"> endobj 930 0 obj [931 0 R] endobj 931 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 589 0 0 834 0 0 cm /ImagePart_2203 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 397.699 714.7 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 113.299 672 Tm 99 Tz ([89]) Tj 1 0 0 1 135.349 671.75 Tm 101 Tz (F. Takens. Detecting strange attractors in fluid turbulence. In D. Rand and ) Tj 1 0 0 1 135.349 648.7 Tm 102 Tz (L.-S. Young, editors, ) Tj 1 0 0 1 244.55 648.7 Tm 92 Tz /OPExtFont4 11 Tf (Dynamical Systems and Turbulence, ) Tj 1 0 0 1 428.899 648.7 Tm 99 Tz /OPExtFont5 12.5 Tf (pages 366-381, ) Tj 1 0 0 1 135.349 625.899 Tm 102 Tz (Berlin, Springer-Verlag, \(1981\). 15 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 102 Tz 3 Tr 1 0 0 1 113.049 593.5 Tm 99 Tz ([90]) Tj 1 0 0 1 135.599 593.5 Tm 106 Tz (0. Talagrand and P. Courtier, Variational assimilation of meteorological ) Tj 1 0 0 1 135.099 570.7 Tm 101 Tz (observations with the adjoint vorticity equation. I: Theory, Q.J.R. ) Tj 1 0 0 1 459.6 570.7 Tm 91 Tz /OPExtFont4 11 Tf (Nleteorol ) Tj 1 0 0 1 135.599 547.899 Tm 88 Tz (Soc., ) Tj 1 0 0 1 162.699 547.899 Tm 99 Tz /OPExtFont5 12.5 Tf (113, 1311-1328, \(1987\). 32, 111 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 113.049 515.049 Tm ([91]) Tj 1 0 0 1 135.349 515.299 Tm 106 Tz (J. Timmer, Modeling noisy time series: physiological tremor, Int. J. Bif. ) Tj 1 0 0 1 135.099 492.25 Tm 100 Tz (Chaos 8, 1505C1516 \(1998\). ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 112.799 459.85 Tm 99 Tz ([92]) Tj 1 0 0 1 135.099 459.6 Tm 105 Tz (J.S. Whitaker and T.M. Hamill, Ensemble data assimilation without per-) Tj 1 0 0 1 134.65 436.55 Tm 100 Tz (turbed observations. ) Tj 1 0 0 1 238.8 436.55 Tm 95 Tz /OPExtFont4 11 Tf (Mon. Weather Rev., ) Tj 1 0 0 1 341.75 436.55 Tm 88 Tz /OPExtFont3 11 Tf (130, ) Tj 1 0 0 1 368.399 436.55 Tm 100 Tz /OPExtFont5 12.5 Tf (1913-24, \(2002\). 43 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 112.299 403.899 Tm 99 Tz ([93]) Tj 1 0 0 1 134.65 403.899 Tm 102 Tz (D.S. Wilks, Comparison of ensemble-MOS methods in the Lorenz'96 set-) Tj 1 0 0 1 134.15 381.1 Tm 103 Tz (ting. ) Tj 1 0 0 1 161.05 381.1 Tm 92 Tz /OPExtFont4 11 Tf (Meteorological Applications, ) Tj 1 0 0 1 301.899 380.899 Tm 101 Tz /OPExtFont5 12.5 Tf (13, \(2006\). 71 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 101 Tz 3 Tr 1 0 0 1 112.299 348.5 Tm 99 Tz ([94]) Tj 1 0 0 1 134.9 348.25 Tm 104 Tz (C. Ziehmann, L.A. Smith and J. Kurths, Localized Lyapunov Exponents ) Tj 1 0 0 1 134.4 325.449 Tm 101 Tz (and the Prediction of Predictability Phys. Lett. A, 271 \(4\): 237-251, \(2000\). ) Tj 1 0 0 1 134.9 302.399 Tm 94 Tz (148, 151 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 94 Tz 3 Tr 1 0 0 1 294.699 50.649 Tm 87 Tz (176 ) Tj ET EMC endstream endobj 932 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 933 0 obj <> stream 0 ,,jhFQ;3 =\Г5q9/0Fe$3~<SZ|7JMŞ,@Ol]Vanb-bD"7w$(rP+-FZgdF&Tf(Cd.WGMx 6}?@PB q[ ,/IgҀ(1H*Ȭ6 ~Ч[PvP:MUHP5:CMrR&KesQ̟R@v:qѹ@fF/}@H5EJZu0/\Uq<`}Kǘ"j3;blT({#Y{DK=ߵ)tU=b&;V*|zL:‡Sj89cD5&W ?q;F? 5tX`KlɤZ]^q2[tc+pɀ% jΏ%\s(ib'Xe&pĂ8'zU_ػz[&]ǦMSwI~ll4#3?楯(Yc>?U籹rÍ͛ݵ6<7Sё}LU[wq}aJ;.4 13]88ݒ0;E|lEbBFЙ_N 2vl8\An[cVȾ*mS#~>C&At* ƪ"Ү'9}4 FOMf!rw <^&J`k}!MX p<Ȩe.N r՚!-8({ڱ0_s=zwMh'f'~8< 咰'~OrBo2RpRA(oju2\d2qe#aFDsm* B/ Zn~'81J+,q &D^c~/:kl8 U( EI|N \B!w|k5{BBzrtS!+6@wS_{I]< 1WeSS[s{wFA莟)7Ϩ~8miC.,> DrLArU{1@]x۱ t8;wM_HS,NxS!;c2/N`Җ+gD@. gU۵8y6+\T# g {(AP:ްn. 0fkDCSk2v-r}Z4X7&eΩ4W6tFyc>9IƷ,lAmq&z@?zf:&ZHu5ǣϱnd9a=~Ύ,LƇDaR~PZ Lv0oZ:bf~;xh z@te[uhu睻kQ!j1nŁVH=Y%0$3NT1%,<Mw}HeS6>CZaͦ!xO0joH m""{@]5VzRڳ{@1-q^:F3\aԁh n<%eOٻ;Έ,ϠHъL)ކ4w j.8+#k՗/HA"XDh%ʦ B_o`&gN(W x\+\͡Lx9J:cpb%c!wU%wjEN OE?U8>!Zc6UkD,2`7]6/'_iꎙ%q*EK=yW- ؖa0 y5,U䰓fؔcf%u]"%X] j灐2rifc)kd,ǔ=q<_g!W3K++{"iz-&LbT>t |nq <ɴ%aJ- Cγ-XB[صNxT)/1Qڕ s|+;J!;KY]Zw-r^g3-unU <@}7T<eJv,)B&7B/#l Il0x<8j|Y85FbM*m+G>_W$4eyKnx`UG^ =wUqoW)7[HZ8'|XNk&V[51 K ÏήҕV1\kNيXL%J]&3ri\*~<6^bkێ4ω_oTkD￙ ٘7y6/ON_MVv;vݢl(و -ZBdc(=d!Kv`2Z0}"rîj*#?8f GmhFۻf8dKIw%ZXuwܑ8BVVTt pLP pW*Q9pC4HW[7ɾ[.Wϊ[l.h/AɌ IipgYNy2gU`[K OɏzhVܦ$Ģ*{8p W`,yW8N5#Ҏ|#1"QYF}>%%0Ѯ'F2?N"33,Ȱջ>0Dnɗ侮3#௳ٸ~"Q&Ֆᘼ'.;Ë]۳>m٫[;M!#<}u< MɈ= TK)0 $}ilk^k%M?{'~ADzyxfZX/]ϰlcNν)0H`ccyL7NDы+{X92ZӓIX_#ݱ"wR1ۇ pFS{M~hXh(Nv_XR~ByUbR9n  pp)ވd^|y CN{UO/0EܝOʎF}:~Jm`TW>(;/.Ucڰ߶(+ʲϳ|6ɥylPm$sPA c6XV8tp}7זN;j8aIK[.zتIkh.]phՏ ȿK]ze.P:z"bQ'bj$| ب[L4#"uZkCC\P0qDJo;i,ٍX tȥwBDT& fI=bĔ |DB.A%5R/R׷Q <3^x:# 0_Ў5fF;>)urx"1|8­jFsE ?=Nf'cHJds.rjCJ^@~GNJ˪JML*54a]Q{a(2UPTd 9"l$2hxN,mO?jjWx`Rf>LJKOr-X7.Pt/|˳.MN%z=Bvpe8$G[/ڲ#0-tC)'3s|sjMf,̷͐ 5$": /Q?|i}ZfoT-^fAVsfзZ88u,K1|4gH )_TbPFΉTvM^WH'{IJ˸ ޗPM6۩!jqȽ8.˼9h0_"-LTe lSl|❟h=QLhw-O2#-+]~| eBW${nrb}~@llkrrR /$qD:Vyp2 evǗ19 $wTp[rTvg-ݙ-LT$:'z)VIiBG>U68q4Uh\)bw8; wtWP4敆AbYK);55$??,`bFQl3AN&/y72pYhd_@rc>.b ~10RTNp}mACf.kGn;0JTZwʮ Vd UkEDrn(ڃ ̓|pPL!sY hkX騔J?9<mSY]H{Rb\ox5_!ƒH>+ c[ouSՈ Hcʂ,q/B gșE;EkFa3wu\Uo(]:2'\kݗbD_@84x8"ؗ?ŞD9OODn~}ѹV|[==WO=WB|&Z1Fa]& ED4Kg8Ug \$$D ~5uqǘaͱ[z FKAd7rjo8:_52K@Dv4 bvzOלZܻܙŀ5R:[_N)Hu_}>{ۥk$%հܸ,956qځڈDXKʦF᰿ڳ۲[<|lȖW]η<B]";_(n֥m˃2$}b֧O$gBbQr?d{:kTקq/9J-v8db@=-ĎkH,undpJN㷦o@Sec/5Źm`Q[,S֟ !o{\YYVU\IQ-+>|1SkJn?.>|n)>kA=%YRYG   /#},"}M^d6格ByC RKkug[%vȚcl&[_x+'cmX_&ii'7 :TzOyACt_ 0 F BYR.C6 >zI5?wϖcȽ>xsg=(JGmǰ0Yj]eh9+Q%L2 ?~N"x q2S7aj,Id)$nͦ]uH\P~?-/Ea"u G;OXHIu3_ ga,~5iI#">òϾ麱԰䜸+ճ<[fǍq;rGZ*BZIo}tI4 T)R>< z eF/F o^fXI" <Gy|'&|Yީ6 pr(j BYKbP/}&ՄqCVF)ΏH,WɱIbzc!!Efޠ$c|IQPv)c@HAoXkSc{GNc`F4pQ X`)p`5f/TF7^;l As:`ہak/ h^k*9^-#grª`tJ-Z=1 w>Ekl5H{=t 2TBWd,ץ(˄Ǜ|^ dSo{_Ԏpcj 9ʃ"q~&^<#&g 0MlV)niRuAYQfHm!S}LP]t&7$Y`T< $!wƠlTN{5xW=H'eIMжX tTe^fsU~Crc-_Qe&tzjt֏]`'c&Q7 ȿ;Oaygls%].H"ڞ;s|r8*Ís{3vI/Bgl[!F^@^EmD^Vel/]#"7&B+f~u'p#iXmX= rF=jV0LOQί  1]~86hǃ9k/{?$p/5u$Ud:D\)}ԁh^ \i(^S52]A I="X0*J.as(5Z.5Cу:l9іqd̮yƃ"OmQs?k'cƑH<,R|f.[D;o;gc} [I.^>y[;X$Z+ld&b49f$\C.)͌Kgc"LvkqлFO8H(*Rad+ O9? BpXdu"9̣MaOmqUXj--Y^ѧy%.+Kb4th:\Voǹ}jQsS_^o0*֪͊ί2u?V\~<>9F->;gKP'l/$H/N ${ }OZ>_D*\+ !O {*wba}r\hsgRZ*$ Nk_ endstream endobj 934 0 obj <> endobj 935 0 obj [936 0 R] endobj 936 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 589 0 0 834 0 0 cm /ImagePart_2204 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 106.099 577.2 Tm 105 Tz 3 Tr /OPExtFont3 22.5 Tf (Nomenclature ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 22.5 Tf 105 Tz 3 Tr 1 0 0 1 105.349 516 Tm 110 Tz /OPExtFont5 13 Tf (Roman Symbols ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 110 Tz 3 Tr 1 0 0 1 105.099 480.699 Tm 82 Tz /OPExtFont12 7 Tf (7) Tj 1 0 0 1 108.25 480.699 Tm 41 Tz /OPExtFont2 11.5 Tf (1 ) Tj 1 0 0 1 110.65 488.649 Tm 951 Tz (\t) Tj 1 0 0 1 138 483.35 Tm 96 Tz /OPExtFont5 13 Tf (observational noise or measurement error ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 105.599 450.699 Tm 87 Tz (5 ) Tj 1 0 0 1 110.9 450.699 Tm 833 Tz (\t) Tj 1 0 0 1 138 450.699 Tm 95 Tz (implied noise ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 104.9 418.1 Tm 112 Tz /OPExtFont2 11.5 Tf (F ) Tj 1 0 0 1 112.099 418.1 Tm 909 Tz (\t) Tj 1 0 0 1 138.25 418.1 Tm 96 Tz /OPExtFont5 13 Tf (covariance matrix of the observational noise ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 96 Tz 3 Tr 1 0 0 1 105.099 384.949 Tm 63 Tz (co ) Tj 1 0 0 1 112.799 384.949 Tm 775 Tz (\t) Tj 1 0 0 1 138 385.449 Tm 95 Tz (imperfection error ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 105.099 350.649 Tm 70 Tz (C ) Tj 1 0 0 1 110.9 350.649 Tm 833 Tz (\t) Tj 1 0 0 1 138 352.8 Tm 97 Tz (forecast adjustment ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 104.9 320.149 Tm 89 Tz (A ) Tj 1 0 0 1 112.799 320.149 Tm 783 Tz (\t) Tj 1 0 0 1 138.25 320.149 Tm 99 Tz (attractor or invariant measure ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 99 Tz 3 Tr 1 0 0 1 104.9 287.5 Tm 93 Tz (11-11\(x\) the set of indistinguishable states of x ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 93 Tz 3 Tr 1 0 0 1 104.9 254.649 Tm 97 Tz (M ) Tj 1 0 0 1 115.45 254.649 Tm 686 Tz (\t) Tj 1 0 0 1 137.75 254.649 Tm 95 Tz (model space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 104.9 222 Tm 138 Tz (0 ) Tj 1 0 0 1 113.299 222 Tm 752 Tz (\t) Tj 1 0 0 1 137.75 222.25 Tm 95 Tz (observation space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 95 Tz 3 Tr 1 0 0 1 104.65 189.6 Tm 96 Tz (S ) Tj 1 0 0 1 110.65 189.6 Tm 826 Tz (\t) Tj 1 0 0 1 137.5 189.6 Tm 100 Tz (state space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 3 Tr 1 0 0 1 105.099 157.2 Tm 101 Tz (I.\(x\) unconditional probability density function of x ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 101 Tz 3 Tr 1 0 0 1 104.65 124.1 Tm 126 Tz /OPExtFont6 8.5 Tf (p\(\) ) Tj 1 0 0 1 137.5 124.299 Tm 97 Tz /OPExtFont5 13 Tf (probability density function of the observation noise ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 97 Tz 3 Tr 1 0 0 1 294.699 51.1 Tm 85 Tz (177 ) Tj ET EMC endstream endobj 937 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 938 0 obj <> stream 0 ,, b6f\Jʥ]g1Px{(>Y."kqp9?&b!9cov&}N;\ ;wr[.Pp@I!2P E H#eroX=S?p#[7lNZA$6/X]A|.)kM t[_=!59 o~LM{%BSB|H[R4l9+O0w9;04.&7{ 88ֱ6(Yޭ4$8.b0'=#&գ0)wD1FVz<ٸew=ok# i&' s -mЛy׀=¤ B1 |t_.YZ ScJĵG^ !)j.ÿ5b(UWo5,3?% Ui+%@@c-++5ӡg=j/8>y {Az1cd\sd2^-,ޯ)j9Gc .bQ YaUG.rX?.{!9vpŸKq~y1\}(| صZ ~X]CmUdg°/?> 6R^M*mFǬ`y3ʻEuX" xo#g7#]pJr?*pzV.βJKxѱd>!JGPX ~+ :׈&J)~u=r26"2Z7ߤHuM=Ťt|K NBdM#i=ad2ґ@Aq&{ 8Oo@i83]hh)=bBDZ[PܜM</g^<7`8]^ Li+K 0|G^ 07} 7[ZsL# %|Q$Z>:`B5Faւ^5SE-/+=2P0;O 8T r<1R322➄[g@&$35f^Y$(!{,[)u縏Uyujܩ"T[ycBo}C5|taʠpʋ>oŎD¢;]}G:KY^|z +(`&faFv)cL-]V'؏t̃Roi҈J{|fJY?M2}Zfb̗1\ Icb B\7yhm&n79FUQi̥ţ.lS =i8g|@lo{L3.V1.ZƣRu|7?Vl9X-YUh ͕ u2wxSU2R }ӥ6:X$С 쐸iQFS5v,IFDsJF@B{Uq7 d#1;\JrgڏQznYrRRlaXW6k1D# 8+PF͙i4\EQVLqa{ ,[Dsv** x1}޶,.S8O-H!wYHE`ɢ bWI<&CIKEj!X0 &DE{g{4(u.M _Hߛ('`^[\eײ#ul28ƿG,.#9NqCEEj&1CX>#'aH;qnKYn&hNik´DZT&ύBv*s# %#D&JQ7MM-$6'¼̬egX:%]4CZu2HjIns-O:Vq4ًˡ!DC)Z>./z`ѷҀ&~/WؠZC`5Np@p%; >o]a9\S5ȶ] -sa Q_~|LJݎ E'Cq|\G(lA}>wn }]NA cO0vaG.l6ޯ)Q*8 ?QV^ZDGMIB^O԰<b<;rk~sn(L{Ule-KKA "݇WsvmC;#  ~RK K9%D"J+]$bSiI[-UOyTQ"aA06%a.WIIFd!hP2SFyzngj)p{={n'%v鏊^L3Hp`tM$M<?׍h5PگݭN坶r_{Wא(?h,R=Uʞ]#ȫOr@7@oOq=3%@>2w#)_ RC%=1' Qbj}%⊂0;vj±uyL+"Y D̴xXы? 9/=>B*M( C]I XWnR4n9)fyX?~> ^O]ƍXo8 *4P` PfOflWP4G`Y%sOL$ lM8w`}N=|8LM I*e e)e91TD" N'Qb/KҔ&ln `?TZ{-iʧ k=YF'먩^lǞ^ ѼijYgXm6 T,@xBq:w܊Xn1u@^h ]-짣: ]QgO, ؔA/K/FE A` t m$DY2Ɋ:TB/`!LYqU_^˜xePr(7R_/7Pknd )*W wl6> endobj 940 0 obj [941 0 R] endobj 941 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 587 0 0 834 0 0 cm /ImagePart_2205 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 395.5 715.2 Tm 120 Tz 3 Tr /OPExtFont3 11 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 120 Tz 3 Tr 1 0 0 1 105.349 671.75 Tm 94 Tz (a ) Tj 1 0 0 1 111.349 671.75 Tm 759 Tz (\t) Tj 1 0 0 1 138 671.75 Tm 90 Tz (model parameter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 105.349 639.6 Tm 100 Tz (B ) Tj 1 0 0 1 113.5 639.6 Tm 698 Tz (\t) Tj 1 0 0 1 138 639.35 Tm 90 Tz (covariance matrix of xb ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 105.099 607.2 Tm 92 Tz (e ) Tj 1 0 0 1 110.4 607.2 Tm 786 Tz (\t) Tj 1 0 0 1 138 607.2 Tm 89 Tz (mismatch error ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 105.099 574.299 Tm 93 Tz (u) Tj 1 0 0 1 112.099 574.299 Tm 72 Tz (i ) Tj 1 0 0 1 114.5 574.299 Tm 669 Tz (\t) Tj 1 0 0 1 138 574.549 Tm 90 Tz (component of a pseudo-orbit ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 104.9 541.899 Tm 112 Tz (x ) Tj 1 0 0 1 111.849 541.899 Tm 745 Tz (\t) Tj 1 0 0 1 138 541.899 Tm 91 Tz (model state ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 104.9 509.3 Tm 86 Tz (xa ) Tj 1 0 0 1 115.7 509.3 Tm 628 Tz (\t) Tj 1 0 0 1 137.75 509.5 Tm 91 Tz (the posteriori estimate of system state ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 104.9 477.1 Tm 77 Tz (xb ) Tj 1 0 0 1 114.95 477.1 Tm 649 Tz (\t) Tj 1 0 0 1 137.75 477.1 Tm 91 Tz (first guess or background state of the model ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 104.9 444 Tm 108 Tz (y ) Tj 1 0 0 1 111.349 444 Tm 752 Tz (\t) Tj 1 0 0 1 137.75 444.25 Tm 92 Tz (pseudo-orbit obtained by ISGD method ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 105.099 411.6 Tm 91 Tz (z ) Tj 1 0 0 1 109.9 411.6 Tm 786 Tz (\t) Tj 1 0 0 1 137.5 411.6 Tm 92 Tz (reference trajectory ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 92 Tz 3 Tr 1 0 0 1 105.099 378.699 Tm 94 Tz (a ) Tj 1 0 0 1 111.099 378.699 Tm 752 Tz (\t) Tj 1 0 0 1 137.5 378.949 Tm 90 Tz (system parameter ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 137.5 346.3 Tm (system state ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 105.099 313.7 Tm 112 Tz (F ) Tj 1 0 0 1 113.049 313.7 Tm 691 Tz (\t) Tj 1 0 0 1 137.3 313.899 Tm 89 Tz (system dynamics ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 137.5 281.049 Tm 90 Tz (dimension of the system parameter space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 104.9 248.399 Tm 78 Tz /OPExtFont4 9 Tf (rrz ) Tj 1 0 0 1 114.25 248.649 Tm 882 Tz (\t) Tj 1 0 0 1 138 248.649 Tm 90 Tz /OPExtFont3 11 Tf (dimension of the system space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 104.9 216 Tm 119 Tz (F ) Tj 1 0 0 1 113.299 216 Tm 689 Tz (\t) Tj 1 0 0 1 137.5 216 Tm 90 Tz (model dynamics ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 104.9 183.35 Tm 114 Tz /OPExtFont4 9 Tf (h\(\) ) Tj 1 0 0 1 137.75 183.35 Tm 90 Tz /OPExtFont3 11 Tf (observation operator ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 104.9 150.5 Tm 121 Tz (K) Tj 1 0 0 1 114.25 150.5 Tm 57 Tz (t ) Tj 1 0 0 1 116.65 150.7 Tm 116 Tz ( Kalman gain ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 116 Tz 3 Tr 1 0 0 1 137.75 118.1 Tm 91 Tz (dimension of the model parameter space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 294.699 50.649 Tm 75 Tz (178 ) Tj ET EMC endstream endobj 942 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 943 0 obj <> stream 0 ,, }WnK`֬G Ac4@߾'徬6pCDu@۴mV:IξY٨"跀'ᎃ20oq6i Œ&f;Rh2 -0˖7v Ԛ`$/UAˍ Ch9jWR(.MpA ΑH>ß'Jn15ԙԿ(RcrUKצmۃAy0jyB,J'b蹝CPa{+470zH%q>H[IoQ3{7 ˑ;_hO4'4@%ZdMA@sOb)ɠDZ4 B&sZ4Ҳ@?\.q#bLbe1i$k^1Aݾguwr16}WXw17? O~qրI-Fi#PKtW ŎPb[$ !'84ޖ۫G|-Sq1GъRlh__OQF>iImѮW 5@sAr5"0%rH;k#nQ;'85A-4 g7 ƙX)"a'`ΥO htuڍC~~{\(Nc1@A(<hJp9wy+FؖYn;(o Z8fRH5@1b>21}}_f! ًEןv;dO^\GU =p ̆`;(˵'z6@7FO8GQtx{7XLnD3%.,M˥#3p{rPQ] N% K A8aOI ZM("pZPnb1"Kƈ"Ց_`WB5~j5 X'IS/ٍXЫ%Yh^ FY*`OD-*]$`T׉նlDj(*QeUWbх9cAްiӮ~x0S8|*yv/g~lKq21)\FyZO\A l۱ 4vȚV">K,w9V ;PG#NbOΛ%e٦ʄT8]3RE-S"ZKu["]|' u.swG(9Sb}h%_.lOKige_R OȏWwQl'l4Ƥn4"`aL5Ҝsl)  T%O˫dľ,:L1Ǵc1 wpP& +o"\34g|1B$fzhkKxz9uJdE(3۸l?R􄘓uݟA5on?Ӷ3P$yxldg$|:ayŗIĥw=Pbo=xB-2~XPYz$1&o(M_,@S`#iv[׺scxOEQhnXJP, JuZ+_vV%멽1=cX[P21h 8d$kYBq\83 e/2eϤC,64DZұ>-,搻ù1׶9D#55U|6Sͳ@82ƾ̱HѰ=x9EyyGIeq@اP2_fo7YRYZe(n83-2S!JoA5B:N̡BoL6y6";ŞYAqӋ&"1D{l"\qYk琜Wba^ < ? 'Vi}@94ojVi^8R%G'v(a_bYTw*X;Bn~1ң h7Q_F,&SfKP%I=4 (:jmŭv?MjJ`HXNjH-@Q^B$pDS_RphT{+ !ͧrKLЬv}^A{|t5 V V_}s^F$B p"SaN4u1FbC-C8&_  ݈-؇\sc4綟/̴q%`{mJ{"'O*TՏm!,u/uΣ  E ;)Ymh!f tXShy&*V+ Pr("-(,s(S|`𼯖 LKG=A dQו;/sPl#ac{S%~2oEsadv"Ih+-fB BY Yg`NcOđ F=xb)'5046n= my:{O endstream endobj 944 0 obj <> endobj 945 0 obj [946 0 R] endobj 946 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 593 0 0 834 0 0 cm /ImagePart_2206 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 396.5 715.2 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (BIBLIOGRAPHY ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 105.099 672 Tm 99 Tz (m ) Tj 1 0 0 1 114.7 672 Tm 745 Tz (\t) Tj 1 0 0 1 138 671.75 Tm 90 Tz /OPExtFont3 11 Tf (dimension of the model space ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 104.9 640.1 Tm 101 Tz /OPExtFont5 12.5 Tf (n ) Tj 1 0 0 1 111.349 640.1 Tm 852 Tz (\t) Tj 1 0 0 1 138 639.35 Tm 89 Tz /OPExtFont3 11 Tf (number of observations ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 89 Tz 3 Tr 1 0 0 1 105.349 606.95 Tm 93 Tz (N"nd number of candidate trajectories ) Tj 1 0 0 1 105.349 574.799 Tm 115 Tz /OPExtFont4 8 Tf (Neils ) Tj 1 0 0 1 138 574.299 Tm 88 Tz /OPExtFont3 11 Tf (number of ensemble members ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 105.099 541.45 Tm 125 Tz /OPExtFont4 8 Tf (pa ) Tj 1 0 0 1 117.349 541.45 Tm 863 Tz (\t) Tj 1 0 0 1 138 541.7 Tm 88 Tz /OPExtFont3 11 Tf (analysis-error covariance ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 104.9 509.75 Tm 87 Tz (Pb ) Tj 1 0 0 1 116.9 509.3 Tm 594 Tz (\t) Tj 1 0 0 1 137.75 509.3 Tm 88 Tz (background-error covariance ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 88 Tz 3 Tr 1 0 0 1 104.9 476.899 Tm 82 Tz /OPExtFont5 12.5 Tf (Q ) Tj 1 0 0 1 112.799 476.899 Tm 790 Tz (\t) Tj 1 0 0 1 137.5 477.1 Tm 90 Tz /OPExtFont3 11 Tf (the density function measures the indistinguishability ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 90 Tz 3 Tr 1 0 0 1 104.4 444.5 Tm 105 Tz /OPExtFont5 12.5 Tf (Y ) Tj 1 0 0 1 113.049 444.5 Tm 776 Tz (\t) Tj 1 0 0 1 137.3 444.25 Tm 91 Tz /OPExtFont3 11 Tf (verification ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 91 Tz 3 Tr 1 0 0 1 293.5 50.649 Tm 75 Tz (179 ) Tj ET EMC endstream endobj 947 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 948 0 obj <> stream 0 ,, [@_[ņ͹oN5TFߺr,xx9Ih[.p_L;,RP:NIb0d-)nz<#@5FNi*}@8@^*tmh$i?==Gb>EZ_YrGܡ>rHjL:CPԴC v0GXXS<J\c0( 2N* &{*٥0w+(F?h~+Ghսuw;z߫۸LҳڰFkitH*&!'QRK ()kWs. R+k?e.UZy$ުhʢŻjP*y-3*b\ItbcQ\ Cu_<n P;/)Oƭ[qL0|XTFklvU`ǶkaCYK=DHU%_C[e K{Dwkd"zs".ϦGo(psmv*"C';u0?5hj^S*JMD>EK{%lo-pven(~`/ +h.wA|gqF[.5 F|8`ͫvT]><;&8[V_QWiZ:v޿&~`؛Pu)Y8[u1&NQx&9I$F'@z*$%BȋԠƹѨMKЬ4i'>dM'>[#u8\FÜT pz_?]Q.0fYyCh/e(w#'hő0hqLjS4f9>͞3;)C$A BRBtq]` DZV4KAf/GzSq%j|6NOgV|` ݛ{h"'qmL:|ϚOWUCxOY)+9ʜUi6N2F>L?k ?/;N;s=ԟýMcj6!cV_6{R^r|oE'~ `k7Uj& cS{׺"/e;()gض/䏵 ɹHC1Xl܋BWS{%4UտZ`7/x;uPRӨ d<*!hm@Ic9Gfa}U绎. o F:m3Gk0P8.}uGYI^>6<gA]Y)~-T0-XQh˗'<8i&IT KBzbj66+ ^rhL:CPvj.eH4W?j~zʐ9 #ޙԣ*tf:\hFASeYM\+ѾMQY7myΰ` 4䝞e`Zl0vW쏁~Ldb9~$gSH/6VLCeq$on{u2l8q, \”c')n.3XL3]KZyLw֏_o;wDy_Eu^G_Q[0Fj=fKQ Y)j[ i(Ԝ%݅(#&VZؘ0>zc&9.+j ,w׿qp쓌CSP)B{{>v8Z彝1n%0$/6gMmhF -l@51}qT=;+-/`#"S(x5zn)#w1ݳf,Me߮0b`ǎOPD ,}R0Ixm'׻U*\MTŶC-Zf|wr]Q^a]ni8 endstream endobj 949 0 obj <> endobj 950 0 obj [951 0 R] endobj 951 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 593 0 0 834 0 0 cm /ImagePart_2207 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 105.849 576 Tm 121 Tz 3 Tr /OPExtFont2 23.5 Tf (List of Figures ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 23.5 Tf 121 Tz 3 Tr 1 0 0 1 122.4 505.199 Tm 95 Tz /OPExtFont3 11 Tf (2.1 The bifurcation diagram of logistic map ) Tj 1 0 0 1 473.5 505.449 Tm 602 Tz (\t) Tj 1 0 0 1 494.649 505.899 Tm 66 Tz (9 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 66 Tz 3 Tr 1 0 0 1 122.4 482.399 Tm 97 Tz (2.2 The attractor of Henon Map ) Tj 1 0 0 1 295.199 482.399 Tm 2000 Tz (\t) Tj 1 0 0 1 473.5 482.899 Tm 151 Tz ( 10 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 151 Tz 3 Tr 1 0 0 1 122.4 459.35 Tm 98 Tz (2.3 The attractor of Ikeda Map ) Tj 1 0 0 1 295.199 459.6 Tm 2000 Tz (\t) Tj 1 0 0 1 473.5 459.6 Tm 148 Tz ( 11 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 148 Tz 3 Tr 1 0 0 1 122.4 436.3 Tm 96 Tz (2.4 The attractor of Moore-Spiegel system for ) Tj 1 0 0 1 359.05 436.55 Tm 99 Tz /OPExtFont6 13 Tf (T = ) Tj 1 0 0 1 382.55 436.55 Tm 86 Tz /OPExtFont3 11 Tf (36 and ) Tj 1 0 0 1 419.3 436.55 Tm 97 Tz /OPExtFont6 13 Tf (R = ) Tj 1 0 0 1 443.75 436.55 Tm 74 Tz /OPExtFont3 11 Tf (100. ) Tj 1 0 0 1 472.3 436.55 Tm 34 Tz (\t) Tj 1 0 0 1 473.5 436.8 Tm 149 Tz ( 13 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 149 Tz 3 Tr 1 0 0 1 122.15 404.149 Tm 95 Tz (3.1 Following Judd and Smith \(2001\), Suppose x) Tj 1 0 0 1 371.75 404.149 Tm 90 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 374.649 404.149 Tm 95 Tz /OPExtFont3 11 Tf ( is the true state of ) Tj 1 0 0 1 147.849 380.899 Tm (the system and y) Tj 1 0 0 1 235.699 380.399 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 238.099 380.899 Tm 95 Tz /OPExtFont3 11 Tf ( some other state where x) Tj 1 0 0 1 370.8 380.899 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 373.449 380.899 Tm 104 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 408.5 380.149 Tm 81 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 411.1 380.149 Tm 111 Tz /OPExtFont3 11 Tf ( E R) Tj 1 0 0 1 437.3 380.649 Tm 49 Tz (2) Tj 1 0 0 1 442.3 380.899 Tm 107 Tz (. The ) Tj 1 0 0 1 147.849 357.6 Tm 93 Tz (circles centred on x) Tj 1 0 0 1 245.5 357.85 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 248.15 358.1 Tm 102 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 282.699 358.1 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 285.1 358.1 Tm 91 Tz /OPExtFont3 11 Tf ( represent the bounded measurement ) Tj 1 0 0 1 147.849 335.05 Tm 93 Tz (error. When an observation falls in the overlap of the two circles ) Tj 1 0 0 1 148.8 311.75 Tm 98 Tz (\(e.g., at a\), then the states x) Tj 1 0 0 1 295.699 311.75 Tm 81 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 298.3 312 Tm 99 Tz /OPExtFont3 11 Tf ( and y) Tj 1 0 0 1 332.149 312 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 334.55 312 Tm 91 Tz /OPExtFont3 11 Tf ( are indistinguishable given ) Tj 1 0 0 1 147.849 288.7 Tm (this single observation. If the observation falls in the region about ) Tj 1 0 0 1 147.599 265.45 Tm 101 Tz (x) Tj 1 0 0 1 154.3 265.45 Tm 74 Tz /OPExtFont5 11 Tf (t) Tj 1 0 0 1 158.65 265.7 Tm 90 Tz /OPExtFont3 11 Tf (, but outside the overlap region \(e.g., at 13\), then on the basis of ) Tj 1 0 0 1 147.599 242.899 Tm 91 Tz (this observation one can reject y) Tj 1 0 0 1 307.699 242.899 Tm 74 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 310.1 242.899 Tm 93 Tz /OPExtFont3 11 Tf ( being the true state, i.e., x) Tj 1 0 0 1 446.149 242.899 Tm 82 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 448.8 242.899 Tm 92 Tz /OPExtFont3 11 Tf ( and ) Tj 1 0 0 1 147.349 219.6 Tm 109 Tz (y) Tj 1 0 0 1 154.099 219.6 Tm 81 Tz /OPExtFont5 11 Tf (t ) Tj 1 0 0 1 156.699 219.85 Tm 135 Tz /OPExtFont3 11 Tf ( are distinguishable given the observation. 22 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 135 Tz 3 Tr 1 0 0 1 121.9 196.799 Tm 93 Tz (3.2 Schematic flowchart of the IS nowcasting algorithm ) Tj 1 0 0 1 410.399 196.799 Tm 1798 Tz (\t) Tj 1 0 0 1 473.5 196.799 Tm 28 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 28 Tz 3 Tr 1 0 0 1 294.699 50.399 Tm 75 Tz (180 ) Tj ET EMC endstream endobj 952 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 953 0 obj <> stream 0 ,,[b7!ЍE:CQk6IKByBZfo{g@j\~D?(OCtvinja3;\nVqY-5lLJtk4YFiկ2 S&;yd7/Lj-LkBv cP} c-[{ Pbl﹖/M,Pe͕T۴<9LZϬ挆ʢ8l ieo͙BMq d3 85Ѥ.3sɵ*O/e$Ѽcڲ0$DeT3nc2)&"d ̼3D4t,˜h!@&*v &b-Edm\^#:09\.<דj3j?ϏW˨?%rmR!*C+z J+ƽO%/,!U ҧ ,U!wS f".ܰ.a!˽>W=gKb̞ _ݮ̀Y?,:\i_/Ei Oh2P6ͦJNk鹪^t6/s<%%@44YTīܠ xٚcz72XT}lACuZt%hyM6*|5-Bf85Z©=MRwap^dGجT45.9ن+LuوY%;ta@:sa MU !{6Ijx hMQؿs;iӵ7׊MՍ{E+QUDYM\G -cin$ 6X]ѣ62PieEq8t#{91uT7>0d3ڸ>2fB}77>ɓHX &uԫM1=b۞((Z~\#oIGq9%+OZ<[d1oxQ:Upo(Jϲ^h$8?m@8N[w>D|5[},ع@b$ 7@ և@1y [y-B̘.)bff`|oHasl8:}zk-&T!ЦX>m0+2"~PŹLpINٝ@$|{x`VxJI׭(ޖH4A(&S܁-"ͧS ,"JdA/P{C%AyկĒs4n/F35U@ FW3:O"/,z&='_1Wl:xAuy 2TOXrv˸^!=X804'<ŷGy&פq6rMʍծ]pqWmTEbK]Sfݳ1.NlCH8\cT'UhY9SsaC ??*N_rTH W\G"3*;uTl r"!)|Vucp>m#4?E'Q8rEž#uoEQ=+M%F SevǕN4'j$OA\wHnnXtyӍys@ SiyCeB/,&P}6B4q:' [c%=Ee `mm -Y}ƭ./g<>XT`k +߶CX'ŷ@Bx2+C= T,5{v`'x I+"t G݉z%83i5S NuVwTwpVμnШ*ٛuBB[Im47ٌkCEP :H$V)8]05l10F,DŠ.o K{ /L&:0Dj.~vHt^NTѽo:@߻"~aƠ" M䮸C*qy*7znf}(@ u0CeMQ/\ oeў8tX]2=P:s2U7%b{L~wڳCY/౏4Ms(CzsRlEz G2U*<}֝/9_Im؍R[A^y)ŪOihC MԯtI}GQ%΢`\$%yp <gj'"6;"ic߀u'js) `R`b65]- NΜŚ%x"Pwql ̦WWx!6Rt8.BCz٨-ٙz=fT f8D&c0F'u=]yRC֟K*i\a8~DE'0qCCn@]zCڅE [HtMc=>PG/%n#A|쩚r]}Ⱥ @e:J|!G:,SL K$Pg|d!}= 3?݅f@SLƢhʀȕ$D5g  zF./oT%,E_1g-E`$W8(gR_ZzS8iuW_zf}j>¢?T$1߸ |%t+yiRQ{߇̱wO'nf$%"= 7S J9E^*.y rCYR٪D_ws `N{܈`֖IU4J1+dMJhr {v:iUJaSԻ~s#RLM`D% ̱7D}V lA;Q"mwZ~vzsi#[a&mUqy~3PrNp3G}v]? y*5 ;m+I/=fd o(qR𚩪?  -#z|+ghP-$}s*Dj:rIm:x6+ŧDS3EcxegJGk5__C{6o5STNjfv 1zIFTn'ioc.|ݼjbQ˨z;2kO5Zw[_jH>Ke+>fNR  -u`~esԍXNj" \Ԯ#{St*5qbFQmaƽg-@dԺrZ(`Nݨ_8Mat/v0wb,"ǎI>FR5Ut)19Pz,#ݭ\EwRd`M:VqALMEf/AU}z5 rxb(9IKKo495( s2I)`gH u6洁n}v'lV$:pjX/aEHmbwCJo-t5Xmݨil&zAM(GرZŤ{) 5DhHc`cR&pɣUHfI5'ߦ[wv{"dȏ'j8nsjžGp:eP9T񶍖:6$+Jր!HT?{̺+2%Bsx&(fJ]#锕=}+۾5zI\̱#*8^.׵.Q@3|O0#٪r+clR#'YBD'S=>>~}?k4l>-Q7,5u,RROywbFZX|]@lEb*@KЮY`5 po?, `GґZS:)4J|׻ +W$ D2D*ƅp,8N( KG7gPzj;TZȫ rvuc-c?\5[ -9;ߤ_9ZH"q*L*,*!Pey$ 澯t> ;@"`Fҹ-E7L}(P݂0 ;6afQpg$2dN%:xdڙ'ITEvpk] $ƀ\3l ݗ[$zn̸Uhnq Wa-V})<@ww7h4L4e$e1Oa=oj3c9ZH13UК\;JHpn.yG=^|q>nefv[KRG>QTP"6>=!5{-[!$^=%Zj$ l}R-D.W7L-!9*^d`FLKzBFނ՘{ݚ+%+*l?]`q##FD{qxAu/轫Iɓ 1l#PW 2(G\h/ 5_7a(T(9F!{e [A:d5*&JHu̪4uVqL 1W}$N0Ä$jX}pr12pRo \|@,kg:-[0h;!<1Dķ9ն VhNjN"rE.qvqt i@uy@ O<7V^Q~Yg'bd:#!?y1-Xl+#HHAG꼘̍W%9>(_c>Z|XfެPIorH5F>8 cW59#P{Q2 _Z endstream endobj 954 0 obj <> endobj 955 0 obj [956 0 R] endobj 956 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 592 0 0 833 0 0 cm /ImagePart_2208 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 386.149 714.45 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 122.15 671.7 Tm 107 Tz (3.3 Example of perfect ensemble for the Ikeda Map when only one ) Tj 1 0 0 1 148.099 648.7 Tm 105 Tz (observation is considered. The observational noise is uniformly ) Tj 1 0 0 1 148.099 625.649 Tm 108 Tz (bounded. In panel a, the black dots indicate samples from the ) Tj 1 0 0 1 148.099 602.6 Tm 106 Tz (Ikeda Map attractor, the blue circle denotes the bounded noise ) Tj 1 0 0 1 147.599 579.799 Tm 98 Tz (region where the single observation is the centre of the circle. Panel ) Tj 1 0 0 1 147.849 556.75 Tm 102 Tz (b is the zoom-in plot of the bounded noise region. The red cross ) Tj 1 0 0 1 147.849 533.7 Tm (denotes the true state of the system ) Tj 1 0 0 1 488.149 533.95 Tm 95 Tz /OPExtFont2 11 Tf (46 ) Tj 1 0 0 1 498.699 534.2 Tm 32 Tz /OPExtFont5 12.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 121.9 510.699 Tm 103 Tz (3.4 Following Figure 3.3, examples of perfect ensemble are shown for ) Tj 1 0 0 1 147.599 487.649 Tm 99 Tz (the Ikeda Map when more than one observation is considered. The ) Tj 1 0 0 1 147.599 464.85 Tm 101 Tz (perfect ensemble of different number observations are considered ) Tj 1 0 0 1 147.849 441.8 Tm 104 Tz (are plotted separately. Two observations are considered in panel ) Tj 1 0 0 1 148.3 419 Tm 111 Tz (\(a\), 4 in panel \(b\), 6 in panel \(c\) and 8 in panel \(d\). In all the ) Tj 1 0 0 1 147.349 396.199 Tm 100 Tz (panels, the green dots are indicates the members of perfect ensemble. 47 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 3 Tr 1 0 0 1 121.9 373.149 Tm (3.5 Ensemble results from both EnKF and ISIS for the Ikeda Map \(Ex-) Tj 1 0 0 1 147.099 349.899 Tm 102 Tz (periment C\). The true state of the system is centred in the picture ) Tj 1 0 0 1 147.099 326.85 Tm (located by the cross; the square is the corresponding observation; ) Tj 1 0 0 1 146.9 303.799 Tm (the background dots indicate samples from the Ikeda Map attrac-) Tj 1 0 0 1 146.9 281 Tm 101 Tz (tor. The EnKF ensemble is depicted by 512 purple dots. Since the ) Tj 1 0 0 1 147.099 257.95 Tm 100 Tz (EnKF ensemble members are equally weighted, the same colour is ) Tj 1 0 0 1 147.099 234.899 Tm 104 Tz (given. The ISIS ensemble is depicted by 512 coloured dots. The ) Tj 1 0 0 1 147.099 211.649 Tm 102 Tz (colouring indicates their relative likelihood weights. Each panel is ) Tj 1 0 0 1 147.099 188.6 Tm 99 Tz (an example of one nowcast. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 293.75 50.1 Tm 86 Tz (181 ) Tj ET EMC endstream endobj 957 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 958 0 obj <> stream 0 ,,   j0l؄lv7x1(LުjNB(25)n83> Q2D! O~{o XZiv:.\4py< [rEMQLµ'K8tJ&Qz*zwp1K>x2_Yxb3v=j;"L%J: a0#dHkh$[Lpt8s)0ƌpױ9ߧTig"% EEg;!D6}fǟf.Evepe@:1M+w%%2}v)wSCg)Ѐ~e"$WUzmCG1eBG*"a[fc) ܬǐ~6.v|ds+!D0_.Mr};Q%M I(ٟEt k`)+.ݙ*\E7`8wM'=mA$q涄q:N˸B]"ߝOҹq;gd:z{SX zN5zqu=*/,/*cWi슋b.Gr~ 1F[~N|n)e] YC'*b][Pi;nl쵰UQw' gy_OFJDӚFCcCj7 9Gz|vEk_ѝ(<;ʁJt,EsfK%Flv (1Ÿ^KكwՑ#/QX,BJy@ûxyô?h؎#ϰ qQ54`Riac LJb5|sVln,NۡsD,=vwU &=PO*89L ^idzHpkPx'AKȧgI:P FSNtuQSPi\`E}ѕa<8m( zŘ.=u.wy,  ˼Ι% '7ʭ(L 7ˡ}tu<# }~i]ƅjGNV" IhUq˭k-d皚DXHKRPR*N9H۬Yv^+Tv:tYTsQT#}RǨDjNf3]B$2LڍV >Irk񯄱87wQj+Ꜳ;luI?V Ū W- ^ƿLd&A@ˀs`$;=#Gyn?Ujcल;H%̕'WeBs~nXCRX`ẸûEq? t/tb yǫ*!Ů[b6sH{Sgӿy$:"OLi KMhf𫅤6$ yK |j:j=&b5˴Eʹ 5}M,j^4<>糧珴ڸ5:鉡l"c.s拻խ]Vz82,"LkYq.َiX@OD X}=".īEY9<+ss_ Q 眽2  q_1AuB2i:K~3z+D[#ڞch05Zw+*nɖ(,:= N6 |0|ڠpεk 3Ns:(H"RSj::,)bck/s] gs\A@iP|ELɚd Hac m/VԻΰ*ltD/zo č܌ѹ1!p`g.)7))nߟ -9Wev6c^Wpf_2p`x󠻹OKmROVWo[jD#z|A1ɓx[M@8K*# He-"볃U_t^ehJZ褐@r :[+51` xܩxg!W[ 9~ڠ,](b$g岱s2@ JiJdSfǑ1=E]}kGMj(JP6A?P*:j'xz] nG8Byy}uS\$owtܵ Qތ"*>D]bnld.oA-8{+ f>A+1" nD񧄖k Ԁn X1"~$!0` d@&#IJ3Ir$YeO[$Y UI?N5D)SW;۫kؑ[;tѭ"%\h_HhVO-W^=_6vJ_G!i` ƞBO\l!w\$hPQVK1$nJE.LЃKi@2h"Qˠႀo'I iW?Z%̹l9"dq=S 5%5]S6 An 2aLrp҅r)zYNu[zZݎ=БԌ }eoÙ*XYM|ϳ5BC+U蛆?@Μ'c &}i*oU4TMi{ n-c|v`8[y1{!^bQ77&Gr+bLc<<}< rOe8 y概wRhs64|R!mu F)(]13G6i@idrHuq(f a;'IhfK0aG遃R=4qM9fjB,˒’'#[_ssJB:HX^R,IJϹ(w$%fm>n&ظ߅B},}h]*& A(-t+T&Ҥݳ}e kDU1a!Oo:ji?ezb6{sYqK_n lLG^O8$Si  l k-yOY%QJ:rEiϺĸl)T9Wo.} woAR fQ/K1AuZI2EMn-e@f/ֲvS58 &!}?X'\_rtͲVdcލ nqa @|WXϩϲQ\*I .V-L[F:5W!CQ4;q#hrK xf?TGpJhmpyt~sRaHn%KQG9y֏8tgIl`rY|}(K5n4VCE |EڻO!bV9̭AQb-BO>BUΡK hXU0tUd_JC=i1%qbݹ^= 泇0% 'h1%).)&85U_8xX= ɭV("'AU﭂:8ǭ<ڊX<'2HE6UM, Arc*G&3i3źT2/\ֳ""yMp0w >cJ,jܸbs%^2!踃Xi 揰zhaD[` fP:r1=>ޱhphؑtm| {Ȗy*&ǺB&j'7BқRRGWH „6,|y50D.N]XA5Ɏ."d'p8If֏&#X+Ῡ6D*aȝw|Jݳ{@=SM(pl_5 ֏깐=$QU4}v32OdW `g$ycR=,Bnz ]Y̞LX;}̆P=EsxϻR3Q bvb;qkY%5B/F3C0]`g1MTA~ut,<}Evצap :(r6Y )E-{*a0RC δpŹķŐxeuP/#-i$k?3; Ѹ#y6>vXWEFtm;*i̛rN Q.M~]^mȤpO M#j\Dw:MF͝H_na-ʁm]a$S`i_9_/O?%ik$bıY_~Ҭ7ˊb j7,EdTgSYE׼[5`bwF LRPxgO "[!ɔVAo;~-3@} ׄh^f/=Oر)wo ՕxZB!JR]=Rx;(hS|s{2:bT1{.L0H…< S7gryYtgmAR5i"5D[ueczW7IB xA{7i7!r)qZBu[BEp̯ӔY'w~>?՛A寔<2a!${@:ٮWjłfyΗ[#`Fܙ?5/ewm.VpZ#Pn Fod^_Y^ݵey1Nɓ3#h;)[{fĜTF@+{QL\#a_~.9?-$ _Qz+y\&tL endstream endobj 959 0 obj <> endobj 960 0 obj [961 0 R] endobj 961 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 592 0 0 833 0 0 cm /ImagePart_2209 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 385.699 713.95 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 121.7 671 Tm 100 Tz (3.6 Compare the EnKF and ISIS results via &ball, the blue line denotes ) Tj 1 0 0 1 147.349 648.2 Tm (the proportion of EnKF method wins and the red line denotes the ) Tj 1 0 0 1 147.349 625.399 Tm 102 Tz (proportion of ISIS method wins a\) Ikeda experiment, Noise level ) Tj 1 0 0 1 147.349 602.35 Tm 98 Tz (0.05 \(Details of the experiment are listed in Appendix B Table ) Tj 1 0 0 1 446.149 602.1 Tm 106 Tz /OPExtFont5 12 Tf (B.3\); ) Tj 1 0 0 1 147.099 579.299 Tm 99 Tz /OPExtFont5 12.5 Tf (b\) Lorenz96 experiment, Noise level 0.5 \(Details of the experiment ) Tj 1 0 0 1 147.349 556.299 Tm 103 Tz (are listed in Appendix B Table B.4\) ) Tj 1 0 0 1 487.699 556.5 Tm 98 Tz /OPExtFont5 12 Tf (55. ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 98 Tz 3 Tr 1 0 0 1 121.2 533.5 Tm 102 Tz /OPExtFont5 12.5 Tf (3.7 Dynamically consistent ensemble built on 1 observation compared ) Tj 1 0 0 1 146.9 510.449 Tm 98 Tz (with ISIS ensemble built on 12 observations, the noise model is U\(-) Tj 1 0 0 1 147.099 487.649 Tm 102 Tz (0.025,0.025\), each ensemble contains 64 ensemble members. The ) Tj 1 0 0 1 146.9 464.6 Tm 100 Tz (top four panels following Figure 3.5, plot the ensemble in the state ) Tj 1 0 0 1 146.65 441.3 Tm 105 Tz (space. The ISIS ensemble is depicted by green dots. The DCEn ) Tj 1 0 0 1 146.65 418.5 Tm 101 Tz (is depicted by purple dots. The bottom panel following Figure 3.6 ) Tj 1 0 0 1 146.65 395.699 Tm 109 Tz (compare the DCEn and ISIS results via e-ball. \(Details of the ) Tj 1 0 0 1 146.4 372.899 Tm 141 Tz (experiment are listed in Appendix B Table B.5\) 57 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 141 Tz 3 Tr 1 0 0 1 120.7 349.649 Tm 101 Tz (3.8 Dynamically consistent ensemble built on 2 observations compared ) Tj 1 0 0 1 146.4 326.6 Tm 98 Tz (with ISIS ensemble built on 12 observations, the noise model is U\(-) Tj 1 0 0 1 146.65 303.549 Tm 102 Tz (0.025,0.025\), each ensemble contains 64 ensemble members. The ) Tj 1 0 0 1 146.15 280.5 Tm 100 Tz (top four panels following Figure 3.5, plot the ensemble in the state ) Tj 1 0 0 1 146.15 257.5 Tm 105 Tz (space. The ISIS ensemble is depicted by green dots. The DCEn ) Tj 1 0 0 1 146.15 234.7 Tm 101 Tz (is depicted by purple dots. The bottom panel following Figure 3.6 ) Tj 1 0 0 1 146.15 211.649 Tm 109 Tz (compare the DCEn and ISIS results via c-ball. \(Details of the ) Tj 1 0 0 1 146.15 188.35 Tm 103 Tz (experiment are listed in Appendix B Table B.5\) ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 103 Tz 3 Tr 1 0 0 1 292.8 50.1 Tm 88 Tz (182 ) Tj ET EMC endstream endobj 962 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 963 0 obj <> stream 0 ,,Nb7! |My/% 2 2~rI/ +HAT_ѡ\ 807'8%ncTL\W#fu)ί- Ԅh6`i 6ҵdWuR4"%~|RI(LRRo?r $&fR$Z~>DK%L[';#k׷B1yH3O #϶<kl\0+bKؖמ2TwM{r7NbIǘE{oz,쭶>硽z-}ݞmgo#db@K`/{u~#+e^ݾxkDP4 e[d瘮9ݰP}Ӟo:Nޥ;b(7UrF>搓Gq;NS[8eͲӛN L'<.M/ɱ!ijC|-O>dbWȕϱ>|MG06+ N0|G$Fen}i,S6^BLofO}<ٹ Q`Ur1wQuQAjq {C wւx6KO3QctF4E}feB'mmH]#J] _ }yL6/eŃ1e;wH÷ 9W[B(䁲#Jik،!r1_#/rӲS8Lr1(ƅ>Zp.ղ$+γA_^j$nJrG7d`vvk9rƘ W3h>?8ᔊٞ)Աgɳw۳фe>+H< E޳^ɸd~^ ѢuWqHd )9IpzӐ/)u2kJK"`a0ik#s 4cfp7}gm$JT%`ښ?SXgQF0qhySl-|]qacd,6oGsue"]6/ޙZެ\?9M.5%oϡC:F1F#-tx2rA9(%~\lA4'5sBTS WC^s5-*ѝ!Joq( k[%,>[ryʏYzLH`Y>1).WG@' sQi.)E|#(W`ћ4*>4Y!HHhFN:M4?dwǀ79PY>rZA*}{nJ/ Q-L+NL*NrIؑș$qߝ+ؾ%YeR<iW4~*KE/n>㆐h$ɮ),Ǐ*1.rՔԵ#G4 < mn!fs5Q ؋͐wxg|л=di$?{Lò`WHz xS;5*ֺP^#n_'d{1=u|W#\uU*&so?²N8`"~-6n`\0+112^Q?]jxi3OLVϪH[9%$7XX>O"h:8z1a-_[-ČHN,)A")$/4j+fKV9W0=/f5;4{ :8jK(u`C5͉ ?&#ԩ~K zc;n ̇Ց9qr7m hWycN.R1=$,>eCge$.s3kҨ>Е.D\ۏfUH'́=F2,z '78v"\7ƫҤJu sx$ZA%c NHA-/ށIo[6ˊGb؟ln@&cNܾ@/Rkdn8>p%j`.3؜0ۊdVܡ~Gg7~ngWjre?vsY "SDo&-iV>]BPG)y7Ϲπ&W _8*|:w=0++!|8!V>!൩#ı<;V @gQ= y f}Z n^q#ɍǭ+?f%b}a}T{ό'ddbUJ/-r̶F.){ml]3cjeM8M͝EcD̀u'cHfCNԇ1l,<&27 a (:rt}%kUvw1vc) f0l~NO%W dr`/%֛[U/PX<< eZ I:b,1Q;.W8 " ,O/"X\!nG NAe!4z-&%ƺN7aY'w{+4wQ:MSṆ)|0`Ph66ucJwsnTwckyŶ[)нD専 lU/iԲ X15??#RJܳϤߜ*weS/󁐲`Q醽}Z3i,xt/ygӉ){Et ?Gk&%eRAjˤÐ/2ptX;yP{&c,:FR`ʮOu2ˆ SlbtgoF V/ 6\4~ R(Ӱn*At/d?s+A>tbyɛIinٍj]ÉFBW^FBSصHn7Y on8ɑg BRI/*7KC8v5=E'ݮiDT䐙񷓠\8EA] ړDO73r((OFE/dZ:" McVC&".w@ o ̺< W~~*e@>cZ588<) & G$G/%A.!pkY7/­`զrWyC6ELCD{F*MC"*KVCsKnH8[pm*8vF@~ E8,|b_Uo.eY4[hCX_ǃ?C4!b[*0lE,"'Sc V6b7lZ0c.i"@:q rp 13=\8?1 V`K<`xA.zYr¨{}Ŀo9+J#L8pFz*j226JVOG Q wzwP{ZMڦ_YN'>dsQX#"&_]Xd;) w|E]A>{7ELoP)ߋBՈ.i 5Xf "> o?lϏ$Txlˣ?.Vzk;^ R W>m#`r"_wC"yhB Y8Ð%N9-jt5VgMB~}s-Y"=?\f"0ҤJ[ӃjY-i%'UUY'6`>RgLk+)>l3Z@Y\ђÝp Q+ ]:}y"1bQMl,|gQsȇJn`;nlu/ڎpR;0e;(B 6RF^!SM]->&ȿ'U)767𴷱೦٧ߎϺ#̃ѿu}SwpW'O'lv%ʾvxnk]p/lw4Ra2Xgq?|zZ3cI4iWЦO-eQe!O ,f`5   1>.6󫰿騳գq:<6|(n3hb:dymöa8u،$O.IUp33&{uDWayR3@JHݱ~ZmSm8k;}EjT`(u|8BXogy/!<`3K[Eֈ|"]E^.g`R5Lj8-2ǫÃ*A&b|~pKS`Om鈋EO(=J{0r\Ww lUutgd1ċJSǦ[ M&6:Xv 2"n&(Ӫ>#BmaS6m|-N ,ҕ$@ނ'8&B>Z: oL 0ؚ!> !ͧCّUo'/Ӹw_{|žeX~Z:UHNdPeT'$å 0Rt&@obf0 E)Q`t1\w~y5>Dy7 [~ |{R?@%Rg;y%:<9TQ!.؀pHj1ʍ*:3 T'8mI@6pRbyV2Ttf`~ \1zSd`^l:{ENhԮ Օ>>yuPiYĖG%u0p=q J)m A`Vq&}oܲҀxXMVjKak3A$T\r+g+iTSM ϐsЅL爬07{0M1N2{>@(dx 8~ ?A.{qP ^8!xsٶ6[|G:).{))Dc4]tF)Zi[|B4xrl؁jVG"6x7)t80}аȰ \_C2@*D%yw|%)2/DUOjnmؗ=ZtM:=֊8lٰTF0|sDU9Mߋ@AA 0&$&K,Wܝ/N+&.d N1edg * 4 yVɕtRCOA]& kϯ!n<)Tʖ|ܺZ$BnnSzVk.r`+)Bfc;8:p&8D&W!tZfʯzF229N [,fpvѡ@X&CtWI6ֲK/Rך,1rvʈ q7sCE)0R ~|b4[9Ijg-L 06CKsxplAf_.(&n޲(h=~&+6z 1cv?T`QGH^sW1M~LKf7uH֎| %G+ȮFF dT|1 t:"D9,FlшJ'xܾ@Qpy!ӟ.<$AH3i<+ȂO]Xh/'0xԤLg| #\* ͕*IwGuևbbWhE qDssZ˨!4IK} |xȨ' jo<2&!2tl1[$E&.^=K:p_R( O,D77=;-Fھ'{|=`)E /+]=/X aƨMSؗT|($bE}m.ّu3#H\s#z">`k2J1RsAlC dxL :w=Oi/HͪgI$. l}qY..tVk?a>F@zXYm1\qk] +# ޼d»`w絳Z빱n.dϗQoQ F˰6=Y6=0KTFdrHcz"ɔO>MC铍T(0 .ӓ_S8ŋybU m+CV8%'E2?y=NI? 0,,p,%4AfySgۺlf{~p - 7gΡTQZmr iS5. kІ&DpHva-N<`HpJ:Y8 ;uEK˒ Y;,ʐnʲ0Lj `4@1 k}>s%ڸ0{(DR;.)Ƒ4߳L&競*ʳ:681;7p_%g< endstream endobj 964 0 obj <> endobj 965 0 obj [966 0 R] endobj 966 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 590 0 0 834 0 0 cm /ImagePart_2210 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 385.199 714.7 Tm 107 Tz 3 Tr /OPExtFont5 13 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 107 Tz 3 Tr 1 0 0 1 121.45 671.75 Tm 97 Tz (3.9 Dynamically consistent ensemble built on 6 observations compared ) Tj 1 0 0 1 146.65 648.7 Tm 94 Tz (with ISIS ensemble built on 12 observations, the noise model is 15\(-) Tj 1 0 0 1 147.099 625.7 Tm 98 Tz (0.025,0.025\), each ensemble contains 64 ensemble members. The ) Tj 1 0 0 1 146.65 602.899 Tm 96 Tz (top four panels following Figure 3.5, plot the ensemble in the state ) Tj 1 0 0 1 146.65 579.85 Tm 100 Tz (space. The ISIS ensemble is depicted by green dots. The DCEn ) Tj 1 0 0 1 146.65 557.049 Tm 97 Tz (is depicted by purple dots. The bottom panel following Figure 3.6 ) Tj 1 0 0 1 146.4 534 Tm 104 Tz (compare the DCEn and ISIS results via e-ball. \(Details of the ) Tj 1 0 0 1 146.65 510.699 Tm 135 Tz (experiment are listed in Appendix B Table B.5\) 59 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 135 Tz 3 Tr 1 0 0 1 120.95 487.899 Tm 100 Tz (3.10 Dynamically consistent ensemble built on 12 observations com-) Tj 1 0 0 1 146.4 464.899 Tm 94 Tz (pared with ISIS ensemble built on 12 observations, the noise model ) Tj 1 0 0 1 146.15 442.1 Tm 96 Tz (is U\(-0.025,0.025\), each ensemble contains 64 ensemble members. ) Tj 1 0 0 1 146.15 419.3 Tm 97 Tz (The top four panels following Figure 3.5, plot the ensemble in the ) Tj 1 0 0 1 146.15 396 Tm 104 Tz (state space. The ISIS ensemble is depicted by green dots. The ) Tj 1 0 0 1 145.9 372.949 Tm 103 Tz (DCEn is depicted by purple dots. The bottom panel following ) Tj 1 0 0 1 145.9 349.899 Tm 98 Tz (Figure 3.6 compare the DCEn and ISIS results via 6-ball. \(Details ) Tj 1 0 0 1 145.9 327.1 Tm 120 Tz (of the experiment are listed in Appendix B Table B.5\) 60 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 120 Tz 3 Tr 1 0 0 1 119.75 294.5 Tm 102 Tz (4.1 Parameter estimation using LS cost functions for different noise ) Tj 1 0 0 1 145.9 271.45 Tm 101 Tz (level, the black shading reflects the 95% limits and the red solid ) Tj 1 0 0 1 145.449 248.399 Tm 102 Tz (line is the mean, they are calculated from 1000 realizations and ) Tj 1 0 0 1 145.449 225.35 Tm (each cost function is calculated based on the observations with ) Tj 1 0 0 1 145.449 202.299 Tm 103 Tz (length 100, the blue flat line indicates the true parameter value ) Tj 1 0 0 1 146.15 179.299 Tm 114 Tz (\(a\) Logistic Map for a = 1.85 \(b\) Ikeda Map for u = 0.83 67 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 114 Tz 3 Tr 1 0 0 1 292.1 50.649 Tm 85 Tz (183 ) Tj ET EMC endstream endobj 967 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 968 0 obj <> stream 0 ,,)b7 %S_W|<%JHL (:.oH02BRq!} τn:!JakQʱd"p/IlӤlO `s(ʷs ,H˓ٷCms ~&NS^P9f{L"4Rr[0{%{0**w|^_v ?SMV3[ Ȇ٤_Wqzq|w.!Q|~44'U%>U B :D-͞iVϊx oh]I=]@6E!'8kW>gd խbpicݢ|uqF5Xb7x$yNK U `B7⃰ 2@eDx> :6|^ çrVL#꾚r5W/Bt乚s! *}O&@`[~`Nsp[M׬p-8s"gaCl>5uO~ʞߗ,Cqg3j/qKfƁ|XtN(f$ bySy:98wP%ͤ tLTcidpPmw"8h{1EgK‘9bmb6Bk6#/c̨Dۥy˝nj5(ֱxHȥ(6-,`F #fY}8!)[9'U*3FGb#qq~*#Dz:)9 =-='d7"PU{nM$4vj;Z6^btB5/Q(P9@H~ݛ@dOR.j1,I} ϳjL|ayоI IOrl\&a?\ !|!Ov>Jx'gIvXJ;ry@ZS2vSZQrvj ĵmfqC%v73P"=ܰ^ )p8&&ڑ 2\n6)~7E8T90^+JUJͼ &e+ɻ]3nmp6' Qh.?]IRiN?uyd$tIg í^khxWܮ;J#}e U#51DVZ/}ZR{N~p+495Q0#Ww buqu{|}2&':/@5U'Y-ʩ|#!SzZ}Lz~3 C|^1b])7d{B8+d`H YOg>eӆZaNI?u=kS=+zc]S> Nya0UX}q<YUx`l޺)kQ8k ,JئZKV3в;ghbyU{,Ƹ reRP:?rB֐϶晱L̈DÏ(h4Nݟ2eމ5[u^bAk:G.eB.AܥM"s#p;Pa.;W_sګJ^"e*kf ɼ\9@3ǩ!4# UU^!gդE]sђ0(iF Sˍ`"D{3{$!zr /B% ƨkO v= V=0eޕA]iV0%,9ẛ @thgRNa椦Yc?!aK޷?ɼ:I YʳKzcz9ϛ̀1Hj8iqD_K+(b̧A`G#889\XEZhGbܖ ;O%.5ޗJǜ_bE eD..|u;׿" V<κ3iޚhbP,N`ZO?%}O}ب̀;۲4,a= j:1RAOvaS1J?:wM|1|IWtB1]F LQ6_ {ֵGu&6!΅KyY)ܟs<zbFqHU$6O<2Pޜk*֔R*&$NZ?PrSЄ[Vz s=3ohAMXVTHG𝟝؆&:WqC ߃')jW3OC' prOhi6Nx@Es \![*-EZEO2=Eիipj3ҙYv*1BɺE>P&a"}y%"Z+O zNp(k㸵l\«c< ޸ JCx̗kbL'Z3xt!Ea?b2Ne@ jet p98 8`ױԋ gFcL3-=2%JPR 'oLܿ< #m`ZZΉt0@A"p˸`I'oO6f64c(^&y\h_ 4xVd`D7jP{G ]<]jqK>y 6(t:% $(+޼, d%<6eLkSᶺDz:E+s nv;T"tj5F:3w&:hKTy8RM>'Hm=QnٿMy]/̞ro2 D#MUfo'reX{V"r-sF$A S2cdn ^XZ5١m Gv?Q xA)j,}TFJ̥[8)}LXAg t%븠1No_w(p;{ʙʱbTiU?*llo4Ғ2n2_zWF?Hx& ] non#d:hy:_ 2quC\DVv'F편Rv)^dƛ A\ SRiAMQ7~8o 3%j ueR;:"z rA 1qP! ٟXmzdv 6 ոRElD0GYI5,#CzHJPb( aZke8p}>G)B6YE1ɶZs4ȸB c. *@,~el^܍3}\a?d1##qw6)@(/i't4W"k7\&qtz_v=[ ^9-O {sd ~pgݝ x y|U9" )d7obYN#b= \5LIoH6'hz,tܪ?WiTm9& "T@ꃪ2Jӎ2_}צ< N6tyj4ժD:"?0)cP@J/0([%,dQS}%|ANSlJ"H ަHI,v ށF +k5''3ֶDWDo$?>2H[B@yY U[$ȣ;[k(:12Ex`2N{7<ny=_R(yqqfdנ%T{[}1Ӻ\l^*+uB@ܮ+#mDcW',cU؉-,ˇ fAv ;lMb6ӜM-ͧS,Qu#PAd :)!y~q_imمS[JٔZ %K9zUFe2i[Bduo=GVJʛqfdH_2l o puX/ ϙVB8iMƏ 9G|y<ÓJ9v7t@WP:_`ГEЍ`"'/e֯zBWW!nD7H`lw,O7+ϐ"qNI1| 3m2!Vl .Ya;+0idA; Ϯ2H_%S`Zhn@sovr_9ȫ)< -2`5ŻE ;MG+cLRft8ӱFQs 'gQ0ܮp(iǢ oZ_ Q Oes ܣby+ֲO2j!1>湨'3aq]:s"3/S4x%3)we25|)P" }`*Ak(?D l~KxEjo`|{ ؽzoƉM@3Ck M\m9MmSO)(mΉ:43'xsxkv`/S]XJEvq] |] t3-_).bPcP8a丶|w )D~{pI‚6]|y Q\$vjpR N`.I0ӂCAIP\i "?h]!JhЄALwu!V*3.=,Zv/fZ?> )y!ɦ~ol9sB}ON[#*†FxElw)@3Wpq*h,w]cNXqutYm G{+WciSoSţ9aK{u vBEՅ&)(!`Ct=-ioh 0-.U;ղ߀ϘufN@˜Hoh6'9,׷?1iUxZ+eh59L46 oKolwduyeʳڪ!\!f@I2Wkcz1'_\[_+_?4e,,rX 6<TZ86m]!N*I3RFKՕ|Wk;y.Llt!٠6Ui}\}0"˲xL4L/pUb$ +K'vhxEB翿 endstream endobj 969 0 obj <> endobj 970 0 obj [971 0 R] endobj 971 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 590 0 0 833 0 0 cm /ImagePart_2211 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 385.899 714.7 Tm 116 Tz 3 Tr /OPExtFont5 12 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12 Tf 116 Tz 3 Tr 1 0 0 1 121.9 671.7 Tm 101 Tz /OPExtFont5 13 Tf (4.2 LS cost function in the parameter space, \(a\) Moore-Spiegel Flow ) Tj 1 0 0 1 147.599 648.7 Tm 97 Tz (with true parameter value R=100 \(vertical line\), Noise level=0.05; ) Tj 1 0 0 1 148.3 625.649 Tm 95 Tz (\(b\) Henon Map with true parameter values a=1.4 and b=0.3 \(white ) Tj 1 0 0 1 147.349 602.6 Tm (plus\), Noise level=0.05. In each case, LS cost function is calculated ) Tj 1 0 0 1 147.349 579.799 Tm 213 Tz (based on 2048 observations. 68 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 213 Tz 3 Tr 1 0 0 1 121.45 557 Tm 100 Tz (4.3 Schematic flowchart of obtaining forecast based cost function for ) Tj 1 0 0 1 147.099 533.95 Tm 274 Tz (parameter estimation 69 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 274 Tz 3 Tr 1 0 0 1 121.2 510.899 Tm 99 Tz (4.4 Parameter estimation based on ignorance score, 64-member initial ) Tj 1 0 0 1 147.349 487.899 Tm 94 Tz (condition ensemble is formed by inverse noise, the kernel parameter ) Tj 1 0 0 1 147.349 464.85 Tm 103 Tz (and blending parameter is trained based on 2048 forecasts and ) Tj 1 0 0 1 147.099 441.8 Tm 100 Tz (the empirical ignorance score is calculated base on another 2048 ) Tj 1 0 0 1 146.9 419 Tm 101 Tz (forecasts, the ignorance relative to climatology, i.e. 0 represents ) Tj 1 0 0 1 147.099 396.199 Tm 103 Tz (climatology, is plotted in the parameter space \(a\) Logistic Map ) Tj 1 0 0 1 146.9 373.149 Tm 99 Tz (with true parameter value a=1.85, results of different noise levels ) Tj 1 0 0 1 147.099 350.1 Tm 98 Tz (are plotted separately; \(b\) Henon Map with true parameter values ) Tj 1 0 0 1 146.9 327.1 Tm 177 Tz (a=1.4 and b=0.3, Noise level=0.05 76 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 177 Tz 3 Tr 1 0 0 1 120.95 304.299 Tm 102 Tz (4.5 Following Figure 4.4a, Parameter estimation using ignorance for ) Tj 1 0 0 1 146.65 281.25 Tm 96 Tz (Logistic Map with alpha=1.85 \(a\) Lead time ) Tj 1 0 0 1 363.1 281 Tm 73 Tz /OPExtFont5 12 Tf (1 ) Tj 1 0 0 1 370.3 281.25 Tm 94 Tz /OPExtFont5 13 Tf (forecast Ignorance\(b\) ) Tj 1 0 0 1 146.9 257.95 Tm 97 Tz (Lead time 2 forecast Ignorance \(c\) Lead time 4 forecast Ignorance ) Tj 1 0 0 1 147.349 234.899 Tm 176 Tz (\(d\) Lead time 6 forecast Ignorance. 77 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 176 Tz 3 Tr 1 0 0 1 120.5 211.899 Tm 100 Tz (4.6 Follow Figure 4.5, Parameter estimation using forecast Ignorance ) Tj 1 0 0 1 146.65 188.85 Tm 94 Tz (Score for logistic map with a=1.85, initial condition ensemble formed ) Tj 1 0 0 1 146.4 166.049 Tm 96 Tz (by dynamical consistent ensemble, a\) based on lead time 1 forecast ) Tj 1 0 0 1 146.4 143 Tm 97 Tz (b\) based on lead time 4 forecast. Note scale change on y axis from ) Tj 1 0 0 1 146.15 119.95 Tm 292 Tz (Figure 4.4a and 4.5. 78 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 292 Tz 3 Tr 1 0 0 1 293.3 50.6 Tm 85 Tz (184 ) Tj ET EMC endstream endobj 972 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 973 0 obj <> stream 0 ,,b2.[n&Ky왝)." K09tߓ1 3}#Xy{BGnWA:  CSyT5NY K?34g2* V6T{P19*\[bd, kꛣaI6-/ p/wal=+"XII+OEi!w5\"o!fٌ;E)7IhpjݭS.܁g=hI.Bmm[Щw34')9ѩmqG, 7ϢGm#󇒴l,K`l{b1rps/ I.w_َ!p lK!Y鶇@ 60cDOҍG`h`4gϼy{jjI5V6fK/ r* At?- {*l癗f5.E8uwYex@I`ְYܵOZ Q=N EhI"yzeT0!1;aAbu)%[A%X`mXx أG󷂰ȍ#mz.öߓ{ʄŴ˨w0 ~6Ema=˯ F 3!zwmW&l(2vZ>!Boԭ-j] tN蟅\}!&W!;ygg1(L/W y!0ϡm.i+^Hqwwܟ$ iӿL%ǣ{: wn#NJeuTpsw=ߵߊ=y+[Fa뎌N1)>iPԽuߒEϱt`< Q@/i\]Xzo$ێ&=X+ EY,DY>{+8:lǞ9re-Cߞ.WxepT\7,UiiMveX6e*ULĻ~,[TUJf4鳹bO'عHؘtw3 etJ-B G4_ϽqB-)/7Otl1)-FnqS1ŗej)"]F &Qh /l`y+,;;mN귓:"ho` BUŸƁwL+[/C0MMlNC[4n*1HFɚį̂ Y 4 _:]QG{vkQt t볱6]_ؓvjQdS6W/|#RWS#kӞ_ݚ\k6XFBߚh凐(aSWꗼ/]۽"M924S O(bn͌$~Oj(w~J\[ i9S˧4DMRýݲ681b4m#c[yne=DnЛ8e9ZR3vS'ǯP]L<1EFxj3sRwӀhc]R'sV}#\ Js|uc(agws)`})Q.h="ow./`b"16KoBhpH+O?W<ޅ')NÌ+"T|_,Pv[ݾ Ѵ4xxmel>EG/o@u^JgGK#'ߨ+9}T .eP սeGBrVߤxFȉ&Qيə,S%4 'qSh|P%~9(kӼk,?ծBcJ7fI Nv82Neeu}>ԯ&cL0{ሃ%V63geL/pօ@L]m\fM4 YE_-UgZXOH'(.ķ2-m({Hs bc'HE$5-%6ɳj3W+}7Ei.5!UQk#eɈTDD4:6Ҍt{% KJ/M4S׵j\;R>aD·Z2+hnj.6 &|(>jhM]-r{Nx,܇ey-ETޕA:nq%9b')%y}H\/Mv0_6*02kEF{ r8S)OjCӒוC7,=Hbj#Moߗb-g ,ar<-| E/rl:jbV/!QzSTwE~a3NV3uB"}BT{i˔e-T/Hzf c2aJ 0"QнYcDFkF}Rץo{c"<<>ӛĦ/sIrOdj^}BJpӀy\SӍW?ݜ;Xt kOOME=!ÙG.J֣ArvVjP]–S13P^QwME2e苯'~a'KIl'^cJ [צ|+lJRk]T&v*DAidnQ4U7"Y,-?W+;@?7mq82:׈^]H]Z֕KG,Ƭ\Y *iQcV3y#xN絥xѣ~ 6iKDdF)Mh㲺.k7v-S" jXH`yYMpd [ v|B#㕕\CSQnkǻ=ru'| NBoE>@Oػ@nt@+az`k-EL*z'-mv=_j_Ox qk JĬrk>leFTʢK-LfV꘢ +Bg)!%9X쐅H%J%,v{3o QhbeQH3w\W4MiI)op+Wʏ] M%v;[@O~3ʇeCܮÃLtnq, z;OȳhW|s 0!?8ɸ_&%mt.ȸ|8ɝw!H v: pQs qM^J0SeGJ.Țh L`2 mpH/߷-'ϐjWUJ=o=_r"ެK#0*Y/ltI* .!#Q?>F?FzܯD m} \!شs+О^/lԞ}v؊}R->jiʂŠmiЊҡ?aנH%X>3qy$aac; i}`ٲ~Ϣg6/Hm؅;lG`*0gl nį/8BdNtBjߝ% 7sB"}^BbTHTJ왂qBb[y}O[@*2\FfL_C ->˦w9"&Ђ2_[/f JXN搬a-L%4fߌ1Zf؀,EZVu>>0ZXÈFS@Ǯ6YcE_W7&_\*#~! rC`\0 S{b!*k`R C֘i/n8UĮ`!_M;-'lyG^q0Vzs6JA.iPue4 aZ YG+3BGƜmÕQY}ˬ5/"/vٻrz`/8iLZj,ùkG/lrL'P?3zt}-_i$tnG0Gu8xss))דePϢ#Mˢ#GP× Z W"T Ѵ?!g]|jL/Zy`pb&M1L)p؜K`o.ҌREp(7O͕/;ۙݹof Nƚ4}[0V&~j%)lc&g6VKPu 7(}^Hg)G)j݉=_9L fWV5dX&üjz&MF(Haՙ;_ǬO RI-sY!@ز.gAS9!{,/ ӱ"d2Ꞑ&sv׋jop*BbJ0%afv1y !.}/CicS`2$dl9YgLddL((|PIB3c[8a]Q< *IS rbB@\΄Ŝ4`?PxzǴ}ȿU E$FBbx/j mr* }#B]"š^;t^4Ⱦ rÊό coO- Q|8t3HήJ[V}I>À%ViuN /<JQ*A?uo"C]K8@ ӯeűcgaVemI-zWQ_BiijZ=tpTi}%a}@Ot7sοCyX56CSiUQsu$u$M`8$V ET]N+GH'\2ekܘוS͸ꉐv6biocJ_i %lxBga"-#?iԌGҶ"j#)YO|m1+^ )7l4A!L 6g;RC;eeܮe0#e{^!*SRGRm2yF> yIe.Z6䷠E5~I4@R  LB=Qlub}":ۭSa92L>!Ox}f^ fsA$.NYm&~bjN)4O,MwO}o{C z=q K<wTlm0>~X QEv@RMEaˆ*O$o{W@Sظ] O>NS!\+1x!DjK٣n̻ap9N0懡d -B~ pFr ƎJ zPYGWSBMB3):6@c[;E8Z*mF; z땟LpRi(܋{!R-ڸ R̂mFJ44/ޯdo&T"J+ݏ_˕l }VdcXL\Ҳh)pWU^1o6ɛ ϐ=c* +nerR Cv܍6v)hfmgz$O}jҧDb q Wk0Ŏ ӤGW[N3SfXD=zZq_&EH f1vRG*P+Pdh~!\}2aXooOZ& ֶi?65$]| ݦuPomv &&R ܔ^JOH@+ԓVo M5k?xW>52٭LqL$LBP-8svd!QH9"ĞhI nZ>?Fuba * 㞺\wBH?R'KF.(\&R̜P.{$mkqBJ\)Ίϲh d{~ Y"fnR*wNGͮ>{hT\ȾI2ijk׆ygTT\֧¯>42 rƴ% {qrȎ }u $vCr<33ahHxdjSrr#¬cX?O>b2Ao10;`н3!ox*PTLTF ȕ &",25.TݸlÕ(՚stD }-RqP/餤gwbUyq)IvP޲L#~DX _ʮX|\8̚£'ۤu'WM*^KaHϕCAt>ԶvY1K#:okлi/GbpZ|RXQ~lߘ \i(挂@Џap-T M዁"7v/믛's:ӅxxQ恝v1^6u #IޒR/{n +[_wͥjN2|,1Ps]Nֺ$cJϠ{S3{9KE;dm.}1\ %ʰv{`u* d+Xسeǭ'<2&1jPFt.M(Pm2&Jb]q|x74J.iί{wѥlV*G`,B,Qy'P>ҁrhɎMま+ˁ?ztE^%ϋ(|z 6a',L׸rd:sAxWJ~!5 4Tz(tp9B"V4q6ݞZN/ROw:Iz0Kx##0.W&.g"&e~ht+CXuE?x"|8WA <4 @(L_hs,o:Keu|(4.{B[Ҙ˦>)\~oTtD } wX) [+3z]7XX͏.>A8;1I!{_oKPJTIPXƀj |fC9eѤCR.;dj7wf"-g { fIO*|F%P?2x5ODSwǯveisg"Wrh(`bw+2("\ߠ.߲)fٯ]15xw5]"1%YvFca'_ijT~Zp|nV^4St<"BY©tb2}eB\ YvD,TSqVTZhMkKBq] vd`H+Js+(V~Ԃ^?SGr *B/IF&|8ĆֲsЯ_$TZ[l=6JJVl-wC\ޯ[ja+ςцzڹ^l-/Nxj8&t$o,r\6-HO@2-_KG  Fv2eyqgsܫ]c;EC[W endstream endobj 974 0 obj <> endobj 975 0 obj [976 0 R] endobj 976 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 589 0 0 833 0 0 cm /ImagePart_2212 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 386.149 715.149 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 122.15 671.95 Tm 101 Tz (4.7 The standard deviation of implied noise as a function of number of ) Tj 1 0 0 1 148.099 648.899 Tm (ISGD iterations for Ikeda Map with true parameter value u=0.83, ) Tj 1 0 0 1 148.099 626.1 Tm 102 Tz (the black horizontal line denotes the noise level. The statistics for ) Tj 1 0 0 1 148.099 603.299 Tm 109 Tz (tests using different parameter values are plotted separately. . . . 83 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 109 Tz 3 Tr 1 0 0 1 121.9 580.299 Tm 101 Tz (4.8 Parameter estimations for Ikeda Map with u=0.83 and noise level) Tj 1 0 0 1 460.1 580.299 Tm 41 Tz /OPExtFont3 12.5 Tf (,) Tj 1 0 0 1 461.05 580.299 Tm 69 Tz /OPExtFont5 12.5 Tf (-----0.02; ) Tj 1 0 0 1 147.849 557.25 Tm 104 Tz (Moore-Spiegel System with R=100 and noise level=0.05, the re-) Tj 1 0 0 1 147.599 534.45 Tm 107 Tz (sults are calculated base on 1024 observations, \(a\) and \(d\) The ) Tj 1 0 0 1 147.599 511.149 Tm 102 Tz (median \(solid\), 90% \(dashed\) and 99% \(dash-dot\) shadowing iso-) Tj 1 0 0 1 147.599 488.35 Tm 103 Tz (pleths; \(b\) and \(e\) standard deviation of the mismatch; \(c\) and \(f\) ) Tj 1 0 0 1 147.599 465.3 Tm 99 Tz (standard deviation of the implied noise, the horizontal line denotes ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 99 Tz 3 Tr 1 0 0 1 147.599 442.3 Tm 105 Tz (the real noise model. The vertical line represents the location of ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 105 Tz 3 Tr 1 0 0 1 147.599 419.25 Tm 101 Tz (the unknown true parameter. ) Tj 1 0 0 1 290.399 419.25 Tm 2000 Tz (\t) Tj 1 0 0 1 488.399 419 Tm 91 Tz /OPExtFont5 12 Tf (85 ) Tj 1 0 0 1 498.699 419 Tm 32 Tz /OPExtFont5 12.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 121.45 396.449 Tm 104 Tz (4.9 Information from a pseudo-orbit determined via gradient descent ) Tj 1 0 0 1 147.849 373.649 Tm 98 Tz (applied to a 1024 observations of the Henon map with a noise level ) Tj 1 0 0 1 147.349 350.35 Tm 106 Tz (of 0.05. \(a\) standard deviation of the mismatch, \(b\) the implied ) Tj 1 0 0 1 147.099 327.3 Tm 100 Tz (noise level, \(c\) a cost function based on the model's invariant mea-) Tj 1 0 0 1 147.099 304.5 Tm 109 Tz (sure \(after Fig.4\(b\) of ref \(64\)\), \(d\) median of shadowing time ) Tj 1 0 0 1 147.099 281.25 Tm 475 Tz (distribution 87 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 475 Tz 3 Tr 1 0 0 1 121.2 258.45 Tm 103 Tz (4.10 Shadowing time isopleths as in Figure 4.8 for 8-D Lorenz96 with ) Tj 1 0 0 1 147.099 235.399 Tm 104 Tz (parameter F=10 given only partial observations, a\) the 8th com-) Tj 1 0 0 1 147.099 212.35 Tm 100 Tz (ponent of the state vector is not observed; b\) none of the 2nd, 5th ) Tj 1 0 0 1 147.349 189.299 Tm 104 Tz (or 8th variables are observed only the other five components; c\) ) Tj 1 0 0 1 147.099 166.299 Tm 101 Tz (only 2nd, 5th or 8th variables are observed; d\) all the components ) Tj 1 0 0 1 147.099 143.5 Tm (of the state vector are observed. In this experiment the noise level ) Tj 1 0 0 1 146.65 120.45 Tm 709 Tz (is 0 2 88 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 709 Tz 3 Tr 1 0 0 1 294 50.85 Tm 86 Tz (185 ) Tj ET EMC endstream endobj 977 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 978 0 obj <> stream 0 ,,XX[ᰋy8nހ˟eMg֢$tin{jMH^b\(``uu0Ȇ0\( Wپ 9`@! WOz4(TLe.Kp(wŠF1q3ɱ4̧WƇ͍~pBh4UPI|D$[„ܪAd"Vm?R73L6"&vtjT tlkO<鉱 2Dh)Y3{E@(:4k2"[ Q}UH}si8B KgUa'EUm,]T@NBD"^^]Pݜ:1tfg5ֈI3.,*ǥ= T5n:I^J>} 2Ϻ,TYq\lXJW{Dt 6&Xs λx;b\%{U%sV] yQV~qc9]5KDH"B}?va5űnNQzF`m7;9bO]\$p#cvy.Xt5mD_>lj|8B.M_W/ޚg9yk1Pq<#5Jҽ;2M[ 䊦OBcʗ*&RK8nU]!^|Oސn7"??E4+80EGلvTrR]M2d5̎$(s[)N&ah7GV(f9g d ;DU6<d"ES3ƕs!$@wx4j֩kEAL* vžirqIYh]-4][7?fƂ 231>þB Nyx1ΖgM76WT` IΙC PC|+TglWLI/-tx'0 A;ф2|DX]3oؙ~1V1a4qjZ$hwz*Uz܇QwbX8 dÃViKԃtLoKd9;1,@JLJ=15^uI8i߾[2)fu ]{UęO}Oqx]d/LfZB۶ #1oS*{q}􁱱!lUtTzOd;v$Jt"d5n*F];P>\ؓ(R^8 83|X'Dł(ľ2;P,>J,|O;P'"b J &?ۮ>JAE 9V@8𴎌//CJ<ʞD;6&|c^8Ѳ>L=bBzKE%RشQ|/)|_IͶ M7a$O I @&s0rp p@IAW ᫝_3wBnTMLpw_Hs>W1UJG _)qKG/tʤY7=*{jB=mVNۧ|4~#ٺ_TnuߚPJQ/s3iRϪfѧsu[{W-n[!lu77eJQgAf}P?}ay P?Y1KwN3@j{Gq:KMYqJ͗ D<Wdħ^/: vj)l`c@[i ߊ< HGU~[YEuLkiSq;Ib e7ě]+^2u.>jQ$%B0,<欛bc=e[xGPH.rK#"NRnLaI|(G#7cIO(cÚSBXG߿xv 9S 'Α tBHeEv`ac bvRŅ$g"VeYxWz/WL.ǩ|mcbر1ד"<"\͂80um'Z-5N@(xG~ U*$ero s &4K m yfn Knk GȽX1/Px2[L쫟, zCJBT0`{a<ס(Ȱ%F ؙlV#Էą%},vn>fG4iـ>11K(^K+ Rf;18'*}=,;H 4V<8 qTcy9uqCM;zHQ@N9߯8m3^c/hxnh&յ@/9;ExLlk6kf DQw+5+BAqCM?>ۜ]H|aFu!1 Y"_s$?K+V1"~WS-V_\\!;n",1߳O>A7)cG"41-*"`QlmhP) UXJqt$:fݲzvEl1O%vXHA6A]u)6hTLs1+ ߱cF>CxJET OM`d|Lin&4*@:L :I-DX.HfyE+sv.L)5}Ԟ"-DN›t!4Į7pA7tZUg 8AhIgK=S>Je !(ԶᘾZ &x>KQ7^Wm3te Y6w/ezRNP_[ZO D+efܪ^ǞSӐv,'~*q)O)- p]lYA9ZX$ vHsgDlb6D_`d 2@ mUS1p5"7(/> ";J؂YFCAcĠ38$; rY9z^Gvj.[+q*G=00TZ-wֿFwO)!(*:N@Mu)xCL_hWR(\e.RA~./\Đ}u y׈zK/Byuԍ{#.Εw 6 =.F1XI>v&\o˲JUv[[U,Fʼ3C⋾6 kMI[˹s}N}Y6j=fYυO&"ɣWeߍ&H3_)/,HCq˸\@ěʱGNqCpQYfOKPi>0بEiwFb&VUF[ +j>3=~$ %Ҟ ׶LXխ xvMBzRMx0D駽9?1P}2?8=/: ӌ~ Rq V7;cZiG۾[9S[k‡^jI_ROܢL񄚿_!ؘnۗ^eDyl9xPǶ tyjB(w^,Y7r6ޏFiGvMj V!V{ ;)i4(]E8^z\ |sEb9^ݠ6Й.&_2s.IԼ>ү? Y7qe1WLƳueϔ#B=[7KA,y< z3nWg,yUu-A6*x-LĞUOO!{4 cF\|sO0jc݁e}<'w^x5h߁K.48EDӱsyᴣjy̓3 4E\nM6MkxGfLF'U RП/AZ{'AH(79M#Q~Η1=S~R=-CUJMwUP$1 xehg'ϫ|B.CcFig(^ <\t'8cV E@>ȳA6Da#Ƅ[t0P\Ow =5\N~yL&_K05ȊTfՇ(T!(t^9>s #IϪ^oJHK-qm]zfW0o­WO^gKinX؞-~R=sh=bUGKg-tc rj7Zt21:b5>N8g+zGCU̧vG$ڸk%`o$-Sb,ܐ)ljfo/K@Z!G$e@ B5.U1$'a a~n9en ^Dmg5f"GͣVK4}OCI{VҎ{=t;ھIђ-9glh4 *N &)[>.QWI{vjF]cWRVM­ T\Bj۳H0N`9YrnD^0k\kԼͱQt؟aNhFa Q>_  @ 7//vvoEmthYcJcBi9c<jpGI8\KhL,>%?ۚYg$հY3"3-0t#&Z>}O$=p…K{W|O MD@{^6QUl;_J h5 y[9e9&Rtǽ~`/LC9&y]'Ds'YTj O L7`艙o<͏CN1='˓BS<0tVo7Ԫ1Gn!݈QH$'aKKVa+GKEa7úz$o8b+`4'E$$%i ~SwȘfM4o G$j'̨Qk6v9G|Dtׁ3wF @EcժAC.>e1%f⸿^ѱ⯡ʳ.( 3V:& 8aR7`8p!XZc8Ԉ+A̯~Suj' kn7Р5&ؑDˍ |;͵BOP 0z3^p7!X!7e漓+բ G]C6nIǵasx-7#LA4 וֹL֤B[f_k}@/_ڕk䳉<^FFM{S44*H;aX%ΒO4ZHీŝ621s|T&}=ii :1" Kc[?̙F6C%K.dhNE"P]N%5݈7}hW l`s؋<|i oG66N]hhgOsO{a#s1@U<7;_gVSixʄWBVC$@{{#&O*"sؤ0fǼeg>|ԮrʪrUh"CWuRbIkMqs3VUwU#϶52^ m-<ܶF#>b$L]馢 'v<* rm U`#I٫wkXj-߬1r¡`!ctJÀVrhAﻴ=@?kP g~u=-0z_nE\#`VQ8'ЃkSVs`ӿK52b!2@`2޺~eޢ?88rQ[*kT}3䴳ged<4`ZDan}@7u;{hav}旷Zҡu;8`ft4SP1م9[I+w|&1RX@U4&6GŽ(jaK(o`m$ ~aP7R3**9Qw$>nXYŶ*rq']4[ggo`_0Ft=c7NN'ٷyEC:v݇Ӄn{xoIZ̡A@OWŴ W&%^=cV)2g=wϢ-u~b) ՛+pL jG}"9DP+ۚF0ER+X.>GH_AT́`t.`D1D D7I7Gue''.)|ۗ:fjY345[*O0#>گ1#}Xy0YX8̏ EI˒HEFGfcLUĭA?rs1 J%nc<,w:y;P#W+7`Cu?İtyK4 ǃ[ͽd{.&I0Cs8yщKov Ft;/kǹܢM{Qb, У[d6~8b`& p#knD4V xL ӜW&?=C¹U ۞pB ,,[+~OT7suݷ x  a]8A.~ o |zZG2}[e_oxJ'es^noeLu  )nt`D=-L: =`)'2>5SaubLI0P9 1U6v|ni!,s%ٷp*= 6hVT^Z}԰+ڿ.ZЗ$d./`ADU5;veHRR8Pd`71Z㼐arΧ $Td aNDJ6pDz?&]F9ky4k endstream endobj 979 0 obj <> endobj 980 0 obj [981 0 R] endobj 981 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 589 0 0 833 0 0 cm /ImagePart_2213 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 386.399 714.45 Tm 107 Tz 3 Tr /OPExtFont5 13 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 107 Tz 3 Tr 1 0 0 1 122.4 671.5 Tm 101 Tz (5.1 The one-step prediction errors for the truncated Ikeda map. The ) Tj 1 0 0 1 148.099 648.7 Tm 99 Tz (lines show the prediction error for 512 points by linking the pre-) Tj 1 0 0 1 148.099 625.649 Tm 282 Tz (diction to the target. 96 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 282 Tz 3 Tr 1 0 0 1 122.15 602.85 Tm 97 Tz (5.2 Statistics of the pseudo-orbit as a function of the number of Gradi-) Tj 1 0 0 1 148.099 579.799 Tm 95 Tz (ent Descent iterations for both higher dimension Lorenz96 system-) Tj 1 0 0 1 147.849 557 Tm 103 Tz (model pair experiment \(left\) and low dimension Ikeda system-) Tj 1 0 0 1 147.849 533.95 Tm 105 Tz (model pair experiment \(right\). \(a\) is the standard deviation of ) Tj 1 0 0 1 147.599 510.699 Tm 104 Tz (the implied noise \(the flat line is the standard deviation of the ) Tj 1 0 0 1 147.349 487.899 Tm 98 Tz (noise model\); \(b\) is standard deviation of the model imperfection ) Tj 1 0 0 1 147.849 465.1 Tm 100 Tz (error \(the flat line is the sample standard deviation of the model ) Tj 1 0 0 1 147.599 442.05 Tm 98 Tz (error\); \(c\) is the RMS distance between pseudo-orbit and the true ) Tj 1 0 0 1 147.349 419 Tm 368 Tz (pseudo-orbit. 107 ) Tj 1 0 0 1 210.5 419.25 Tm 30 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr 1 0 0 1 121.45 396.199 Tm 96 Tz (5.3 Imperfection error during the Gradient Descent runs for Ikeda Map ) Tj 1 0 0 1 147.349 373.149 Tm 102 Tz (case is plotted in the state space. \(a\) after 10 GD iterations, \(b\) ) Tj 1 0 0 1 147.349 350.1 Tm (after 100 GD iterations, \(c\) after 400 GD iterations \(d\) the real ) Tj 1 0 0 1 147.099 327.3 Tm 134 Tz (model error in the state space for comparison. 109 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 134 Tz 3 Tr 1 0 0 1 121.45 304.299 Tm 100 Tz (5.4 Imperfection errors after intermediate Gradient Descent runs for ) Tj 1 0 0 1 147.099 281 Tm (Ikeda system-model pair are plotted in the state space. \(a\) Noise ) Tj 1 0 0 1 146.9 257.95 Tm 182 Tz (level=0.002, \(b\) Noise level=0.05 110 ) Tj 1 0 0 1 308.899 257.95 Tm 30 Tz ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 30 Tz 3 Tr 1 0 0 1 120.95 235.149 Tm 103 Tz (5.5 Comparing nowcasting ensemble using &ball. Observations are ) Tj 1 0 0 1 146.65 212.1 Tm 98 Tz (generated by Ikeda Map with observational noise N\(0, 0.05\). The ) Tj 1 0 0 1 146.65 189.1 Tm 102 Tz (truncated Ikeda model is used to estimate the current state. We ) Tj 1 0 0 1 146.65 166.049 Tm 94 Tz (compare the nowcasting ensemble formed by Method I, Method II, ) Tj 1 0 0 1 146.65 143.25 Tm 95 Tz (Method III and Method IV. All the ensemble contains 64 ensemble ) Tj 1 0 0 1 146.65 120.45 Tm 454 Tz (members. 124 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 13 Tf 454 Tz 3 Tr 1 0 0 1 293.3 50.85 Tm 82 Tz (186 ) Tj ET EMC endstream endobj 982 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 983 0 obj <> stream 0 ,,Db6#ט@/iSqfgӏwFqt5Q srZ9:LyLg;>MU' lp/Gv쥃3xQZw+W\2wmY.݉ rmxn  8>%^f?Dbjz^l*Aڜjzb_4zXc/p&.C"TǽSV!i\0[EvU>v'ђWboOo8%| =yu+ǭnhڮ($|^FsQP7  !i_!cw9U ㌿l}$V}]y B<5`\~GdA?`[!4яRMxdY)iE<]kpU_RID^&fyEHal3q:"'Z+H T<] YGhgLNk.M|vϭ|xLi%-z:zgimpz%m[wW˲;Vu9k'(=Kok ®[]PLܹp۫f莙߮(XQVvn-QIwb ^DZa Zܟ)pxw%Ґ8\_z;2C&-,a,qtKEGoZ#T捤{b  #FY*:" ,*N]댖h8 I]oF%.t'L, BR@L mj6:?xQ(:r4zݸybr.>%~70)k q>z@gfϚg΅)u:3 tW}7M6M~HM}e 7)Y#"N6LʊiȽYK x{xl]O_>U${A2{Ƨ~=+>]$oZ'#_^ĤnI=ȌK&I 7b?UfJ:\#Y<#u ! Î~pIjfꣷQ4 F`|Yrλ?7;/-٬JԽ_4c3&ڙ3%ЩJCO|]QB6WI|=6JiM'̪'?fc4qQYF\r`U|Z(l|m^::=%[!Z:S;a pR[ŒX W_I_;kS,Oc/8BuS4:qM@1>FLS9e$r(NhR$ ˎ٢(GGx h16SN=ݺDqwb+LJzVWqQZ},io^ROsdU' w64c48)>%#61z׊{(<—y=9:J:p),TW$ӊVZrJj9kfSIbQ"5!xs4N9.L>vc96p㣭sAP! y^6;}18/8L2|)JV RgԍD(9NVߔ+*S#A$MɴaĀcG-Z0SFA'( jR !$vB(+$ 5(V.l$p P"_bsĿg`+`gBNʔ @L;%c##5|(Z|/ryv? ~ҵ`5K>ʂ,f}vݵʵO9ɱ`,80;<*zD ;Q׉V"GzF *ք`TM=JKtYab3@_PrFԏ.&n4t,Modl۸4 s5[E XٹGI,ODtmE]#WNi,a,Jb ƹ_ wWã4lơn)msb5<8aunE?*czoY$ѐXGvWaP|8'hsvO07l]1Jvn-뼖3xMiٶS *t1|LȢ?5yeյć,[쥑^d)oXR9 &5ߍ~}'Pox(D z YZ-n*IG2 Ӗe(Wr:,}aɁ\)\B#b_Nf .R8R$%HԭqTl?ӫ(=PCs"*W[Qe[uؼ -l-b$*P-g6O%:}I6oJ.vIAX[szHX?9Aݻ$Rsה@ h{5}g_?/=Bp\m,mT-[jU~֜mvl(#BIxp%a 5 Q_2|ڣq%.Hpp ;eZw2#M=m26_C8QꞤҭ#rS g">!FG &b.;J_ p](&Xh:~>+iF/AKx{\&Zx~}Zs'&¶щټhƅ)[QwOkV^XoԻNSpʭ ?!wy'l? ]]iWΓľ v3442C|/DW 17E $JŅ^P a5ySuf6k&= n (`IB 9IK<$:Lڠc1zIhfm-sG+P%$+5 _Ɏ k‚/S*1+u{TPVk23^!@Xkc@ L6o!÷6l kƄb$*"kAp'K1 /ޗׯU#Y樓 Y_Zٷ@kG߹yFO:Kc&2@̬J㗒F Le l*AmtGo\n\g]L$/yTaOFݙ`վWf%Z!ؔN|WO8_{y~Oj^pVW#GE{oW*oRF F"UjTA! ~I'EìY{̞,5C$%Sd2>qF6szD-C~$Nx6d&I)ЕW_ſZ|@_#? u]~Cъ^L oGAPsF-ݧęWX{Vc᧿mxRp>(cj}U"f}0ld35Vqi%[)+ W9Aڈ$y$bEvgg(. ?b>c9^Һg4B{ *er<1~ ؁aY֦S)Ѥz#|S-ZL Y*h C!fo _{4_g %u R!BB98쫅<\҅POݸ\̭O h4اpAfd'U@ED"=h/PmmRZQbA v/x尭s飐nۓ+Ŏ-7ۺlᾲډL,ʼ³o3$⻌< jٮܛ_[ij`S)tڂ7VF7"TKo&|),ҴS[ZI`w1]pceEgsu>{(1o fBA3t-౫;,9Ԣݖ>~賧Ղm<~(5X¾CaP׍Ēo}p %HJ^QV#$|HLtuL-nIYf -uo%moW,QoiK{9tbzB[Ez-r{I .+H'RMb:^TѱbK!ex:ĹS&9lhܥv9BҐűd*{29tp[y&T"ƚXZ<.T\@ ްYiƕ5v-?(2AK~II8NL1}LLƏCy kOzG,Pư=A-O@_1a|eOe <-ymd9%IbqtwFE{oj]VnLWZGc0L#Ul.jOƍWrNl!m~T,X"+7&t+܁Dho9ҡƭQ7B[4*!U_`b b]lX\3@`=*R&62t֠gR[ݤ?M U'|AVK.G"R~D+`-!Ol2r*睎WvmyFXF;o ZU'?`zM&3/Z.2Z! "$L 'A@3f1"XH/%Qp;b~SVf]^ҟSF_ZUz0k0}3MMF((7} E4;</ڌ6)<c[V=A "?Fx~<#u5)&ߎ >䳢ǂY7-(8:{>-w|]sC dH#؟ ` pO+@!c#eqyuFԚx_" 6)eŠ[<{X_1֎iB5eTE,2d@ (<1=MЄԻÑ_\utG|?eC* {?ɳXrY~j{kok!wF4mU[()F>K3_"rNCb~s7L;Cv.6 EyFud Ƶ:<:ha%}ʨ ?]Z}̎%$ ; E^.`,ˎ-xܑ : @^}wΙ^՝WrZ-Dw߱hM\DK#gd1 ypA寮E@~Fɽe:C("p475ZÐNssĆ'h;\ (O:feZ],t%2 7Pxpr%oO6c@1נ)˚ i֔6]`p{ժ\%ʠ%&>Jcz`N Ru>̽3?3VdY(`2/ήELWMb2A%I8 G\^i'}rm6CYmzȻrnZPN&jLFY+G;\о0'Ca݌< d@|-naJ@#BG7ui$̎\{B_*EtHfJ@J:AbRMpz{"Ii̸ = d$Qj^'BR\I'AD/zv&Ơļl$5EaCcknf21Άo!pu(q-qM=oUu p91c%[{VsU0I~'7v\??]5Wv&Ar36~T OՆTp(X-{hꛖK]-prYn[/r޻!GDize0U|4l(0fyXo)lY_;ˈu]GfÜ"̄cN2 N w8>Т3*L#6q,U?^!+Mآ51W m ZwGdX(>;9-2<+̭B4#pVuWH9Ypu::,Gws2zC)dߤ|۞Jݓ.Hs=#gBD|rvQB, endstream endobj 984 0 obj <> endobj 985 0 obj [986 0 R] endobj 986 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 588 0 0 832 0 0 cm /ImagePart_2214 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 386.149 713.7 Tm 121 Tz 3 Tr /OPExtFont2 11.5 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 121 Tz 3 Tr 1 0 0 1 122.15 670.7 Tm 111 Tz (5.6 Comparing nowcasting ensemble using 6-ball. Observations are ) Tj 1 0 0 1 147.599 647.7 Tm 103 Tz (generated by Lorenz96 Model II with observational noise N\(0, 0.1\). ) Tj 1 0 0 1 147.599 624.899 Tm 111 Tz (The Lorenz96 Model I is used to estimate the current state. We ) Tj 1 0 0 1 147.349 602.1 Tm 104 Tz (compare the nowcasting ensemble formed by Method I, Method II, ) Tj 1 0 0 1 147.349 578.799 Tm (Method III and Method IV. All the ensemble contains 64 ensemble ) Tj 1 0 0 1 147.349 556 Tm 494 Tz (members. 125 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 494 Tz 3 Tr 1 0 0 1 121.45 523.35 Tm 113 Tz (6.1 One step forecast ensemble in the state space. Observations are ) Tj 1 0 0 1 147.099 500.3 Tm 102 Tz (generated by Ikeda Map with IID uniform bounded noise U\(0, 0.01\). ) Tj 1 0 0 1 146.9 477.5 Tm 111 Tz (The truncated Ikeda model is used to make forecast. The initial ) Tj 1 0 0 1 147.099 454.5 Tm 108 Tz (condition ensemble is formed by inverse noise with 64 ensemble ) Tj 1 0 0 1 146.9 431.449 Tm 110 Tz (members. Four 1-step forecast examples are shown in four pan-) Tj 1 0 0 1 147.099 408.399 Tm 107 Tz (els. In each panel, the background dots indicate samples from the ) Tj 1 0 0 1 146.9 385.6 Tm 105 Tz (Ikeda Map attractor, the red cross denotes the true state of the sys-) Tj 1 0 0 1 146.65 362.55 Tm 108 Tz (tem, the blue square indicates the observation, the direct forecast ) Tj 1 0 0 1 146.65 339.75 Tm 109 Tz (ensemble is depicted by purple circles, the forecast with random ) Tj 1 0 0 1 146.65 316.7 Tm (adjustment ensemble is depicted by orange dots and the forecast ) Tj 1 0 0 1 146.4 293.45 Tm 111 Tz (with analogue adjustment ensemble is depicted by cyan stars. . . 133 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont2 11.5 Tf 111 Tz 3 Tr 1 0 0 1 292.8 50.1 Tm 90 Tz (187 ) Tj ET EMC endstream endobj 987 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 988 0 obj <> stream 0 ,,{BBj\ o-NF:oQEs, =q4cZ)̕iZ 6r&gHު_貰оdŧ=X8a+ܖ#\d,y:e[FGg@ {.)*5Ȟ{dU}'D?ţ872⊻{-&%ʷ2`و𱹲*CՇϴŧIJ<׃Jɏp3{Ui9 Z&p 9hD%̏,$H4vgjy֗lo骉O1 O %<,-L _XM˺@np}'$ r] ̹6Y1we{"]I b>AU[/ E219"j懝~&KRv` \QTDŽAy'cwSn']K8mDa}270IVbgvXJ-6 wJxXt~yԚ˙oC^; 2Gpo˥wfU=B 2$>mR:5!E?]?6Ӯx;)"V 9~L fQ=aF0}4H0ڠ&j5<heMo񊿫X\`>z`d;~jhz]NmQ}S5~$)^AmZ-ri _Yn۸pvZ2H@ɗ G7J)R|E, j3.j2yֵѺЩ]3=rcː(IzI⫘@1]\l{Nҟae شdӁ|vcScNEߩl`TXŷleZ;{C#AV5K{ZsBFִ4d́%{Rj 94eիv .IA5M{;NK!C*NC.h}uj'hj45&\Gms!m ֎)[{3@P0(7z_ر#]p0v5,;UaȌ2t$ hp.O3.u]n5O^4e;6I%N+Vl? qL'֕fp)}I`F vc?n>"%3/ك&"~ڰ$Vء BhӨ֕y l8F#Dt!Wy̐wz1m2*/nU4R=Ҽ9}Vg?.~Ses>a# 7TaW8QΝB'M_~g&`,~:w񮝨|ѓ] Q}TIPJ^UP|Ǿl\'6|yYզcG qmL=13rKu{O5A5~ Ok= ~k`rX.0٦0=֌{iO Y2siC@\|{\f׃ohAtJKcz}edgP)6h.]<р6k+ ^u3?pjZIsΧDE w_uBtC/7nX8KAvcSF"H(ҽI1za ?L+Аj@:Oh*r;DAmj"y$Cl>Fp PKC%8 ewӀɁ;8.Lɹ2FRRjf(@|2XOx6IbT"aJ;#1J%E^{ٓTɒ|mLi}4SN9͂DF=KŹɇV\@ Kڡ|:ۓEp N<;tۀ#cgмo:[:u.tGzgO$lf%Ԡ]mBu)Zs"+=0!35b'S&usC>@t_tA4^X0ΊHjh N}* C7P5cu&Fg,INBGR|ǺPά6XzCSV`@NX~$%NrI-|T8ѾIO4Dj~~.PQWG'ciX9_et(L\sI#z|LI3 @bW1V?τy4)pyNa~V /0>00؆>ֶ7+O>5?DyMpx1 nP'1}:TռeaQ$AC. m,(hΣʚ"-[?(x-6F>ΫAU) 5a*U?-Ywqכ@ޱ4H/Njxc]y"Fw?%+_JB#nOP>_`+pA^J M ֨6)r Ue0nLߘXs⵼AJo)[`991A1s"2 '0Gd1KXd̨Ԇ@Kۘ?FL9C!@Ӟ4Sa̲뀮"&iN&,5Ƒ5Ql3L-;9φM( yl;:G>ox2OW] >%wTYD*4{f#G̗mЏJHQZnc9=ӄG۹ ]F^JuVoF/čI' !hM#a`E)({=K6 _[V.54'G_, fȵYe:QCL64 BOs7 IgGӧk.,4Z]rS?uO z> q#$k!}cٝ,jW26)_ p:)z)zPJr}2;ً6:?X,f<C'MWG9`A.JI,xF;=FE9q}i/MS[[yV{m@gKY>tSdji%pH?s ;} y!pj"S]n VTu]x<(+O*Bzjl@3?;j <@e2x)I_z89jWM&ti r_x%j',N:9r 96u:==*c %~dQ (!t4\dzq7%ýu`4MUwSeH1eKDh=n&5,ZkӀ)Mհ$zhMijGI1)ʤs*RenKGr.v4&IheY}WD^L >![fo-h.,g f2'&C JcsӫITi%5%Aĩ`,XalŠp%L,p*OV[C hI糕BG܈ 3ozX;wKW݌\%[IaܰOYЍjV> ^ R]JhչQik'ZMB E+v!CA;(,wKn3BcoK1v.0z2[bJTmYr{3񛀕 45.7xc޳=; Ul6t?-KQޏ-;QsD[adFxKe 0w=0W^TKs'tld Z(J˼S^*uIg U|!_7qd|5.>U"d~JJP=qC'\!&p6CxQXNF3qMCZv> cC^&:Xi[=GMud'ؕ Qrc;!xm\7C~9On,Qi ٮ; 82`HǺ4TI =*~`}F((C*~3 :G_U<()r2[hjRGgڦLݟƽz#QJwL2r|}zۍxWMaXF+ax]6ԺXB9]qcOdxclkl7,f0(k\wh2I8dF o KF*M]* )6U /jr9Q mq8oReD v\4H8dB#͔:w&4K!Id Yf%f \"e`|.GMnE) HD'/w\%%J{1ݸrp'R#Gˢ !QkI\ѻv", ɋFN,'$W㰸Af^>9<%|BZZU#Y|{;awY`5~NOe{TDcIbYOlـ{zOT0?tW>TRF*gZZ,ґq,F53Ee;[og& SOs&>dq ,𴶝65dzɶ[bSoW8dcY-l.{KQ"»! Al<> endobj 990 0 obj [991 0 R] endobj 991 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 583 0 0 832 0 0 cm /ImagePart_2215 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 379.899 713.7 Tm 114 Tz 3 Tr /OPExtFont3 11 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 114 Tz 3 Tr 1 0 0 1 116.4 670.25 Tm 92 Tz (6.2 Following Figure 6.1 experiment setting, compare forecast ensem-) Tj 1 0 0 1 142.3 647.45 Tm 90 Tz (ble using 6-ball. Direct forecasts are compared with forecasts with ) Tj 1 0 0 1 142.3 624.649 Tm 91 Tz (random adjustment \(left\) and forecasts with analogue adjustment ) Tj 1 0 0 1 142.8 601.85 Tm 93 Tz (\(right\). The initial condition ensemble is formed by inverse noise ) Tj 1 0 0 1 141.599 578.549 Tm 91 Tz (with 64 ensemble members. For each forecast method, 2048 fore-) Tj 1 0 0 1 142.099 556 Tm 90 Tz (casts are made. Each row shows the comparison for different lead ) Tj 1 0 0 1 142.099 532.95 Tm 91 Tz (time. First row denotes lead time 1, second lead time 2, third lead ) Tj 1 0 0 1 141.849 509.699 Tm 126 Tz (time 4, forth lead time 8 and fifth lead time 16. 135 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 126 Tz 3 Tr 1 0 0 1 116.4 486.649 Tm 91 Tz (6.3 Following Figure 6.1 one step forecast ensemble in the state space. ) Tj 1 0 0 1 141.849 463.6 Tm 92 Tz (The initial condition ensemble is formed by dynamical consistent ) Tj 1 0 0 1 142.099 440.55 Tm 146 Tz (ensemble with 64 ensemble members. :136 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 146 Tz 3 Tr 1 0 0 1 116.4 417.75 Tm 93 Tz (6.4 Comparing forecast ensemble using 6-ball. Observations are gen-) Tj 1 0 0 1 141.849 394.949 Tm (erated by Ikeda Map with IID uniform bounded noise U\(0, 0.01\). ) Tj 1 0 0 1 141.849 371.899 Tm 94 Tz (The truncated Ikeda model is used to make forecast. The initial ) Tj 1 0 0 1 141.849 348.899 Tm 93 Tz (condition ensemble is formed by dynamical consistent ensemble ) Tj 1 0 0 1 141.849 325.85 Tm 91 Tz (with 64 ensemble members. Each row of pictures shows the com-) Tj 1 0 0 1 141.599 302.799 Tm 98 Tz (parison for different lead time. First row denotes lead time 1, ) Tj 1 0 0 1 141.599 280 Tm 94 Tz (second lead time 2, third lead time 4, forth lead time 8 and fifth ) Tj 1 0 0 1 141.599 256.7 Tm 374 Tz (lead time 16. 137 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont3 11 Tf 374 Tz 3 Tr 1 0 0 1 288.5 49.6 Tm 76 Tz (188 ) Tj ET EMC endstream endobj 992 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 993 0 obj <> stream 0  ,,77b7 \!'Cix('4d?FU GGYf6%ݰWZY l I;.wľ9M#hH8 /c!'eVNHߒ DLn)Թuj4Wj05^8H8<"N`twf1NaSO )V{/l)hT0cʇv[JɺmV 0^So5|܈&0K313Ӫ%);a|\1@v F4($X@FH.zl t<}?K&;4# /75>Xf@ GNiO x\cK/l2^°?>bN`w4.ߔSX7.-AOL5A @` Xy]]f TUG)+(?<kWњ g=ؗFW2Z9:)}^/\I4<ǟN{WKw91"H&E$_81,qNKi|fWUZ"WJV5sBw26^y//@'f@ߓ:l?k<>LLU[LuܥZ;KwE a%WPi[6B8XpO@+?p}QzE7O-hȓ$ [`gӞW7)2c*:;szP6b弳L'2n [+\ ;cwkSj"`وRlɬe3R@1.OzsŗhXo`64ʽ%oW6<`PnAL6- rdH/H7Gow@t{Cбp9FռQy?u|nL` =;H d5AT l b@ع]<ػ>VbJc(% ܰNvqF[ z~6Fr͔ulZޗ&a*77,kH9\B]1.ֵK}jg^7WwO?suH GsY %+aL3|$_\hA)'&[4@gӁm?d 0K?Մ3GLDQv}=xb͓͆rRf[P~^S%3bT'iM'lM?uD|qi/s}@)0>s1VW7ތ+ky/l+by9Zܷ\g&ΐU Md90q'j1d wOb}b.2=X#U=98օaXm‚4yTV w!H4Ǽ`L0ÂCLp?tR#0X 6V8Od[2_5<m,{aX&f?AΟJ7Sqއ@dʷ8機&ke磫AԮˊtdwj\ &#6WTW`cjb<:]T=gXL<=YC9HLfQ$Vba7B>vTZ4Ҿ]H'&:m0KiMY5($5+)?5$q;DxAٓa}MWy֚kCܭ8 %Ȅ_.Ao l6[X .~ZPSiaun9gO ;AT[žjo Buraq_݈a R|[L3A V%v9,D@?mO Jӝ|Z18d))Jȟju/P_ЮT\T(FW.^!#q5#̲(wWi&Wlk[(ӎ!  d!OJ4>Ox6&QmT2a;v͞^,թ>aOt,]^ME| ՚ևP`mcu:|1&zUW f0^oƩS3cR]SbdB.t(k65G盛@cg斠VXE_H(^Ņj=S#+o)w ^N-^U!gTiڂ᤽l?K&Cozw0D C)d:F1q1w]iQ۶@a_swr݄`} 2Y%~K?lM RX (&KM 9Vf]`K~I.C D@P[9h JӺ끣iae.KM,5`# ,yxTSSԥNLՄf[-hUBv㼕QR{eІ)E I} ufz\H: !3)~R k[n9!O qintFսXPST^47迅=A&8;AKLJm;f: jVN謪I ?L}7zQ>.ԠĿaԾY8!ٰ7ڥU]Ta(*@[[᯾kFT"8U\)BA5$T5>zeV{ַ=eV%/lMN +pCJ\U-gs#Phϖ,6Nv Aަ ,83LK O09KıTf5 ?Rm4A/)/`!@±BViC8{Y[6; ͰX`'+x[{,nl 򥿍ލ Z etphuKgWe{io=L? q# 5pub糌Zj^#g:s^ue`0-!9dc|E}$9 =$6%׏ƿ^WOA ieMځ̷2[S=R4_*+|メ#hfCq$m']VZDs c^nR:W !p~BL6nsTU*_ œE}TDSyXef֟ ˭ax}!|03M\0 & :H 8A,ɇ~c*")@DysƸqTz.w'5q:٥&5Wl:QR1 IwMfE'ΧpϾIQ_Mv[Rd^H@.vF~aʃ>86e.'1>"  : ؞Ta|~v_W磀cL6#+pjjmse%g)+Q(-]#h|w)؂$7ltQynLFNac%ZM I]+X'L2@ieºu$I%M4!sr  ̼䍪)o6<}c/&|fJ502.>x`n{ _8+s uQz1q͓4]aoW!)Pi B(+y:jDzU_捚 z،6ote|K.vҟx zKdyi&rL} If{AuB~-kJhS9G.FuqBEQ4bt??fWî [l-jիji-l =+?|1,4t3@^NK !*\YMUUSȟ )21Ki=m{yqmv}켐4Lƒz+HNV0 4ݞ]ڻCk3*N'ڨ6[7یU.'`~+esaK3%ԇty&jAl_O0eG`BJ 9'BF̏aeHBO+O0@4?-m 2f*f4e:zWޗM־X|(k5׾ aԥ r&>ٷɶ7"+4ʋȂҴʶչi'᳢ְ<#PRM#xZ[v _ۑDԵ7mx%00k =|Nڟn V&B¯e j6+d _2Ң y"r|?->{ƽTA\8uP_z(Oc8Ny%C!&fU{TM9dz}ō FrSˀ}Y,YO<$H6oGCJh1ଚE&|Tc`?N&ɽa9^62dӟ?yGԃkʨL$- 5^]{'vv޾ʑқ LNψsBibtgch 7TY9㾄Gg<6);Q!j@B S3#-k~UK9 0B?m1@G dYǼg,a 379*̉i.P_9l#?"k,V5*1ka||enL2sM7Tpo endstream endobj 994 0 obj <> endobj 995 0 obj [996 0 R] endobj 996 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 588 0 0 833 0 0 cm /ImagePart_2216 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 379.899 713.7 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 116.4 670.5 Tm 103 Tz (6.5 Following Figure 6.1 experiment setting, Ignorance score of three ) Tj 1 0 0 1 142.099 647.7 Tm 100 Tz (forecasting methods relative to climatology is plotted vs lead time. ) Tj 1 0 0 1 142.3 625.149 Tm 104 Tz (The error bars are 90% bootstrap re-sampling bars. In panel \(a\), ) Tj 1 0 0 1 141.849 602.35 Tm 103 Tz (the initial condition ensemble is formed by inverse noise with 64 ) Tj 1 0 0 1 142.099 579.299 Tm 102 Tz (ensemble members. In panel \(b\), the initial condition ensemble is ) Tj 1 0 0 1 141.849 556.5 Tm 100 Tz (formed by dynamical consistent ensemble with 64 ensemble mem-) Tj 1 0 0 1 141.849 533.5 Tm 103 Tz (bers. Panel \(c\) is the combination of panel \(a\) and \(b\). Ignorance ) Tj 1 0 0 1 141.599 510.449 Tm 160 Tz (is calculated based upon 2048 forecasts. 139 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 160 Tz 3 Tr 1 0 0 1 116.15 487.649 Tm 106 Tz (6.6 Following Figure 6.1, six 1-step forecast examples are plotted in ) Tj 1 0 0 1 141.599 464.6 Tm 99 Tz (the state space. Here the adjustment is obtained from imperfection ) Tj 1 0 0 1 141.849 441.55 Tm 224 Tz (error instead of model error 142 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 224 Tz 3 Tr 1 0 0 1 116.15 418.5 Tm 106 Tz (6.7 Following Figure 6.2, comparing three forecast ensemble results ) Tj 1 0 0 1 141.599 395.699 Tm 104 Tz (using c-ball. Here the adjustment is obtained from imperfection ) Tj 1 0 0 1 141.599 372.699 Tm 224 Tz (error instead of model error 143 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 224 Tz 3 Tr 1 0 0 1 115.9 349.649 Tm 99 Tz (6.8 Following Figure 6.5a, Ignorance score of three forecasting methods ) Tj 1 0 0 1 141.349 326.85 Tm 101 Tz (relative to climatology is plotted vs lead time. Forecast adjustment ) Tj 1 0 0 1 141.099 303.799 Tm 179 Tz (is obtained from imperfection error 144 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 179 Tz 3 Tr 1 0 0 1 115.7 280.75 Tm 103 Tz (6.9 Ignorance score of forecast with adjustment where the adjustment ) Tj 1 0 0 1 140.9 257.7 Tm 102 Tz (is generated from the observations with different noise level. The ) Tj 1 0 0 1 141.099 234.899 Tm 105 Tz (initial condition ensemble is formed by inverse noise with fixed ) Tj 1 0 0 1 140.9 211.899 Tm 101 Tz (noise level U\(0, 0.01\) so that the observations with different noise ) Tj 1 0 0 1 140.9 188.85 Tm 105 Tz (level only affect the imperfection error. The error bars are 90% ) Tj 1 0 0 1 140.9 165.799 Tm 104 Tz (bootstrapped error bars. In panel a, the forecast is made by ran-) Tj 1 0 0 1 140.9 143 Tm 109 Tz (dom adjustment; in panel b, the forecast is made by analogue ) Tj 1 0 0 1 141.099 119.95 Tm 422 Tz (adjustment :145 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 422 Tz 3 Tr 1 0 0 1 287.75 50.6 Tm 87 Tz (189 ) Tj ET EMC endstream endobj 997 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 998 0 obj <> stream 0 ,,~~b7 \H^s4yfȠ4i7`).(d7G52,ONYfZ \KSNN *F: PZet[?Z6졤ԷH=7Bۈdl"M;n(W QC.+|ÀZ)١ xXyzRpi.'C3h+Zh^Zbi^ډFRpKD9jLS*.e?/Q$7 &aԙ=V9O {a8ٮ_5 D4%0kM(e_ oBj%]y%_%/bcg7b=/4It֕4xٝ6Jkhsf [htj7zI7.@,!O^3Vf-_GWj6J\ΰ>$*~Ev;@ c 3_]VTz "W†L-EE iM'BcBξn$b iE֗%R+O 59/!Q|eflX t#D`-oo Lk7 ń4a~Ta.PLѨ8~b~u^N}ZEcp.i~/ޘo_d'I4B,'s}#>B3$^o!ą~%vD(sbJR,$ނ:[Fy>NRF+#(),:7JM sx6o-%^Z :LFEB> 49E2ZD!+k-|^M$ pX;_Q}脫L vg8)tz(:fx!ZA~tVstBguJilsuv~W!8;`b=u䔠;/;Z^V [<5q]) ZLkF\ۅ=a2Z1,1unlu"01!˜;o\a6)I"Ѿ1ҝX ^t.2zh(Z'PeQ{ Obϩ5$dT[u5mzl{E?#U*t DaԹ>߿,Tw1*.^85= Tw[bzq?T cX;2K9ed3ZmG%mi2=NWUݣMZ@ttgsZ!ڄF*Eh9|^<qpȫF@ oTw&%/ zmA!?НFgGJD@+sKyI0i͕yŚKVnQU*1a^uBZt?Lˢ[F ۰TPWJ|=ؐ<*~Y[u*SA+沼6Svpa" OTRY]eF)l3Lsa>wʈ8 `{..2`?.jF%Tg|9򯓺KF2%K|pKG$JBMSap):s>a(;z&(%o9x}fӇb,̶N"DЬ`B/_DĖޙ|SDt;Z|\nAV(YGMZ}{GA tjjRtOI.liqBU@ mxa,bzY߸b”M61Bu/Ԭv"vNpJ,Abq\`R? C*cGML'OWE r$C뺁 cI_D<ƭ|Epq:j0Ax=RAVMDZL~ukb!I#OzHMfDRKAg]s,(Zpg%y4ԷpL_:u6W5DGd]Sٱћsyzͪ0J4=~ >S"oV)AtDs(qhR M[p_ msw2=ⱁxBVp4߯. }QI@YJŁĪ&Mԇ5evƘB*ص "L-hҩK7)jKl,)1ǜk7mzݕyE(4 & ׭ⴹ߁eA ^[a~c@c8kU 2FۆlBݵ`a4,h:t糸Y׷u t+4OOʽy!&G5 #}nt*gR;! 9W/Xoͫ476kD4^Rg~}g`EG"b[E[ N鋧_m 7S Ğ 1>e(Gy̒:W{z_aҴ'R)t:8smKf 5IBCN '\9}$.y-DWG1kT ,VkYʗYDzI5 {r$]<SڅaH)+g- S^~(goUQ#k5Č5:VHwV.Ep\u;0I 4+>4_.C"z.FHA]0F*>Q6k-^DDj=PSp^H9ekߞҡ,\7W~4)SnK{JF+[c\7qC1t+.p N bmYdgu?x/6RhI1'Vuޮ6NU]$j$6˜h59X'Me Lrw56| ӀUڒJYhx埍M;- #?nJpX""cմr2zF7I>j~n+?O \cn.)u wQ;n8<0f]91ld-Tz4lUR5QN6ZĬw+^zgp L->A%;`z)` HU^kq lY?o%[W0о}:S ,hBUQR+(H.N u _#D,ޤc埣 w)Ӭ۩vjiOFw:o&qEqj#QX7aVTJn4-+:93IDT*2^Dez  ֵ9uu2! e/L^I`wD+gyNx4;bp:qv+.(!^?[U:7/]Vǰ7jcG2Jmuc<<cD-P0gYq3C[OVbDm!$ݻਥ7IGY>` hsmH2F6$=#)kSV b9e$…ץM 4)ML-+cq8 i<*D'+bH\eNUWgJ?d 1rXm6?!v'<ҸZ&:fi:򼑋$g׏[2oQ$~6d,eCml Q^`+Va:*.g> b"?-tߖi_]ݖ,2 e*BI{$&+V(ڰ7JC a*lUK$N~^=G͹EUhBт(Yhc*i* Pi#9Q&*C%;"(arCw*Ʌ52 QaVД=/CpCfQxrӥ!B?rQs0c ׅ'Sf8֯;> sQi9Gv%%Y]@@=k IM M9\ ;Dw4_G[ibGd&hoTI]Uf?I,S:vbDZeWpqr{v %3k `ThWm+vñJĴ']bG/aʝF)oJ_!26P8mE-7)2sNҤ<>t5sTa'H[Ąm @eMPGT?mu5\oH'gd8cQL+a+b]4D5!טYK9bDk_KlɥKT[0l{~\\YfL{Dq,\+2}`]>:9ֽ<V/nqm@h{APfQ=[^Ź(g?|nKK.Bt-Rz ʠ׳C̨J=tµMH) (LHjT@Q۴DڅKsP=jEYkE-Hu0&U#SA8 2Whb &aQTj@f=fDncݢlrlc-_7Dyb ,W>t5:kTѻ*'^kK'oߙQ5V E'(iR=9 ^0RvKBwQi/C:mYؑn ߢUgNWxzṘ EAc͓Ox0N<rT@oBYFkZ8E#eNUɑFh|Dʋ4.O s'5\ۋ['3JZ;11}v"t:'9cQUN쑁"Cp0~ڕ|갳+yY+\C&$8ˁuhP`cmx"0fC9p je·l҆O _jᄌe[鰖j_AT.hKiQͣD;ʪOM+|Cr*= [^b9oQJ ŷ){^G5o=*8Ǜ&W4 q =1(s$ IusTyYp 2@@ӎe1V.@)iF9zu|Cipvf+W#nv4"/IrgLua;J{%U{<_SbZoePG%} &lu8S `A7i $T,71IثW;e&~{?Y%/pb!kGUW_3uyB2rg*oeq_+ 8y?P}hcotiO#~mU^Hiw ex϶eR@jD dU'^N۷!s7糕CuNP2a &7U[+ iqsyWB \}gD1z~ȚK &NEukFXFjBte{aR$J}%Zt~&Lo;C)rTЩ&~Ն3͋ #uB{ u$}Ҧʠ}m8NڎP@5:*&} CWَ9%4[,SΚf$`,XfkR"OHdK(]PўFhx 2tC\F!NƩfSte0BjË7N1N#LF8^62J6aƣYǎ0a9>]N7!p?t: 'NP\g۪Ɂ͞e߫u9 c!Cs0n&:A?,π(x= s&KI!mX.Z:}'Z3hLNdM?p -KFstpA3TwɄ&S)&J3InB$tBn]ϟ~t~Я T譲ygḙbO8v_:W?%-n/&2|E5@6f48J"Xνg`?m3cەl &qohfU]hA4HOڑ|~D5bF7KAbol*ݟHIJ[U(` や6BE\oƉإ^M endstream endobj 999 0 obj <> endobj 1000 0 obj [1001 0 R] endobj 1001 0 obj <> stream 0 0 0 rg 0 0 0 RG q 1 0 0 1 0 0 cm 591 0 0 832 0 0 cm /ImagePart_2217 Do Q /P <> BDC BT 0 0 0 rg 0 0 0 RG 1 0 0 1 382.3 712.7 Tm 112 Tz 3 Tr /OPExtFont5 12.5 Tf (LIST OF FIGURES ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 112 Tz 3 Tr 1 0 0 1 118.799 669.75 Tm 103 Tz (6.10 Doubling time of Ikeda system-model pair. Panels a\) and c\) esti-) Tj 1 0 0 1 144.5 646.95 Tm (mate the doubling time by assuming the model is perfect. Panels ) Tj 1 0 0 1 144.25 624.149 Tm 100 Tz (b\) and d\) estimate the doubling time based on the states generated ) Tj 1 0 0 1 144.25 601.35 Tm 104 Tz (Ikeda Map and using the Truncated Ikeda Map as the model. a\) ) Tj 1 0 0 1 144 578.549 Tm 99 Tz (and b\) are noise free cases while c\) and d\) have observational noise ) Tj 1 0 0 1 144 555.75 Tm 106 Tz (N\(0, 0.0001\). Note that the scale of the color bar is different in ) Tj 1 0 0 1 143.75 533.2 Tm 99 Tz (each panel. ) Tj 1 0 0 1 479.3 532.5 Tm 91 Tz /OPExtFont5 11.5 Tf (151 ) Tj 1 0 0 1 494.149 532.5 Tm 32 Tz /OPExtFont5 12.5 Tf ( ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 32 Tz 3 Tr 1 0 0 1 117.849 509.699 Tm 102 Tz (6.11 Ignorance as a function of forecast lead time in the Ikeda system-) Tj 1 0 0 1 143.3 486.649 Tm 103 Tz (model pair experiment. The observations are generated by Ikeda ) Tj 1 0 0 1 143.05 463.6 Tm 101 Tz (Map with IID N\(0, 0.05\) observational noise, initial condition en-) Tj 1 0 0 1 143.05 440.8 Tm 100 Tz (semble is built by using Inverse Noise and ) Tj 1 0 0 1 353.3 440.55 Tm 90 Tz /OPExtFont4 12 Tf (ISG.Dc ) Tj 1 0 0 1 392.899 440.55 Tm 117 Tz /OPExtFont5 12.5 Tf (ensemble. . . . 154 ) Tj ET EMC /P <> BDC BT 0 0 0 rg 0 0 0 RG /OPExtFont5 12.5 Tf 117 Tz 3 Tr 1 0 0 1 287.75 50.1 Tm 87 Tz (190 ) Tj ET EMC endstream endobj 1002 0 obj <> /ProcSet 7362 0 R /XObject<>>> endobj 1003 0 obj <> stream 0 ,,{99b7 / r"SĠBy;Ozͪ|^ZzjŪFu)`TߏAM{A E4C얽K~[Iy"kU lQ"&AA hQp`=xJ%Ik( g|i&1ZlG53u؜~ X#@>jTIU SQC_4M|i:WAZ$.TQt皰S~P ?ڇYپ̾}%e? F-~ #@mL2[{ޕ2G;C1꠵/:<|[TqXF $t@6x\#(%C3pJ ~O]@/맋ro$-{d›uNN?0DZ1F`A͔HmAV~:i#PN `>A?[%4ԕK&#u˜׸高ɮd3~ϟp2<bE=̴6N4"; 9i W;)ri,]\@f7i9i-8E}#lu5 xHu%*=M<'WЫJ)/1D52~x'w exP b1M{?d)+x#r$\FZNUoSuf+憚FOC`zB!S[ޛ LQ-wW5BT9]7:M?o7wHz';Abץ-bZy^ 'sfWeeHu83?nuh@?w䁙SфqU-eHZ6VЇ+K}=\j,a=(!q7B#B9l+: sLdgs(';Q|BI6RT;sk@~wsDr#/TyA C~pٵV+ܞ&# EcSz3dU0۝xGd[Pc-"4`K[{ ެ:ۮG|d@I=~xM{Mh*~ VxXB]T닻v^M_:d+b0 5Z]8ӊ/sjW 袽@}(Z3K[!rVe!p\E|@Z&&D<'9" H*M'HsKFW+;.|} yIs9G e}Ⱦ,Tc5cpE*!r, `U T݅{54(B#-s?p̐MhN}5:Z90N,{qr/9gd#)vuOedY}+fpcݏAi5BO|9b̎ `!e狷Z;c@2e47`n(\T5 PAlN(m@30;o_j{<]ئUxk4ݙ9x ro䮯~fn|ѷu92+9VP4o7A0Ӑݐ|ʓc}M}yvpS7HK ~2hVMr3 8JcD? UI9`hIҙ*$G ~~&A}?n h$w `鹨acsq ypz\trp͊s vv˳_vHl vҿ*Cl | JC'WObCI/pI}h4O\+.%J[n<L 3"Xm?wY<*7@]MFHģW46K30|l$%Dj&PFX|W:AEk$s~B+l6 ,G& R0H[q$h+ hYNޏ-8ծ[տ5QED^e c~IKAMHbꯞ xLŕ|>w&0 ۅai)P$I6y]D&|7׮|ߎI,H0$3 ,)OlLSO^8N"N&z]AoZ? q%,7K''0&U cpcDn͟ }!Mǎճelw$阅]B.V ԿfTZScm^Ɋ'GdϢ~V4>x M wOx:v^ʟ^/YoX p]t,(VLSξ~g^@Ǘ!b`H* I,]0lMG?q v 3Rxr8CzLReD w)@E rEyGOK(֘^$DoiPJc~y .yBZN+AkkĪem=)I lUU#74LGs5bZ~"JFfh{i^s^37͸鳓X3[놜*Խ/EV2's_kǺ52d>żx$ ]-˫;.<;:?(lN7A˔i\IS{l*rР{FXֶ٬-Ҵ˅00ZӲ9!ϐ$V<"ZUZN/~=):Rxm`nϚ qAk-߂rY1>>G*@:*=f( Ƀ}D n;)W,*O„4Op{O"?~'[RC"-:R3UwI킘Jϣm34` Xm5?UzZpskB%4bG &lirBKjFjɴ@mMG#m|~Adʒ'l^fw̾-zxVtR_UN*7w|3 c(Z&:$sKN2dP^P&֐i,i-Gy~u"P)W`;{"{ RV!q Xap''\PC?;%!^?3P&A%+ I$Xb:h8)ޣL5Jy7T G;~''j/Y' #j[M7F:@LHS4 m7%O>Yٲw6pKp?MgƲv23.tQNXӂwLZDtNEn+t+:&͵܎7F/2 {?Z+(Ttxԩ~yD:7<âBX@5BaONDqȇ&0m8QuQ! h9EĞ2?^+RS2+O>Pd&d,?dۡ#Ǫ]4̯ : ͯ:R;`0E]1**!O yԍ{F>boZ=D$2oޒ1O5F`۴KAcG{)~Up낦,tBt{!zx$\2Of+4n2qqw0|nucN#S\^ Mwv3GfԏA2P#3ٖב+n$IW&i, x M64pj{Sod)'IugU`sEU c+> -jD-B!4u|d K(gJVM!z  |ZrR@ HRP5ʑK٭_FHIb!; ^/06^(>d9upML6|`JR5qӁ@ Ӌ9>6PuRx_Ug[ow0b1-˥f&L )iڪݲ0ziYzy؈A 89nZ:%e=(%⥒RN73bu:Eu ^VClmhAEjk˘ud?|:}"S`K (=+bSI>c j>L-c^,[fnKRӋq{P3{> G,2]:`=m)d>O ^ @+dlfψSNډ^irV]|RZWǍ܈1Y4u]8?>@>T'^q6=`EeCabqaZWv3m7C-J tsG^חY*VKZ-a ,/+ڠtd4f(2[NW[: mȦ8X? endstream endobj 1004 0 obj <> /FirstChar 0 /FontDescriptor 1005 0 R /LastChar 131 /Subtype/TrueType /ToUnicode 1006 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 277 277 354 0 0 0 0 190 333 333 0 583 277 333 277 0 556 556 556 556 556 556 556 556 556 556 277 277 0 583 0 556 0 666 666 722 722 666 610 777 722 277 500 666 556 833 722 777 666 777 722 666 610 722 666 943 666 666 610 277 0 277 469 0 333 556 556 500 556 556 277 556 556 222 222 500 222 833 556 556 556 556 333 500 277 556 500 722 500 500 500 333 0 333 0 0 1000 399 350 604]>> endobj 1005 0 obj <> endobj 1006 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Arial-ItalicMTOPExtFont7) /Ordering (UCS) /Supplement 0 >> def /CMapName /Arial-ItalicMTOPExtFont7 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 17 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2B> <2E> <002B> <30> <3B> <0030> <3D> <3D> <003D> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5E> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <00B0> <82> <82> <2022> <83> <83> <25A0> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1007 0 obj <> /FirstChar 0 /FontDescriptor 1008 0 R /LastChar 131 /Subtype/TrueType /ToUnicode 1009 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 228 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 228 228 291 0 0 0 0 157 272 272 0 479 228 272 228 0 456 456 456 456 456 456 456 456 456 456 228 228 0 479 0 456 0 546 546 591 591 546 500 638 591 228 410 546 456 683 591 638 546 638 591 546 500 591 546 773 546 546 500 228 0 228 0 0 272 456 456 410 456 456 228 456 456 182 182 410 182 683 456 456 456 456 272 410 228 456 410 591 410 410 410 273 0 273 0 0 819 399 287 604]>> endobj 1008 0 obj <> endobj 1009 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (ArialNarrow-ItalicOPExtFont16) /Ordering (UCS) /Supplement 0 >> def /CMapName /ArialNarrow-ItalicOPExtFont16 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 17 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2B> <2E> <002B> <30> <3B> <0030> <3D> <3D> <003D> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <00B0> <82> <82> <2022> <83> <83> <25A0> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1010 0 obj <> /FirstChar 0 /FontDescriptor 1011 0 R /LastChar 130 /Subtype/TrueType /ToUnicode 1012 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 292 342 489 0 0 0 0 275 454 454 636 0 312 431 312 577 636 636 636 636 636 636 636 636 636 636 363 363 0 0 0 566 0 684 686 667 757 615 581 745 764 483 500 696 572 893 770 770 657 770 726 633 612 738 674 1027 684 670 622 454 0 454 0 0 545 598 631 527 629 593 382 629 640 301 362 602 301 953 640 617 629 629 433 514 415 640 578 889 604 575 525 623 0 623 0 0 424 636 636]>> endobj 1011 0 obj <> endobj 1012 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Tahoma-BoldOPExtFont18) /Ordering (UCS) /Supplement 0 >> def /CMapName /Tahoma-BoldOPExtFont18 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 13 beginbfrange <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <2A> <0027> <2C> <3B> <002C> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <203A> <81> <81> <2022> <82> <82> <00A7> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1013 0 obj <> /FirstChar 0 /FontDescriptor 1014 0 R /LastChar 134 /Subtype/TrueType /ToUnicode 1015 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351 393 458 0 635 0 0 268 454 454 635 818 363 454 363 454 635 635 635 635 635 635 635 635 635 635 454 454 0 818 818 545 0 683 685 698 770 632 574 775 751 420 454 692 556 842 748 787 603 787 695 683 616 731 683 988 685 615 685 454 0 454 0 635 635 600 623 520 623 595 351 623 632 274 344 591 274 972 632 606 623 623 426 520 394 632 591 818 591 591 525 634 0 634 0 0 458 545 268 1000 635 541 354]>> endobj 1014 0 obj <> endobj 1015 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (VerdanaOPExtFont11) /Ordering (UCS) /Supplement 0 >> def /CMapName /VerdanaOPExtFont11 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 18 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <24> <0024> <27> <3B> <0027> <3D> <3F> <003D> <41> <5B> <0041> <5D> <5D> <005D> <5F> <7B> <005F> <7D> <7D> <007D> <80> <80> <201E> <81> <81> <2022> <82> <82> <2018> <83> <83> <2014> <84> <84> <00A7> <85> <85> <00B0> <86> <86> <25AA> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1016 0 obj <> /FirstChar 0 /FontDescriptor 1017 0 R /LastChar 129 /Subtype/TrueType /ToUnicode 1018 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 602 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 602 602 602 0 0 0 0 602 602 602 0 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 0 602 0 602 0 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 0 602 0 0 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 602 0 602 0 0 602 602]>> endobj 1017 0 obj <> endobj 1018 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (LucidaConsoleOPExtFont17) /Ordering (UCS) /Supplement 0 >> def /CMapName /LucidaConsoleOPExtFont17 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 14 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2B> <3B> <002B> <3D> <3D> <003D> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <2022> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1019 0 obj <> endobj 1020 0 obj <> endobj 1021 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (TimesNewRomanPS-BoldMTOPExtFont22) /Ordering (UCS) /Supplement 0 >> def /CMapName /TimesNewRomanPS-BoldMTOPExtFont22 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 12 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2C> <2E> <002C> <30> <3B> <0030> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5E> <005D> <60> <7B> <0060> <7D> <7D> <007D> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1022 0 obj <> /FirstChar 0 /FontDescriptor 1023 0 R /LastChar 135 /Subtype/TrueType /ToUnicode 1024 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 228 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 228 228 291 0 456 0 0 157 272 272 318 479 228 272 228 228 456 456 456 456 456 456 456 456 456 456 228 228 0 479 479 456 0 546 546 591 591 546 500 638 591 228 410 546 456 683 591 638 546 638 591 546 500 591 546 773 546 546 500 228 0 228 0 456 272 456 456 410 456 456 228 456 456 182 182 410 182 683 456 456 456 456 272 410 228 456 410 591 410 410 410 273 0 273 0 0 604 272 287 182 819 456 399 354]>> endobj 1023 0 obj <> endobj 1024 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (ArialNarrowOPExtFont10) /Ordering (UCS) /Supplement 0 >> def /CMapName /ArialNarrowOPExtFont10 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 19 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <24> <0024> <27> <3B> <0027> <3D> <3F> <003D> <41> <5B> <0041> <5D> <5D> <005D> <5F> <7B> <005F> <7D> <7D> <007D> <80> <80> <25A0> <81> <81> <201E> <82> <82> <2022> <83> <83> <2018> <84> <84> <2014> <85> <85> <00A7> <86> <86> <00B0> <87> <87> <25AA> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1025 0 obj <> /FirstChar 0 /FontDescriptor 1026 0 R /LastChar 135 /Subtype/TrueType /ToUnicode 1027 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 277 277 354 0 556 0 0 190 333 333 389 583 277 333 277 277 556 556 556 556 556 556 556 556 556 556 277 277 0 583 583 556 0 666 666 722 722 666 610 777 722 277 500 666 556 833 722 777 666 777 722 666 610 722 666 943 666 666 610 277 0 277 469 556 333 556 556 500 556 556 277 556 556 222 222 500 222 833 556 556 556 556 333 500 277 556 500 722 500 500 500 333 0 333 0 0 604 333 350 222 1000 556 399 354]>> endobj 1026 0 obj <> endobj 1027 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (ArialMTOPExtFont9) /Ordering (UCS) /Supplement 0 >> def /CMapName /ArialMTOPExtFont9 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 18 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <24> <0024> <27> <3B> <0027> <3D> <3F> <003D> <41> <5B> <0041> <5D> <7B> <005D> <7D> <7D> <007D> <80> <80> <25A0> <81> <81> <201E> <82> <82> <2022> <83> <83> <2018> <84> <84> <2014> <85> <85> <00A7> <86> <86> <00B0> <87> <87> <25AA> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1028 0 obj <> /FirstChar 0 /FontDescriptor 1029 0 R /LastChar 130 /Subtype/TrueType /ToUnicode 1030 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 341 402 587 0 0 0 0 332 543 543 710 0 361 479 361 689 710 710 710 710 710 710 710 710 710 710 402 402 0 0 0 616 0 776 761 723 830 683 650 811 837 545 555 770 637 947 846 850 732 850 782 710 681 812 763 1128 763 736 691 543 0 543 0 0 710 667 699 588 699 664 422 699 712 341 402 670 341 1058 712 686 699 699 497 593 455 712 649 979 668 650 596 710 0 710 0 0 543 710 710]>> endobj 1029 0 obj <> endobj 1030 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Verdana-BoldOPExtFont19) /Ordering (UCS) /Supplement 0 >> def /CMapName /Verdana-BoldOPExtFont19 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 14 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <2A> <0027> <2C> <3B> <002C> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <203A> <81> <81> <2022> <82> <82> <00A7> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1031 0 obj <> endobj 1032 0 obj <> endobj 1033 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Garamond-BoldOPExtFont20) /Ordering (UCS) /Supplement 0 >> def /CMapName /Garamond-BoldOPExtFont20 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 12 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2C> <2E> <002C> <30> <3B> <0030> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1034 0 obj <> /FirstChar 0 /FontDescriptor 1035 0 R /LastChar 130 /Subtype/TrueType /ToUnicode 1036 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351 393 458 0 0 0 0 268 454 454 0 818 363 454 363 0 635 635 635 635 635 635 635 635 635 635 454 454 0 818 0 545 0 682 685 698 765 632 574 775 751 420 454 692 556 842 748 787 603 787 695 683 616 731 682 990 685 615 685 454 0 454 0 0 635 600 623 520 623 595 351 621 632 274 344 586 274 973 632 606 623 623 426 520 394 632 590 818 591 590 525 634 0 634 0 0 1000 541 545]>> endobj 1035 0 obj <> endobj 1036 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Verdana-ItalicOPExtFont14) /Ordering (UCS) /Supplement 0 >> def /CMapName /Verdana-ItalicOPExtFont14 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 16 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <27> <29> <0027> <2B> <2E> <002B> <30> <3B> <0030> <3D> <3D> <003D> <3F> <3F> <003F> <41> <5B> <0041> <5D> <5D> <005D> <60> <7B> <0060> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <00B0> <82> <82> <2022> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1037 0 obj <> /FirstChar 0 /FontDescriptor 1038 0 R /LastChar 131 /Subtype/TrueType /ToUnicode 1039 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 600 0 600 0 0 600 600 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 0 600 0 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 0 600 0 0 600 600 600 600]>> endobj 1038 0 obj <> endobj 1039 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (CourierNewPSMTOPExtFont13) /Ordering (UCS) /Supplement 0 >> def /CMapName /CourierNewPSMTOPExtFont13 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 16 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <24> <0024> <27> <29> <0027> <2B> <3B> <002B> <3D> <3D> <003D> <3F> <3F> <003F> <41> <5B> <0041> <5D> <7B> <005D> <7D> <7D> <007D> <80> <80> <2022> <81> <81> <201E> <82> <82> <2018> <83> <83> <2014> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1040 0 obj <> /FirstChar 0 /FontDescriptor 1041 0 R /LastChar 131 /Subtype/TrueType /ToUnicode 1042 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 218 416 0 0 0 906 218 270 270 0 666 218 260 218 500 468 468 468 468 468 468 468 468 468 468 218 218 666 666 666 364 0 760 562 625 729 687 572 708 770 322 322 593 635 822 781 677 531 687 625 500 583 718 802 885 739 645 604 302 0 302 0 500 333 406 406 270 406 291 218 322 416 229 208 520 218 625 427 354 406 427 302 291 250 427 343 531 500 333 416 479 0 479 0 0 1000 354 395 416]>> endobj 1041 0 obj <> endobj 1042 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Garamond-ItalicOPExtFont8) /Ordering (UCS) /Supplement 0 >> def /CMapName /Garamond-ItalicOPExtFont8 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 14 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <26> <29> <0026> <2B> <3F> <002B> <41> <5B> <0041> <5D> <5D> <005D> <5F> <7B> <005F> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <2022> <82> <82> <00B0> <83> <83> <201E> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1043 0 obj <> /FirstChar 0 /FontDescriptor 1044 0 R /LastChar 134 /Subtype/TrueType /ToUnicode 1045 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312 332 401 0 545 0 0 210 382 382 545 727 302 363 302 382 545 545 545 545 545 545 545 545 545 545 353 353 0 727 727 473 0 599 589 600 678 561 521 667 675 373 416 587 497 770 667 707 551 707 620 557 583 655 596 901 580 576 559 382 0 382 0 545 545 524 552 461 552 526 318 552 557 228 281 498 228 839 557 542 552 552 360 446 334 557 498 742 495 498 444 480 0 480 0 0 397 454 210 909 470 545 354]>> endobj 1044 0 obj <> endobj 1045 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (TahomaOPExtFont12) /Ordering (UCS) /Supplement 0 >> def /CMapName /TahomaOPExtFont12 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 17 beginbfrange <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <24> <0024> <27> <3B> <0027> <3D> <3F> <003D> <41> <5B> <0041> <5D> <5D> <005D> <5F> <7B> <005F> <7D> <7D> <007D> <80> <80> <201E> <81> <81> <2022> <82> <82> <2018> <83> <83> <2014> <84> <84> <00B0> <85> <85> <00A7> <86> <86> <25AA> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1046 0 obj <> /FirstChar 0 /FontDescriptor 1047 0 R /LastChar 131 /Subtype/TrueType /ToUnicode 1048 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 333 419 0 0 0 777 213 333 333 0 674 250 333 250 277 500 500 500 500 500 500 500 500 500 500 333 333 674 674 674 500 0 610 610 666 722 610 610 722 722 333 443 666 556 833 666 722 610 722 610 500 556 722 610 833 610 556 556 389 0 389 421 500 333 500 500 443 500 443 277 500 500 277 277 443 277 722 500 500 500 500 389 389 277 500 443 666 443 443 389 399 0 399 0 0 889 350 399 556]>> endobj 1047 0 obj <> endobj 1048 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (TimesNewRomanPS-ItalicMTOPExtFont6) /Ordering (UCS) /Supplement 0 >> def /CMapName /TimesNewRomanPS-ItalicMTOPExtFont6 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 13 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <26> <29> <0026> <2B> <3F> <002B> <41> <5B> <0041> <5D> <7B> <005D> <7D> <7D> <007D> <80> <80> <2014> <81> <81> <2022> <82> <82> <00B0> <83> <83> <201E> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1049 0 obj <> /FirstChar 0 /FontDescriptor 1050 0 R /LastChar 136 /Subtype/TrueType /ToUnicode 1051 0 R /Type/Font /Widths[0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 218 406 0 447 822 729 177 291 291 427 666 218 312 218 500 468 468 468 468 468 468 468 468 468 468 218 218 666 666 666 364 0 677 614 635 770 656 562 770 760 354 333 739 572 833 770 781 562 770 625 479 614 708 677 885 697 656 656 270 0 270 0 500 333 406 510 416 500 416 322 447 510 229 229 468 229 770 510 510 510 489 333 364 291 489 468 666 458 416 427 479 0 479 0 0 354 427 468 1000 447 218 666 395 760]>> endobj 1050 0 obj <> endobj 1051 0 obj <> stream /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (GaramondOPExtFont5) /Ordering (UCS) /Supplement 0 >> def /CMapName /GaramondOPExtFont5 def /CMapType 2 def 1 begincodespacerange <00> endcodespacerange 18 beginbfrange <09> <09> <0009> <0A> <0A> <000D> <0D> <0D> <000D> <20> <22> <0020> <24> <3F> <0024> <41> <5B> <0041> <5D> <5D> <005D> <5F> <7B> <005F> <7D> <7D> <007D> <80> <80> <2022> <81> <81> <00A7> <82> <82> <20AC> <83> <83> <2014> <84> <84> <201E> <85> <85> <2018> <86> <86> <00B1> <87> <87> <00B0> <88> <88> <00AE> endbfrange endcmap CMapName currentdict /CMap defineresource pop end end endstream endobj 1052 0 obj <> stream 0Lx "fwAռ8fܯbS !Lx@PQH? endstream endobj 1053 0 obj <> stream 0Mi  Mi@ endstream endobj 1054 0 obj <> stream 0Mi  Mi@ endstream endobj 1055 0 obj <> stream 0Mi  Mi@ endstream endobj 1056 0 obj <> stream 0Mi  Mi@ endstream endobj 1057 0 obj <> stream 0Mi  Mi@ endstream endobj 1058 0 obj <> stream 0Mi  Mi@ endstream endobj 1059 0 obj <> stream 0Mi  Mi@ endstream endobj 1060 0 obj <> stream 0Li  Li@ o endstream endobj 1061 0 obj <> stream 0Mi  Mi@ endstream endobj 1062 0 obj <> stream 0Mi  Mi@ endstream endobj 1063 0 obj <> stream 0Mi  Mi@ endstream endobj 1064 0 obj <> stream 0Li  Li@ endstream endobj 1065 0 obj <> stream 0Mi  Mi@ endstream endobj 1066 0 obj <> stream 0Li  Li@ endstream endobj 1067 0 obj <> stream 0Mi  Mi@ endstream endobj 1068 0 obj <> stream 0Mi v Xu6"#r.> stream 0Li  !Li Q`M endstream endobj 1070 0 obj <> stream 0Li ?uusp 3Li vE:&7/;qL4_ endstream endobj 1071 0 obj <> stream 0Li  Li@ endstream endobj 1072 0 obj <> stream 0Mi .{43L7 %Mit !lRGk endstream endobj 1073 0 obj <> stream 0Mi  Mi@ endstream endobj 1074 0 obj <> stream 0Mi  Mi@ endstream endobj 1075 0 obj <> stream 0Mi  Mi@ endstream endobj 1076 0 obj <> stream 0Mi  Mi@ endstream endobj 1077 0 obj <> stream 0Mi  Mi@ endstream endobj 1078 0 obj <> stream 0Mi  Mi@ endstream endobj 1079 0 obj <> stream 0Mi  Mi@ endstream endobj 1080 0 obj <> stream 0Mi  Mi@ endstream endobj 1081 0 obj <> stream 0Mi  Mi@ endstream endobj 1082 0 obj <> stream 0Mi  Mi@ endstream endobj 1083 0 obj <> stream 0Li  Li@ endstream endobj 1084 0 obj <> stream 0Li  Li@ endstream endobj 1085 0 obj <> stream 0Li  Li G endstream endobj 1086 0 obj <> stream 0Li  Li@ endstream endobj 1087 0 obj <> stream 0Li  Li@ endstream endobj 1088 0 obj <> stream 0Mi  Mi@ endstream endobj 1089 0 obj <> stream 0Mi  Mi@ endstream endobj 1090 0 obj <> stream 0Mi  Mi@ endstream endobj 1091 0 obj <> stream 0Mi  Mi@ endstream endobj 1092 0 obj <> stream 0Mi  Mi@ endstream endobj 1093 0 obj <> stream 0Mi  Mi@ endstream endobj 1094 0 obj <> stream 0Mi  Mi@ endstream endobj 1095 0 obj <> stream 0Mi  Mi@ endstream endobj 1096 0 obj <> stream 0Mi  Mi@ endstream endobj 1097 0 obj <> stream 0Mi  Mi@ endstream endobj 1098 0 obj <> stream 0Mi  Mi@ endstream endobj 1099 0 obj <> stream 0Li  Li@ endstream endobj 1100 0 obj <> stream 0Li  Li@ endstream endobj 1101 0 obj <> stream 0Li  Li@ endstream endobj 1102 0 obj <> stream 0Li  Li@ endstream endobj 1103 0 obj <> stream 0Mh  Mh@ endstream endobj 1104 0 obj <> stream 0Mh  Mh@ endstream endobj 1105 0 obj <> stream 0Mh  Mh@ endstream endobj 1106 0 obj <> stream 0Mh  Mh@ endstream endobj 1107 0 obj <> stream 0Mh  Mh@ endstream endobj 1108 0 obj <> stream 0Mh  Mh@ endstream endobj 1109 0 obj <> stream 0Mh  Mh@ endstream endobj 1110 0 obj <> stream 0Mh  Mh@ endstream endobj 1111 0 obj <> stream 0Mi  Mi@ endstream endobj 1112 0 obj <> stream 0Lz $ jcYRŸjg;q7( 9LzXg !~= h~'֣.Pu3 endstream endobj 1113 0 obj <> stream 0Mh  Mh@ endstream endobj 1114 0 obj <> stream 0Ny  #Ny y : endstream endobj 1115 0 obj <> stream 0Mh  Mh@ endstream endobj 1116 0 obj <> stream 0Q  Q@ endstream endobj 1117 0 obj <> stream 0P   P@PЉ} endstream endobj 1118 0 obj <> stream 0Ly  Ly@ endstream endobj 1119 0 obj <> stream 0Q  Q@Ou endstream endobj 1120 0 obj <> stream 0Tt  Tt@ endstream endobj 1121 0 obj <> stream 0Tt  Tt@ endstream endobj 1122 0 obj <> stream 0Tu  Tu@ endstream endobj 1123 0 obj <> stream 0Tt  Tt@ endstream endobj 1124 0 obj <> stream 0Tu  Tu@ endstream endobj 1125 0 obj <> stream 0Tu  Tu@ endstream endobj 1126 0 obj <> stream 0R  R@  c1 endstream endobj 1127 0 obj <> stream 0Tt  =@BؓrsT Tt endstream endobj 1128 0 obj <> stream 0Tt  Tt@ y endstream endobj 1129 0 obj <> stream 0Tt  Tt@ endstream endobj 1130 0 obj <> stream 0Tt  Tt@ endstream endobj 1131 0 obj <> stream 0Tt  Tt@ endstream endobj 1132 0 obj <> stream 0Tt  Tt@ endstream endobj 1133 0 obj <> stream 0Tu  Tu@ endstream endobj 1134 0 obj <> stream 0Ni  Ni@ endstream endobj 1135 0 obj <> stream 0Ni ">r@ !Niˆ TF endstream endobj 1136 0 obj <> stream 0Ni  Ni@ endstream endobj 1137 0 obj <> stream 0Ni  Ni@ endstream endobj 1138 0 obj <> stream 0Ni  Ni@ endstream endobj 1139 0 obj <> stream 0Ni  Ni@ endstream endobj 1140 0 obj <> stream 0Ni  Ni@ endstream endobj 1141 0 obj <> stream 0Ni  Ni@ endstream endobj 1142 0 obj <> stream 0Ni  Ni@ endstream endobj 1143 0 obj <> stream 0Ni  Ni@ endstream endobj 1144 0 obj <> stream 0Ni  Ni@ endstream endobj 1145 0 obj <> stream 0Ni  Ni@ endstream endobj 1146 0 obj <> stream 0L{ Og]:UR3r'> stream 0Ni  Ni@ endstream endobj 1148 0 obj <> stream 0Ni  Ni@ endstream endobj 1149 0 obj <> stream 0Ni  Ni@ endstream endobj 1150 0 obj <> stream 0St  St@ endstream endobj 1151 0 obj <> stream 0Tt  Tt@h endstream endobj 1152 0 obj <> stream 0Tt  Tt@ endstream endobj 1153 0 obj <> stream 0Li  Li@ endstream endobj 1154 0 obj <> stream 0Li  Li@ endstream endobj 1155 0 obj <> stream 0Mi  Mi@ endstream endobj 1156 0 obj <> stream 0Li  Li@ endstream endobj 1157 0 obj <> stream 0Li  Li@ endstream endobj 1158 0 obj <> stream 0Li  Li@ endstream endobj 1159 0 obj <> stream 0Li  Li@ endstream endobj 1160 0 obj <> stream 0Li  Li@ endstream endobj 1161 0 obj <> stream 0Tu  Tu@ endstream endobj 1162 0 obj <> stream 0Tt  Tt@ endstream endobj 1163 0 obj <> stream 0Tu  Tu@ endstream endobj 1164 0 obj <> stream 0Tu  Tu@ endstream endobj 1165 0 obj <> stream 0Tu  Tu@ endstream endobj 1166 0 obj <> stream 0Tu  Tu@ endstream endobj 1167 0 obj <> stream 0Tu  Tu@ endstream endobj 1168 0 obj <> stream 0Ni  Ni@ C endstream endobj 1169 0 obj <> stream 0Mi  Mi@ endstream endobj 1170 0 obj <> stream 0Mi  Mi@ endstream endobj 1171 0 obj <> stream 0Mi  Mi@ endstream endobj 1172 0 obj <> stream 0Ni  Ni@ endstream endobj 1173 0 obj <> stream 0Ni  Ni@ endstream endobj 1174 0 obj <> stream 0Ni  Ni@ endstream endobj 1175 0 obj <> stream 0Ni  Ni@ endstream endobj 1176 0 obj <> stream 0Ni  Ni@ endstream endobj 1177 0 obj <> stream 0Ni  Ni@ endstream endobj 1178 0 obj <> stream 0Ni  Ni@ endstream endobj 1179 0 obj <> stream 0Ni  Ni@ endstream endobj 1180 0 obj <> stream 0Ni  Ni@ endstream endobj 1181 0 obj <> stream 0Ni  Ni@ endstream endobj 1182 0 obj <> stream 0Ni  Ni@ endstream endobj 1183 0 obj <> stream 0N{  N{@ / endstream endobj 1184 0 obj <> stream 0Nz  Nz@ endstream endobj 1185 0 obj <> stream 0Mi  Mi@ endstream endobj 1186 0 obj <> stream 0Mi  Mi@ endstream endobj 1187 0 obj <> stream 0Mi  Mi@ endstream endobj 1188 0 obj <> stream 0Mi  Mi@ endstream endobj 1189 0 obj <> stream 0Mi  Mi@ endstream endobj 1190 0 obj <> stream 0Mi  Mi@ endstream endobj 1191 0 obj <> stream 0Ni  Ni@ endstream endobj 1192 0 obj <> stream 0L{ b1} &L{wұR4r] endstream endobj 1193 0 obj <> stream 0Ni  Ni@ endstream endobj 1194 0 obj <> stream 0Ni  Ni@ endstream endobj 1195 0 obj <> stream 0Ni b Ni@j? endstream endobj 1196 0 obj <> stream 0Ni  Ni@ endstream endobj 1197 0 obj <> stream 0Ni  Ni@ endstream endobj 1198 0 obj <> stream 0Q  Qw endstream endobj 1199 0 obj <> stream 0Ni  Ni@ endstream endobj 1200 0 obj <> stream 0Ni  Ni@ endstream endobj 1201 0 obj <> stream 0S o)ƓR /S\ ʮ5iwW+̳ endstream endobj 1202 0 obj <> stream 0Ni  Ni@ endstream endobj 1203 0 obj <> stream 0P  P@ endstream endobj 1204 0 obj <> stream 0N{  N{@ endstream endobj 1205 0 obj <> stream 0Pi  Pi@ endstream endobj 1206 0 obj <> stream 0Pi  Pi@ endstream endobj 1207 0 obj <> stream 0Qt  Qt@ endstream endobj 1208 0 obj <> stream 0Su  Su@ endstream endobj 1209 0 obj <> stream 0St  St@ endstream endobj 1210 0 obj <> stream 0P b1Hm :xđO܅(3;tts}vg/S۞N[iUucqv>^Z!к`@-:IbdAbm^1m1\b/]03sR,}WO#X? ZP !.??ob8Js\ֹKȓ]{* %4)*5K%@FH3fHGL endstream endobj 1211 0 obj <> stream 0St  St@ endstream endobj 1212 0 obj <> stream 0St  St@ endstream endobj 1213 0 obj <> stream 0Ly \/r]6 -Ly !y~n"̛R: endstream endobj 1214 0 obj <> stream 0St  St@ endstream endobj 1215 0 obj <> stream 0St  St@ endstream endobj 1216 0 obj <> stream 0St  St@ endstream endobj 1217 0 obj <> stream 0Su  Su@ endstream endobj 1218 0 obj <> stream 0St  St@ endstream endobj 1219 0 obj <> stream 0St  St@ ѿ endstream endobj 1220 0 obj <> stream 0St  St@ endstream endobj 1221 0 obj <> stream 0St  St@ ѿ endstream endobj 1222 0 obj <> stream 0St  St@ endstream endobj 1223 0 obj <> stream 0St  St@ endstream endobj 1224 0 obj <> stream 0St  St@ endstream endobj 1225 0 obj <> stream 0St  St@ endstream endobj 1226 0 obj <> stream 0St  St@ endstream endobj 1227 0 obj <> stream 0Rt  Rt@ endstream endobj 1228 0 obj <> stream 0Rt  Rt@ endstream endobj 1229 0 obj <> stream 0St  St@ endstream endobj 1230 0 obj <> stream 0St  St@ endstream endobj 1231 0 obj <> stream 0St  St@ endstream endobj 1232 0 obj <> stream 0St  St@ endstream endobj 1233 0 obj <> stream 0Rt  Rt@ endstream endobj 1234 0 obj <> stream 0Rt  Rt@ endstream endobj 1235 0 obj <> stream 0Rt  Rt@ endstream endobj 1236 0 obj <> stream 0Rt  Rt@ endstream endobj 1237 0 obj <> stream 0Rt  Rt@ endstream endobj 1238 0 obj <> stream 0Rt  Rt@ endstream endobj 1239 0 obj <> stream 0Rt  Rt@ endstream endobj 1240 0 obj <> stream 0Rt  Rt@ endstream endobj 1241 0 obj <> stream 0Rt  Rt@ endstream endobj 1242 0 obj <> stream 0Rt  Rt@ endstream endobj 1243 0 obj <> stream 0Rt  Rt@ endstream endobj 1244 0 obj <> stream 0Rt  Rt@ endstream endobj 1245 0 obj <> stream 0Rt  Rt@ endstream endobj 1246 0 obj <> stream 0Rt  Rt@ endstream endobj 1247 0 obj <> stream 0Qt  Qt@ endstream endobj 1248 0 obj <> stream 0Rt  Rt@ endstream endobj 1249 0 obj <> stream 0Rt  Rt@ endstream endobj 1250 0 obj <> endobj 1251 0 obj <> endobj 1252 0 obj <> endobj 1253 0 obj <> endobj 1254 0 obj <> /K 0 /P 1253 0 R /Pg 7343 0 R /S/P /Type/StructElem>> endobj 1255 0 obj <> /K 1 /P 1253 0 R /Pg 7343 0 R /S/P /Type/StructElem>> endobj 1256 0 obj <> /K 2 /P 1253 0 R /Pg 7343 0 R /S/P /Type/StructElem>> endobj 1257 0 obj <> /K 3 /P 1253 0 R /Pg 7343 0 R /S/P /Type/StructElem>> endobj 1258 0 obj <> /K 4 /P 1253 0 R /Pg 7343 0 R /S/P /Type/StructElem>> endobj 1259 0 obj <> /K 5 /P 1253 0 R /Pg 7343 0 R /S/P /Type/StructElem>> endobj 1260 0 obj <> /K 6 /P 1253 0 R /Pg 7343 0 R /S/P /Type/StructElem>> endobj 1261 0 obj <> endobj 1262 0 obj <> /K 0 /P 1261 0 R /Pg 1 0 R /S/P /Type/StructElem>> endobj 1263 0 obj <> endobj 1264 0 obj <> /K 1 /P 1263 0 R /Pg 1 0 R /S/P /Type/StructElem>> endobj 1265 0 obj <> /K[1266 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1266 0 obj <> /K[1267 0 R] /P 1265 0 R /S/Table /Type/StructElem>> endobj 1267 0 obj <> endobj 1268 0 obj <> /K[1269 0 R] /P 1267 0 R /S/TD /Type/StructElem>> endobj 1269 0 obj <> /K 2 /P 1268 0 R /Pg 1 0 R /S/P /Type/StructElem>> endobj 1270 0 obj <> /K[1271 0 R] /P 1267 0 R /S/TD /Type/StructElem>> endobj 1271 0 obj <> /K 3 /P 1270 0 R /Pg 1 0 R /S/P /Type/StructElem>> endobj 1272 0 obj <> /K[1273 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1273 0 obj <> /K 4 /P 1272 0 R /Pg 1 0 R /S/P /Type/StructElem>> endobj 1274 0 obj <> endobj 1275 0 obj <> /K 0 /P 1274 0 R /Pg 6 0 R /S/P /Type/StructElem>> endobj 1276 0 obj <> /K 1 /P 1274 0 R /Pg 6 0 R /S/P /Type/StructElem>> endobj 1277 0 obj <> /K 2 /P 1274 0 R /Pg 6 0 R /S/P /Type/StructElem>> endobj 1278 0 obj <> /K 3 /P 1274 0 R /Pg 6 0 R /S/P /Type/StructElem>> endobj 1279 0 obj <> /K 4 /P 1274 0 R /Pg 6 0 R /S/P /Type/StructElem>> endobj 1280 0 obj <> endobj 1281 0 obj <> /K 0 /P 1280 0 R /Pg 11 0 R /S/P /Type/StructElem>> endobj 1282 0 obj <> /K 1 /P 1280 0 R /Pg 11 0 R /S/P /Type/StructElem>> endobj 1283 0 obj <> endobj 1284 0 obj <> /K 0 /P 1283 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1285 0 obj <> /K[1286 0 R 1293 0 R 1300 0 R 1311 0 R 1322 0 R 1333 0 R 1344 0 R 1357 0 R 1372 0 R 1385 0 R 1398 0 R 1411 0 R 1422 0 R 1435 0 R 1448 0 R 1461 0 R 1474 0 R 1481 0 R 1492 0 R 1503 0 R 1514 0 R 1527 0 R 1540 0 R] /P 1283 0 R /S/Table /Type/StructElem>> endobj 1286 0 obj <> endobj 1287 0 obj <> /K[1288 0 R] /P 1286 0 R /S/TD /Type/StructElem>> endobj 1288 0 obj <> /K 1 /P 1287 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1289 0 obj <> /K[1290 0 R] /P 1286 0 R /S/TD /Type/StructElem>> endobj 1290 0 obj <> /K 2 /P 1289 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1291 0 obj <> /K[1292 0 R] /P 1286 0 R /S/TD /Type/StructElem>> endobj 1292 0 obj <> /K 3 /P 1291 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1293 0 obj <> endobj 1294 0 obj <> /K[1295 0 R] /P 1293 0 R /S/TD /Type/StructElem>> endobj 1295 0 obj <> /K 4 /P 1294 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1296 0 obj <> /K[1297 0 R] /P 1293 0 R /S/TD /Type/StructElem>> endobj 1297 0 obj <> /K 5 /P 1296 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1298 0 obj <> /K[1299 0 R] /P 1293 0 R /S/TD /Type/StructElem>> endobj 1299 0 obj <> /K 6 /P 1298 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1300 0 obj <> endobj 1301 0 obj <> /K[1302 0 R] /P 1300 0 R /S/TD /Type/StructElem>> endobj 1302 0 obj <> /K[7 1303 0 R 1304 0 R] /P 1301 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1303 0 obj <> endobj 1304 0 obj <> endobj 1305 0 obj <> /K[1306 0 R] /P 1300 0 R /S/TD /Type/StructElem>> endobj 1306 0 obj <> /K 10 /P 1305 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1307 0 obj <> /K[1308 0 R] /P 1300 0 R /S/TD /Type/StructElem>> endobj 1308 0 obj <> /K 11 /P 1307 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1309 0 obj <> /K[1310 0 R] /P 1300 0 R /S/TD /Type/StructElem>> endobj 1310 0 obj <> /K 12 /P 1309 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1311 0 obj <> endobj 1312 0 obj <> /K[1313 0 R] /P 1311 0 R /S/TD /Type/StructElem>> endobj 1313 0 obj <> /K[13 1314 0 R 1315 0 R] /P 1312 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1314 0 obj <> endobj 1315 0 obj <> endobj 1316 0 obj <> /K[1317 0 R] /P 1311 0 R /S/TD /Type/StructElem>> endobj 1317 0 obj <> /K 16 /P 1316 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1318 0 obj <> /K[1319 0 R] /P 1311 0 R /S/TD /Type/StructElem>> endobj 1319 0 obj <> /K 17 /P 1318 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1320 0 obj <> /K[1321 0 R] /P 1311 0 R /S/TD /Type/StructElem>> endobj 1321 0 obj <> /K 18 /P 1320 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1322 0 obj <> endobj 1323 0 obj <> /K[1324 0 R] /P 1322 0 R /S/TD /Type/StructElem>> endobj 1324 0 obj <> /K[19 1325 0 R 1326 0 R] /P 1323 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1325 0 obj <> endobj 1326 0 obj <> endobj 1327 0 obj <> /K[1328 0 R] /P 1322 0 R /S/TD /Type/StructElem>> endobj 1328 0 obj <> /K 22 /P 1327 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1329 0 obj <> /K[1330 0 R] /P 1322 0 R /S/TD /Type/StructElem>> endobj 1330 0 obj <> /K 23 /P 1329 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1331 0 obj <> /K[1332 0 R] /P 1322 0 R /S/TD /Type/StructElem>> endobj 1332 0 obj <> /K 24 /P 1331 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1333 0 obj <> endobj 1334 0 obj <> /K[1335 0 R] /P 1333 0 R /S/TD /Type/StructElem>> endobj 1335 0 obj <> /K[25 1336 0 R 1337 0 R] /P 1334 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1336 0 obj <> endobj 1337 0 obj <> endobj 1338 0 obj <> /K[1339 0 R] /P 1333 0 R /S/TD /Type/StructElem>> endobj 1339 0 obj <> /K 28 /P 1338 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1340 0 obj <> /K[1341 0 R] /P 1333 0 R /S/TD /Type/StructElem>> endobj 1341 0 obj <> /K 29 /P 1340 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1342 0 obj <> /K[1343 0 R] /P 1333 0 R /S/TD /Type/StructElem>> endobj 1343 0 obj <> /K 30 /P 1342 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1344 0 obj <> endobj 1345 0 obj <> /K[1346 0 R] /P 1344 0 R /S/TD /Type/StructElem>> endobj 1346 0 obj <> /K[31 1347 0 R 1348 0 R] /P 1345 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1347 0 obj <> endobj 1348 0 obj <> endobj 1349 0 obj <> /K[1350 0 R] /P 1344 0 R /S/TD /Type/StructElem>> endobj 1350 0 obj <> /K[34 1351 0 R 1352 0 R] /P 1349 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1351 0 obj <> endobj 1352 0 obj <> endobj 1353 0 obj <> /K[1354 0 R] /P 1344 0 R /S/TD /Type/StructElem>> endobj 1354 0 obj <> /K 37 /P 1353 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1355 0 obj <> /K[1356 0 R] /P 1344 0 R /S/TD /Type/StructElem>> endobj 1356 0 obj <> /K 38 /P 1355 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1357 0 obj <> endobj 1358 0 obj <> /K[1359 0 R] /P 1357 0 R /S/TD /Type/StructElem>> endobj 1359 0 obj <> /K[39 1360 0 R 1361 0 R] /P 1358 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1360 0 obj <> endobj 1361 0 obj <> endobj 1362 0 obj <> /K[1363 0 R] /P 1357 0 R /S/TD /Type/StructElem>> endobj 1363 0 obj <> /K[42 1364 0 R 1365 0 R] /P 1362 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1364 0 obj <> endobj 1365 0 obj <> endobj 1366 0 obj <> /K[1367 0 R] /P 1357 0 R /S/TD /Type/StructElem>> endobj 1367 0 obj <> /K 45 /P 1366 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1368 0 obj <> /K[1369 0 R] /P 1357 0 R /S/TD /Type/StructElem>> endobj 1369 0 obj <> /K[46 1370 0 R 1371 0 R] /P 1368 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1370 0 obj <> endobj 1371 0 obj <> endobj 1372 0 obj <> endobj 1373 0 obj <> /K[1374 0 R] /P 1372 0 R /S/TD /Type/StructElem>> endobj 1374 0 obj <> /K[49 1375 0 R 1376 0 R] /P 1373 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1375 0 obj <> endobj 1376 0 obj <> endobj 1377 0 obj <> /K[1378 0 R] /P 1372 0 R /S/TD /Type/StructElem>> endobj 1378 0 obj <> /K[52 1379 0 R 1380 0 R] /P 1377 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1379 0 obj <> endobj 1380 0 obj <> endobj 1381 0 obj <> /K[1382 0 R] /P 1372 0 R /S/TD /Type/StructElem>> endobj 1382 0 obj <> /K 55 /P 1381 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1383 0 obj <> /K[1384 0 R] /P 1372 0 R /S/TD /Type/StructElem>> endobj 1384 0 obj <> /K 56 /P 1383 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1385 0 obj <> endobj 1386 0 obj <> /K[1387 0 R] /P 1385 0 R /S/TD /Type/StructElem>> endobj 1387 0 obj <> /K[57 1388 0 R 1389 0 R] /P 1386 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1388 0 obj <> endobj 1389 0 obj <> endobj 1390 0 obj <> /K[1391 0 R] /P 1385 0 R /S/TD /Type/StructElem>> endobj 1391 0 obj <> /K[60 1392 0 R 1393 0 R] /P 1390 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1392 0 obj <> endobj 1393 0 obj <> endobj 1394 0 obj <> /K[1395 0 R] /P 1385 0 R /S/TD /Type/StructElem>> endobj 1395 0 obj <> /K 63 /P 1394 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1396 0 obj <> /K[1397 0 R] /P 1385 0 R /S/TD /Type/StructElem>> endobj 1397 0 obj <> /K 64 /P 1396 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1398 0 obj <> endobj 1399 0 obj <> /K[1400 0 R] /P 1398 0 R /S/TD /Type/StructElem>> endobj 1400 0 obj <> /K[65 1401 0 R 1402 0 R] /P 1399 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1401 0 obj <> endobj 1402 0 obj <> endobj 1403 0 obj <> /K[1404 0 R] /P 1398 0 R /S/TD /Type/StructElem>> endobj 1404 0 obj <> /K[68 1405 0 R 1406 0 R] /P 1403 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1405 0 obj <> endobj 1406 0 obj <> endobj 1407 0 obj <> /K[1408 0 R] /P 1398 0 R /S/TD /Type/StructElem>> endobj 1408 0 obj <> /K 71 /P 1407 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1409 0 obj <> /K[1410 0 R] /P 1398 0 R /S/TD /Type/StructElem>> endobj 1410 0 obj <> /K 72 /P 1409 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1411 0 obj <> endobj 1412 0 obj <> /K[1413 0 R] /P 1411 0 R /S/TD /Type/StructElem>> endobj 1413 0 obj <> /K[73 1414 0 R 1415 0 R] /P 1412 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1414 0 obj <> endobj 1415 0 obj <> endobj 1416 0 obj <> /K[1417 0 R] /P 1411 0 R /S/TD /Type/StructElem>> endobj 1417 0 obj <> /K 76 /P 1416 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1418 0 obj <> /K[1419 0 R] /P 1411 0 R /S/TD /Type/StructElem>> endobj 1419 0 obj <> /K 77 /P 1418 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1420 0 obj <> /K[1421 0 R] /P 1411 0 R /S/TD /Type/StructElem>> endobj 1421 0 obj <> /K 78 /P 1420 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1422 0 obj <> endobj 1423 0 obj <> /K[1424 0 R] /P 1422 0 R /S/TD /Type/StructElem>> endobj 1424 0 obj <> /K[79 1425 0 R 1426 0 R] /P 1423 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1425 0 obj <> endobj 1426 0 obj <> endobj 1427 0 obj <> /K[1428 0 R] /P 1422 0 R /S/TD /Type/StructElem>> endobj 1428 0 obj <> /K[82 1429 0 R 1430 0 R] /P 1427 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1429 0 obj <> endobj 1430 0 obj <> endobj 1431 0 obj <> /K[1432 0 R] /P 1422 0 R /S/TD /Type/StructElem>> endobj 1432 0 obj <> /K 85 /P 1431 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1433 0 obj <> /K[1434 0 R] /P 1422 0 R /S/TD /Type/StructElem>> endobj 1434 0 obj <> /K 86 /P 1433 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1435 0 obj <> endobj 1436 0 obj <> /K[1437 0 R] /P 1435 0 R /S/TD /Type/StructElem>> endobj 1437 0 obj <> /K[87 1438 0 R 1439 0 R] /P 1436 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1438 0 obj <> endobj 1439 0 obj <> endobj 1440 0 obj <> /K[1441 0 R] /P 1435 0 R /S/TD /Type/StructElem>> endobj 1441 0 obj <> /K[90 1442 0 R 1443 0 R] /P 1440 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1442 0 obj <> endobj 1443 0 obj <> endobj 1444 0 obj <> /K[1445 0 R] /P 1435 0 R /S/TD /Type/StructElem>> endobj 1445 0 obj <> /K 93 /P 1444 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1446 0 obj <> /K[1447 0 R] /P 1435 0 R /S/TD /Type/StructElem>> endobj 1447 0 obj <> /K 94 /P 1446 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1448 0 obj <> endobj 1449 0 obj <> /K[1450 0 R] /P 1448 0 R /S/TD /Type/StructElem>> endobj 1450 0 obj <> /K[95 1451 0 R 1452 0 R] /P 1449 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1451 0 obj <> endobj 1452 0 obj <> endobj 1453 0 obj <> /K[1454 0 R] /P 1448 0 R /S/TD /Type/StructElem>> endobj 1454 0 obj <> /K[98 1455 0 R 1456 0 R] /P 1453 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1455 0 obj <> endobj 1456 0 obj <> endobj 1457 0 obj <> /K[1458 0 R] /P 1448 0 R /S/TD /Type/StructElem>> endobj 1458 0 obj <> /K 101 /P 1457 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1459 0 obj <> /K[1460 0 R] /P 1448 0 R /S/TD /Type/StructElem>> endobj 1460 0 obj <> /K 102 /P 1459 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1461 0 obj <> endobj 1462 0 obj <> /K[1463 0 R] /P 1461 0 R /S/TD /Type/StructElem>> endobj 1463 0 obj <> /K[103 1464 0 R 1465 0 R] /P 1462 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1464 0 obj <> endobj 1465 0 obj <> endobj 1466 0 obj <> /K[1467 0 R] /P 1461 0 R /S/TD /Type/StructElem>> endobj 1467 0 obj <> /K[106 1468 0 R 1469 0 R] /P 1466 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1468 0 obj <> endobj 1469 0 obj <> endobj 1470 0 obj <> /K[1471 0 R] /P 1461 0 R /S/TD /Type/StructElem>> endobj 1471 0 obj <> /K 109 /P 1470 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1472 0 obj <> /K[1473 0 R] /P 1461 0 R /S/TD /Type/StructElem>> endobj 1473 0 obj <> /K 110 /P 1472 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1474 0 obj <> endobj 1475 0 obj <> /K[1476 0 R] /P 1474 0 R /S/TD /Type/StructElem>> endobj 1476 0 obj <> /K 111 /P 1475 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1477 0 obj <> /K[1478 0 R] /P 1474 0 R /S/TD /Type/StructElem>> endobj 1478 0 obj <> /K 112 /P 1477 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1479 0 obj <> /K[1480 0 R] /P 1474 0 R /S/TD /Type/StructElem>> endobj 1480 0 obj <> /K 113 /P 1479 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1481 0 obj <> endobj 1482 0 obj <> /K[1483 0 R] /P 1481 0 R /S/TD /Type/StructElem>> endobj 1483 0 obj <> /K[114 1484 0 R 1485 0 R] /P 1482 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1484 0 obj <> endobj 1485 0 obj <> endobj 1486 0 obj <> /K[1487 0 R] /P 1481 0 R /S/TD /Type/StructElem>> endobj 1487 0 obj <> /K 117 /P 1486 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1488 0 obj <> /K[1489 0 R] /P 1481 0 R /S/TD /Type/StructElem>> endobj 1489 0 obj <> /K 118 /P 1488 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1490 0 obj <> /K[1491 0 R] /P 1481 0 R /S/TD /Type/StructElem>> endobj 1491 0 obj <> /K 119 /P 1490 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1492 0 obj <> endobj 1493 0 obj <> /K[1494 0 R] /P 1492 0 R /S/TD /Type/StructElem>> endobj 1494 0 obj <> /K[120 1495 0 R 1496 0 R] /P 1493 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1495 0 obj <> endobj 1496 0 obj <> endobj 1497 0 obj <> /K[1498 0 R] /P 1492 0 R /S/TD /Type/StructElem>> endobj 1498 0 obj <> /K 123 /P 1497 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1499 0 obj <> /K[1500 0 R] /P 1492 0 R /S/TD /Type/StructElem>> endobj 1500 0 obj <> /K 124 /P 1499 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1501 0 obj <> /K[1502 0 R] /P 1492 0 R /S/TD /Type/StructElem>> endobj 1502 0 obj <> /K 125 /P 1501 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1503 0 obj <> endobj 1504 0 obj <> /K[1505 0 R] /P 1503 0 R /S/TD /Type/StructElem>> endobj 1505 0 obj <> /K[126 1506 0 R 1507 0 R] /P 1504 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1506 0 obj <> endobj 1507 0 obj <> endobj 1508 0 obj <> /K[1509 0 R] /P 1503 0 R /S/TD /Type/StructElem>> endobj 1509 0 obj <> /K 129 /P 1508 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1510 0 obj <> /K[1511 0 R] /P 1503 0 R /S/TD /Type/StructElem>> endobj 1511 0 obj <> /K 130 /P 1510 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1512 0 obj <> /K[1513 0 R] /P 1503 0 R /S/TD /Type/StructElem>> endobj 1513 0 obj <> /K 131 /P 1512 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1514 0 obj <> endobj 1515 0 obj <> /K[1516 0 R] /P 1514 0 R /S/TD /Type/StructElem>> endobj 1516 0 obj <> /K[132 1517 0 R 1518 0 R] /P 1515 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1517 0 obj <> endobj 1518 0 obj <> endobj 1519 0 obj <> /K[1520 0 R] /P 1514 0 R /S/TD /Type/StructElem>> endobj 1520 0 obj <> /K[135 1521 0 R 1522 0 R] /P 1519 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1521 0 obj <> endobj 1522 0 obj <> endobj 1523 0 obj <> /K[1524 0 R] /P 1514 0 R /S/TD /Type/StructElem>> endobj 1524 0 obj <> /K 138 /P 1523 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1525 0 obj <> /K[1526 0 R] /P 1514 0 R /S/TD /Type/StructElem>> endobj 1526 0 obj <> /K 139 /P 1525 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1527 0 obj <> endobj 1528 0 obj <> /K[1529 0 R] /P 1527 0 R /S/TD /Type/StructElem>> endobj 1529 0 obj <> /K[140 1530 0 R 1531 0 R] /P 1528 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1530 0 obj <> endobj 1531 0 obj <> endobj 1532 0 obj <> /K[1533 0 R] /P 1527 0 R /S/TD /Type/StructElem>> endobj 1533 0 obj <> /K[143 1534 0 R 1535 0 R] /P 1532 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1534 0 obj <> endobj 1535 0 obj <> endobj 1536 0 obj <> /K[1537 0 R] /P 1527 0 R /S/TD /Type/StructElem>> endobj 1537 0 obj <> /K 146 /P 1536 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1538 0 obj <> /K[1539 0 R] /P 1527 0 R /S/TD /Type/StructElem>> endobj 1539 0 obj <> /K 147 /P 1538 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1540 0 obj <> endobj 1541 0 obj <> /K[1542 0 R] /P 1540 0 R /S/TD /Type/StructElem>> endobj 1542 0 obj <> /K[148 1543 0 R 1544 0 R] /P 1541 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1543 0 obj <> endobj 1544 0 obj <> endobj 1545 0 obj <> /K[1546 0 R] /P 1540 0 R /S/TD /Type/StructElem>> endobj 1546 0 obj <> /K[151 1547 0 R 1548 0 R] /P 1545 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1547 0 obj <> endobj 1548 0 obj <> endobj 1549 0 obj <> /K[1550 0 R] /P 1540 0 R /S/TD /Type/StructElem>> endobj 1550 0 obj <> /K 154 /P 1549 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1551 0 obj <> /K[1552 0 R] /P 1540 0 R /S/TD /Type/StructElem>> endobj 1552 0 obj <> /K 155 /P 1551 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1553 0 obj <> /K[1554 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1554 0 obj <> /K 156 /P 1553 0 R /Pg 16 0 R /S/P /Type/StructElem>> endobj 1555 0 obj <> endobj 1556 0 obj <> /K 0 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1557 0 obj <> /K 1 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1558 0 obj <> /K 2 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1559 0 obj <> /K 3 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1560 0 obj <> /K 4 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1561 0 obj <> /K 5 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1562 0 obj <> /K 6 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1563 0 obj <> /K 7 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1564 0 obj <> /K 8 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1565 0 obj <> /K 9 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1566 0 obj <> /K 10 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1567 0 obj <> /K 11 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1568 0 obj <> /K 12 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1569 0 obj <> /K 13 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1570 0 obj <> /K 14 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1571 0 obj <> /K 15 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1572 0 obj <> /K 16 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1573 0 obj <> /K 17 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1574 0 obj <> /K 18 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1575 0 obj <> /K 19 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1576 0 obj <> /K 20 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1577 0 obj <> /K 21 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1578 0 obj <> /K 22 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1579 0 obj <> /K 23 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1580 0 obj <> /K 24 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1581 0 obj <> /K 25 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1582 0 obj <> /K 26 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1583 0 obj <> /K 27 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1584 0 obj <> /K 28 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1585 0 obj <> /K 29 /P 1555 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1586 0 obj <> /K[1587 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1587 0 obj <> /K 30 /P 1586 0 R /Pg 21 0 R /S/P /Type/StructElem>> endobj 1588 0 obj <> endobj 1589 0 obj <> /K[1590 0 R 1600 0 R 1607 0 R 1618 0 R 1629 0 R 1642 0 R 1655 0 R 1668 0 R 1681 0 R 1694 0 R 1705 0 R 1718 0 R 1731 0 R 1742 0 R 1755 0 R 1768 0 R 1781 0 R 1792 0 R 1805 0 R 1818 0 R 1829 0 R 1836 0 R 1847 0 R 1860 0 R 1873 0 R 1886 0 R 1899 0 R 1910 0 R 1923 0 R 1936 0 R 1949 0 R 1960 0 R] /P 1588 0 R /S/Table /Type/StructElem>> endobj 1590 0 obj <> endobj 1591 0 obj <> /K[1592 0 R] /P 1590 0 R /S/TD /Type/StructElem>> endobj 1592 0 obj <> /K[0 1593 0 R] /P 1591 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1593 0 obj <> endobj 1594 0 obj <> /K[1595 0 R] /P 1590 0 R /S/TD /Type/StructElem>> endobj 1595 0 obj <> /K[2 1596 0 R 1597 0 R] /P 1594 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1596 0 obj <> endobj 1597 0 obj <> endobj 1598 0 obj <> /K[1599 0 R] /P 1590 0 R /S/TD /Type/StructElem>> endobj 1599 0 obj <> /K 5 /P 1598 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1600 0 obj <> endobj 1601 0 obj <> /K[1602 0 R] /P 1600 0 R /S/TD /Type/StructElem>> endobj 1602 0 obj <> /K 6 /P 1601 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1603 0 obj <> /K[1604 0 R] /P 1600 0 R /S/TD /Type/StructElem>> endobj 1604 0 obj <> /K 7 /P 1603 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1605 0 obj <> /K[1606 0 R] /P 1600 0 R /S/TD /Type/StructElem>> endobj 1606 0 obj <> /K 8 /P 1605 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1607 0 obj <> endobj 1608 0 obj <> /K[1609 0 R] /P 1607 0 R /S/TD /Type/StructElem>> endobj 1609 0 obj <> /K[9 1610 0 R 1611 0 R] /P 1608 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1610 0 obj <> endobj 1611 0 obj <> endobj 1612 0 obj <> /K[1613 0 R] /P 1607 0 R /S/TD /Type/StructElem>> endobj 1613 0 obj <> /K 12 /P 1612 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1614 0 obj <> /K[1615 0 R] /P 1607 0 R /S/TD /Type/StructElem>> endobj 1615 0 obj <> /K 13 /P 1614 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1616 0 obj <> /K[1617 0 R] /P 1607 0 R /S/TD /Type/StructElem>> endobj 1617 0 obj <> /K 14 /P 1616 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1618 0 obj <> endobj 1619 0 obj <> /K[1620 0 R] /P 1618 0 R /S/TD /Type/StructElem>> endobj 1620 0 obj <> /K[15 1621 0 R 1622 0 R] /P 1619 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1621 0 obj <> endobj 1622 0 obj <> endobj 1623 0 obj <> /K[1624 0 R] /P 1618 0 R /S/TD /Type/StructElem>> endobj 1624 0 obj <> /K 18 /P 1623 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1625 0 obj <> /K[1626 0 R] /P 1618 0 R /S/TD /Type/StructElem>> endobj 1626 0 obj <> /K 19 /P 1625 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1627 0 obj <> /K[1628 0 R] /P 1618 0 R /S/TD /Type/StructElem>> endobj 1628 0 obj <> /K 20 /P 1627 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1629 0 obj <> endobj 1630 0 obj <> /K[1631 0 R] /P 1629 0 R /S/TD /Type/StructElem>> endobj 1631 0 obj <> /K[21 1632 0 R 1633 0 R] /P 1630 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1632 0 obj <> endobj 1633 0 obj <> endobj 1634 0 obj <> /K[1635 0 R] /P 1629 0 R /S/TD /Type/StructElem>> endobj 1635 0 obj <> /K[24 1636 0 R 1637 0 R] /P 1634 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1636 0 obj <> endobj 1637 0 obj <> endobj 1638 0 obj <> /K[1639 0 R] /P 1629 0 R /S/TD /Type/StructElem>> endobj 1639 0 obj <> /K 27 /P 1638 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1640 0 obj <> /K[1641 0 R] /P 1629 0 R /S/TD /Type/StructElem>> endobj 1641 0 obj <> /K 28 /P 1640 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1642 0 obj <> endobj 1643 0 obj <> /K[1644 0 R] /P 1642 0 R /S/TD /Type/StructElem>> endobj 1644 0 obj <> /K[29 1645 0 R 1646 0 R] /P 1643 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1645 0 obj <> endobj 1646 0 obj <> endobj 1647 0 obj <> /K[1648 0 R] /P 1642 0 R /S/TD /Type/StructElem>> endobj 1648 0 obj <> /K[32 1649 0 R 1650 0 R] /P 1647 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1649 0 obj <> endobj 1650 0 obj <> endobj 1651 0 obj <> /K[1652 0 R] /P 1642 0 R /S/TD /Type/StructElem>> endobj 1652 0 obj <> /K 35 /P 1651 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1653 0 obj <> /K[1654 0 R] /P 1642 0 R /S/TD /Type/StructElem>> endobj 1654 0 obj <> /K 36 /P 1653 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1655 0 obj <> endobj 1656 0 obj <> /K[1657 0 R] /P 1655 0 R /S/TD /Type/StructElem>> endobj 1657 0 obj <> /K[37 1658 0 R 1659 0 R] /P 1656 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1658 0 obj <> endobj 1659 0 obj <> endobj 1660 0 obj <> /K[1661 0 R] /P 1655 0 R /S/TD /Type/StructElem>> endobj 1661 0 obj <> /K[40 1662 0 R 1663 0 R] /P 1660 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1662 0 obj <> endobj 1663 0 obj <> endobj 1664 0 obj <> /K[1665 0 R] /P 1655 0 R /S/TD /Type/StructElem>> endobj 1665 0 obj <> /K 43 /P 1664 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1666 0 obj <> /K[1667 0 R] /P 1655 0 R /S/TD /Type/StructElem>> endobj 1667 0 obj <> /K 44 /P 1666 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1668 0 obj <> endobj 1669 0 obj <> /K[1670 0 R] /P 1668 0 R /S/TD /Type/StructElem>> endobj 1670 0 obj <> /K[45 1671 0 R 1672 0 R] /P 1669 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1671 0 obj <> endobj 1672 0 obj <> endobj 1673 0 obj <> /K[1674 0 R] /P 1668 0 R /S/TD /Type/StructElem>> endobj 1674 0 obj <> /K[48 1675 0 R 1676 0 R] /P 1673 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1675 0 obj <> endobj 1676 0 obj <> endobj 1677 0 obj <> /K[1678 0 R] /P 1668 0 R /S/TD /Type/StructElem>> endobj 1678 0 obj <> /K 51 /P 1677 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1679 0 obj <> /K[1680 0 R] /P 1668 0 R /S/TD /Type/StructElem>> endobj 1680 0 obj <> /K 52 /P 1679 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1681 0 obj <> endobj 1682 0 obj <> /K[1683 0 R] /P 1681 0 R /S/TD /Type/StructElem>> endobj 1683 0 obj <> /K[53 1684 0 R 1685 0 R] /P 1682 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1684 0 obj <> endobj 1685 0 obj <> endobj 1686 0 obj <> /K[1687 0 R] /P 1681 0 R /S/TD /Type/StructElem>> endobj 1687 0 obj <> /K[56 1688 0 R 1689 0 R] /P 1686 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1688 0 obj <> endobj 1689 0 obj <> endobj 1690 0 obj <> /K[1691 0 R] /P 1681 0 R /S/TD /Type/StructElem>> endobj 1691 0 obj <> /K 59 /P 1690 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1692 0 obj <> /K[1693 0 R] /P 1681 0 R /S/TD /Type/StructElem>> endobj 1693 0 obj <> /K 60 /P 1692 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1694 0 obj <> endobj 1695 0 obj <> /K[1696 0 R] /P 1694 0 R /S/TD /Type/StructElem>> endobj 1696 0 obj <> /K[61 1697 0 R 1698 0 R] /P 1695 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1697 0 obj <> endobj 1698 0 obj <> endobj 1699 0 obj <> /K[1700 0 R] /P 1694 0 R /S/TD /Type/StructElem>> endobj 1700 0 obj <> /K 64 /P 1699 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1701 0 obj <> /K[1702 0 R] /P 1694 0 R /S/TD /Type/StructElem>> endobj 1702 0 obj <> /K 65 /P 1701 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1703 0 obj <> /K[1704 0 R] /P 1694 0 R /S/TD /Type/StructElem>> endobj 1704 0 obj <> /K 66 /P 1703 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1705 0 obj <> endobj 1706 0 obj <> /K[1707 0 R] /P 1705 0 R /S/TD /Type/StructElem>> endobj 1707 0 obj <> /K[67 1708 0 R 1709 0 R] /P 1706 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1708 0 obj <> endobj 1709 0 obj <> endobj 1710 0 obj <> /K[1711 0 R] /P 1705 0 R /S/TD /Type/StructElem>> endobj 1711 0 obj <> /K[70 1712 0 R 1713 0 R] /P 1710 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1712 0 obj <> endobj 1713 0 obj <> endobj 1714 0 obj <> /K[1715 0 R] /P 1705 0 R /S/TD /Type/StructElem>> endobj 1715 0 obj <> /K 73 /P 1714 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1716 0 obj <> /K[1717 0 R] /P 1705 0 R /S/TD /Type/StructElem>> endobj 1717 0 obj <> /K 74 /P 1716 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1718 0 obj <> endobj 1719 0 obj <> /K[1720 0 R] /P 1718 0 R /S/TD /Type/StructElem>> endobj 1720 0 obj <> /K[75 1721 0 R 1722 0 R] /P 1719 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1721 0 obj <> endobj 1722 0 obj <> endobj 1723 0 obj <> /K[1724 0 R] /P 1718 0 R /S/TD /Type/StructElem>> endobj 1724 0 obj <> /K[78 1725 0 R 1726 0 R] /P 1723 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1725 0 obj <> endobj 1726 0 obj <> endobj 1727 0 obj <> /K[1728 0 R] /P 1718 0 R /S/TD /Type/StructElem>> endobj 1728 0 obj <> /K 81 /P 1727 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1729 0 obj <> /K[1730 0 R] /P 1718 0 R /S/TD /Type/StructElem>> endobj 1730 0 obj <> /K 82 /P 1729 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1731 0 obj <> endobj 1732 0 obj <> /K[1733 0 R] /P 1731 0 R /S/TD /Type/StructElem>> endobj 1733 0 obj <> /K[83 1734 0 R 1735 0 R] /P 1732 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1734 0 obj <> endobj 1735 0 obj <> endobj 1736 0 obj <> /K[1737 0 R] /P 1731 0 R /S/TD /Type/StructElem>> endobj 1737 0 obj <> /K 86 /P 1736 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1738 0 obj <> /K[1739 0 R] /P 1731 0 R /S/TD /Type/StructElem>> endobj 1739 0 obj <> /K 87 /P 1738 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1740 0 obj <> /K[1741 0 R] /P 1731 0 R /S/TD /Type/StructElem>> endobj 1741 0 obj <> /K 88 /P 1740 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1742 0 obj <> endobj 1743 0 obj <> /K[1744 0 R] /P 1742 0 R /S/TD /Type/StructElem>> endobj 1744 0 obj <> /K[89 1745 0 R 1746 0 R] /P 1743 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1745 0 obj <> endobj 1746 0 obj <> endobj 1747 0 obj <> /K[1748 0 R] /P 1742 0 R /S/TD /Type/StructElem>> endobj 1748 0 obj <> /K[92 1749 0 R 1750 0 R] /P 1747 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1749 0 obj <> endobj 1750 0 obj <> endobj 1751 0 obj <> /K[1752 0 R] /P 1742 0 R /S/TD /Type/StructElem>> endobj 1752 0 obj <> /K 95 /P 1751 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1753 0 obj <> /K[1754 0 R] /P 1742 0 R /S/TD /Type/StructElem>> endobj 1754 0 obj <> /K 96 /P 1753 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1755 0 obj <> endobj 1756 0 obj <> /K[1757 0 R] /P 1755 0 R /S/TD /Type/StructElem>> endobj 1757 0 obj <> /K[97 1758 0 R 1759 0 R] /P 1756 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1758 0 obj <> endobj 1759 0 obj <> endobj 1760 0 obj <> /K[1761 0 R] /P 1755 0 R /S/TD /Type/StructElem>> endobj 1761 0 obj <> /K[100 1762 0 R 1763 0 R] /P 1760 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1762 0 obj <> endobj 1763 0 obj <> endobj 1764 0 obj <> /K[1765 0 R] /P 1755 0 R /S/TD /Type/StructElem>> endobj 1765 0 obj <> /K 103 /P 1764 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1766 0 obj <> /K[1767 0 R] /P 1755 0 R /S/TD /Type/StructElem>> endobj 1767 0 obj <> /K 104 /P 1766 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1768 0 obj <> endobj 1769 0 obj <> /K[1770 0 R] /P 1768 0 R /S/TD /Type/StructElem>> endobj 1770 0 obj <> /K[105 1771 0 R 1772 0 R] /P 1769 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1771 0 obj <> endobj 1772 0 obj <> endobj 1773 0 obj <> /K[1774 0 R] /P 1768 0 R /S/TD /Type/StructElem>> endobj 1774 0 obj <> /K[108 1775 0 R 1776 0 R] /P 1773 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1775 0 obj <> endobj 1776 0 obj <> endobj 1777 0 obj <> /K[1778 0 R] /P 1768 0 R /S/TD /Type/StructElem>> endobj 1778 0 obj <> /K 111 /P 1777 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1779 0 obj <> /K[1780 0 R] /P 1768 0 R /S/TD /Type/StructElem>> endobj 1780 0 obj <> /K 112 /P 1779 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1781 0 obj <> endobj 1782 0 obj <> /K[1783 0 R] /P 1781 0 R /S/TD /Type/StructElem>> endobj 1783 0 obj <> /K[113 1784 0 R 1785 0 R] /P 1782 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1784 0 obj <> endobj 1785 0 obj <> endobj 1786 0 obj <> /K[1787 0 R] /P 1781 0 R /S/TD /Type/StructElem>> endobj 1787 0 obj <> /K 116 /P 1786 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1788 0 obj <> /K[1789 0 R] /P 1781 0 R /S/TD /Type/StructElem>> endobj 1789 0 obj <> /K 117 /P 1788 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1790 0 obj <> /K[1791 0 R] /P 1781 0 R /S/TD /Type/StructElem>> endobj 1791 0 obj <> /K 118 /P 1790 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1792 0 obj <> endobj 1793 0 obj <> /K[1794 0 R] /P 1792 0 R /S/TD /Type/StructElem>> endobj 1794 0 obj <> /K[119 1795 0 R 1796 0 R] /P 1793 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1795 0 obj <> endobj 1796 0 obj <> endobj 1797 0 obj <> /K[1798 0 R] /P 1792 0 R /S/TD /Type/StructElem>> endobj 1798 0 obj <> /K[122 1799 0 R 1800 0 R] /P 1797 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1799 0 obj <> endobj 1800 0 obj <> endobj 1801 0 obj <> /K[1802 0 R] /P 1792 0 R /S/TD /Type/StructElem>> endobj 1802 0 obj <> /K 125 /P 1801 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1803 0 obj <> /K[1804 0 R] /P 1792 0 R /S/TD /Type/StructElem>> endobj 1804 0 obj <> /K 126 /P 1803 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1805 0 obj <> endobj 1806 0 obj <> /K[1807 0 R] /P 1805 0 R /S/TD /Type/StructElem>> endobj 1807 0 obj <> /K[127 1808 0 R 1809 0 R] /P 1806 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1808 0 obj <> endobj 1809 0 obj <> endobj 1810 0 obj <> /K[1811 0 R] /P 1805 0 R /S/TD /Type/StructElem>> endobj 1811 0 obj <> /K[130 1812 0 R 1813 0 R] /P 1810 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1812 0 obj <> endobj 1813 0 obj <> endobj 1814 0 obj <> /K[1815 0 R] /P 1805 0 R /S/TD /Type/StructElem>> endobj 1815 0 obj <> /K 133 /P 1814 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1816 0 obj <> /K[1817 0 R] /P 1805 0 R /S/TD /Type/StructElem>> endobj 1817 0 obj <> /K 134 /P 1816 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1818 0 obj <> endobj 1819 0 obj <> /K[1820 0 R] /P 1818 0 R /S/TD /Type/StructElem>> endobj 1820 0 obj <> /K[135 1821 0 R 1822 0 R] /P 1819 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1821 0 obj <> endobj 1822 0 obj <> endobj 1823 0 obj <> /K[1824 0 R] /P 1818 0 R /S/TD /Type/StructElem>> endobj 1824 0 obj <> /K 138 /P 1823 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1825 0 obj <> /K[1826 0 R] /P 1818 0 R /S/TD /Type/StructElem>> endobj 1826 0 obj <> /K 139 /P 1825 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1827 0 obj <> /K[1828 0 R] /P 1818 0 R /S/TD /Type/StructElem>> endobj 1828 0 obj <> /K 140 /P 1827 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1829 0 obj <> endobj 1830 0 obj <> /K[1831 0 R] /P 1829 0 R /S/TD /Type/StructElem>> endobj 1831 0 obj <> /K 141 /P 1830 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1832 0 obj <> /K[1833 0 R] /P 1829 0 R /S/TD /Type/StructElem>> endobj 1833 0 obj <> /K 142 /P 1832 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1834 0 obj <> /K[1835 0 R] /P 1829 0 R /S/TD /Type/StructElem>> endobj 1835 0 obj <> /K 143 /P 1834 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1836 0 obj <> endobj 1837 0 obj <> /K[1838 0 R] /P 1836 0 R /S/TD /Type/StructElem>> endobj 1838 0 obj <> /K[144 1839 0 R 1840 0 R] /P 1837 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1839 0 obj <> endobj 1840 0 obj <> endobj 1841 0 obj <> /K[1842 0 R] /P 1836 0 R /S/TD /Type/StructElem>> endobj 1842 0 obj <> /K 147 /P 1841 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1843 0 obj <> /K[1844 0 R] /P 1836 0 R /S/TD /Type/StructElem>> endobj 1844 0 obj <> /K 148 /P 1843 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1845 0 obj <> /K[1846 0 R] /P 1836 0 R /S/TD /Type/StructElem>> endobj 1846 0 obj <> /K 149 /P 1845 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1847 0 obj <> endobj 1848 0 obj <> /K[1849 0 R] /P 1847 0 R /S/TD /Type/StructElem>> endobj 1849 0 obj <> /K[150 1850 0 R 1851 0 R] /P 1848 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1850 0 obj <> endobj 1851 0 obj <> endobj 1852 0 obj <> /K[1853 0 R] /P 1847 0 R /S/TD /Type/StructElem>> endobj 1853 0 obj <> /K[153 1854 0 R 1855 0 R] /P 1852 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1854 0 obj <> endobj 1855 0 obj <> endobj 1856 0 obj <> /K[1857 0 R] /P 1847 0 R /S/TD /Type/StructElem>> endobj 1857 0 obj <> /K 156 /P 1856 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1858 0 obj <> /K[1859 0 R] /P 1847 0 R /S/TD /Type/StructElem>> endobj 1859 0 obj <> /K 157 /P 1858 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1860 0 obj <> endobj 1861 0 obj <> /K[1862 0 R] /P 1860 0 R /S/TD /Type/StructElem>> endobj 1862 0 obj <> /K[158 1863 0 R 1864 0 R] /P 1861 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1863 0 obj <> endobj 1864 0 obj <> endobj 1865 0 obj <> /K[1866 0 R] /P 1860 0 R /S/TD /Type/StructElem>> endobj 1866 0 obj <> /K[161 1867 0 R 1868 0 R] /P 1865 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1867 0 obj <> endobj 1868 0 obj <> endobj 1869 0 obj <> /K[1870 0 R] /P 1860 0 R /S/TD /Type/StructElem>> endobj 1870 0 obj <> /K 164 /P 1869 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1871 0 obj <> /K[1872 0 R] /P 1860 0 R /S/TD /Type/StructElem>> endobj 1872 0 obj <> /K 165 /P 1871 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1873 0 obj <> endobj 1874 0 obj <> /K[1875 0 R] /P 1873 0 R /S/TD /Type/StructElem>> endobj 1875 0 obj <> /K[166 1876 0 R 1877 0 R] /P 1874 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1876 0 obj <> endobj 1877 0 obj <> endobj 1878 0 obj <> /K[1879 0 R] /P 1873 0 R /S/TD /Type/StructElem>> endobj 1879 0 obj <> /K[169 1880 0 R 1881 0 R] /P 1878 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1880 0 obj <> endobj 1881 0 obj <> endobj 1882 0 obj <> /K[1883 0 R] /P 1873 0 R /S/TD /Type/StructElem>> endobj 1883 0 obj <> /K 172 /P 1882 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1884 0 obj <> /K[1885 0 R] /P 1873 0 R /S/TD /Type/StructElem>> endobj 1885 0 obj <> /K 173 /P 1884 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1886 0 obj <> endobj 1887 0 obj <> /K[1888 0 R] /P 1886 0 R /S/TD /Type/StructElem>> endobj 1888 0 obj <> /K[174 1889 0 R 1890 0 R] /P 1887 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1889 0 obj <> endobj 1890 0 obj <> endobj 1891 0 obj <> /K[1892 0 R] /P 1886 0 R /S/TD /Type/StructElem>> endobj 1892 0 obj <> /K[177 1893 0 R 1894 0 R] /P 1891 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1893 0 obj <> endobj 1894 0 obj <> endobj 1895 0 obj <> /K[1896 0 R] /P 1886 0 R /S/TD /Type/StructElem>> endobj 1896 0 obj <> /K 180 /P 1895 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1897 0 obj <> /K[1898 0 R] /P 1886 0 R /S/TD /Type/StructElem>> endobj 1898 0 obj <> /K 181 /P 1897 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1899 0 obj <> endobj 1900 0 obj <> /K[1901 0 R] /P 1899 0 R /S/TD /Type/StructElem>> endobj 1901 0 obj <> /K[182 1902 0 R 1903 0 R] /P 1900 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1902 0 obj <> endobj 1903 0 obj <> endobj 1904 0 obj <> /K[1905 0 R] /P 1899 0 R /S/TD /Type/StructElem>> endobj 1905 0 obj <> /K 185 /P 1904 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1906 0 obj <> /K[1907 0 R] /P 1899 0 R /S/TD /Type/StructElem>> endobj 1907 0 obj <> /K 186 /P 1906 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1908 0 obj <> /K[1909 0 R] /P 1899 0 R /S/TD /Type/StructElem>> endobj 1909 0 obj <> /K 187 /P 1908 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1910 0 obj <> endobj 1911 0 obj <> /K[1912 0 R] /P 1910 0 R /S/TD /Type/StructElem>> endobj 1912 0 obj <> /K[188 1913 0 R 1914 0 R] /P 1911 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1913 0 obj <> endobj 1914 0 obj <> endobj 1915 0 obj <> /K[1916 0 R] /P 1910 0 R /S/TD /Type/StructElem>> endobj 1916 0 obj <> /K[191 1917 0 R 1918 0 R] /P 1915 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1917 0 obj <> endobj 1918 0 obj <> endobj 1919 0 obj <> /K[1920 0 R] /P 1910 0 R /S/TD /Type/StructElem>> endobj 1920 0 obj <> /K 194 /P 1919 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1921 0 obj <> /K[1922 0 R] /P 1910 0 R /S/TD /Type/StructElem>> endobj 1922 0 obj <> /K 195 /P 1921 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1923 0 obj <> endobj 1924 0 obj <> /K[1925 0 R] /P 1923 0 R /S/TD /Type/StructElem>> endobj 1925 0 obj <> /K[196 1926 0 R 1927 0 R] /P 1924 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1926 0 obj <> endobj 1927 0 obj <> endobj 1928 0 obj <> /K[1929 0 R] /P 1923 0 R /S/TD /Type/StructElem>> endobj 1929 0 obj <> /K[199 1930 0 R 1931 0 R] /P 1928 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1930 0 obj <> endobj 1931 0 obj <> endobj 1932 0 obj <> /K[1933 0 R] /P 1923 0 R /S/TD /Type/StructElem>> endobj 1933 0 obj <> /K 202 /P 1932 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1934 0 obj <> /K[1935 0 R] /P 1923 0 R /S/TD /Type/StructElem>> endobj 1935 0 obj <> /K 203 /P 1934 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1936 0 obj <> endobj 1937 0 obj <> /K[1938 0 R] /P 1936 0 R /S/TD /Type/StructElem>> endobj 1938 0 obj <> /K[204 1939 0 R 1940 0 R] /P 1937 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1939 0 obj <> endobj 1940 0 obj <> endobj 1941 0 obj <> /K[1942 0 R] /P 1936 0 R /S/TD /Type/StructElem>> endobj 1942 0 obj <> /K[207 1943 0 R 1944 0 R] /P 1941 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1943 0 obj <> endobj 1944 0 obj <> endobj 1945 0 obj <> /K[1946 0 R] /P 1936 0 R /S/TD /Type/StructElem>> endobj 1946 0 obj <> /K 210 /P 1945 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1947 0 obj <> /K[1948 0 R] /P 1936 0 R /S/TD /Type/StructElem>> endobj 1948 0 obj <> /K 211 /P 1947 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1949 0 obj <> endobj 1950 0 obj <> /K[1951 0 R] /P 1949 0 R /S/TD /Type/StructElem>> endobj 1951 0 obj <> /K[212 1952 0 R 1953 0 R] /P 1950 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1952 0 obj <> endobj 1953 0 obj <> endobj 1954 0 obj <> /K[1955 0 R] /P 1949 0 R /S/TD /Type/StructElem>> endobj 1955 0 obj <> /K 215 /P 1954 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1956 0 obj <> /K[1957 0 R] /P 1949 0 R /S/TD /Type/StructElem>> endobj 1957 0 obj <> /K 216 /P 1956 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1958 0 obj <> /K[1959 0 R] /P 1949 0 R /S/TD /Type/StructElem>> endobj 1959 0 obj <> /K 217 /P 1958 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1960 0 obj <> endobj 1961 0 obj <> /K[1962 0 R] /P 1960 0 R /S/TD /Type/StructElem>> endobj 1962 0 obj <> /K 218 /P 1961 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1963 0 obj <> /K[1964 0 R] /P 1960 0 R /S/TD /Type/StructElem>> endobj 1964 0 obj <> /K 219 /P 1963 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1965 0 obj <> /K[1966 0 R] /P 1960 0 R /S/TD /Type/StructElem>> endobj 1966 0 obj <> /K 220 /P 1965 0 R /Pg 26 0 R /S/P /Type/StructElem>> endobj 1967 0 obj <> endobj 1968 0 obj <> /K 0 /P 1967 0 R /Pg 31 0 R /S/P /Type/StructElem>> endobj 1969 0 obj <> /K 1 /P 1967 0 R /Pg 31 0 R /S/P /Type/StructElem>> endobj 1970 0 obj <> /K 2 /P 1967 0 R /Pg 31 0 R /S/P /Type/StructElem>> endobj 1971 0 obj <> /K 3 /P 1967 0 R /Pg 31 0 R /S/P /Type/StructElem>> endobj 1972 0 obj <> /K[1973 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1973 0 obj <> /K 4 /P 1972 0 R /Pg 31 0 R /S/P /Type/StructElem>> endobj 1974 0 obj <> endobj 1975 0 obj <> /K 0 /P 1974 0 R /Pg 36 0 R /S/P /Type/StructElem>> endobj 1976 0 obj <> /K 1 /P 1974 0 R /Pg 36 0 R /S/P /Type/StructElem>> endobj 1977 0 obj <> /K 2 /P 1974 0 R /Pg 36 0 R /S/P /Type/StructElem>> endobj 1978 0 obj <> /K[1979 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1979 0 obj <> /K 3 /P 1978 0 R /Pg 36 0 R /S/P /Type/StructElem>> endobj 1980 0 obj <> endobj 1981 0 obj <> /K 0 /P 1980 0 R /Pg 41 0 R /S/P /Type/StructElem>> endobj 1982 0 obj <> /K 1 /P 1980 0 R /Pg 41 0 R /S/P /Type/StructElem>> endobj 1983 0 obj <> /K 2 /P 1980 0 R /Pg 41 0 R /S/P /Type/StructElem>> endobj 1984 0 obj <> /K[1985 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1985 0 obj <> /K 3 /P 1984 0 R /Pg 41 0 R /S/P /Type/StructElem>> endobj 1986 0 obj <> endobj 1987 0 obj <> /K 0 /P 1986 0 R /Pg 46 0 R /S/P /Type/StructElem>> endobj 1988 0 obj <> /K 1 /P 1986 0 R /Pg 46 0 R /S/P /Type/StructElem>> endobj 1989 0 obj <> /K 2 /P 1986 0 R /Pg 46 0 R /S/P /Type/StructElem>> endobj 1990 0 obj <> /K[1991 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1991 0 obj <> /K 3 /P 1990 0 R /Pg 46 0 R /S/P /Type/StructElem>> endobj 1992 0 obj <> endobj 1993 0 obj <> /K 0 /P 1992 0 R /Pg 51 0 R /S/P /Type/StructElem>> endobj 1994 0 obj <> /K 1 /P 1992 0 R /Pg 51 0 R /S/P /Type/StructElem>> endobj 1995 0 obj <> /K 2 /P 1992 0 R /Pg 51 0 R /S/P /Type/StructElem>> endobj 1996 0 obj <> /K[1997 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 1997 0 obj <> /K 3 /P 1996 0 R /Pg 51 0 R /S/P /Type/StructElem>> endobj 1998 0 obj <> endobj 1999 0 obj <> /K 0 /P 1998 0 R /Pg 56 0 R /S/P /Type/StructElem>> endobj 2000 0 obj <> /K 1 /P 1998 0 R /Pg 56 0 R /S/P /Type/StructElem>> endobj 2001 0 obj <> /K 2 /P 1998 0 R /Pg 56 0 R /S/P /Type/StructElem>> endobj 2002 0 obj <> /K 3 /P 1998 0 R /Pg 56 0 R /S/P /Type/StructElem>> endobj 2003 0 obj <> /K 4 /P 1998 0 R /Pg 56 0 R /S/P /Type/StructElem>> endobj 2004 0 obj <> /K 5 /P 1998 0 R /Pg 56 0 R /S/P /Type/StructElem>> endobj 2005 0 obj <> /K[2006 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2006 0 obj <> /K 6 /P 2005 0 R /Pg 56 0 R /S/P /Type/StructElem>> endobj 2007 0 obj <> endobj 2008 0 obj <> /K 0 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2009 0 obj <> /K 1 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2010 0 obj <> /K 2 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2011 0 obj <> /K 3 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2012 0 obj <> /K 4 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2013 0 obj <> /K 5 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2014 0 obj <> /K 6 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2015 0 obj <> /K 7 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2016 0 obj <> /K 8 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2017 0 obj <> /K 9 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2018 0 obj <> /K 10 /P 2007 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2019 0 obj <> /K[2020 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2020 0 obj <> /K 11 /P 2019 0 R /Pg 61 0 R /S/P /Type/StructElem>> endobj 2021 0 obj <> endobj 2022 0 obj <> /K 0 /P 2021 0 R /Pg 66 0 R /S/P /Type/StructElem>> endobj 2023 0 obj <> /K 1 /P 2021 0 R /Pg 66 0 R /S/P /Type/StructElem>> endobj 2024 0 obj <> /K 2 /P 2021 0 R /Pg 66 0 R /S/P /Type/StructElem>> endobj 2025 0 obj <> /K 3 /P 2021 0 R /Pg 66 0 R /S/P /Type/StructElem>> endobj 2026 0 obj <> /K 4 /P 2021 0 R /Pg 66 0 R /S/P /Type/StructElem>> endobj 2027 0 obj <> /K 5 /P 2021 0 R /Pg 66 0 R /S/P /Type/StructElem>> endobj 2028 0 obj <> /K[2029 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2029 0 obj <> /K 6 /P 2028 0 R /Pg 66 0 R /S/P /Type/StructElem>> endobj 2030 0 obj <> endobj 2031 0 obj <> /K 0 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2032 0 obj <> /K 1 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2033 0 obj <> /K 2 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2034 0 obj <> /K 3 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2035 0 obj <> /K 4 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2036 0 obj <> /K 5 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2037 0 obj <> /K 6 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2038 0 obj <> /K 7 /P 2030 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2039 0 obj <> /K[2040 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2040 0 obj <> /K 8 /P 2039 0 R /Pg 71 0 R /S/P /Type/StructElem>> endobj 2041 0 obj <> endobj 2042 0 obj <> /K 0 /P 2041 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2043 0 obj <> /K 1 /P 2041 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2044 0 obj <> /K[2045 0 R] /P 2041 0 R /S/Table /Type/StructElem>> endobj 2045 0 obj <> endobj 2046 0 obj <> /K[2047 0 R 2048 0 R 2049 0 R 2050 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2047 0 obj <> /K 2 /P 2046 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2048 0 obj <> /K 3 /P 2046 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2049 0 obj <> /K 4 /P 2046 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2050 0 obj <> /K 5 /P 2046 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2051 0 obj <> /K[2052 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2052 0 obj <> /K 6 /P 2051 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2053 0 obj <> /K[2054 0 R 2055 0 R 2056 0 R 2057 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2054 0 obj <> /K 7 /P 2053 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2055 0 obj <> /K 8 /P 2053 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2056 0 obj <> /K 9 /P 2053 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2057 0 obj <> /K 10 /P 2053 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2058 0 obj <> /K[2059 0 R 2060 0 R 2061 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2059 0 obj <> /K 11 /P 2058 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2060 0 obj <> /K 12 /P 2058 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2061 0 obj <> /K 13 /P 2058 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2062 0 obj <> /K[2063 0 R 2064 0 R 2065 0 R 2066 0 R 2067 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2063 0 obj <> /K 14 /P 2062 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2064 0 obj <> /K 15 /P 2062 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2065 0 obj <> /K 16 /P 2062 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2066 0 obj <> /K 17 /P 2062 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2067 0 obj <> /K 18 /P 2062 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2068 0 obj <> /K[2069 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2069 0 obj <> /K[19 2070 0 R 2071 0 R] /P 2068 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2070 0 obj <> endobj 2071 0 obj <> endobj 2072 0 obj <> /K[2073 0 R 2074 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2073 0 obj <> /K 22 /P 2072 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2074 0 obj <> /K 23 /P 2072 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2075 0 obj <> /K[2076 0 R 2077 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2076 0 obj <> /K 24 /P 2075 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2077 0 obj <> /K 25 /P 2075 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2078 0 obj <> /K[2079 0 R 2080 0 R 2081 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2079 0 obj <> /K 26 /P 2078 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2080 0 obj <> /K 27 /P 2078 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2081 0 obj <> /K 28 /P 2078 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2082 0 obj <> /K[2083 0 R 2084 0 R 2085 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2083 0 obj <> /K 29 /P 2082 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2084 0 obj <> /K 30 /P 2082 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2085 0 obj <> /K 31 /P 2082 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2086 0 obj <> /K[2087 0 R 2088 0 R 2089 0 R 2090 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2087 0 obj <> /K 32 /P 2086 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2088 0 obj <> /K 33 /P 2086 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2089 0 obj <> /K 34 /P 2086 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2090 0 obj <> /K 35 /P 2086 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2091 0 obj <> /K[2092 0 R 2093 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2092 0 obj <> /K 36 /P 2091 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2093 0 obj <> /K 37 /P 2091 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2094 0 obj <> /K[2095 0 R 2096 0 R 2097 0 R 2098 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2095 0 obj <> /K 38 /P 2094 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2096 0 obj <> /K 39 /P 2094 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2097 0 obj <> /K 40 /P 2094 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2098 0 obj <> /K 41 /P 2094 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2099 0 obj <> /K[2100 0 R 2101 0 R 2102 0 R 2103 0 R 2104 0 R 2105 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2100 0 obj <> /K 42 /P 2099 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2101 0 obj <> /K 43 /P 2099 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2102 0 obj <> /K 44 /P 2099 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2103 0 obj <> /K 45 /P 2099 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2104 0 obj <> /K 46 /P 2099 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2105 0 obj <> /K 47 /P 2099 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2106 0 obj <> /K[2107 0 R 2108 0 R 2109 0 R 2110 0 R 2111 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2107 0 obj <> /K 48 /P 2106 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2108 0 obj <> /K 49 /P 2106 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2109 0 obj <> /K 50 /P 2106 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2110 0 obj <> /K 51 /P 2106 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2111 0 obj <> /K 52 /P 2106 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2112 0 obj <> /K[2113 0 R 2114 0 R 2115 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2113 0 obj <> /K 53 /P 2112 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2114 0 obj <> /K 54 /P 2112 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2115 0 obj <> /K 55 /P 2112 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2116 0 obj <> /K[2117 0 R 2118 0 R 2119 0 R 2120 0 R 2121 0 R 2122 0 R 2123 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2117 0 obj <> /K 56 /P 2116 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2118 0 obj <> /K 57 /P 2116 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2119 0 obj <> /K 58 /P 2116 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2120 0 obj <> /K 59 /P 2116 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2121 0 obj <> /K 60 /P 2116 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2122 0 obj <> /K 61 /P 2116 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2123 0 obj <> /K 62 /P 2116 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2124 0 obj <> /K[2125 0 R 2126 0 R 2127 0 R 2128 0 R 2129 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2125 0 obj <> /K 63 /P 2124 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2126 0 obj <> /K 64 /P 2124 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2127 0 obj <> /K 65 /P 2124 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2128 0 obj <> /K 66 /P 2124 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2129 0 obj <> /K 67 /P 2124 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2130 0 obj <> /K[2131 0 R 2132 0 R 2133 0 R 2134 0 R 2135 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2131 0 obj <> /K 68 /P 2130 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2132 0 obj <> /K 69 /P 2130 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2133 0 obj <> /K 70 /P 2130 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2134 0 obj <> /K 71 /P 2130 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2135 0 obj <> /K 72 /P 2130 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2136 0 obj <> /K[2137 0 R 2138 0 R 2139 0 R 2140 0 R 2141 0 R 2142 0 R 2143 0 R] /P 2045 0 R /S/TD /Type/StructElem>> endobj 2137 0 obj <> /K 73 /P 2136 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2138 0 obj <> /K 74 /P 2136 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2139 0 obj <> /K 75 /P 2136 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2140 0 obj <> /K 76 /P 2136 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2141 0 obj <> /K 77 /P 2136 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2142 0 obj <> /K 78 /P 2136 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2143 0 obj <> /K 79 /P 2136 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2144 0 obj <> /K 80 /P 2041 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2145 0 obj <> /K 81 /P 2041 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2146 0 obj <> /K 82 /P 2041 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2147 0 obj <> /K 83 /P 2041 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2148 0 obj <> /K 84 /P 2041 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2149 0 obj <> /K[2150 0 R 2151 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2150 0 obj <> /K 85 /P 2149 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2151 0 obj <> /K 86 /P 2149 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2152 0 obj <> /K[2153 0 R 2154 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2153 0 obj <> /K 87 /P 2152 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2154 0 obj <> /K 88 /P 2152 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2155 0 obj <> endobj 2156 0 obj <> /K 89 /P 2155 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2157 0 obj <> /K[2158 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2158 0 obj <> /K 90 /P 2157 0 R /Pg 76 0 R /S/P /Type/StructElem>> endobj 2159 0 obj <> /K[2160 0 R 2161 0 R 2162 0 R 2163 0 R 2164 0 R 2165 0 R 2166 0 R 2167 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2160 0 obj <> /K 0 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2161 0 obj <> /K 1 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2162 0 obj <> /K 2 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2163 0 obj <> /K 3 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2164 0 obj <> /K 4 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2165 0 obj <> /K 5 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2166 0 obj <> /K 6 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2167 0 obj <> /K 7 /P 2159 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2168 0 obj <> endobj 2169 0 obj <> /K 8 /P 2168 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2170 0 obj <> /K 9 /P 2168 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2171 0 obj <> /K 10 /P 2168 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2172 0 obj <> /K 11 /P 2168 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2173 0 obj <> /K 12 /P 2168 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2174 0 obj <> /K 13 /P 2168 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2175 0 obj <> endobj 2176 0 obj <> /K 14 /P 2175 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2177 0 obj <> /K[2178 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2178 0 obj <> /K 15 /P 2177 0 R /Pg 81 0 R /S/P /Type/StructElem>> endobj 2179 0 obj <> endobj 2180 0 obj <> /K 0 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2181 0 obj <> /K 1 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2182 0 obj <> /K 2 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2183 0 obj <> /K 3 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2184 0 obj <> /K 4 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2185 0 obj <> /K 5 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2186 0 obj <> /K 6 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2187 0 obj <> /K 7 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2188 0 obj <> /K 8 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2189 0 obj <> /K 9 /P 2179 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2190 0 obj <> /K[2191 0 R 2192 0 R 2193 0 R 2194 0 R 2195 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2191 0 obj <> /K 10 /P 2190 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2192 0 obj <> /K 11 /P 2190 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2193 0 obj <> /K 12 /P 2190 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2194 0 obj <> /K 13 /P 2190 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2195 0 obj <> /K 14 /P 2190 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2196 0 obj <> /K[2197 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2197 0 obj <> /K 15 /P 2196 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2198 0 obj <> endobj 2199 0 obj <> /K 16 /P 2198 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2200 0 obj <> /K[2201 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2201 0 obj <> /K 17 /P 2200 0 R /Pg 86 0 R /S/P /Type/StructElem>> endobj 2202 0 obj <> endobj 2203 0 obj <> /K 0 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2204 0 obj <> /K 1 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2205 0 obj <> /K 2 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2206 0 obj <> /K 3 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2207 0 obj <> /K 4 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2208 0 obj <> /K 5 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2209 0 obj <> /K 6 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2210 0 obj <> /K 7 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2211 0 obj <> /K 8 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2212 0 obj <> /K 9 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2213 0 obj <> /K 10 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2214 0 obj <> /K 11 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2215 0 obj <> /K 12 /P 2202 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2216 0 obj <> /K[2217 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2217 0 obj <> /K 13 /P 2216 0 R /Pg 91 0 R /S/P /Type/StructElem>> endobj 2218 0 obj <> /K[2219 0 R 2220 0 R 2221 0 R 2222 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2219 0 obj <> /K 0 /P 2218 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2220 0 obj <> /K 1 /P 2218 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2221 0 obj <> /K 2 /P 2218 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2222 0 obj <> /K 3 /P 2218 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2223 0 obj <> endobj 2224 0 obj <> /K 4 /P 2223 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2225 0 obj <> /K 5 /P 2223 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2226 0 obj <> /K 6 /P 2223 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2227 0 obj <> /K 7 /P 2223 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2228 0 obj <> /K 8 /P 2223 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2229 0 obj <> endobj 2230 0 obj <> /K 9 /P 2229 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2231 0 obj <> /K 10 /P 2229 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2232 0 obj <> /K[2233 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2233 0 obj <> /K 11 /P 2232 0 R /Pg 96 0 R /S/P /Type/StructElem>> endobj 2234 0 obj <> endobj 2235 0 obj <> /K 0 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2236 0 obj <> /K 1 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2237 0 obj <> /K 2 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2238 0 obj <> /K 3 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2239 0 obj <> /K 4 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2240 0 obj <> /K 5 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2241 0 obj <> /K 6 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2242 0 obj <> /K 7 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2243 0 obj <> /K 8 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2244 0 obj <> /K 9 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2245 0 obj <> /K 10 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2246 0 obj <> /K 11 /P 2234 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2247 0 obj <> /K[2248 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2248 0 obj <> /K 12 /P 2247 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2249 0 obj <> /K[2250 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2250 0 obj <> /K 13 /P 2249 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2251 0 obj <> /K[2252 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2252 0 obj <> /K 14 /P 2251 0 R /Pg 101 0 R /S/P /Type/StructElem>> endobj 2253 0 obj <> endobj 2254 0 obj <> /K 0 /P 2253 0 R /Pg 109 0 R /S/P /Type/StructElem>> endobj 2255 0 obj <> /K 1 /P 2253 0 R /Pg 109 0 R /S/P /Type/StructElem>> endobj 2256 0 obj <> /K 2 /P 2253 0 R /Pg 109 0 R /S/P /Type/StructElem>> endobj 2257 0 obj <> /K 3 /P 2253 0 R /Pg 109 0 R /S/P /Type/StructElem>> endobj 2258 0 obj <> /K 4 /P 2253 0 R /Pg 109 0 R /S/P /Type/StructElem>> endobj 2259 0 obj <> /K 5 /P 2253 0 R /Pg 109 0 R /S/P /Type/StructElem>> endobj 2260 0 obj <> /K[2261 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2261 0 obj <> /K 6 /P 2260 0 R /Pg 109 0 R /S/P /Type/StructElem>> endobj 2262 0 obj <> endobj 2263 0 obj <> /K 0 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2264 0 obj <> /K 1 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2265 0 obj <> /K 2 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2266 0 obj <> /K 3 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2267 0 obj <> /K 4 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2268 0 obj <> /K 5 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2269 0 obj <> /K 6 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2270 0 obj <> /K 7 /P 2262 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2271 0 obj <> /K[2272 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2272 0 obj <> /K 8 /P 2271 0 R /Pg 114 0 R /S/P /Type/StructElem>> endobj 2273 0 obj <> endobj 2274 0 obj <> /K 0 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2275 0 obj <> /K 1 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2276 0 obj <> /K 2 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2277 0 obj <> /K 3 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2278 0 obj <> /K 4 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2279 0 obj <> /K 5 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2280 0 obj <> /K 6 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2281 0 obj <> /K 7 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2282 0 obj <> /K 8 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2283 0 obj <> /K 9 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2284 0 obj <> /K 10 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2285 0 obj <> /K 11 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2286 0 obj <> /K 12 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2287 0 obj <> /K 13 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2288 0 obj <> /K 14 /P 2273 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2289 0 obj <> /K[2290 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2290 0 obj <> /K 15 /P 2289 0 R /Pg 119 0 R /S/P /Type/StructElem>> endobj 2291 0 obj <> endobj 2292 0 obj <> /K 0 /P 2291 0 R /Pg 124 0 R /S/P /Type/StructElem>> endobj 2293 0 obj <> /K 1 /P 2291 0 R /Pg 124 0 R /S/P /Type/StructElem>> endobj 2294 0 obj <> /K[2295 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2295 0 obj <> /K 2 /P 2294 0 R /Pg 124 0 R /S/P /Type/StructElem>> endobj 2296 0 obj <> endobj 2297 0 obj <> /K 0 /P 2296 0 R /Pg 129 0 R /S/P /Type/StructElem>> endobj 2298 0 obj <> /K 1 /P 2296 0 R /Pg 129 0 R /S/P /Type/StructElem>> endobj 2299 0 obj <> /K 2 /P 2296 0 R /Pg 129 0 R /S/P /Type/StructElem>> endobj 2300 0 obj <> /K[2301 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2301 0 obj <> /K 3 /P 2300 0 R /Pg 129 0 R /S/P /Type/StructElem>> endobj 2302 0 obj <> endobj 2303 0 obj <> /K 0 /P 2302 0 R /Pg 134 0 R /S/P /Type/StructElem>> endobj 2304 0 obj <> /K 1 /P 2302 0 R /Pg 134 0 R /S/P /Type/StructElem>> endobj 2305 0 obj <> /K 2 /P 2302 0 R /Pg 134 0 R /S/P /Type/StructElem>> endobj 2306 0 obj <> /K 3 /P 2302 0 R /Pg 134 0 R /S/P /Type/StructElem>> endobj 2307 0 obj <> /K 4 /P 2302 0 R /Pg 134 0 R /S/P /Type/StructElem>> endobj 2308 0 obj <> /K[2309 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2309 0 obj <> /K 5 /P 2308 0 R /Pg 134 0 R /S/P /Type/StructElem>> endobj 2310 0 obj <> endobj 2311 0 obj <> /K 0 /P 2310 0 R /Pg 139 0 R /S/P /Type/StructElem>> endobj 2312 0 obj <> /K 1 /P 2310 0 R /Pg 139 0 R /S/P /Type/StructElem>> endobj 2313 0 obj <> /K 2 /P 2310 0 R /Pg 139 0 R /S/P /Type/StructElem>> endobj 2314 0 obj <> /K 3 /P 2310 0 R /Pg 139 0 R /S/P /Type/StructElem>> endobj 2315 0 obj <> /K 4 /P 2310 0 R /Pg 139 0 R /S/P /Type/StructElem>> endobj 2316 0 obj <> /K[2317 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2317 0 obj <> /K 5 /P 2316 0 R /Pg 139 0 R /S/P /Type/StructElem>> endobj 2318 0 obj <> endobj 2319 0 obj <> /K 0 /P 2318 0 R /Pg 144 0 R /S/P /Type/StructElem>> endobj 2320 0 obj <> /K 1 /P 2318 0 R /Pg 144 0 R /S/P /Type/StructElem>> endobj 2321 0 obj <> /K 2 /P 2318 0 R /Pg 144 0 R /S/P /Type/StructElem>> endobj 2322 0 obj <> /K 3 /P 2318 0 R /Pg 144 0 R /S/P /Type/StructElem>> endobj 2323 0 obj <> /K[2324 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2324 0 obj <> /K 4 /P 2323 0 R /Pg 144 0 R /S/P /Type/StructElem>> endobj 2325 0 obj <> endobj 2326 0 obj <> /K 0 /P 2325 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2327 0 obj <> /K 1 /P 2325 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2328 0 obj <> /K 2 /P 2325 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2329 0 obj <> /K 3 /P 2325 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2330 0 obj <> /K 4 /P 2325 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2331 0 obj <> /K 5 /P 2325 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2332 0 obj <> /K 6 /P 2325 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2333 0 obj <> /K[2334 0 R] /P 2325 0 R /S/Table /Type/StructElem>> endobj 2334 0 obj <> endobj 2335 0 obj <> /K[2336 0 R 2337 0 R 2338 0 R] /P 2334 0 R /S/TD /Type/StructElem>> endobj 2336 0 obj <> /K 7 /P 2335 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2337 0 obj <> /K 8 /P 2335 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2338 0 obj <> /K 9 /P 2335 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2339 0 obj <> /K[2340 0 R] /P 2334 0 R /S/TD /Type/StructElem>> endobj 2340 0 obj <> /K 10 /P 2339 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2341 0 obj <> /K[2342 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2342 0 obj <> /K 11 /P 2341 0 R /Pg 149 0 R /S/P /Type/StructElem>> endobj 2343 0 obj <> endobj 2344 0 obj <> /K 0 /P 2343 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2345 0 obj <> /K 1 /P 2343 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2346 0 obj <> /K 2 /P 2343 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2347 0 obj <> /K[2348 0 R] /P 2343 0 R /S/Table /Type/StructElem>> endobj 2348 0 obj <> endobj 2349 0 obj <> /K[2350 0 R 2351 0 R] /P 2348 0 R /S/TD /Type/StructElem>> endobj 2350 0 obj <> /K 3 /P 2349 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2351 0 obj <> /K 4 /P 2349 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2352 0 obj <> /K[2353 0 R] /P 2348 0 R /S/TD /Type/StructElem>> endobj 2353 0 obj <> /K 5 /P 2352 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2354 0 obj <> /K 6 /P 2343 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2355 0 obj <> endobj 2356 0 obj <> /K 7 /P 2355 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2357 0 obj <> /K[2358 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2358 0 obj <> /K 8 /P 2357 0 R /Pg 154 0 R /S/P /Type/StructElem>> endobj 2359 0 obj <> endobj 2360 0 obj <> /K 0 /P 2359 0 R /Pg 159 0 R /S/P /Type/StructElem>> endobj 2361 0 obj <> /K 1 /P 2359 0 R /Pg 159 0 R /S/P /Type/StructElem>> endobj 2362 0 obj <> /K 2 /P 2359 0 R /Pg 159 0 R /S/P /Type/StructElem>> endobj 2363 0 obj <> /K 3 /P 2359 0 R /Pg 159 0 R /S/P /Type/StructElem>> endobj 2364 0 obj <> /K 4 /P 2359 0 R /Pg 159 0 R /S/P /Type/StructElem>> endobj 2365 0 obj <> /K 5 /P 2359 0 R /Pg 159 0 R /S/P /Type/StructElem>> endobj 2366 0 obj <> /K[2367 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2367 0 obj <> /K 6 /P 2366 0 R /Pg 159 0 R /S/P /Type/StructElem>> endobj 2368 0 obj <> /K[2369 0 R 2372 0 R 2373 0 R 2374 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2369 0 obj <> /K[2370 0 R 2371 0 R] /P 2368 0 R /S/Div /Type/StructElem>> endobj 2370 0 obj <> /K 0 /P 2369 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2371 0 obj <> /K 1 /P 2369 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2372 0 obj <> /K 2 /P 2368 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2373 0 obj <> /K 3 /P 2368 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2374 0 obj <> /K 4 /P 2368 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2375 0 obj <> endobj 2376 0 obj <> /K 5 /P 2375 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2377 0 obj <> /K 6 /P 2375 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2378 0 obj <> /K 7 /P 2375 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2379 0 obj <> /K 8 /P 2375 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2380 0 obj <> /K 9 /P 2375 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2381 0 obj <> /K 10 /P 2375 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2382 0 obj <> /K 11 /P 2375 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2383 0 obj <> /K[2384 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2384 0 obj <> /K 12 /P 2383 0 R /Pg 164 0 R /S/P /Type/StructElem>> endobj 2385 0 obj <> endobj 2386 0 obj <> /K 0 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2387 0 obj <> /K 1 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2388 0 obj <> /K 2 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2389 0 obj <> /K 3 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2390 0 obj <> /K 4 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2391 0 obj <> /K 5 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2392 0 obj <> /K 6 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2393 0 obj <> /K 7 /P 2385 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2394 0 obj <> /K[2395 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2395 0 obj <> /K 8 /P 2394 0 R /Pg 169 0 R /S/P /Type/StructElem>> endobj 2396 0 obj <> endobj 2397 0 obj <> /K 0 /P 2396 0 R /Pg 174 0 R /S/P /Type/StructElem>> endobj 2398 0 obj <> /K 1 /P 2396 0 R /Pg 174 0 R /S/P /Type/StructElem>> endobj 2399 0 obj <> /K 2 /P 2396 0 R /Pg 174 0 R /S/P /Type/StructElem>> endobj 2400 0 obj <> /K 3 /P 2396 0 R /Pg 174 0 R /S/P /Type/StructElem>> endobj 2401 0 obj <> /K 4 /P 2396 0 R /Pg 174 0 R /S/P /Type/StructElem>> endobj 2402 0 obj <> /K 5 /P 2396 0 R /Pg 174 0 R /S/P /Type/StructElem>> endobj 2403 0 obj <> /K[2404 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2404 0 obj <> /K 6 /P 2403 0 R /Pg 174 0 R /S/P /Type/StructElem>> endobj 2405 0 obj <> endobj 2406 0 obj <> /K 0 /P 2405 0 R /Pg 179 0 R /S/P /Type/StructElem>> endobj 2407 0 obj <> /K 1 /P 2405 0 R /Pg 179 0 R /S/P /Type/StructElem>> endobj 2408 0 obj <> /K 2 /P 2405 0 R /Pg 179 0 R /S/P /Type/StructElem>> endobj 2409 0 obj <> /K 3 /P 2405 0 R /Pg 179 0 R /S/P /Type/StructElem>> endobj 2410 0 obj <> /K 4 /P 2405 0 R /Pg 179 0 R /S/P /Type/StructElem>> endobj 2411 0 obj <> /K[2412 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2412 0 obj <> /K 5 /P 2411 0 R /Pg 179 0 R /S/P /Type/StructElem>> endobj 2413 0 obj <> endobj 2414 0 obj <> /K 0 /P 2413 0 R /Pg 184 0 R /S/P /Type/StructElem>> endobj 2415 0 obj <> /K 1 /P 2413 0 R /Pg 184 0 R /S/P /Type/StructElem>> endobj 2416 0 obj <> /K 2 /P 2413 0 R /Pg 184 0 R /S/P /Type/StructElem>> endobj 2417 0 obj <> /K 3 /P 2413 0 R /Pg 184 0 R /S/P /Type/StructElem>> endobj 2418 0 obj <> /K[2419 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2419 0 obj <> /K 4 /P 2418 0 R /Pg 184 0 R /S/P /Type/StructElem>> endobj 2420 0 obj <> endobj 2421 0 obj <> /K 0 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2422 0 obj <> /K 1 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2423 0 obj <> /K[2424 0 R] /P 2420 0 R /S/Table /Type/StructElem>> endobj 2424 0 obj <> endobj 2425 0 obj <> /K[2426 0 R 2427 0 R 2428 0 R] /P 2424 0 R /S/TD /Type/StructElem>> endobj 2426 0 obj <> /K 2 /P 2425 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2427 0 obj <> /K 3 /P 2425 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2428 0 obj <> /K 4 /P 2425 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2429 0 obj <> /K[2430 0 R] /P 2424 0 R /S/TD /Type/StructElem>> endobj 2430 0 obj <> /K 5 /P 2429 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2431 0 obj <> /K 6 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2432 0 obj <> /K 7 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2433 0 obj <> /K 8 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2434 0 obj <> /K 9 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2435 0 obj <> /K 10 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2436 0 obj <> /K 11 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2437 0 obj <> /K 12 /P 2420 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2438 0 obj <> /K[2439 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2439 0 obj <> /K 13 /P 2438 0 R /Pg 189 0 R /S/P /Type/StructElem>> endobj 2440 0 obj <> endobj 2441 0 obj <> /K 0 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2442 0 obj <> /K 1 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2443 0 obj <> /K 2 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2444 0 obj <> /K 3 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2445 0 obj <> /K 4 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2446 0 obj <> /K[2447 0 R] /P 2440 0 R /S/Table /Type/StructElem>> endobj 2447 0 obj <> endobj 2448 0 obj <> /K[2449 0 R 2450 0 R] /P 2447 0 R /S/TD /Type/StructElem>> endobj 2449 0 obj <> /K 5 /P 2448 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2450 0 obj <> /K 6 /P 2448 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2451 0 obj <> /K[2452 0 R] /P 2447 0 R /S/TD /Type/StructElem>> endobj 2452 0 obj <> /K 7 /P 2451 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2453 0 obj <> /K 8 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2454 0 obj <> /K 9 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2455 0 obj <> /K 10 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2456 0 obj <> /K 11 /P 2440 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2457 0 obj <> /K[2458 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2458 0 obj <> /K 12 /P 2457 0 R /Pg 194 0 R /S/P /Type/StructElem>> endobj 2459 0 obj <> endobj 2460 0 obj <> /K 0 /P 2459 0 R /Pg 199 0 R /S/P /Type/StructElem>> endobj 2461 0 obj <> /K 1 /P 2459 0 R /Pg 199 0 R /S/P /Type/StructElem>> endobj 2462 0 obj <> /K 2 /P 2459 0 R /Pg 199 0 R /S/P /Type/StructElem>> endobj 2463 0 obj <> /K 3 /P 2459 0 R /Pg 199 0 R /S/P /Type/StructElem>> endobj 2464 0 obj <> /K 4 /P 2459 0 R /Pg 199 0 R /S/P /Type/StructElem>> endobj 2465 0 obj <> /K 5 /P 2459 0 R /Pg 199 0 R /S/P /Type/StructElem>> endobj 2466 0 obj <> /K[2467 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2467 0 obj <> /K 6 /P 2466 0 R /Pg 199 0 R /S/P /Type/StructElem>> endobj 2468 0 obj <> endobj 2469 0 obj <> /K 0 /P 2468 0 R /Pg 204 0 R /S/P /Type/StructElem>> endobj 2470 0 obj <> /K 1 /P 2468 0 R /Pg 204 0 R /S/P /Type/StructElem>> endobj 2471 0 obj <> /K 2 /P 2468 0 R /Pg 204 0 R /S/P /Type/StructElem>> endobj 2472 0 obj <> /K 3 /P 2468 0 R /Pg 204 0 R /S/P /Type/StructElem>> endobj 2473 0 obj <> /K 4 /P 2468 0 R /Pg 204 0 R /S/P /Type/StructElem>> endobj 2474 0 obj <> /K 5 /P 2468 0 R /Pg 204 0 R /S/P /Type/StructElem>> endobj 2475 0 obj <> /K[2476 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2476 0 obj <> /K 6 /P 2475 0 R /Pg 204 0 R /S/P /Type/StructElem>> endobj 2477 0 obj <> endobj 2478 0 obj <> /K 0 /P 2477 0 R /Pg 209 0 R /S/P /Type/StructElem>> endobj 2479 0 obj <> /K 1 /P 2477 0 R /Pg 209 0 R /S/P /Type/StructElem>> endobj 2480 0 obj <> /K 2 /P 2477 0 R /Pg 209 0 R /S/P /Type/StructElem>> endobj 2481 0 obj <> /K 3 /P 2477 0 R /Pg 209 0 R /S/P /Type/StructElem>> endobj 2482 0 obj <> /K[2483 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2483 0 obj <> /K 4 /P 2482 0 R /Pg 209 0 R /S/P /Type/StructElem>> endobj 2484 0 obj <> endobj 2485 0 obj <> /K 0 /P 2484 0 R /Pg 214 0 R /S/P /Type/StructElem>> endobj 2486 0 obj <> /K 1 /P 2484 0 R /Pg 214 0 R /S/P /Type/StructElem>> endobj 2487 0 obj <> /K 2 /P 2484 0 R /Pg 214 0 R /S/P /Type/StructElem>> endobj 2488 0 obj <> /K 3 /P 2484 0 R /Pg 214 0 R /S/P /Type/StructElem>> endobj 2489 0 obj <> /K 4 /P 2484 0 R /Pg 214 0 R /S/P /Type/StructElem>> endobj 2490 0 obj <> /K[2491 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2491 0 obj <> /K 5 /P 2490 0 R /Pg 214 0 R /S/P /Type/StructElem>> endobj 2492 0 obj <> endobj 2493 0 obj <> /K 0 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2494 0 obj <> /K 1 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2495 0 obj <> /K 2 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2496 0 obj <> /K 3 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2497 0 obj <> /K 4 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2498 0 obj <> /K 5 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2499 0 obj <> /K 6 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2500 0 obj <> /K 7 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2501 0 obj <> /K 8 /P 2492 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2502 0 obj <> /K[2503 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2503 0 obj <> /K 9 /P 2502 0 R /Pg 219 0 R /S/P /Type/StructElem>> endobj 2504 0 obj <> endobj 2505 0 obj <> /K 0 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2506 0 obj <> /K 1 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2507 0 obj <> /K 2 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2508 0 obj <> /K 3 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2509 0 obj <> /K 4 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2510 0 obj <> /K 5 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2511 0 obj <> /K 6 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2512 0 obj <> /K 7 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2513 0 obj <> /K 8 /P 2504 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2514 0 obj <> /K[2515 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2515 0 obj <> /K 9 /P 2514 0 R /Pg 224 0 R /S/P /Type/StructElem>> endobj 2516 0 obj <> endobj 2517 0 obj <> /K[2518 0 R 2525 0 R 2531 0 R 2536 0 R] /P 2516 0 R /S/Table /Type/StructElem>> endobj 2518 0 obj <> endobj 2519 0 obj <> /K[2520 0 R] /P 2518 0 R /S/TD /Type/StructElem>> endobj 2520 0 obj <> /K[0 2521 0 R 2522 0 R] /P 2519 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2521 0 obj <> endobj 2522 0 obj <> endobj 2523 0 obj <> /K[2524 0 R] /P 2518 0 R /S/TD /Type/StructElem>> endobj 2524 0 obj <> /K 3 /P 2523 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2525 0 obj <> endobj 2526 0 obj <> /K[2527 0 R 2528 0 R] /P 2525 0 R /S/TD /Type/StructElem>> endobj 2527 0 obj <> /K 4 /P 2526 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2528 0 obj <> /K 5 /P 2526 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2529 0 obj <> /K[2530 0 R] /P 2525 0 R /S/TD /Type/StructElem>> endobj 2530 0 obj <> /K 6 /P 2529 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2531 0 obj <> endobj 2532 0 obj <> /K[2533 0 R] /P 2531 0 R /S/TD /Type/StructElem>> endobj 2533 0 obj <> /K 7 /P 2532 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2534 0 obj <> /K[2535 0 R] /P 2531 0 R /S/TD /Type/StructElem>> endobj 2535 0 obj <> /K 8 /P 2534 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2536 0 obj <> endobj 2537 0 obj <> /K[2538 0 R] /P 2536 0 R /S/TD /Type/StructElem>> endobj 2538 0 obj <> /K 9 /P 2537 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2539 0 obj <> /K[2540 0 R] /P 2536 0 R /S/TD /Type/StructElem>> endobj 2540 0 obj <> /K 10 /P 2539 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2541 0 obj <> /K 11 /P 2516 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2542 0 obj <> /K 12 /P 2516 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2543 0 obj <> /K 13 /P 2516 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2544 0 obj <> /K 14 /P 2516 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2545 0 obj <> /K 15 /P 2516 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2546 0 obj <> /K[2547 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2547 0 obj <> /K 16 /P 2546 0 R /Pg 229 0 R /S/P /Type/StructElem>> endobj 2548 0 obj <> endobj 2549 0 obj <> /K[2550 0 R 2553 0 R 2558 0 R 2563 0 R 2568 0 R 2573 0 R] /P 2548 0 R /S/Table /Type/StructElem>> endobj 2550 0 obj <> endobj 2551 0 obj <> /K[2552 0 R] /P 2550 0 R /S/TD /Type/StructElem>> endobj 2552 0 obj <> /K 0 /P 2551 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2553 0 obj <> endobj 2554 0 obj <> /K[2555 0 R] /P 2553 0 R /S/TD /Type/StructElem>> endobj 2555 0 obj <> /K 1 /P 2554 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2556 0 obj <> /K[2557 0 R] /P 2553 0 R /S/TD /Type/StructElem>> endobj 2557 0 obj <> /K 2 /P 2556 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2558 0 obj <> endobj 2559 0 obj <> /K[2560 0 R] /P 2558 0 R /S/TD /Type/StructElem>> endobj 2560 0 obj <> /K 3 /P 2559 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2561 0 obj <> /K[2562 0 R] /P 2558 0 R /S/TD /Type/StructElem>> endobj 2562 0 obj <> /K 4 /P 2561 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2563 0 obj <> endobj 2564 0 obj <> /K[2565 0 R] /P 2563 0 R /S/TD /Type/StructElem>> endobj 2565 0 obj <> /K 5 /P 2564 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2566 0 obj <> /K[2567 0 R] /P 2563 0 R /S/TD /Type/StructElem>> endobj 2567 0 obj <> /K 6 /P 2566 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2568 0 obj <> endobj 2569 0 obj <> /K[2570 0 R] /P 2568 0 R /S/TD /Type/StructElem>> endobj 2570 0 obj <> /K 7 /P 2569 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2571 0 obj <> /K[2572 0 R] /P 2568 0 R /S/TD /Type/StructElem>> endobj 2572 0 obj <> /K 8 /P 2571 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2573 0 obj <> endobj 2574 0 obj <> /K[2575 0 R] /P 2573 0 R /S/TD /Type/StructElem>> endobj 2575 0 obj <> /K 9 /P 2574 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2576 0 obj <> /K[2577 0 R] /P 2573 0 R /S/TD /Type/StructElem>> endobj 2577 0 obj <> /K 10 /P 2576 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2578 0 obj <> /K 11 /P 2548 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2579 0 obj <> /K 12 /P 2548 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2580 0 obj <> /K 13 /P 2548 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2581 0 obj <> /K 14 /P 2548 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2582 0 obj <> /K[2583 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2583 0 obj <> /K 15 /P 2582 0 R /Pg 234 0 R /S/P /Type/StructElem>> endobj 2584 0 obj <> endobj 2585 0 obj <> /K 0 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2586 0 obj <> /K 1 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2587 0 obj <> /K 2 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2588 0 obj <> /K 3 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2589 0 obj <> /K 4 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2590 0 obj <> /K 5 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2591 0 obj <> /K 6 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2592 0 obj <> /K 7 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2593 0 obj <> /K 8 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2594 0 obj <> /K 9 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2595 0 obj <> /K 10 /P 2584 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2596 0 obj <> /K[2597 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2597 0 obj <> /K 11 /P 2596 0 R /Pg 239 0 R /S/P /Type/StructElem>> endobj 2598 0 obj <> /K[2599 0 R 2600 0 R 2601 0 R 2602 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2599 0 obj <> /K 0 /P 2598 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2600 0 obj <> /K 1 /P 2598 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2601 0 obj <> /K 2 /P 2598 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2602 0 obj <> /K 3 /P 2598 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2603 0 obj <> endobj 2604 0 obj <> /K 4 /P 2603 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2605 0 obj <> /K 5 /P 2603 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2606 0 obj <> /K 6 /P 2603 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2607 0 obj <> /K[2608 0 R 2616 0 R 2621 0 R] /P 2603 0 R /S/Table /Type/StructElem>> endobj 2608 0 obj <> endobj 2609 0 obj <> /K[2610 0 R] /P 2608 0 R /S/TD /Type/StructElem>> endobj 2610 0 obj <> /K 7 /P 2609 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2611 0 obj <> /K[2612 0 R 2613 0 R] /P 2608 0 R /S/TD /Type/StructElem>> endobj 2612 0 obj <> /K 8 /P 2611 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2613 0 obj <> /K 9 /P 2611 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2614 0 obj <> /K[2615 0 R] /P 2608 0 R /S/TD /Type/StructElem>> endobj 2615 0 obj <> /K 10 /P 2614 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2616 0 obj <> endobj 2617 0 obj <> /K[2618 0 R] /P 2616 0 R /S/TD /Type/StructElem>> endobj 2618 0 obj <> /K 11 /P 2617 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2619 0 obj <> /K[2620 0 R] /P 2616 0 R /S/TD /Type/StructElem>> endobj 2620 0 obj <> /K 12 /P 2619 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2621 0 obj <> endobj 2622 0 obj <> /K[2623 0 R] /P 2621 0 R /S/TD /Type/StructElem>> endobj 2623 0 obj <> /K 13 /P 2622 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2624 0 obj <> /K[2625 0 R] /P 2621 0 R /S/TD /Type/StructElem>> endobj 2625 0 obj <> /K 14 /P 2624 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2626 0 obj <> /K[2627 0 R] /P 2621 0 R /S/TD /Type/StructElem>> endobj 2627 0 obj <> /K 15 /P 2626 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2628 0 obj <> /K[2629 0 R] /P 2621 0 R /S/TD /Type/StructElem>> endobj 2629 0 obj <> /K 16 /P 2628 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2630 0 obj <> /K 17 /P 2603 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2631 0 obj <> endobj 2632 0 obj <> /K 18 /P 2631 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2633 0 obj <> /K 19 /P 2631 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2634 0 obj <> /K 20 /P 2631 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2635 0 obj <> /K 21 /P 2631 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2636 0 obj <> /K[2637 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2637 0 obj <> /K 22 /P 2636 0 R /Pg 244 0 R /S/P /Type/StructElem>> endobj 2638 0 obj <> endobj 2639 0 obj <> /K 0 /P 2638 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2640 0 obj <> /K 1 /P 2638 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2641 0 obj <> /K 2 /P 2638 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2642 0 obj <> /K 3 /P 2638 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2643 0 obj <> /K 4 /P 2638 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2644 0 obj <> /K 5 /P 2638 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2645 0 obj <> /K 6 /P 2638 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2646 0 obj <> /K[2647 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2647 0 obj <> /K 7 /P 2646 0 R /Pg 249 0 R /S/P /Type/StructElem>> endobj 2648 0 obj <> endobj 2649 0 obj <> /K 0 /P 2648 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2650 0 obj <> /K 1 /P 2648 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2651 0 obj <> /K[2652 0 R 2659 0 R 2663 0 R] /P 2648 0 R /S/Table /Type/StructElem>> endobj 2652 0 obj <> endobj 2653 0 obj <> /K[2654 0 R 2655 0 R] /P 2652 0 R /S/TD /Type/StructElem>> endobj 2654 0 obj <> /K 2 /P 2653 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2655 0 obj <> /K 3 /P 2653 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2656 0 obj <> /K[2657 0 R 2658 0 R] /P 2652 0 R /S/TD /Type/StructElem>> endobj 2657 0 obj <> /K 4 /P 2656 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2658 0 obj <> /K 5 /P 2656 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2659 0 obj <> endobj 2660 0 obj <> /K[2661 0 R 2662 0 R] /P 2659 0 R /S/TD /Type/StructElem>> endobj 2661 0 obj <> /K 6 /P 2660 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2662 0 obj <> /K 7 /P 2660 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2663 0 obj <> endobj 2664 0 obj <> /K[2665 0 R] /P 2663 0 R /S/TD /Type/StructElem>> endobj 2665 0 obj <> /K 8 /P 2664 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2666 0 obj <> /K 9 /P 2648 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2667 0 obj <> /K 10 /P 2648 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2668 0 obj <> /K 11 /P 2648 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2669 0 obj <> /K 12 /P 2648 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2670 0 obj <> /K[2671 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2671 0 obj <> /K 13 /P 2670 0 R /Pg 254 0 R /S/P /Type/StructElem>> endobj 2672 0 obj <> endobj 2673 0 obj <> /K 0 /P 2672 0 R /Pg 259 0 R /S/P /Type/StructElem>> endobj 2674 0 obj <> /K 1 /P 2672 0 R /Pg 259 0 R /S/P /Type/StructElem>> endobj 2675 0 obj <> /K 2 /P 2672 0 R /Pg 259 0 R /S/P /Type/StructElem>> endobj 2676 0 obj <> /K 3 /P 2672 0 R /Pg 259 0 R /S/P /Type/StructElem>> endobj 2677 0 obj <> /K 4 /P 2672 0 R /Pg 259 0 R /S/P /Type/StructElem>> endobj 2678 0 obj <> /K 5 /P 2672 0 R /Pg 259 0 R /S/P /Type/StructElem>> endobj 2679 0 obj <> /K[2680 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2680 0 obj <> /K 6 /P 2679 0 R /Pg 259 0 R /S/P /Type/StructElem>> endobj 2681 0 obj <> /K[2682 0 R 2683 0 R 2684 0 R 2685 0 R 2686 0 R 2687 0 R 2688 0 R 2689 0 R 2690 0 R 2691 0 R 2692 0 R 2693 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2682 0 obj <> /K 0 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2683 0 obj <> /K 1 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2684 0 obj <> /K 2 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2685 0 obj <> /K 3 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2686 0 obj <> /K 4 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2687 0 obj <> /K 5 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2688 0 obj <> /K 6 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2689 0 obj <> /K 7 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2690 0 obj <> /K 8 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2691 0 obj <> /K 9 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2692 0 obj <> /K 10 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2693 0 obj <> /K 11 /P 2681 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2694 0 obj <> endobj 2695 0 obj <> /K 12 /P 2694 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2696 0 obj <> endobj 2697 0 obj <> /K 13 /P 2696 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2698 0 obj <> /K 14 /P 2696 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2699 0 obj <> /K 15 /P 2696 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2700 0 obj <> /K[2701 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2701 0 obj <> /K 16 /P 2700 0 R /Pg 264 0 R /S/P /Type/StructElem>> endobj 2702 0 obj <> /K[2703 0 R 2704 0 R 2705 0 R 2706 0 R 2707 0 R 2708 0 R 2709 0 R 2710 0 R 2711 0 R 2712 0 R 2713 0 R 2714 0 R 2715 0 R 2716 0 R 2717 0 R 2718 0 R 2719 0 R 2720 0 R 2721 0 R 2722 0 R 2723 0 R 2724 0 R 2725 0 R 2726 0 R 2727 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2703 0 obj <> /K 0 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2704 0 obj <> /K 1 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2705 0 obj <> /K 2 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2706 0 obj <> /K 3 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2707 0 obj <> /K 4 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2708 0 obj <> /K 5 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2709 0 obj <> /K 6 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2710 0 obj <> /K 7 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2711 0 obj <> /K 8 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2712 0 obj <> /K 9 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2713 0 obj <> /K 10 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2714 0 obj <> /K 11 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2715 0 obj <> /K 12 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2716 0 obj <> /K 13 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2717 0 obj <> /K 14 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2718 0 obj <> /K 15 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2719 0 obj <> /K 16 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2720 0 obj <> /K 17 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2721 0 obj <> /K 18 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2722 0 obj <> /K 19 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2723 0 obj <> /K 20 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2724 0 obj <> /K 21 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2725 0 obj <> /K 22 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2726 0 obj <> /K 23 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2727 0 obj <> /K 24 /P 2702 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2728 0 obj <> endobj 2729 0 obj <> /K 25 /P 2728 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2730 0 obj <> endobj 2731 0 obj <> /K 26 /P 2730 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2732 0 obj <> /K 27 /P 2730 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2733 0 obj <> /K[2734 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2734 0 obj <> /K 28 /P 2733 0 R /Pg 269 0 R /S/P /Type/StructElem>> endobj 2735 0 obj <> endobj 2736 0 obj <> /K 0 /P 2735 0 R /Pg 274 0 R /S/P /Type/StructElem>> endobj 2737 0 obj <> /K 1 /P 2735 0 R /Pg 274 0 R /S/P /Type/StructElem>> endobj 2738 0 obj <> /K 2 /P 2735 0 R /Pg 274 0 R /S/P /Type/StructElem>> endobj 2739 0 obj <> /K 3 /P 2735 0 R /Pg 274 0 R /S/P /Type/StructElem>> endobj 2740 0 obj <> /K 4 /P 2735 0 R /Pg 274 0 R /S/P /Type/StructElem>> endobj 2741 0 obj <> /K 5 /P 2735 0 R /Pg 274 0 R /S/P /Type/StructElem>> endobj 2742 0 obj <> /K[2743 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2743 0 obj <> /K 6 /P 2742 0 R /Pg 274 0 R /S/P /Type/StructElem>> endobj 2744 0 obj <> endobj 2745 0 obj <> /K 0 /P 2744 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2746 0 obj <> /K 1 /P 2744 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2747 0 obj <> /K 2 /P 2744 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2748 0 obj <> /K[2749 0 R] /P 2744 0 R /S/Table /Type/StructElem>> endobj 2749 0 obj <> endobj 2750 0 obj <> /K[2751 0 R] /P 2749 0 R /S/TD /Type/StructElem>> endobj 2751 0 obj <> /K 3 /P 2750 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2752 0 obj <> /K[2753 0 R] /P 2749 0 R /S/TD /Type/StructElem>> endobj 2753 0 obj <> /K 4 /P 2752 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2754 0 obj <> /K[2755 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2755 0 obj <> /K[2756 0 R] /P 2754 0 R /S/Table /Type/StructElem>> endobj 2756 0 obj <> endobj 2757 0 obj <> /K[2758 0 R] /P 2756 0 R /S/TD /Type/StructElem>> endobj 2758 0 obj <> /K 5 /P 2757 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2759 0 obj <> /K[2760 0 R] /P 2756 0 R /S/TD /Type/StructElem>> endobj 2760 0 obj <> /K 6 /P 2759 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2761 0 obj <> endobj 2762 0 obj <> /K 7 /P 2761 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2763 0 obj <> /K 8 /P 2761 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2764 0 obj <> /K 9 /P 2761 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2765 0 obj <> /K[2766 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2766 0 obj <> /K 10 /P 2765 0 R /Pg 279 0 R /S/P /Type/StructElem>> endobj 2767 0 obj <> endobj 2768 0 obj <> /K 0 /P 2767 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2769 0 obj <> /K[2770 0 R 2775 0 R 2782 0 R 2795 0 R 2810 0 R 2825 0 R 2840 0 R 2845 0 R 2852 0 R 2865 0 R 2880 0 R 2895 0 R] /P 2767 0 R /S/Table /Type/StructElem>> endobj 2770 0 obj <> endobj 2771 0 obj <> /K[2772 0 R] /P 2770 0 R /S/TD /Type/StructElem>> endobj 2772 0 obj <> /K 1 /P 2771 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2773 0 obj <> /K[2774 0 R] /P 2770 0 R /S/TD /Type/StructElem>> endobj 2774 0 obj <> /K 2 /P 2773 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2775 0 obj <> endobj 2776 0 obj <> /K[2777 0 R] /P 2775 0 R /S/TD /Type/StructElem>> endobj 2777 0 obj <> /K 3 /P 2776 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2778 0 obj <> /K[2779 0 R] /P 2775 0 R /S/TD /Type/StructElem>> endobj 2779 0 obj <> /K 4 /P 2778 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2780 0 obj <> /K[2781 0 R] /P 2775 0 R /S/TD /Type/StructElem>> endobj 2781 0 obj <> /K 5 /P 2780 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2782 0 obj <> endobj 2783 0 obj <> /K[2784 0 R] /P 2782 0 R /S/TD /Type/StructElem>> endobj 2784 0 obj <> /K 6 /P 2783 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2785 0 obj <> /K[2786 0 R] /P 2782 0 R /S/TD /Type/StructElem>> endobj 2786 0 obj <> /K 7 /P 2785 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2787 0 obj <> /K[2788 0 R] /P 2782 0 R /S/TD /Type/StructElem>> endobj 2788 0 obj <> /K 8 /P 2787 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2789 0 obj <> /K[2790 0 R] /P 2782 0 R /S/TD /Type/StructElem>> endobj 2790 0 obj <> /K 9 /P 2789 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2791 0 obj <> /K[2792 0 R] /P 2782 0 R /S/TD /Type/StructElem>> endobj 2792 0 obj <> /K 10 /P 2791 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2793 0 obj <> /K[2794 0 R] /P 2782 0 R /S/TD /Type/StructElem>> endobj 2794 0 obj <> /K 11 /P 2793 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2795 0 obj <> endobj 2796 0 obj <> /K[2797 0 R] /P 2795 0 R /S/TD /Type/StructElem>> endobj 2797 0 obj <> /K 12 /P 2796 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2798 0 obj <> /K[2799 0 R] /P 2795 0 R /S/TD /Type/StructElem>> endobj 2799 0 obj <> /K 13 /P 2798 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2800 0 obj <> /K[2801 0 R] /P 2795 0 R /S/TD /Type/StructElem>> endobj 2801 0 obj <> /K 14 /P 2800 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2802 0 obj <> /K[2803 0 R] /P 2795 0 R /S/TD /Type/StructElem>> endobj 2803 0 obj <> /K 15 /P 2802 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2804 0 obj <> /K[2805 0 R] /P 2795 0 R /S/TD /Type/StructElem>> endobj 2805 0 obj <> /K 16 /P 2804 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2806 0 obj <> /K[2807 0 R] /P 2795 0 R /S/TD /Type/StructElem>> endobj 2807 0 obj <> /K 17 /P 2806 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2808 0 obj <> /K[2809 0 R] /P 2795 0 R /S/TD /Type/StructElem>> endobj 2809 0 obj <> /K 18 /P 2808 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2810 0 obj <> endobj 2811 0 obj <> /K[2812 0 R] /P 2810 0 R /S/TD /Type/StructElem>> endobj 2812 0 obj <> /K 19 /P 2811 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2813 0 obj <> /K[2814 0 R] /P 2810 0 R /S/TD /Type/StructElem>> endobj 2814 0 obj <> /K 20 /P 2813 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2815 0 obj <> /K[2816 0 R] /P 2810 0 R /S/TD /Type/StructElem>> endobj 2816 0 obj <> /K 21 /P 2815 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2817 0 obj <> /K[2818 0 R] /P 2810 0 R /S/TD /Type/StructElem>> endobj 2818 0 obj <> /K 22 /P 2817 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2819 0 obj <> /K[2820 0 R] /P 2810 0 R /S/TD /Type/StructElem>> endobj 2820 0 obj <> /K 23 /P 2819 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2821 0 obj <> /K[2822 0 R] /P 2810 0 R /S/TD /Type/StructElem>> endobj 2822 0 obj <> /K 24 /P 2821 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2823 0 obj <> /K[2824 0 R] /P 2810 0 R /S/TD /Type/StructElem>> endobj 2824 0 obj <> /K 25 /P 2823 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2825 0 obj <> endobj 2826 0 obj <> /K[2827 0 R] /P 2825 0 R /S/TD /Type/StructElem>> endobj 2827 0 obj <> /K 26 /P 2826 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2828 0 obj <> /K[2829 0 R] /P 2825 0 R /S/TD /Type/StructElem>> endobj 2829 0 obj <> /K 27 /P 2828 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2830 0 obj <> /K[2831 0 R] /P 2825 0 R /S/TD /Type/StructElem>> endobj 2831 0 obj <> /K 28 /P 2830 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2832 0 obj <> /K[2833 0 R] /P 2825 0 R /S/TD /Type/StructElem>> endobj 2833 0 obj <> /K 29 /P 2832 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2834 0 obj <> /K[2835 0 R] /P 2825 0 R /S/TD /Type/StructElem>> endobj 2835 0 obj <> /K 30 /P 2834 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2836 0 obj <> /K[2837 0 R] /P 2825 0 R /S/TD /Type/StructElem>> endobj 2837 0 obj <> /K 31 /P 2836 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2838 0 obj <> /K[2839 0 R] /P 2825 0 R /S/TD /Type/StructElem>> endobj 2839 0 obj <> /K 32 /P 2838 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2840 0 obj <> endobj 2841 0 obj <> /K[2842 0 R] /P 2840 0 R /S/TD /Type/StructElem>> endobj 2842 0 obj <> /K 33 /P 2841 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2843 0 obj <> /K[2844 0 R] /P 2840 0 R /S/TD /Type/StructElem>> endobj 2844 0 obj <> /K 34 /P 2843 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2845 0 obj <> endobj 2846 0 obj <> /K[2847 0 R] /P 2845 0 R /S/TD /Type/StructElem>> endobj 2847 0 obj <> /K 35 /P 2846 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2848 0 obj <> /K[2849 0 R] /P 2845 0 R /S/TD /Type/StructElem>> endobj 2849 0 obj <> /K 36 /P 2848 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2850 0 obj <> /K[2851 0 R] /P 2845 0 R /S/TD /Type/StructElem>> endobj 2851 0 obj <> /K 37 /P 2850 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2852 0 obj <> endobj 2853 0 obj <> /K[2854 0 R] /P 2852 0 R /S/TD /Type/StructElem>> endobj 2854 0 obj <> /K 38 /P 2853 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2855 0 obj <> /K[2856 0 R] /P 2852 0 R /S/TD /Type/StructElem>> endobj 2856 0 obj <> /K 39 /P 2855 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2857 0 obj <> /K[2858 0 R] /P 2852 0 R /S/TD /Type/StructElem>> endobj 2858 0 obj <> /K 40 /P 2857 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2859 0 obj <> /K[2860 0 R] /P 2852 0 R /S/TD /Type/StructElem>> endobj 2860 0 obj <> /K 41 /P 2859 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2861 0 obj <> /K[2862 0 R] /P 2852 0 R /S/TD /Type/StructElem>> endobj 2862 0 obj <> /K 42 /P 2861 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2863 0 obj <> /K[2864 0 R] /P 2852 0 R /S/TD /Type/StructElem>> endobj 2864 0 obj <> /K 43 /P 2863 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2865 0 obj <> endobj 2866 0 obj <> /K[2867 0 R] /P 2865 0 R /S/TD /Type/StructElem>> endobj 2867 0 obj <> /K 44 /P 2866 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2868 0 obj <> /K[2869 0 R] /P 2865 0 R /S/TD /Type/StructElem>> endobj 2869 0 obj <> /K 45 /P 2868 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2870 0 obj <> /K[2871 0 R] /P 2865 0 R /S/TD /Type/StructElem>> endobj 2871 0 obj <> /K 46 /P 2870 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2872 0 obj <> /K[2873 0 R] /P 2865 0 R /S/TD /Type/StructElem>> endobj 2873 0 obj <> /K 47 /P 2872 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2874 0 obj <> /K[2875 0 R] /P 2865 0 R /S/TD /Type/StructElem>> endobj 2875 0 obj <> /K 48 /P 2874 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2876 0 obj <> /K[2877 0 R] /P 2865 0 R /S/TD /Type/StructElem>> endobj 2877 0 obj <> /K 49 /P 2876 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2878 0 obj <> /K[2879 0 R] /P 2865 0 R /S/TD /Type/StructElem>> endobj 2879 0 obj <> /K 50 /P 2878 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2880 0 obj <> endobj 2881 0 obj <> /K[2882 0 R] /P 2880 0 R /S/TD /Type/StructElem>> endobj 2882 0 obj <> /K 51 /P 2881 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2883 0 obj <> /K[2884 0 R] /P 2880 0 R /S/TD /Type/StructElem>> endobj 2884 0 obj <> /K 52 /P 2883 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2885 0 obj <> /K[2886 0 R] /P 2880 0 R /S/TD /Type/StructElem>> endobj 2886 0 obj <> /K 53 /P 2885 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2887 0 obj <> /K[2888 0 R] /P 2880 0 R /S/TD /Type/StructElem>> endobj 2888 0 obj <> /K 54 /P 2887 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2889 0 obj <> /K[2890 0 R] /P 2880 0 R /S/TD /Type/StructElem>> endobj 2890 0 obj <> /K 55 /P 2889 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2891 0 obj <> /K[2892 0 R] /P 2880 0 R /S/TD /Type/StructElem>> endobj 2892 0 obj <> /K 56 /P 2891 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2893 0 obj <> /K[2894 0 R] /P 2880 0 R /S/TD /Type/StructElem>> endobj 2894 0 obj <> /K 57 /P 2893 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2895 0 obj <> endobj 2896 0 obj <> /K[2897 0 R] /P 2895 0 R /S/TD /Type/StructElem>> endobj 2897 0 obj <> /K 58 /P 2896 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2898 0 obj <> /K[2899 0 R] /P 2895 0 R /S/TD /Type/StructElem>> endobj 2899 0 obj <> /K 59 /P 2898 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2900 0 obj <> /K[2901 0 R] /P 2895 0 R /S/TD /Type/StructElem>> endobj 2901 0 obj <> /K 60 /P 2900 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2902 0 obj <> /K[2903 0 R] /P 2895 0 R /S/TD /Type/StructElem>> endobj 2903 0 obj <> /K 61 /P 2902 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2904 0 obj <> /K[2905 0 R] /P 2895 0 R /S/TD /Type/StructElem>> endobj 2905 0 obj <> /K 62 /P 2904 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2906 0 obj <> /K[2907 0 R] /P 2895 0 R /S/TD /Type/StructElem>> endobj 2907 0 obj <> /K 63 /P 2906 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2908 0 obj <> /K[2909 0 R] /P 2895 0 R /S/TD /Type/StructElem>> endobj 2909 0 obj <> /K 64 /P 2908 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2910 0 obj <> /K 65 /P 2767 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2911 0 obj <> /K 66 /P 2767 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2912 0 obj <> /K[2913 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 2913 0 obj <> /K 67 /P 2912 0 R /Pg 284 0 R /S/P /Type/StructElem>> endobj 2914 0 obj <> endobj 2915 0 obj <> /K 0 /P 2914 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2916 0 obj <> /K[2917 0 R 2922 0 R 2929 0 R 2942 0 R 2957 0 R 2972 0 R 2987 0 R 2992 0 R 2999 0 R 3012 0 R 3027 0 R 3042 0 R] /P 2914 0 R /S/Table /Type/StructElem>> endobj 2917 0 obj <> endobj 2918 0 obj <> /K[2919 0 R] /P 2917 0 R /S/TD /Type/StructElem>> endobj 2919 0 obj <> /K 1 /P 2918 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2920 0 obj <> /K[2921 0 R] /P 2917 0 R /S/TD /Type/StructElem>> endobj 2921 0 obj <> /K 2 /P 2920 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2922 0 obj <> endobj 2923 0 obj <> /K[2924 0 R] /P 2922 0 R /S/TD /Type/StructElem>> endobj 2924 0 obj <> /K 3 /P 2923 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2925 0 obj <> /K[2926 0 R] /P 2922 0 R /S/TD /Type/StructElem>> endobj 2926 0 obj <> /K 4 /P 2925 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2927 0 obj <> /K[2928 0 R] /P 2922 0 R /S/TD /Type/StructElem>> endobj 2928 0 obj <> /K 5 /P 2927 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2929 0 obj <> endobj 2930 0 obj <> /K[2931 0 R] /P 2929 0 R /S/TD /Type/StructElem>> endobj 2931 0 obj <> /K 6 /P 2930 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2932 0 obj <> /K[2933 0 R] /P 2929 0 R /S/TD /Type/StructElem>> endobj 2933 0 obj <> /K 7 /P 2932 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2934 0 obj <> /K[2935 0 R] /P 2929 0 R /S/TD /Type/StructElem>> endobj 2935 0 obj <> /K 8 /P 2934 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2936 0 obj <> /K[2937 0 R] /P 2929 0 R /S/TD /Type/StructElem>> endobj 2937 0 obj <> /K 9 /P 2936 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2938 0 obj <> /K[2939 0 R] /P 2929 0 R /S/TD /Type/StructElem>> endobj 2939 0 obj <> /K 10 /P 2938 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2940 0 obj <> /K[2941 0 R] /P 2929 0 R /S/TD /Type/StructElem>> endobj 2941 0 obj <> /K 11 /P 2940 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2942 0 obj <> endobj 2943 0 obj <> /K[2944 0 R] /P 2942 0 R /S/TD /Type/StructElem>> endobj 2944 0 obj <> /K 12 /P 2943 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2945 0 obj <> /K[2946 0 R] /P 2942 0 R /S/TD /Type/StructElem>> endobj 2946 0 obj <> /K 13 /P 2945 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2947 0 obj <> /K[2948 0 R] /P 2942 0 R /S/TD /Type/StructElem>> endobj 2948 0 obj <> /K 14 /P 2947 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2949 0 obj <> /K[2950 0 R] /P 2942 0 R /S/TD /Type/StructElem>> endobj 2950 0 obj <> /K 15 /P 2949 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2951 0 obj <> /K[2952 0 R] /P 2942 0 R /S/TD /Type/StructElem>> endobj 2952 0 obj <> /K 16 /P 2951 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2953 0 obj <> /K[2954 0 R] /P 2942 0 R /S/TD /Type/StructElem>> endobj 2954 0 obj <> /K 17 /P 2953 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2955 0 obj <> /K[2956 0 R] /P 2942 0 R /S/TD /Type/StructElem>> endobj 2956 0 obj <> /K 18 /P 2955 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2957 0 obj <> endobj 2958 0 obj <> /K[2959 0 R] /P 2957 0 R /S/TD /Type/StructElem>> endobj 2959 0 obj <> /K 19 /P 2958 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2960 0 obj <> /K[2961 0 R] /P 2957 0 R /S/TD /Type/StructElem>> endobj 2961 0 obj <> /K 20 /P 2960 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2962 0 obj <> /K[2963 0 R] /P 2957 0 R /S/TD /Type/StructElem>> endobj 2963 0 obj <> /K 21 /P 2962 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2964 0 obj <> /K[2965 0 R] /P 2957 0 R /S/TD /Type/StructElem>> endobj 2965 0 obj <> /K 22 /P 2964 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2966 0 obj <> /K[2967 0 R] /P 2957 0 R /S/TD /Type/StructElem>> endobj 2967 0 obj <> /K 23 /P 2966 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2968 0 obj <> /K[2969 0 R] /P 2957 0 R /S/TD /Type/StructElem>> endobj 2969 0 obj <> /K 24 /P 2968 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2970 0 obj <> /K[2971 0 R] /P 2957 0 R /S/TD /Type/StructElem>> endobj 2971 0 obj <> /K 25 /P 2970 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2972 0 obj <> endobj 2973 0 obj <> /K[2974 0 R] /P 2972 0 R /S/TD /Type/StructElem>> endobj 2974 0 obj <> /K 26 /P 2973 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2975 0 obj <> /K[2976 0 R] /P 2972 0 R /S/TD /Type/StructElem>> endobj 2976 0 obj <> /K 27 /P 2975 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2977 0 obj <> /K[2978 0 R] /P 2972 0 R /S/TD /Type/StructElem>> endobj 2978 0 obj <> /K 28 /P 2977 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2979 0 obj <> /K[2980 0 R] /P 2972 0 R /S/TD /Type/StructElem>> endobj 2980 0 obj <> /K 29 /P 2979 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2981 0 obj <> /K[2982 0 R] /P 2972 0 R /S/TD /Type/StructElem>> endobj 2982 0 obj <> /K 30 /P 2981 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2983 0 obj <> /K[2984 0 R] /P 2972 0 R /S/TD /Type/StructElem>> endobj 2984 0 obj <> /K 31 /P 2983 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2985 0 obj <> /K[2986 0 R] /P 2972 0 R /S/TD /Type/StructElem>> endobj 2986 0 obj <> /K 32 /P 2985 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2987 0 obj <> endobj 2988 0 obj <> /K[2989 0 R] /P 2987 0 R /S/TD /Type/StructElem>> endobj 2989 0 obj <> /K 33 /P 2988 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2990 0 obj <> /K[2991 0 R] /P 2987 0 R /S/TD /Type/StructElem>> endobj 2991 0 obj <> /K 34 /P 2990 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2992 0 obj <> endobj 2993 0 obj <> /K[2994 0 R] /P 2992 0 R /S/TD /Type/StructElem>> endobj 2994 0 obj <> /K 35 /P 2993 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2995 0 obj <> /K[2996 0 R] /P 2992 0 R /S/TD /Type/StructElem>> endobj 2996 0 obj <> /K 36 /P 2995 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2997 0 obj <> /K[2998 0 R] /P 2992 0 R /S/TD /Type/StructElem>> endobj 2998 0 obj <> /K 37 /P 2997 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 2999 0 obj <> endobj 3000 0 obj <> /K[3001 0 R] /P 2999 0 R /S/TD /Type/StructElem>> endobj 3001 0 obj <> /K 38 /P 3000 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3002 0 obj <> /K[3003 0 R] /P 2999 0 R /S/TD /Type/StructElem>> endobj 3003 0 obj <> /K 39 /P 3002 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3004 0 obj <> /K[3005 0 R] /P 2999 0 R /S/TD /Type/StructElem>> endobj 3005 0 obj <> /K 40 /P 3004 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3006 0 obj <> /K[3007 0 R] /P 2999 0 R /S/TD /Type/StructElem>> endobj 3007 0 obj <> /K 41 /P 3006 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3008 0 obj <> /K[3009 0 R] /P 2999 0 R /S/TD /Type/StructElem>> endobj 3009 0 obj <> /K 42 /P 3008 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3010 0 obj <> /K[3011 0 R] /P 2999 0 R /S/TD /Type/StructElem>> endobj 3011 0 obj <> /K 43 /P 3010 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3012 0 obj <> endobj 3013 0 obj <> /K[3014 0 R] /P 3012 0 R /S/TD /Type/StructElem>> endobj 3014 0 obj <> /K 44 /P 3013 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3015 0 obj <> /K[3016 0 R] /P 3012 0 R /S/TD /Type/StructElem>> endobj 3016 0 obj <> /K 45 /P 3015 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3017 0 obj <> /K[3018 0 R] /P 3012 0 R /S/TD /Type/StructElem>> endobj 3018 0 obj <> /K 46 /P 3017 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3019 0 obj <> /K[3020 0 R] /P 3012 0 R /S/TD /Type/StructElem>> endobj 3020 0 obj <> /K 47 /P 3019 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3021 0 obj <> /K[3022 0 R] /P 3012 0 R /S/TD /Type/StructElem>> endobj 3022 0 obj <> /K 48 /P 3021 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3023 0 obj <> /K[3024 0 R] /P 3012 0 R /S/TD /Type/StructElem>> endobj 3024 0 obj <> /K 49 /P 3023 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3025 0 obj <> /K[3026 0 R] /P 3012 0 R /S/TD /Type/StructElem>> endobj 3026 0 obj <> /K 50 /P 3025 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3027 0 obj <> endobj 3028 0 obj <> /K[3029 0 R] /P 3027 0 R /S/TD /Type/StructElem>> endobj 3029 0 obj <> /K 51 /P 3028 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3030 0 obj <> /K[3031 0 R] /P 3027 0 R /S/TD /Type/StructElem>> endobj 3031 0 obj <> /K 52 /P 3030 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3032 0 obj <> /K[3033 0 R] /P 3027 0 R /S/TD /Type/StructElem>> endobj 3033 0 obj <> /K 53 /P 3032 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3034 0 obj <> /K[3035 0 R] /P 3027 0 R /S/TD /Type/StructElem>> endobj 3035 0 obj <> /K 54 /P 3034 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3036 0 obj <> /K[3037 0 R] /P 3027 0 R /S/TD /Type/StructElem>> endobj 3037 0 obj <> /K 55 /P 3036 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3038 0 obj <> /K[3039 0 R] /P 3027 0 R /S/TD /Type/StructElem>> endobj 3039 0 obj <> /K 56 /P 3038 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3040 0 obj <> /K[3041 0 R] /P 3027 0 R /S/TD /Type/StructElem>> endobj 3041 0 obj <> /K 57 /P 3040 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3042 0 obj <> endobj 3043 0 obj <> /K[3044 0 R] /P 3042 0 R /S/TD /Type/StructElem>> endobj 3044 0 obj <> /K 58 /P 3043 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3045 0 obj <> /K[3046 0 R] /P 3042 0 R /S/TD /Type/StructElem>> endobj 3046 0 obj <> /K 59 /P 3045 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3047 0 obj <> /K[3048 0 R] /P 3042 0 R /S/TD /Type/StructElem>> endobj 3048 0 obj <> /K 60 /P 3047 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3049 0 obj <> /K[3050 0 R] /P 3042 0 R /S/TD /Type/StructElem>> endobj 3050 0 obj <> /K 61 /P 3049 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3051 0 obj <> /K[3052 0 R] /P 3042 0 R /S/TD /Type/StructElem>> endobj 3052 0 obj <> /K 62 /P 3051 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3053 0 obj <> /K[3054 0 R] /P 3042 0 R /S/TD /Type/StructElem>> endobj 3054 0 obj <> /K 63 /P 3053 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3055 0 obj <> /K[3056 0 R] /P 3042 0 R /S/TD /Type/StructElem>> endobj 3056 0 obj <> /K 64 /P 3055 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3057 0 obj <> /K 65 /P 2914 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3058 0 obj <> /K 66 /P 2914 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3059 0 obj <> /K 67 /P 2914 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3060 0 obj <> /K 68 /P 2914 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3061 0 obj <> /K 69 /P 2914 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3062 0 obj <> /K[3063 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3063 0 obj <> /K 70 /P 3062 0 R /Pg 289 0 R /S/P /Type/StructElem>> endobj 3064 0 obj <> endobj 3065 0 obj <> /K 0 /P 3064 0 R /Pg 294 0 R /S/P /Type/StructElem>> endobj 3066 0 obj <> /K 1 /P 3064 0 R /Pg 294 0 R /S/P /Type/StructElem>> endobj 3067 0 obj <> /K 2 /P 3064 0 R /Pg 294 0 R /S/P /Type/StructElem>> endobj 3068 0 obj <> /K 3 /P 3064 0 R /Pg 294 0 R /S/P /Type/StructElem>> endobj 3069 0 obj <> /K 4 /P 3064 0 R /Pg 294 0 R /S/P /Type/StructElem>> endobj 3070 0 obj <> /K[3071 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3071 0 obj <> /K 5 /P 3070 0 R /Pg 294 0 R /S/P /Type/StructElem>> endobj 3072 0 obj <> /K[3073 0 R 3153 0 R 3154 0 R 3155 0 R 3156 0 R 3157 0 R 3158 0 R 3159 0 R 3160 0 R 3161 0 R 3162 0 R 3163 0 R 3164 0 R 3165 0 R 3166 0 R 3167 0 R 3168 0 R 3169 0 R 3170 0 R 3171 0 R 3172 0 R 3173 0 R 3174 0 R 3175 0 R 3176 0 R 3177 0 R 3178 0 R 3179 0 R 3180 0 R 3181 0 R 3182 0 R 3183 0 R 3184 0 R 3185 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3073 0 obj <> /K[3074 0 R 3081 0 R 3088 0 R 3095 0 R 3102 0 R 3107 0 R 3113 0 R 3118 0 R 3123 0 R 3130 0 R 3139 0 R 3146 0 R] /P 3072 0 R /S/Table /Type/StructElem>> endobj 3074 0 obj <> endobj 3075 0 obj <> /K[3076 0 R] /P 3074 0 R /S/TD /Type/StructElem>> endobj 3076 0 obj <> /K 0 /P 3075 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3077 0 obj <> /K[3078 0 R] /P 3074 0 R /S/TD /Type/StructElem>> endobj 3078 0 obj <> /K[1 3079 0 R 3080 0 R] /P 3077 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3079 0 obj <> endobj 3080 0 obj <> endobj 3081 0 obj <> endobj 3082 0 obj <> /K[3083 0 R] /P 3081 0 R /S/TD /Type/StructElem>> endobj 3083 0 obj <> /K[4 3084 0 R 3085 0 R] /P 3082 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3084 0 obj <> endobj 3085 0 obj <> endobj 3086 0 obj <> /K[3087 0 R] /P 3081 0 R /S/TD /Type/StructElem>> endobj 3087 0 obj <> /K 7 /P 3086 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3088 0 obj <> endobj 3089 0 obj <> /K[3090 0 R] /P 3088 0 R /S/TD /Type/StructElem>> endobj 3090 0 obj <> /K 8 /P 3089 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3091 0 obj <> /K[3092 0 R] /P 3088 0 R /S/TD /Type/StructElem>> endobj 3092 0 obj <> /K[9 3093 0 R 3094 0 R] /P 3091 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3093 0 obj <> endobj 3094 0 obj <> endobj 3095 0 obj <> endobj 3096 0 obj <> /K[3097 0 R] /P 3095 0 R /S/TD /Type/StructElem>> endobj 3097 0 obj <> /K[12 3098 0 R 3099 0 R] /P 3096 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3098 0 obj <> endobj 3099 0 obj <> endobj 3100 0 obj <> /K[3101 0 R] /P 3095 0 R /S/TD /Type/StructElem>> endobj 3101 0 obj <> /K 15 /P 3100 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3102 0 obj <> endobj 3103 0 obj <> /K[3104 0 R] /P 3102 0 R /S/TD /Type/StructElem>> endobj 3104 0 obj <> /K 16 /P 3103 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3105 0 obj <> /K[3106 0 R] /P 3102 0 R /S/TD /Type/StructElem>> endobj 3106 0 obj <> /K 17 /P 3105 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3107 0 obj <> endobj 3108 0 obj <> /K[3109 0 R 3110 0 R] /P 3107 0 R /S/TD /Type/StructElem>> endobj 3109 0 obj <> /K 18 /P 3108 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3110 0 obj <> /K 19 /P 3108 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3111 0 obj <> /K[3112 0 R] /P 3107 0 R /S/TD /Type/StructElem>> endobj 3112 0 obj <> /K 20 /P 3111 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3113 0 obj <> endobj 3114 0 obj <> /K[3115 0 R] /P 3113 0 R /S/TD /Type/StructElem>> endobj 3115 0 obj <> /K 21 /P 3114 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3116 0 obj <> /K[3117 0 R] /P 3113 0 R /S/TD /Type/StructElem>> endobj 3117 0 obj <> /K 22 /P 3116 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3118 0 obj <> endobj 3119 0 obj <> /K[3120 0 R] /P 3118 0 R /S/TD /Type/StructElem>> endobj 3120 0 obj <> /K 23 /P 3119 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3121 0 obj <> /K[3122 0 R] /P 3118 0 R /S/TD /Type/StructElem>> endobj 3122 0 obj <> /K 24 /P 3121 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3123 0 obj <> endobj 3124 0 obj <> /K[3125 0 R] /P 3123 0 R /S/TD /Type/StructElem>> endobj 3125 0 obj <> /K[25 3126 0 R 3127 0 R] /P 3124 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3126 0 obj <> endobj 3127 0 obj <> endobj 3128 0 obj <> /K[3129 0 R] /P 3123 0 R /S/TD /Type/StructElem>> endobj 3129 0 obj <> /K 28 /P 3128 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3130 0 obj <> endobj 3131 0 obj <> /K[3132 0 R] /P 3130 0 R /S/TD /Type/StructElem>> endobj 3132 0 obj <> /K[29 3133 0 R 3134 0 R] /P 3131 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3133 0 obj <> endobj 3134 0 obj <> endobj 3135 0 obj <> /K[3136 0 R] /P 3130 0 R /S/TD /Type/StructElem>> endobj 3136 0 obj <> /K[32 3137 0 R 3138 0 R] /P 3135 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3137 0 obj <> endobj 3138 0 obj <> endobj 3139 0 obj <> endobj 3140 0 obj <> /K[3141 0 R] /P 3139 0 R /S/TD /Type/StructElem>> endobj 3141 0 obj <> /K[35 3142 0 R 3143 0 R] /P 3140 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3142 0 obj <> endobj 3143 0 obj <> endobj 3144 0 obj <> /K[3145 0 R] /P 3139 0 R /S/TD /Type/StructElem>> endobj 3145 0 obj <> /K 38 /P 3144 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3146 0 obj <> endobj 3147 0 obj <> /K[3148 0 R] /P 3146 0 R /S/TD /Type/StructElem>> endobj 3148 0 obj <> /K 39 /P 3147 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3149 0 obj <> /K[3150 0 R] /P 3146 0 R /S/TD /Type/StructElem>> endobj 3150 0 obj <> /K[40 3151 0 R 3152 0 R] /P 3149 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3151 0 obj <> endobj 3152 0 obj <> endobj 3153 0 obj <> /K 43 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3154 0 obj <> /K 44 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3155 0 obj <> /K 45 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3156 0 obj <> /K 46 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3157 0 obj <> /K 47 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3158 0 obj <> /K 48 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3159 0 obj <> /K 49 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3160 0 obj <> /K 50 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3161 0 obj <> /K 51 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3162 0 obj <> /K 52 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3163 0 obj <> /K 53 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3164 0 obj <> /K 54 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3165 0 obj <> /K 55 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3166 0 obj <> /K 56 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3167 0 obj <> /K 57 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3168 0 obj <> /K 58 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3169 0 obj <> /K 59 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3170 0 obj <> /K 60 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3171 0 obj <> /K 61 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3172 0 obj <> /K 62 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3173 0 obj <> /K 63 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3174 0 obj <> /K 64 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3175 0 obj <> /K 65 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3176 0 obj <> /K 66 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3177 0 obj <> /K 67 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3178 0 obj <> /K 68 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3179 0 obj <> /K 69 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3180 0 obj <> /K 70 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3181 0 obj <> /K 71 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3182 0 obj <> /K 72 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3183 0 obj <> /K 73 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3184 0 obj <> /K 74 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3185 0 obj <> /K 75 /P 3072 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3186 0 obj <> endobj 3187 0 obj <> /K 76 /P 3186 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3188 0 obj <> endobj 3189 0 obj <> /K 77 /P 3188 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3190 0 obj <> /K 78 /P 3188 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3191 0 obj <> /K 79 /P 3188 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3192 0 obj <> /K 80 /P 3188 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3193 0 obj <> /K[3194 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3194 0 obj <> /K 81 /P 3193 0 R /Pg 299 0 R /S/P /Type/StructElem>> endobj 3195 0 obj <> endobj 3196 0 obj <> /K 0 /P 3195 0 R /Pg 304 0 R /S/P /Type/StructElem>> endobj 3197 0 obj <> /K 1 /P 3195 0 R /Pg 304 0 R /S/P /Type/StructElem>> endobj 3198 0 obj <> /K 2 /P 3195 0 R /Pg 304 0 R /S/P /Type/StructElem>> endobj 3199 0 obj <> /K 3 /P 3195 0 R /Pg 304 0 R /S/P /Type/StructElem>> endobj 3200 0 obj <> /K 4 /P 3195 0 R /Pg 304 0 R /S/P /Type/StructElem>> endobj 3201 0 obj <> /K[3202 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3202 0 obj <> /K 5 /P 3201 0 R /Pg 304 0 R /S/P /Type/StructElem>> endobj 3203 0 obj <> /K[3204 0 R 3237 0 R 3238 0 R 3244 0 R 3245 0 R 3246 0 R 3247 0 R 3248 0 R 3249 0 R 3250 0 R 3251 0 R 3252 0 R 3253 0 R 3254 0 R 3255 0 R 3256 0 R 3257 0 R 3269 0 R 3270 0 R 3271 0 R 3272 0 R 3273 0 R 3274 0 R 3275 0 R 3276 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3204 0 obj <> /K[3205 0 R] /P 3203 0 R /S/Div /Type/StructElem>> endobj 3205 0 obj <> /K[3206 0 R 3213 0 R 3220 0 R 3225 0 R 3230 0 R] /P 3204 0 R /S/Table /Type/StructElem>> endobj 3206 0 obj <> endobj 3207 0 obj <> /K[3208 0 R] /P 3206 0 R /S/TD /Type/StructElem>> endobj 3208 0 obj <> /K 0 /P 3207 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3209 0 obj <> /K[3210 0 R] /P 3206 0 R /S/TD /Type/StructElem>> endobj 3210 0 obj <> /K 1 /P 3209 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3211 0 obj <> /K[3212 0 R] /P 3206 0 R /S/TD /Type/StructElem>> endobj 3212 0 obj <> /K 2 /P 3211 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3213 0 obj <> endobj 3214 0 obj <> /K[3215 0 R] /P 3213 0 R /S/TD /Type/StructElem>> endobj 3215 0 obj <> /K 3 /P 3214 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3216 0 obj <> /K[3217 0 R] /P 3213 0 R /S/TD /Type/StructElem>> endobj 3217 0 obj <> /K 4 /P 3216 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3218 0 obj <> /K[3219 0 R] /P 3213 0 R /S/TD /Type/StructElem>> endobj 3219 0 obj <> /K 5 /P 3218 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3220 0 obj <> endobj 3221 0 obj <> /K[3222 0 R] /P 3220 0 R /S/TD /Type/StructElem>> endobj 3222 0 obj <> /K 6 /P 3221 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3223 0 obj <> /K[3224 0 R] /P 3220 0 R /S/TD /Type/StructElem>> endobj 3224 0 obj <> /K 7 /P 3223 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3225 0 obj <> endobj 3226 0 obj <> /K[3227 0 R] /P 3225 0 R /S/TD /Type/StructElem>> endobj 3227 0 obj <> /K 8 /P 3226 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3228 0 obj <> /K[3229 0 R] /P 3225 0 R /S/TD /Type/StructElem>> endobj 3229 0 obj <> /K 9 /P 3228 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3230 0 obj <> endobj 3231 0 obj <> /K[3232 0 R] /P 3230 0 R /S/TD /Type/StructElem>> endobj 3232 0 obj <> /K 10 /P 3231 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3233 0 obj <> /K[3234 0 R] /P 3230 0 R /S/TD /Type/StructElem>> endobj 3234 0 obj <> /K 11 /P 3233 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3235 0 obj <> /K[3236 0 R] /P 3230 0 R /S/TD /Type/StructElem>> endobj 3236 0 obj <> /K 12 /P 3235 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3237 0 obj <> /K 13 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3238 0 obj <> /K[3239 0 R] /P 3203 0 R /S/Table /Type/StructElem>> endobj 3239 0 obj <> endobj 3240 0 obj <> /K[3241 0 R] /P 3239 0 R /S/TD /Type/StructElem>> endobj 3241 0 obj <> /K 14 /P 3240 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3242 0 obj <> /K[3243 0 R] /P 3239 0 R /S/TD /Type/StructElem>> endobj 3243 0 obj <> /K 15 /P 3242 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3244 0 obj <> /K 16 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3245 0 obj <> /K 17 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3246 0 obj <> /K 18 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3247 0 obj <> /K 19 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3248 0 obj <> /K 20 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3249 0 obj <> /K 21 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3250 0 obj <> /K 22 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3251 0 obj <> /K 23 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3252 0 obj <> /K 24 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3253 0 obj <> /K 25 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3254 0 obj <> /K 26 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3255 0 obj <> /K 27 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3256 0 obj <> /K 28 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3257 0 obj <> /K[3258 0 R] /P 3203 0 R /S/Table /Type/StructElem>> endobj 3258 0 obj <> endobj 3259 0 obj <> /K[3260 0 R] /P 3258 0 R /S/TD /Type/StructElem>> endobj 3260 0 obj <> /K 29 /P 3259 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3261 0 obj <> /K[3262 0 R] /P 3258 0 R /S/TD /Type/StructElem>> endobj 3262 0 obj <> /K 30 /P 3261 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3263 0 obj <> /K[3264 0 R] /P 3258 0 R /S/TD /Type/StructElem>> endobj 3264 0 obj <> /K 31 /P 3263 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3265 0 obj <> /K[3266 0 R] /P 3258 0 R /S/TD /Type/StructElem>> endobj 3266 0 obj <> /K 32 /P 3265 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3267 0 obj <> /K[3268 0 R] /P 3258 0 R /S/TD /Type/StructElem>> endobj 3268 0 obj <> /K 33 /P 3267 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3269 0 obj <> /K 34 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3270 0 obj <> /K 35 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3271 0 obj <> /K 36 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3272 0 obj <> /K 37 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3273 0 obj <> /K 38 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3274 0 obj <> /K 39 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3275 0 obj <> /K 40 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3276 0 obj <> /K 41 /P 3203 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3277 0 obj <> endobj 3278 0 obj <> /K 42 /P 3277 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3279 0 obj <> /K 43 /P 3277 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3280 0 obj <> /K[3281 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3281 0 obj <> /K 44 /P 3280 0 R /Pg 309 0 R /S/P /Type/StructElem>> endobj 3282 0 obj <> endobj 3283 0 obj <> /K 0 /P 3282 0 R /Pg 314 0 R /S/P /Type/StructElem>> endobj 3284 0 obj <> /K 1 /P 3282 0 R /Pg 314 0 R /S/P /Type/StructElem>> endobj 3285 0 obj <> /K 2 /P 3282 0 R /Pg 314 0 R /S/P /Type/StructElem>> endobj 3286 0 obj <> /K[3287 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3287 0 obj <> /K 3 /P 3286 0 R /Pg 314 0 R /S/P /Type/StructElem>> endobj 3288 0 obj <> /K[3289 0 R 3290 0 R 3291 0 R 3292 0 R 3293 0 R 3294 0 R 3295 0 R 3296 0 R 3297 0 R 3298 0 R 3299 0 R 3300 0 R 3301 0 R 3302 0 R 3303 0 R 3304 0 R 3305 0 R 3306 0 R 3307 0 R 3310 0 R 3311 0 R 3312 0 R 3313 0 R 3314 0 R 3315 0 R 3316 0 R 3317 0 R 3318 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3289 0 obj <> /K 0 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3290 0 obj <> /K 1 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3291 0 obj <> /K 2 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3292 0 obj <> /K 3 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3293 0 obj <> /K 4 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3294 0 obj <> /K 5 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3295 0 obj <> /K 6 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3296 0 obj <> /K 7 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3297 0 obj <> /K 8 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3298 0 obj <> /K 9 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3299 0 obj <> /K 10 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3300 0 obj <> /K 11 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3301 0 obj <> /K 12 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3302 0 obj <> /K 13 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3303 0 obj <> /K 14 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3304 0 obj <> /K 15 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3305 0 obj <> /K 16 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3306 0 obj <> /K 17 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3307 0 obj <> /K[18 3308 0 R 3309 0 R] /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3308 0 obj <> endobj 3309 0 obj <> endobj 3310 0 obj <> /K 21 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3311 0 obj <> /K 22 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3312 0 obj <> /K 23 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3313 0 obj <> /K 24 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3314 0 obj <> /K 25 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3315 0 obj <> /K 26 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3316 0 obj <> /K 27 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3317 0 obj <> /K 28 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3318 0 obj <> /K 29 /P 3288 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3319 0 obj <> endobj 3320 0 obj <> /K 30 /P 3319 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3321 0 obj <> /K 31 /P 3319 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3322 0 obj <> /K[3323 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3323 0 obj <> /K 32 /P 3322 0 R /Pg 319 0 R /S/P /Type/StructElem>> endobj 3324 0 obj <> /K[3325 0 R 3327 0 R 3328 0 R 3329 0 R 3330 0 R 3331 0 R 3332 0 R 3333 0 R 3334 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3325 0 obj <> /K[3326 0 R] /P 3324 0 R /S/Div /Type/StructElem>> endobj 3326 0 obj <> /K 0 /P 3325 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3327 0 obj <> /K 1 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3328 0 obj <> /K 2 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3329 0 obj <> /K 3 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3330 0 obj <> /K 4 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3331 0 obj <> /K 5 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3332 0 obj <> /K 6 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3333 0 obj <> /K 7 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3334 0 obj <> /K 8 /P 3324 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3335 0 obj <> endobj 3336 0 obj <> /K 9 /P 3335 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3337 0 obj <> endobj 3338 0 obj <> /K 10 /P 3337 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3339 0 obj <> /K 11 /P 3337 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3340 0 obj <> /K[3341 0 R] /P 3337 0 R /S/Table /Type/StructElem>> endobj 3341 0 obj <> endobj 3342 0 obj <> /K[3343 0 R 3344 0 R 3345 0 R 3346 0 R] /P 3341 0 R /S/TD /Type/StructElem>> endobj 3343 0 obj <> /K 12 /P 3342 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3344 0 obj <> /K 13 /P 3342 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3345 0 obj <> /K 14 /P 3342 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3346 0 obj <> /K 15 /P 3342 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3347 0 obj <> /K 16 /P 3337 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3348 0 obj <> /K 17 /P 3337 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3349 0 obj <> /K 18 /P 3337 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3350 0 obj <> /K 19 /P 3337 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3351 0 obj <> /K 20 /P 3337 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3352 0 obj <> /K[3353 0 R 3354 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3353 0 obj <> /K 21 /P 3352 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3354 0 obj <> /K 22 /P 3352 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3355 0 obj <> /K[3356 0 R 3357 0 R 3358 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3356 0 obj <> /K 23 /P 3355 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3357 0 obj <> /K 24 /P 3355 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3358 0 obj <> /K 25 /P 3355 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3359 0 obj <> /K[3360 0 R 3361 0 R 3362 0 R 3363 0 R 3364 0 R 3365 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3360 0 obj <> /K 26 /P 3359 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3361 0 obj <> /K 27 /P 3359 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3362 0 obj <> /K 28 /P 3359 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3363 0 obj <> /K 29 /P 3359 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3364 0 obj <> /K 30 /P 3359 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3365 0 obj <> /K 31 /P 3359 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3366 0 obj <> endobj 3367 0 obj <> /K 32 /P 3366 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3368 0 obj <> /K[3369 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3369 0 obj <> /K 33 /P 3368 0 R /Pg 327 0 R /S/P /Type/StructElem>> endobj 3370 0 obj <> /K[3371 0 R 3372 0 R 3373 0 R 3374 0 R 3375 0 R 3376 0 R 3377 0 R 3378 0 R 3379 0 R 3380 0 R 3381 0 R 3382 0 R 3383 0 R 3384 0 R 3385 0 R 3386 0 R 3387 0 R 3388 0 R 3389 0 R 3390 0 R 3391 0 R 3392 0 R 3393 0 R 3394 0 R 3395 0 R 3396 0 R 3397 0 R 3398 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3371 0 obj <> /K 0 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3372 0 obj <> /K 1 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3373 0 obj <> /K 2 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3374 0 obj <> /K 3 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3375 0 obj <> /K 4 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3376 0 obj <> /K 5 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3377 0 obj <> /K 6 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3378 0 obj <> /K 7 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3379 0 obj <> /K 8 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3380 0 obj <> /K 9 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3381 0 obj <> /K 10 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3382 0 obj <> /K 11 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3383 0 obj <> /K 12 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3384 0 obj <> /K 13 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3385 0 obj <> /K 14 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3386 0 obj <> /K 15 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3387 0 obj <> /K 16 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3388 0 obj <> /K 17 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3389 0 obj <> /K 18 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3390 0 obj <> /K 19 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3391 0 obj <> /K 20 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3392 0 obj <> /K 21 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3393 0 obj <> /K 22 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3394 0 obj <> /K 23 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3395 0 obj <> /K 24 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3396 0 obj <> /K 25 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3397 0 obj <> /K 26 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3398 0 obj <> /K 27 /P 3370 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3399 0 obj <> endobj 3400 0 obj <> /K 28 /P 3399 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3401 0 obj <> /K 29 /P 3399 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3402 0 obj <> /K[3403 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3403 0 obj <> /K 30 /P 3402 0 R /Pg 335 0 R /S/P /Type/StructElem>> endobj 3404 0 obj <> /K[3405 0 R 3406 0 R 3407 0 R 3408 0 R 3409 0 R 3410 0 R 3411 0 R 3412 0 R 3413 0 R 3414 0 R 3415 0 R 3416 0 R 3417 0 R 3418 0 R 3419 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3405 0 obj <> /K 0 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3406 0 obj <> /K 1 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3407 0 obj <> /K 2 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3408 0 obj <> /K 3 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3409 0 obj <> /K 4 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3410 0 obj <> /K 5 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3411 0 obj <> /K 6 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3412 0 obj <> /K 7 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3413 0 obj <> /K 8 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3414 0 obj <> /K 9 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3415 0 obj <> /K 10 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3416 0 obj <> /K 11 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3417 0 obj <> /K 12 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3418 0 obj <> /K 13 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3419 0 obj <> /K 14 /P 3404 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3420 0 obj <> endobj 3421 0 obj <> /K 15 /P 3420 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3422 0 obj <> /K 16 /P 3420 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3423 0 obj <> /K[3424 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3424 0 obj <> /K 17 /P 3423 0 R /Pg 340 0 R /S/P /Type/StructElem>> endobj 3425 0 obj <> endobj 3426 0 obj <> /K 0 /P 3425 0 R /Pg 345 0 R /S/P /Type/StructElem>> endobj 3427 0 obj <> /K 1 /P 3425 0 R /Pg 345 0 R /S/P /Type/StructElem>> endobj 3428 0 obj <> /K 2 /P 3425 0 R /Pg 345 0 R /S/P /Type/StructElem>> endobj 3429 0 obj <> /K 3 /P 3425 0 R /Pg 345 0 R /S/P /Type/StructElem>> endobj 3430 0 obj <> /K[3431 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3431 0 obj <> /K 4 /P 3430 0 R /Pg 345 0 R /S/P /Type/StructElem>> endobj 3432 0 obj <> endobj 3433 0 obj <> /K 0 /P 3432 0 R /Pg 350 0 R /S/P /Type/StructElem>> endobj 3434 0 obj <> /K 1 /P 3432 0 R /Pg 350 0 R /S/P /Type/StructElem>> endobj 3435 0 obj <> /K 2 /P 3432 0 R /Pg 350 0 R /S/P /Type/StructElem>> endobj 3436 0 obj <> /K[3437 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3437 0 obj <> /K 3 /P 3436 0 R /Pg 350 0 R /S/P /Type/StructElem>> endobj 3438 0 obj <> endobj 3439 0 obj <> /K 0 /P 3438 0 R /Pg 355 0 R /S/P /Type/StructElem>> endobj 3440 0 obj <> /K 1 /P 3438 0 R /Pg 355 0 R /S/P /Type/StructElem>> endobj 3441 0 obj <> /K 2 /P 3438 0 R /Pg 355 0 R /S/P /Type/StructElem>> endobj 3442 0 obj <> /K[3443 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3443 0 obj <> /K 3 /P 3442 0 R /Pg 355 0 R /S/P /Type/StructElem>> endobj 3444 0 obj <> endobj 3445 0 obj <> /K 0 /P 3444 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3446 0 obj <> /K 1 /P 3444 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3447 0 obj <> /K 2 /P 3444 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3448 0 obj <> /K 3 /P 3444 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3449 0 obj <> /K 4 /P 3444 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3450 0 obj <> /K 5 /P 3444 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3451 0 obj <> /K 6 /P 3444 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3452 0 obj <> /K[3453 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3453 0 obj <> /K 7 /P 3452 0 R /Pg 360 0 R /S/P /Type/StructElem>> endobj 3454 0 obj <> endobj 3455 0 obj <> /K 0 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3456 0 obj <> /K 1 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3457 0 obj <> /K 2 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3458 0 obj <> /K 3 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3459 0 obj <> /K 4 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3460 0 obj <> /K 5 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3461 0 obj <> /K 6 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3462 0 obj <> /K 7 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3463 0 obj <> /K 8 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3464 0 obj <> /K 9 /P 3454 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3465 0 obj <> /K[3466 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3466 0 obj <> /K 10 /P 3465 0 R /Pg 365 0 R /S/P /Type/StructElem>> endobj 3467 0 obj <> endobj 3468 0 obj <> /K 0 /P 3467 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3469 0 obj <> /K 1 /P 3467 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3470 0 obj <> /K 2 /P 3467 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3471 0 obj <> /K[3472 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3472 0 obj <> /K[3473 0 R] /P 3471 0 R /S/Table /Type/StructElem>> endobj 3473 0 obj <> endobj 3474 0 obj <> /K[3475 0 R 3476 0 R] /P 3473 0 R /S/TD /Type/StructElem>> endobj 3475 0 obj <> /K 3 /P 3474 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3476 0 obj <> /K 4 /P 3474 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3477 0 obj <> /K[3478 0 R] /P 3473 0 R /S/TD /Type/StructElem>> endobj 3478 0 obj <> /K 5 /P 3477 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3479 0 obj <> /K[3480 0 R] /P 3473 0 R /S/TD /Type/StructElem>> endobj 3480 0 obj <> /K 6 /P 3479 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3481 0 obj <> endobj 3482 0 obj <> /K 7 /P 3481 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3483 0 obj <> /K 8 /P 3481 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3484 0 obj <> /K[3485 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3485 0 obj <> /K 9 /P 3484 0 R /Pg 370 0 R /S/P /Type/StructElem>> endobj 3486 0 obj <> /K[3487 0 R 3488 0 R 3489 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3487 0 obj <> /K 0 /P 3486 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3488 0 obj <> /K 1 /P 3486 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3489 0 obj <> /K 2 /P 3486 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3490 0 obj <> /K[3491 0 R 3559 0 R 3560 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3491 0 obj <> /K[3492 0 R 3555 0 R] /P 3490 0 R /S/Table /Type/StructElem>> endobj 3492 0 obj <> endobj 3493 0 obj <> /K[3494 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3494 0 obj <> /K 3 /P 3493 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3495 0 obj <> /K[3496 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3496 0 obj <> /K 4 /P 3495 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3497 0 obj <> /K[3498 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3498 0 obj <> /K 5 /P 3497 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3499 0 obj <> /K[3500 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3500 0 obj <> /K 6 /P 3499 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3501 0 obj <> /K[3502 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3502 0 obj <> /K 7 /P 3501 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3503 0 obj <> /K[3504 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3504 0 obj <> /K 8 /P 3503 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3505 0 obj <> /K[3506 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3506 0 obj <> /K 9 /P 3505 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3507 0 obj <> /K[3508 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3508 0 obj <> /K 10 /P 3507 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3509 0 obj <> /K[3510 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3510 0 obj <> /K 11 /P 3509 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3511 0 obj <> /K[3512 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3512 0 obj <> /K 12 /P 3511 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3513 0 obj <> /K[3514 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3514 0 obj <> /K 13 /P 3513 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3515 0 obj <> /K[3516 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3516 0 obj <> /K 14 /P 3515 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3517 0 obj <> /K[3518 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3518 0 obj <> /K 15 /P 3517 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3519 0 obj <> /K[3520 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3520 0 obj <> /K 16 /P 3519 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3521 0 obj <> /K[3522 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3522 0 obj <> /K 17 /P 3521 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3523 0 obj <> /K[3524 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3524 0 obj <> /K 18 /P 3523 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3525 0 obj <> /K[3526 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3526 0 obj <> /K 19 /P 3525 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3527 0 obj <> /K[3528 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3528 0 obj <> /K 20 /P 3527 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3529 0 obj <> /K[3530 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3530 0 obj <> /K 21 /P 3529 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3531 0 obj <> /K[3532 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3532 0 obj <> /K 22 /P 3531 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3533 0 obj <> /K[3534 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3534 0 obj <> /K 23 /P 3533 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3535 0 obj <> /K[3536 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3536 0 obj <> /K 24 /P 3535 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3537 0 obj <> /K[3538 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3538 0 obj <> /K 25 /P 3537 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3539 0 obj <> /K[3540 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3540 0 obj <> /K 26 /P 3539 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3541 0 obj <> /K[3542 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3542 0 obj <> /K 27 /P 3541 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3543 0 obj <> /K[3544 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3544 0 obj <> /K 28 /P 3543 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3545 0 obj <> /K[3546 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3546 0 obj <> /K 29 /P 3545 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3547 0 obj <> /K[3548 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3548 0 obj <> /K 30 /P 3547 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3549 0 obj <> /K[3550 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3550 0 obj <> /K 31 /P 3549 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3551 0 obj <> /K[3552 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3552 0 obj <> /K 32 /P 3551 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3553 0 obj <> /K[3554 0 R] /P 3492 0 R /S/TD /Type/StructElem>> endobj 3554 0 obj <> /K 33 /P 3553 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3555 0 obj <> endobj 3556 0 obj <> /K[3557 0 R 3558 0 R] /P 3555 0 R /S/TD /Type/StructElem>> endobj 3557 0 obj <> /K 34 /P 3556 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3558 0 obj <> /K 35 /P 3556 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3559 0 obj <> /K 36 /P 3490 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3560 0 obj <> /K 37 /P 3490 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3561 0 obj <> endobj 3562 0 obj <> /K 38 /P 3561 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3563 0 obj <> /K 39 /P 3561 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3564 0 obj <> /K 40 /P 3561 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3565 0 obj <> /K 41 /P 3561 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3566 0 obj <> /K[3567 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3567 0 obj <> /K 42 /P 3566 0 R /Pg 375 0 R /S/P /Type/StructElem>> endobj 3568 0 obj <> /K[3569 0 R 3570 0 R 3571 0 R 3572 0 R 3573 0 R 3574 0 R 3575 0 R 3576 0 R 3577 0 R 3578 0 R 3579 0 R 3580 0 R 3581 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3569 0 obj <> /K 0 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3570 0 obj <> /K 1 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3571 0 obj <> /K 2 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3572 0 obj <> /K 3 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3573 0 obj <> /K 4 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3574 0 obj <> /K 5 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3575 0 obj <> /K 6 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3576 0 obj <> /K 7 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3577 0 obj <> /K 8 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3578 0 obj <> /K 9 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3579 0 obj <> /K 10 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3580 0 obj <> /K 11 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3581 0 obj <> /K 12 /P 3568 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3582 0 obj <> endobj 3583 0 obj <> /K 13 /P 3582 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3584 0 obj <> /K 14 /P 3582 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3585 0 obj <> /K 15 /P 3582 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3586 0 obj <> /K 16 /P 3582 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3587 0 obj <> /K 17 /P 3582 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3588 0 obj <> /K[3589 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3589 0 obj <> /K 18 /P 3588 0 R /Pg 380 0 R /S/P /Type/StructElem>> endobj 3590 0 obj <> endobj 3591 0 obj <> /K 0 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3592 0 obj <> /K 1 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3593 0 obj <> /K 2 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3594 0 obj <> /K 3 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3595 0 obj <> /K 4 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3596 0 obj <> /K 5 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3597 0 obj <> /K 6 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3598 0 obj <> /K 7 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3599 0 obj <> /K 8 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3600 0 obj <> /K 9 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3601 0 obj <> /K 10 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3602 0 obj <> /K 11 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3603 0 obj <> /K 12 /P 3590 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3604 0 obj <> /K[3605 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3605 0 obj <> /K 13 /P 3604 0 R /Pg 385 0 R /S/P /Type/StructElem>> endobj 3606 0 obj <> endobj 3607 0 obj <> /K 0 /P 3606 0 R /Pg 393 0 R /S/P /Type/StructElem>> endobj 3608 0 obj <> /K 1 /P 3606 0 R /Pg 393 0 R /S/P /Type/StructElem>> endobj 3609 0 obj <> /K 2 /P 3606 0 R /Pg 393 0 R /S/P /Type/StructElem>> endobj 3610 0 obj <> /K 3 /P 3606 0 R /Pg 393 0 R /S/P /Type/StructElem>> endobj 3611 0 obj <> /K 4 /P 3606 0 R /Pg 393 0 R /S/P /Type/StructElem>> endobj 3612 0 obj <> /K 5 /P 3606 0 R /Pg 393 0 R /S/P /Type/StructElem>> endobj 3613 0 obj <> /K[3614 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3614 0 obj <> /K 6 /P 3613 0 R /Pg 393 0 R /S/P /Type/StructElem>> endobj 3615 0 obj <> endobj 3616 0 obj <> /K 0 /P 3615 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3617 0 obj <> /K[3618 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3618 0 obj <> /K[3619 0 R] /P 3617 0 R /S/Table /Type/StructElem>> endobj 3619 0 obj <> endobj 3620 0 obj <> /K[3621 0 R] /P 3619 0 R /S/TD /Type/StructElem>> endobj 3621 0 obj <> /K 1 /P 3620 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3622 0 obj <> endobj 3623 0 obj <> /K 2 /P 3622 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3624 0 obj <> /K[3625 0 R] /P 3622 0 R /S/Table /Type/StructElem>> endobj 3625 0 obj <> endobj 3626 0 obj <> /K[3627 0 R 3628 0 R] /P 3625 0 R /S/TD /Type/StructElem>> endobj 3627 0 obj <> /K 3 /P 3626 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3628 0 obj <> /K 4 /P 3626 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3629 0 obj <> /K[3630 0 R] /P 3625 0 R /S/TD /Type/StructElem>> endobj 3630 0 obj <> /K 5 /P 3629 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3631 0 obj <> /K 6 /P 3622 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3632 0 obj <> /K 7 /P 3622 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3633 0 obj <> /K 8 /P 3622 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3634 0 obj <> /K[3635 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3635 0 obj <> /K 9 /P 3634 0 R /Pg 398 0 R /S/P /Type/StructElem>> endobj 3636 0 obj <> endobj 3637 0 obj <> /K 0 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3638 0 obj <> /K 1 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3639 0 obj <> /K 2 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3640 0 obj <> /K 3 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3641 0 obj <> /K 4 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3642 0 obj <> /K 5 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3643 0 obj <> /K 6 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3644 0 obj <> /K 7 /P 3636 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3645 0 obj <> /K[3646 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3646 0 obj <> /K 8 /P 3645 0 R /Pg 403 0 R /S/P /Type/StructElem>> endobj 3647 0 obj <> endobj 3648 0 obj <> /K 0 /P 3647 0 R /Pg 408 0 R /S/P /Type/StructElem>> endobj 3649 0 obj <> /K 1 /P 3647 0 R /Pg 408 0 R /S/P /Type/StructElem>> endobj 3650 0 obj <> /K 2 /P 3647 0 R /Pg 408 0 R /S/P /Type/StructElem>> endobj 3651 0 obj <> /K 3 /P 3647 0 R /Pg 408 0 R /S/P /Type/StructElem>> endobj 3652 0 obj <> /K 4 /P 3647 0 R /Pg 408 0 R /S/P /Type/StructElem>> endobj 3653 0 obj <> /K 5 /P 3647 0 R /Pg 408 0 R /S/P /Type/StructElem>> endobj 3654 0 obj <> /K[3655 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3655 0 obj <> /K 6 /P 3654 0 R /Pg 408 0 R /S/P /Type/StructElem>> endobj 3656 0 obj <> endobj 3657 0 obj <> /K 0 /P 3656 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3658 0 obj <> /K 1 /P 3656 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3659 0 obj <> /K 2 /P 3656 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3660 0 obj <> endobj 3661 0 obj <> /K[3662 0 R] /P 3660 0 R /S/Table /Type/StructElem>> endobj 3662 0 obj <> endobj 3663 0 obj <> /K[3664 0 R] /P 3662 0 R /S/TD /Type/StructElem>> endobj 3664 0 obj <> /K 3 /P 3663 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3665 0 obj <> /K[3666 0 R] /P 3662 0 R /S/TD /Type/StructElem>> endobj 3666 0 obj <> /K 4 /P 3665 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3667 0 obj <> /K[3668 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3668 0 obj <> /K 5 /P 3667 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3669 0 obj <> endobj 3670 0 obj <> /K 6 /P 3669 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3671 0 obj <> /K 7 /P 3669 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3672 0 obj <> /K[3673 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3673 0 obj <> /K 8 /P 3672 0 R /Pg 413 0 R /S/P /Type/StructElem>> endobj 3674 0 obj <> endobj 3675 0 obj <> /K 0 /P 3674 0 R /Pg 418 0 R /S/P /Type/StructElem>> endobj 3676 0 obj <> /K 1 /P 3674 0 R /Pg 418 0 R /S/P /Type/StructElem>> endobj 3677 0 obj <> /K 2 /P 3674 0 R /Pg 418 0 R /S/P /Type/StructElem>> endobj 3678 0 obj <> /K 3 /P 3674 0 R /Pg 418 0 R /S/P /Type/StructElem>> endobj 3679 0 obj <> /K[3680 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3680 0 obj <> /K 4 /P 3679 0 R /Pg 418 0 R /S/P /Type/StructElem>> endobj 3681 0 obj <> /K[3682 0 R 3683 0 R 3684 0 R 3685 0 R 3686 0 R 3687 0 R 3688 0 R 3689 0 R 3690 0 R 3691 0 R 3692 0 R 3693 0 R 3694 0 R 3695 0 R 3696 0 R 3697 0 R 3698 0 R 3699 0 R 3700 0 R 3701 0 R 3704 0 R 3705 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3682 0 obj <> /K 0 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3683 0 obj <> /K 1 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3684 0 obj <> /K 2 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3685 0 obj <> /K 3 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3686 0 obj <> /K 4 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3687 0 obj <> /K 5 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3688 0 obj <> /K 6 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3689 0 obj <> /K 7 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3690 0 obj <> /K 8 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3691 0 obj <> /K 9 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3692 0 obj <> /K 10 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3693 0 obj <> /K 11 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3694 0 obj <> /K 12 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3695 0 obj <> /K 13 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3696 0 obj <> /K 14 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3697 0 obj <> /K 15 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3698 0 obj <> /K 16 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3699 0 obj <> /K 17 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3700 0 obj <> /K 18 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3701 0 obj <> /K[19 3702 0 R 3703 0 R] /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3702 0 obj <> endobj 3703 0 obj <> endobj 3704 0 obj <> /K 22 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3705 0 obj <> /K 23 /P 3681 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3706 0 obj <> endobj 3707 0 obj <> /K 24 /P 3706 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3708 0 obj <> endobj 3709 0 obj <> /K 25 /P 3708 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3710 0 obj <> /K 26 /P 3708 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3711 0 obj <> /K 27 /P 3708 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3712 0 obj <> /K 28 /P 3708 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3713 0 obj <> /K[3714 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3714 0 obj <> /K 29 /P 3713 0 R /Pg 423 0 R /S/P /Type/StructElem>> endobj 3715 0 obj <> /K[3716 0 R 3717 0 R 3718 0 R 3719 0 R 3720 0 R 3721 0 R 3722 0 R 3723 0 R 3724 0 R 3725 0 R 3726 0 R 3727 0 R 3728 0 R 3729 0 R 3730 0 R 3731 0 R 3732 0 R 3733 0 R 3734 0 R 3735 0 R 3736 0 R 3737 0 R 3738 0 R 3739 0 R 3740 0 R 3741 0 R 3742 0 R 3743 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3716 0 obj <> /K 0 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3717 0 obj <> /K 1 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3718 0 obj <> /K 2 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3719 0 obj <> /K 3 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3720 0 obj <> /K 4 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3721 0 obj <> /K 5 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3722 0 obj <> /K 6 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3723 0 obj <> /K 7 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3724 0 obj <> /K 8 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3725 0 obj <> /K 9 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3726 0 obj <> /K 10 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3727 0 obj <> /K 11 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3728 0 obj <> /K 12 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3729 0 obj <> /K 13 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3730 0 obj <> /K 14 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3731 0 obj <> /K 15 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3732 0 obj <> /K 16 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3733 0 obj <> /K 17 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3734 0 obj <> /K 18 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3735 0 obj <> /K 19 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3736 0 obj <> /K 20 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3737 0 obj <> /K 21 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3738 0 obj <> /K 22 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3739 0 obj <> /K 23 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3740 0 obj <> /K 24 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3741 0 obj <> /K 25 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3742 0 obj <> /K 26 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3743 0 obj <> /K 27 /P 3715 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3744 0 obj <> endobj 3745 0 obj <> /K 28 /P 3744 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3746 0 obj <> /K[3747 0 R 3784 0 R 3799 0 R 3808 0 R 3813 0 R 3818 0 R 3821 0 R 3824 0 R] /P 3744 0 R /S/Table /Type/StructElem>> endobj 3747 0 obj <> endobj 3748 0 obj <> /K[3749 0 R 3750 0 R 3751 0 R 3752 0 R 3753 0 R 3754 0 R 3755 0 R 3756 0 R 3757 0 R 3758 0 R 3759 0 R 3760 0 R] /P 3747 0 R /S/TD /Type/StructElem>> endobj 3749 0 obj <> /K 29 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3750 0 obj <> /K 30 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3751 0 obj <> /K 31 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3752 0 obj <> /K 32 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3753 0 obj <> /K 33 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3754 0 obj <> /K 34 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3755 0 obj <> /K 35 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3756 0 obj <> /K 36 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3757 0 obj <> /K 37 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3758 0 obj <> /K 38 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3759 0 obj <> /K 39 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3760 0 obj <> /K 40 /P 3748 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3761 0 obj <> /K[3762 0 R] /P 3747 0 R /S/TD /Type/StructElem>> endobj 3762 0 obj <> /K[41 3763 0 R 3764 0 R] /P 3761 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3763 0 obj <> endobj 3764 0 obj <> endobj 3765 0 obj <> /K[3766 0 R 3767 0 R 3768 0 R 3769 0 R 3770 0 R 3771 0 R 3772 0 R 3773 0 R 3774 0 R 3775 0 R 3776 0 R 3777 0 R 3778 0 R 3779 0 R] /P 3747 0 R /S/TD /Type/StructElem>> endobj 3766 0 obj <> /K 44 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3767 0 obj <> /K 45 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3768 0 obj <> /K 46 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3769 0 obj <> /K 47 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3770 0 obj <> /K 48 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3771 0 obj <> /K 49 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3772 0 obj <> /K 50 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3773 0 obj <> /K 51 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3774 0 obj <> /K 52 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3775 0 obj <> /K 53 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3776 0 obj <> /K 54 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3777 0 obj <> /K 55 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3778 0 obj <> /K 56 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3779 0 obj <> /K 57 /P 3765 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3780 0 obj <> /K[3781 0 R] /P 3747 0 R /S/TD /Type/StructElem>> endobj 3781 0 obj <> /K[58 3782 0 R 3783 0 R] /P 3780 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3782 0 obj <> endobj 3783 0 obj <> endobj 3784 0 obj <> endobj 3785 0 obj <> /K[3786 0 R] /P 3784 0 R /S/TD /Type/StructElem>> endobj 3786 0 obj <> /K[61 3787 0 R 3788 0 R] /P 3785 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3787 0 obj <> endobj 3788 0 obj <> endobj 3789 0 obj <> /K[3790 0 R] /P 3784 0 R /S/TD /Type/StructElem>> endobj 3790 0 obj <> /K[64 3791 0 R 3792 0 R] /P 3789 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3791 0 obj <> endobj 3792 0 obj <> endobj 3793 0 obj <> /K[3794 0 R] /P 3784 0 R /S/TD /Type/StructElem>> endobj 3794 0 obj <> /K[67 3795 0 R 3796 0 R] /P 3793 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3795 0 obj <> endobj 3796 0 obj <> endobj 3797 0 obj <> /K[3798 0 R] /P 3784 0 R /S/TD /Type/StructElem>> endobj 3798 0 obj <> /K 70 /P 3797 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3799 0 obj <> endobj 3800 0 obj <> /K[3801 0 R] /P 3799 0 R /S/TD /Type/StructElem>> endobj 3801 0 obj <> /K[71 3802 0 R 3803 0 R] /P 3800 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3802 0 obj <> endobj 3803 0 obj <> endobj 3804 0 obj <> /K[3805 0 R] /P 3799 0 R /S/TD /Type/StructElem>> endobj 3805 0 obj <> /K[74 3806 0 R 3807 0 R] /P 3804 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3806 0 obj <> endobj 3807 0 obj <> endobj 3808 0 obj <> endobj 3809 0 obj <> /K[3810 0 R] /P 3808 0 R /S/TD /Type/StructElem>> endobj 3810 0 obj <> /K 77 /P 3809 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3811 0 obj <> /K[3812 0 R] /P 3808 0 R /S/TD /Type/StructElem>> endobj 3812 0 obj <> /K 78 /P 3811 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3813 0 obj <> endobj 3814 0 obj <> /K[3815 0 R] /P 3813 0 R /S/TD /Type/StructElem>> endobj 3815 0 obj <> /K 79 /P 3814 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3816 0 obj <> /K[3817 0 R] /P 3813 0 R /S/TD /Type/StructElem>> endobj 3817 0 obj <> /K 80 /P 3816 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3818 0 obj <> endobj 3819 0 obj <> /K[3820 0 R] /P 3818 0 R /S/TD /Type/StructElem>> endobj 3820 0 obj <> /K 81 /P 3819 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3821 0 obj <> endobj 3822 0 obj <> /K[3823 0 R] /P 3821 0 R /S/TD /Type/StructElem>> endobj 3823 0 obj <> /K 82 /P 3822 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3824 0 obj <> endobj 3825 0 obj <> /K[3826 0 R] /P 3824 0 R /S/TD /Type/StructElem>> endobj 3826 0 obj <> /K[83 3827 0 R 3828 0 R] /P 3825 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3827 0 obj <> endobj 3828 0 obj <> endobj 3829 0 obj <> /K[3830 0 R] /P 3824 0 R /S/TD /Type/StructElem>> endobj 3830 0 obj <> /K[86 3831 0 R 3832 0 R] /P 3829 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3831 0 obj <> endobj 3832 0 obj <> endobj 3833 0 obj <> /K 89 /P 3744 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3834 0 obj <> /K 90 /P 3744 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3835 0 obj <> /K 91 /P 3744 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3836 0 obj <> /K 92 /P 3744 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3837 0 obj <> /K[3838 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3838 0 obj <> /K 93 /P 3837 0 R /Pg 428 0 R /S/P /Type/StructElem>> endobj 3839 0 obj <> /K[3840 0 R 3841 0 R 3842 0 R 3843 0 R 3844 0 R 3845 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3840 0 obj <> /K 0 /P 3839 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3841 0 obj <> /K 1 /P 3839 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3842 0 obj <> /K 2 /P 3839 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3843 0 obj <> /K 3 /P 3839 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3844 0 obj <> /K 4 /P 3839 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3845 0 obj <> /K 5 /P 3839 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3846 0 obj <> endobj 3847 0 obj <> /K 6 /P 3846 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3848 0 obj <> /K 7 /P 3846 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3849 0 obj <> /K 8 /P 3846 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3850 0 obj <> /K 9 /P 3846 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3851 0 obj <> /K[3852 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3852 0 obj <> /K 10 /P 3851 0 R /Pg 433 0 R /S/P /Type/StructElem>> endobj 3853 0 obj <> endobj 3854 0 obj <> /K 0 /P 3853 0 R /Pg 438 0 R /S/P /Type/StructElem>> endobj 3855 0 obj <> /K 1 /P 3853 0 R /Pg 438 0 R /S/P /Type/StructElem>> endobj 3856 0 obj <> /K 2 /P 3853 0 R /Pg 438 0 R /S/P /Type/StructElem>> endobj 3857 0 obj <> /K 3 /P 3853 0 R /Pg 438 0 R /S/P /Type/StructElem>> endobj 3858 0 obj <> /K 4 /P 3853 0 R /Pg 438 0 R /S/P /Type/StructElem>> endobj 3859 0 obj <> /K[3860 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3860 0 obj <> /K 5 /P 3859 0 R /Pg 438 0 R /S/P /Type/StructElem>> endobj 3861 0 obj <> endobj 3862 0 obj <> /K 0 /P 3861 0 R /Pg 443 0 R /S/P /Type/StructElem>> endobj 3863 0 obj <> /K 1 /P 3861 0 R /Pg 443 0 R /S/P /Type/StructElem>> endobj 3864 0 obj <> /K 2 /P 3861 0 R /Pg 443 0 R /S/P /Type/StructElem>> endobj 3865 0 obj <> /K 3 /P 3861 0 R /Pg 443 0 R /S/P /Type/StructElem>> endobj 3866 0 obj <> /K[3867 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3867 0 obj <> /K 4 /P 3866 0 R /Pg 443 0 R /S/P /Type/StructElem>> endobj 3868 0 obj <> endobj 3869 0 obj <> /K 0 /P 3868 0 R /Pg 448 0 R /S/P /Type/StructElem>> endobj 3870 0 obj <> /K 1 /P 3868 0 R /Pg 448 0 R /S/P /Type/StructElem>> endobj 3871 0 obj <> /K 2 /P 3868 0 R /Pg 448 0 R /S/P /Type/StructElem>> endobj 3872 0 obj <> /K[3873 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3873 0 obj <> /K 3 /P 3872 0 R /Pg 448 0 R /S/P /Type/StructElem>> endobj 3874 0 obj <> endobj 3875 0 obj <> /K 0 /P 3874 0 R /Pg 453 0 R /S/P /Type/StructElem>> endobj 3876 0 obj <> /K 1 /P 3874 0 R /Pg 453 0 R /S/P /Type/StructElem>> endobj 3877 0 obj <> /K 2 /P 3874 0 R /Pg 453 0 R /S/P /Type/StructElem>> endobj 3878 0 obj <> /K 3 /P 3874 0 R /Pg 453 0 R /S/P /Type/StructElem>> endobj 3879 0 obj <> /K 4 /P 3874 0 R /Pg 453 0 R /S/P /Type/StructElem>> endobj 3880 0 obj <> /K[3881 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3881 0 obj <> /K 5 /P 3880 0 R /Pg 453 0 R /S/P /Type/StructElem>> endobj 3882 0 obj <> endobj 3883 0 obj <> /K 0 /P 3882 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3884 0 obj <> /K 1 /P 3882 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3885 0 obj <> endobj 3886 0 obj <> /K 2 /P 3885 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3887 0 obj <> /K[3888 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3888 0 obj <> /K 3 /P 3887 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3889 0 obj <> endobj 3890 0 obj <> /K 4 /P 3889 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3891 0 obj <> /K 5 /P 3889 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3892 0 obj <> /K 6 /P 3889 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3893 0 obj <> /K 7 /P 3889 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3894 0 obj <> endobj 3895 0 obj <> /K 8 /P 3894 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3896 0 obj <> /K 9 /P 3894 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3897 0 obj <> /K 10 /P 3894 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3898 0 obj <> /K 11 /P 3894 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3899 0 obj <> /K 12 /P 3894 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3900 0 obj <> /K 13 /P 3894 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3901 0 obj <> /K[3902 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3902 0 obj <> /K 14 /P 3901 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3903 0 obj <> /K[3904 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3904 0 obj <> /K 15 /P 3903 0 R /Pg 458 0 R /S/P /Type/StructElem>> endobj 3905 0 obj <> endobj 3906 0 obj <> /K 0 /P 3905 0 R /Pg 463 0 R /S/P /Type/StructElem>> endobj 3907 0 obj <> /K 1 /P 3905 0 R /Pg 463 0 R /S/P /Type/StructElem>> endobj 3908 0 obj <> /K 2 /P 3905 0 R /Pg 463 0 R /S/P /Type/StructElem>> endobj 3909 0 obj <> /K 3 /P 3905 0 R /Pg 463 0 R /S/P /Type/StructElem>> endobj 3910 0 obj <> /K[3911 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3911 0 obj <> /K 4 /P 3910 0 R /Pg 463 0 R /S/P /Type/StructElem>> endobj 3912 0 obj <> /K[3913 0 R 3914 0 R 3915 0 R 3916 0 R 3917 0 R 3918 0 R 3919 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 3913 0 obj <> /K 0 /P 3912 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3914 0 obj <> /K 1 /P 3912 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3915 0 obj <> /K 2 /P 3912 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3916 0 obj <> /K 3 /P 3912 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3917 0 obj <> /K 4 /P 3912 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3918 0 obj <> /K 5 /P 3912 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3919 0 obj <> /K 6 /P 3912 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3920 0 obj <> endobj 3921 0 obj <> /K 7 /P 3920 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3922 0 obj <> endobj 3923 0 obj <> /K[3924 0 R 3933 0 R 3944 0 R 3955 0 R 3966 0 R 3977 0 R 3988 0 R] /P 3922 0 R /S/Table /Type/StructElem>> endobj 3924 0 obj <> endobj 3925 0 obj <> /K[3926 0 R] /P 3924 0 R /S/TD /Type/StructElem>> endobj 3926 0 obj <> /K 8 /P 3925 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3927 0 obj <> /K[3928 0 R] /P 3924 0 R /S/TD /Type/StructElem>> endobj 3928 0 obj <> /K[9 3929 0 R 3930 0 R] /P 3927 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3929 0 obj <> endobj 3930 0 obj <> endobj 3931 0 obj <> /K[3932 0 R] /P 3924 0 R /S/TD /Type/StructElem>> endobj 3932 0 obj <> /K 12 /P 3931 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3933 0 obj <> endobj 3934 0 obj <> /K[3935 0 R] /P 3933 0 R /S/TD /Type/StructElem>> endobj 3935 0 obj <> /K 13 /P 3934 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3936 0 obj <> /K[3937 0 R] /P 3933 0 R /S/TD /Type/StructElem>> endobj 3937 0 obj <> /K[14 3938 0 R 3939 0 R] /P 3936 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3938 0 obj <> endobj 3939 0 obj <> endobj 3940 0 obj <> /K[3941 0 R] /P 3933 0 R /S/TD /Type/StructElem>> endobj 3941 0 obj <> /K[17 3942 0 R 3943 0 R] /P 3940 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3942 0 obj <> endobj 3943 0 obj <> endobj 3944 0 obj <> endobj 3945 0 obj <> /K[3946 0 R] /P 3944 0 R /S/TD /Type/StructElem>> endobj 3946 0 obj <> /K 20 /P 3945 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3947 0 obj <> /K[3948 0 R] /P 3944 0 R /S/TD /Type/StructElem>> endobj 3948 0 obj <> /K[21 3949 0 R 3950 0 R] /P 3947 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3949 0 obj <> endobj 3950 0 obj <> endobj 3951 0 obj <> /K[3952 0 R] /P 3944 0 R /S/TD /Type/StructElem>> endobj 3952 0 obj <> /K[24 3953 0 R 3954 0 R] /P 3951 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3953 0 obj <> endobj 3954 0 obj <> endobj 3955 0 obj <> endobj 3956 0 obj <> /K[3957 0 R] /P 3955 0 R /S/TD /Type/StructElem>> endobj 3957 0 obj <> /K 27 /P 3956 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3958 0 obj <> /K[3959 0 R] /P 3955 0 R /S/TD /Type/StructElem>> endobj 3959 0 obj <> /K[28 3960 0 R 3961 0 R] /P 3958 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3960 0 obj <> endobj 3961 0 obj <> endobj 3962 0 obj <> /K[3963 0 R] /P 3955 0 R /S/TD /Type/StructElem>> endobj 3963 0 obj <> /K[31 3964 0 R 3965 0 R] /P 3962 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3964 0 obj <> endobj 3965 0 obj <> endobj 3966 0 obj <> endobj 3967 0 obj <> /K[3968 0 R] /P 3966 0 R /S/TD /Type/StructElem>> endobj 3968 0 obj <> /K 34 /P 3967 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3969 0 obj <> /K[3970 0 R] /P 3966 0 R /S/TD /Type/StructElem>> endobj 3970 0 obj <> /K[35 3971 0 R 3972 0 R] /P 3969 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3971 0 obj <> endobj 3972 0 obj <> endobj 3973 0 obj <> /K[3974 0 R] /P 3966 0 R /S/TD /Type/StructElem>> endobj 3974 0 obj <> /K[38 3975 0 R 3976 0 R] /P 3973 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3975 0 obj <> endobj 3976 0 obj <> endobj 3977 0 obj <> endobj 3978 0 obj <> /K[3979 0 R] /P 3977 0 R /S/TD /Type/StructElem>> endobj 3979 0 obj <> /K 41 /P 3978 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3980 0 obj <> /K[3981 0 R] /P 3977 0 R /S/TD /Type/StructElem>> endobj 3981 0 obj <> /K[42 3982 0 R 3983 0 R] /P 3980 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3982 0 obj <> endobj 3983 0 obj <> endobj 3984 0 obj <> /K[3985 0 R] /P 3977 0 R /S/TD /Type/StructElem>> endobj 3985 0 obj <> /K[45 3986 0 R 3987 0 R] /P 3984 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3986 0 obj <> endobj 3987 0 obj <> endobj 3988 0 obj <> endobj 3989 0 obj <> /K[3990 0 R] /P 3988 0 R /S/TD /Type/StructElem>> endobj 3990 0 obj <> /K 48 /P 3989 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3991 0 obj <> /K[3992 0 R] /P 3988 0 R /S/TD /Type/StructElem>> endobj 3992 0 obj <> /K[49 3993 0 R 3994 0 R] /P 3991 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3993 0 obj <> endobj 3994 0 obj <> endobj 3995 0 obj <> /K[3996 0 R] /P 3988 0 R /S/TD /Type/StructElem>> endobj 3996 0 obj <> /K[52 3997 0 R 3998 0 R] /P 3995 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 3997 0 obj <> endobj 3998 0 obj <> endobj 3999 0 obj <> /K[4000 0 R 4001 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4000 0 obj <> /K 55 /P 3999 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 4001 0 obj <> /K 56 /P 3999 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 4002 0 obj <> endobj 4003 0 obj <> /K 57 /P 4002 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 4004 0 obj <> /K[4005 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4005 0 obj <> /K 58 /P 4004 0 R /Pg 468 0 R /S/P /Type/StructElem>> endobj 4006 0 obj <> endobj 4007 0 obj <> /K 0 /P 4006 0 R /Pg 473 0 R /S/P /Type/StructElem>> endobj 4008 0 obj <> /K 1 /P 4006 0 R /Pg 473 0 R /S/P /Type/StructElem>> endobj 4009 0 obj <> /K 2 /P 4006 0 R /Pg 473 0 R /S/P /Type/StructElem>> endobj 4010 0 obj <> /K 3 /P 4006 0 R /Pg 473 0 R /S/P /Type/StructElem>> endobj 4011 0 obj <> /K[4012 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4012 0 obj <> /K 4 /P 4011 0 R /Pg 473 0 R /S/P /Type/StructElem>> endobj 4013 0 obj <> /K[4014 0 R 4015 0 R 4016 0 R 4017 0 R 4018 0 R 4019 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4014 0 obj <> /K 0 /P 4013 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4015 0 obj <> /K 1 /P 4013 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4016 0 obj <> /K 2 /P 4013 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4017 0 obj <> /K 3 /P 4013 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4018 0 obj <> /K 4 /P 4013 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4019 0 obj <> /K 5 /P 4013 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4020 0 obj <> endobj 4021 0 obj <> /K 6 /P 4020 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4022 0 obj <> /K 7 /P 4020 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4023 0 obj <> /K[4024 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4024 0 obj <> /K 8 /P 4023 0 R /Pg 478 0 R /S/P /Type/StructElem>> endobj 4025 0 obj <> /K[4026 0 R 4027 0 R 4028 0 R 4029 0 R 4030 0 R 4031 0 R 4032 0 R 4033 0 R 4034 0 R 4035 0 R 4036 0 R 4037 0 R 4038 0 R 4039 0 R 4040 0 R 4041 0 R 4042 0 R 4043 0 R 4044 0 R 4045 0 R 4046 0 R 4047 0 R 4048 0 R 4049 0 R 4050 0 R 4051 0 R 4052 0 R 4053 0 R 4054 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4026 0 obj <> /K 0 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4027 0 obj <> /K 1 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4028 0 obj <> /K 2 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4029 0 obj <> /K 3 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4030 0 obj <> /K 4 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4031 0 obj <> /K 5 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4032 0 obj <> /K 6 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4033 0 obj <> /K 7 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4034 0 obj <> /K 8 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4035 0 obj <> /K 9 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4036 0 obj <> /K 10 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4037 0 obj <> /K 11 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4038 0 obj <> /K 12 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4039 0 obj <> /K 13 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4040 0 obj <> /K 14 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4041 0 obj <> /K 15 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4042 0 obj <> /K 16 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4043 0 obj <> /K 17 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4044 0 obj <> /K 18 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4045 0 obj <> /K 19 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4046 0 obj <> /K 20 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4047 0 obj <> /K 21 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4048 0 obj <> /K 22 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4049 0 obj <> /K 23 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4050 0 obj <> /K 24 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4051 0 obj <> /K 25 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4052 0 obj <> /K 26 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4053 0 obj <> /K 27 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4054 0 obj <> /K 28 /P 4025 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4055 0 obj <> endobj 4056 0 obj <> /K 29 /P 4055 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4057 0 obj <> /K 30 /P 4055 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4058 0 obj <> /K 31 /P 4055 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4059 0 obj <> /K 32 /P 4055 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4060 0 obj <> /K[4061 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4061 0 obj <> /K 33 /P 4060 0 R /Pg 483 0 R /S/P /Type/StructElem>> endobj 4062 0 obj <> endobj 4063 0 obj <> /K 0 /P 4062 0 R /Pg 488 0 R /S/P /Type/StructElem>> endobj 4064 0 obj <> /K 1 /P 4062 0 R /Pg 488 0 R /S/P /Type/StructElem>> endobj 4065 0 obj <> /K 2 /P 4062 0 R /Pg 488 0 R /S/P /Type/StructElem>> endobj 4066 0 obj <> /K 3 /P 4062 0 R /Pg 488 0 R /S/P /Type/StructElem>> endobj 4067 0 obj <> /K 4 /P 4062 0 R /Pg 488 0 R /S/P /Type/StructElem>> endobj 4068 0 obj <> /K 5 /P 4062 0 R /Pg 488 0 R /S/P /Type/StructElem>> endobj 4069 0 obj <> /K[4070 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4070 0 obj <> /K 6 /P 4069 0 R /Pg 488 0 R /S/P /Type/StructElem>> endobj 4071 0 obj <> endobj 4072 0 obj <> /K 0 /P 4071 0 R /Pg 493 0 R /S/P /Type/StructElem>> endobj 4073 0 obj <> /K 1 /P 4071 0 R /Pg 493 0 R /S/P /Type/StructElem>> endobj 4074 0 obj <> /K 2 /P 4071 0 R /Pg 493 0 R /S/P /Type/StructElem>> endobj 4075 0 obj <> /K 3 /P 4071 0 R /Pg 493 0 R /S/P /Type/StructElem>> endobj 4076 0 obj <> /K 4 /P 4071 0 R /Pg 493 0 R /S/P /Type/StructElem>> endobj 4077 0 obj <> /K[4078 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4078 0 obj <> /K 5 /P 4077 0 R /Pg 493 0 R /S/P /Type/StructElem>> endobj 4079 0 obj <> endobj 4080 0 obj <> /K 0 /P 4079 0 R /Pg 498 0 R /S/P /Type/StructElem>> endobj 4081 0 obj <> /K 1 /P 4079 0 R /Pg 498 0 R /S/P /Type/StructElem>> endobj 4082 0 obj <> /K 2 /P 4079 0 R /Pg 498 0 R /S/P /Type/StructElem>> endobj 4083 0 obj <> /K 3 /P 4079 0 R /Pg 498 0 R /S/P /Type/StructElem>> endobj 4084 0 obj <> /K[4085 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4085 0 obj <> /K 4 /P 4084 0 R /Pg 498 0 R /S/P /Type/StructElem>> endobj 4086 0 obj <> endobj 4087 0 obj <> /K 0 /P 4086 0 R /Pg 503 0 R /S/P /Type/StructElem>> endobj 4088 0 obj <> /K 1 /P 4086 0 R /Pg 503 0 R /S/P /Type/StructElem>> endobj 4089 0 obj <> /K 2 /P 4086 0 R /Pg 503 0 R /S/P /Type/StructElem>> endobj 4090 0 obj <> /K 3 /P 4086 0 R /Pg 503 0 R /S/P /Type/StructElem>> endobj 4091 0 obj <> /K[4092 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4092 0 obj <> /K 4 /P 4091 0 R /Pg 503 0 R /S/P /Type/StructElem>> endobj 4093 0 obj <> endobj 4094 0 obj <> /K 0 /P 4093 0 R /Pg 508 0 R /S/P /Type/StructElem>> endobj 4095 0 obj <> /K 1 /P 4093 0 R /Pg 508 0 R /S/P /Type/StructElem>> endobj 4096 0 obj <> /K 2 /P 4093 0 R /Pg 508 0 R /S/P /Type/StructElem>> endobj 4097 0 obj <> /K[4098 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4098 0 obj <> /K 3 /P 4097 0 R /Pg 508 0 R /S/P /Type/StructElem>> endobj 4099 0 obj <> endobj 4100 0 obj <> /K 0 /P 4099 0 R /Pg 513 0 R /S/P /Type/StructElem>> endobj 4101 0 obj <> /K 1 /P 4099 0 R /Pg 513 0 R /S/P /Type/StructElem>> endobj 4102 0 obj <> /K 2 /P 4099 0 R /Pg 513 0 R /S/P /Type/StructElem>> endobj 4103 0 obj <> /K 3 /P 4099 0 R /Pg 513 0 R /S/P /Type/StructElem>> endobj 4104 0 obj <> /K 4 /P 4099 0 R /Pg 513 0 R /S/P /Type/StructElem>> endobj 4105 0 obj <> /K[4106 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4106 0 obj <> /K 5 /P 4105 0 R /Pg 513 0 R /S/P /Type/StructElem>> endobj 4107 0 obj <> endobj 4108 0 obj <> /K 0 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4109 0 obj <> /K 1 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4110 0 obj <> /K 2 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4111 0 obj <> /K 3 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4112 0 obj <> /K 4 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4113 0 obj <> /K 5 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4114 0 obj <> /K 6 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4115 0 obj <> /K 7 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4116 0 obj <> /K 8 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4117 0 obj <> /K 9 /P 4107 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4118 0 obj <> /K[4119 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4119 0 obj <> /K 10 /P 4118 0 R /Pg 518 0 R /S/P /Type/StructElem>> endobj 4120 0 obj <> endobj 4121 0 obj <> /K 0 /P 4120 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4122 0 obj <> /K 1 /P 4120 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4123 0 obj <> /K[4124 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4124 0 obj <> /K 2 /P 4123 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4125 0 obj <> /K[4126 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4126 0 obj <> /K 3 /P 4125 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4127 0 obj <> /K[4128 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4128 0 obj <> /K 4 /P 4127 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4129 0 obj <> /K[4130 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4130 0 obj <> /K 5 /P 4129 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4131 0 obj <> /K[4132 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4132 0 obj <> /K 6 /P 4131 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4133 0 obj <> /K[4134 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4134 0 obj <> /K 7 /P 4133 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4135 0 obj <> endobj 4136 0 obj <> /K 8 /P 4135 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4137 0 obj <> /K 9 /P 4135 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4138 0 obj <> /K 10 /P 4135 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4139 0 obj <> /K 11 /P 4135 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4140 0 obj <> /K 12 /P 4135 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4141 0 obj <> /K[4142 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4142 0 obj <> /K 13 /P 4141 0 R /Pg 523 0 R /S/P /Type/StructElem>> endobj 4143 0 obj <> /K[4144 0 R 4145 0 R 4146 0 R 4147 0 R 4148 0 R 4149 0 R 4150 0 R 4151 0 R 4152 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4144 0 obj <> /K 0 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4145 0 obj <> /K 1 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4146 0 obj <> /K 2 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4147 0 obj <> /K 3 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4148 0 obj <> /K 4 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4149 0 obj <> /K 5 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4150 0 obj <> /K 6 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4151 0 obj <> /K 7 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4152 0 obj <> /K 8 /P 4143 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4153 0 obj <> endobj 4154 0 obj <> /K 9 /P 4153 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4155 0 obj <> /K 10 /P 4153 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4156 0 obj <> endobj 4157 0 obj <> /K 11 /P 4156 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4158 0 obj <> /K 12 /P 4156 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4159 0 obj <> /K 13 /P 4156 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4160 0 obj <> /K[4161 0 R] /P 4156 0 R /S/Table /Type/StructElem>> endobj 4161 0 obj <> endobj 4162 0 obj <> /K[4163 0 R 4164 0 R] /P 4161 0 R /S/TD /Type/StructElem>> endobj 4163 0 obj <> /K 14 /P 4162 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4164 0 obj <> /K 15 /P 4162 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4165 0 obj <> /K[4166 0 R] /P 4161 0 R /S/TD /Type/StructElem>> endobj 4166 0 obj <> /K 16 /P 4165 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4167 0 obj <> /K 17 /P 4156 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4168 0 obj <> /K[4169 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4169 0 obj <> /K 18 /P 4168 0 R /Pg 528 0 R /S/P /Type/StructElem>> endobj 4170 0 obj <> endobj 4171 0 obj <> /K 0 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4172 0 obj <> /K 1 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4173 0 obj <> /K 2 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4174 0 obj <> /K 3 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4175 0 obj <> /K 4 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4176 0 obj <> /K 5 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4177 0 obj <> /K 6 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4178 0 obj <> /K 7 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4179 0 obj <> /K 8 /P 4170 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4180 0 obj <> /K[4181 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4181 0 obj <> /K 9 /P 4180 0 R /Pg 533 0 R /S/P /Type/StructElem>> endobj 4182 0 obj <> endobj 4183 0 obj <> /K 0 /P 4182 0 R /Pg 538 0 R /S/P /Type/StructElem>> endobj 4184 0 obj <> /K 1 /P 4182 0 R /Pg 538 0 R /S/P /Type/StructElem>> endobj 4185 0 obj <> /K 2 /P 4182 0 R /Pg 538 0 R /S/P /Type/StructElem>> endobj 4186 0 obj <> /K 3 /P 4182 0 R /Pg 538 0 R /S/P /Type/StructElem>> endobj 4187 0 obj <> /K 4 /P 4182 0 R /Pg 538 0 R /S/P /Type/StructElem>> endobj 4188 0 obj <> /K[4189 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4189 0 obj <> /K 5 /P 4188 0 R /Pg 538 0 R /S/P /Type/StructElem>> endobj 4190 0 obj <> endobj 4191 0 obj <> /K 0 /P 4190 0 R /Pg 543 0 R /S/P /Type/StructElem>> endobj 4192 0 obj <> /K 1 /P 4190 0 R /Pg 543 0 R /S/P /Type/StructElem>> endobj 4193 0 obj <> /K 2 /P 4190 0 R /Pg 543 0 R /S/P /Type/StructElem>> endobj 4194 0 obj <> /K[4195 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4195 0 obj <> /K 3 /P 4194 0 R /Pg 543 0 R /S/P /Type/StructElem>> endobj 4196 0 obj <> endobj 4197 0 obj <> /K 0 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4198 0 obj <> /K 1 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4199 0 obj <> /K 2 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4200 0 obj <> /K 3 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4201 0 obj <> /K 4 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4202 0 obj <> /K 5 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4203 0 obj <> /K 6 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4204 0 obj <> /K 7 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4205 0 obj <> /K 8 /P 4196 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4206 0 obj <> endobj 4207 0 obj <> /K 9 /P 4206 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4208 0 obj <> /K[4209 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4209 0 obj <> /K 10 /P 4208 0 R /Pg 548 0 R /S/P /Type/StructElem>> endobj 4210 0 obj <> endobj 4211 0 obj <> /K 0 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4212 0 obj <> /K 1 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4213 0 obj <> /K 2 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4214 0 obj <> /K 3 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4215 0 obj <> /K 4 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4216 0 obj <> /K 5 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4217 0 obj <> /K 6 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4218 0 obj <> /K[4219 0 R] /P 4210 0 R /S/Table /Type/StructElem>> endobj 4219 0 obj <> endobj 4220 0 obj <> /K[4221 0 R 4222 0 R 4223 0 R] /P 4219 0 R /S/TD /Type/StructElem>> endobj 4221 0 obj <> /K 7 /P 4220 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4222 0 obj <> /K 8 /P 4220 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4223 0 obj <> /K 9 /P 4220 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4224 0 obj <> /K[4225 0 R] /P 4219 0 R /S/TD /Type/StructElem>> endobj 4225 0 obj <> /K 10 /P 4224 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4226 0 obj <> /K 11 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4227 0 obj <> /K 12 /P 4210 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4228 0 obj <> /K[4229 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4229 0 obj <> /K 13 /P 4228 0 R /Pg 553 0 R /S/P /Type/StructElem>> endobj 4230 0 obj <> endobj 4231 0 obj <> /K 0 /P 4230 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4232 0 obj <> /K 1 /P 4230 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4233 0 obj <> /K 2 /P 4230 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4234 0 obj <> /K[4235 0 R 4248 0 R 4261 0 R] /P 4230 0 R /S/Table /Type/StructElem>> endobj 4235 0 obj <> endobj 4236 0 obj <> /K[4237 0 R] /P 4235 0 R /S/TD /Type/StructElem>> endobj 4237 0 obj <> /K 3 /P 4236 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4238 0 obj <> /K[4239 0 R] /P 4235 0 R /S/TD /Type/StructElem>> endobj 4239 0 obj <> /K 4 /P 4238 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4240 0 obj <> /K[4241 0 R] /P 4235 0 R /S/TD /Type/StructElem>> endobj 4241 0 obj <> /K 5 /P 4240 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4242 0 obj <> /K[4243 0 R] /P 4235 0 R /S/TD /Type/StructElem>> endobj 4243 0 obj <> /K 6 /P 4242 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4244 0 obj <> /K[4245 0 R] /P 4235 0 R /S/TD /Type/StructElem>> endobj 4245 0 obj <> /K 7 /P 4244 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4246 0 obj <> /K[4247 0 R] /P 4235 0 R /S/TD /Type/StructElem>> endobj 4247 0 obj <> /K 8 /P 4246 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4248 0 obj <> endobj 4249 0 obj <> /K[4250 0 R] /P 4248 0 R /S/TD /Type/StructElem>> endobj 4250 0 obj <> /K 9 /P 4249 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4251 0 obj <> /K[4252 0 R] /P 4248 0 R /S/TD /Type/StructElem>> endobj 4252 0 obj <> /K 10 /P 4251 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4253 0 obj <> /K[4254 0 R] /P 4248 0 R /S/TD /Type/StructElem>> endobj 4254 0 obj <> /K 11 /P 4253 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4255 0 obj <> /K[4256 0 R] /P 4248 0 R /S/TD /Type/StructElem>> endobj 4256 0 obj <> /K 12 /P 4255 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4257 0 obj <> /K[4258 0 R] /P 4248 0 R /S/TD /Type/StructElem>> endobj 4258 0 obj <> /K 13 /P 4257 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4259 0 obj <> /K[4260 0 R] /P 4248 0 R /S/TD /Type/StructElem>> endobj 4260 0 obj <> /K 14 /P 4259 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4261 0 obj <> endobj 4262 0 obj <> /K[4263 0 R] /P 4261 0 R /S/TD /Type/StructElem>> endobj 4263 0 obj <> /K 15 /P 4262 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4264 0 obj <> /K[4265 0 R] /P 4261 0 R /S/TD /Type/StructElem>> endobj 4265 0 obj <> /K 16 /P 4264 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4266 0 obj <> /K[4267 0 R] /P 4261 0 R /S/TD /Type/StructElem>> endobj 4267 0 obj <> /K 17 /P 4266 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4268 0 obj <> /K[4269 0 R] /P 4261 0 R /S/TD /Type/StructElem>> endobj 4269 0 obj <> /K 18 /P 4268 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4270 0 obj <> /K[4271 0 R] /P 4261 0 R /S/TD /Type/StructElem>> endobj 4271 0 obj <> /K 19 /P 4270 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4272 0 obj <> /K[4273 0 R] /P 4261 0 R /S/TD /Type/StructElem>> endobj 4273 0 obj <> /K 20 /P 4272 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4274 0 obj <> /K 21 /P 4230 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4275 0 obj <> /K 22 /P 4230 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4276 0 obj <> /K[4277 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4277 0 obj <> /K 23 /P 4276 0 R /Pg 558 0 R /S/P /Type/StructElem>> endobj 4278 0 obj <> endobj 4279 0 obj <> /K 0 /P 4278 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4280 0 obj <> /K[4281 0 R 4294 0 R 4307 0 R] /P 4278 0 R /S/Table /Type/StructElem>> endobj 4281 0 obj <> endobj 4282 0 obj <> /K[4283 0 R] /P 4281 0 R /S/TD /Type/StructElem>> endobj 4283 0 obj <> /K 1 /P 4282 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4284 0 obj <> /K[4285 0 R] /P 4281 0 R /S/TD /Type/StructElem>> endobj 4285 0 obj <> /K 2 /P 4284 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4286 0 obj <> /K[4287 0 R] /P 4281 0 R /S/TD /Type/StructElem>> endobj 4287 0 obj <> /K 3 /P 4286 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4288 0 obj <> /K[4289 0 R] /P 4281 0 R /S/TD /Type/StructElem>> endobj 4289 0 obj <> /K 4 /P 4288 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4290 0 obj <> /K[4291 0 R] /P 4281 0 R /S/TD /Type/StructElem>> endobj 4291 0 obj <> /K 5 /P 4290 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4292 0 obj <> /K[4293 0 R] /P 4281 0 R /S/TD /Type/StructElem>> endobj 4293 0 obj <> /K 6 /P 4292 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4294 0 obj <> endobj 4295 0 obj <> /K[4296 0 R] /P 4294 0 R /S/TD /Type/StructElem>> endobj 4296 0 obj <> /K 7 /P 4295 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4297 0 obj <> /K[4298 0 R] /P 4294 0 R /S/TD /Type/StructElem>> endobj 4298 0 obj <> /K 8 /P 4297 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4299 0 obj <> /K[4300 0 R] /P 4294 0 R /S/TD /Type/StructElem>> endobj 4300 0 obj <> /K 9 /P 4299 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4301 0 obj <> /K[4302 0 R] /P 4294 0 R /S/TD /Type/StructElem>> endobj 4302 0 obj <> /K 10 /P 4301 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4303 0 obj <> /K[4304 0 R] /P 4294 0 R /S/TD /Type/StructElem>> endobj 4304 0 obj <> /K 11 /P 4303 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4305 0 obj <> /K[4306 0 R] /P 4294 0 R /S/TD /Type/StructElem>> endobj 4306 0 obj <> /K 12 /P 4305 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4307 0 obj <> endobj 4308 0 obj <> /K[4309 0 R] /P 4307 0 R /S/TD /Type/StructElem>> endobj 4309 0 obj <> /K 13 /P 4308 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4310 0 obj <> /K[4311 0 R] /P 4307 0 R /S/TD /Type/StructElem>> endobj 4311 0 obj <> /K 14 /P 4310 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4312 0 obj <> /K[4313 0 R] /P 4307 0 R /S/TD /Type/StructElem>> endobj 4313 0 obj <> /K 15 /P 4312 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4314 0 obj <> /K[4315 0 R] /P 4307 0 R /S/TD /Type/StructElem>> endobj 4315 0 obj <> /K 16 /P 4314 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4316 0 obj <> /K[4317 0 R] /P 4307 0 R /S/TD /Type/StructElem>> endobj 4317 0 obj <> /K 17 /P 4316 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4318 0 obj <> /K[4319 0 R] /P 4307 0 R /S/TD /Type/StructElem>> endobj 4319 0 obj <> /K 18 /P 4318 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4320 0 obj <> /K 19 /P 4278 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4321 0 obj <> /K 20 /P 4278 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4322 0 obj <> /K[4323 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4323 0 obj <> /K 21 /P 4322 0 R /Pg 563 0 R /S/P /Type/StructElem>> endobj 4324 0 obj <> endobj 4325 0 obj <> /K 0 /P 4324 0 R /Pg 568 0 R /S/P /Type/StructElem>> endobj 4326 0 obj <> /K 1 /P 4324 0 R /Pg 568 0 R /S/P /Type/StructElem>> endobj 4327 0 obj <> /K 2 /P 4324 0 R /Pg 568 0 R /S/P /Type/StructElem>> endobj 4328 0 obj <> /K 3 /P 4324 0 R /Pg 568 0 R /S/P /Type/StructElem>> endobj 4329 0 obj <> /K 4 /P 4324 0 R /Pg 568 0 R /S/P /Type/StructElem>> endobj 4330 0 obj <> /K[4331 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4331 0 obj <> /K 5 /P 4330 0 R /Pg 568 0 R /S/P /Type/StructElem>> endobj 4332 0 obj <> endobj 4333 0 obj <> /K 0 /P 4332 0 R /Pg 573 0 R /S/P /Type/StructElem>> endobj 4334 0 obj <> /K 1 /P 4332 0 R /Pg 573 0 R /S/P /Type/StructElem>> endobj 4335 0 obj <> /K 2 /P 4332 0 R /Pg 573 0 R /S/P /Type/StructElem>> endobj 4336 0 obj <> /K[4337 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4337 0 obj <> /K 3 /P 4336 0 R /Pg 573 0 R /S/P /Type/StructElem>> endobj 4338 0 obj <> /K[4339 0 R 4358 0 R 4359 0 R 4360 0 R 4361 0 R 4362 0 R 4363 0 R 4364 0 R 4365 0 R 4366 0 R 4367 0 R 4368 0 R 4369 0 R 4378 0 R 4379 0 R 4380 0 R 4381 0 R 4382 0 R 4383 0 R 4384 0 R 4385 0 R 4386 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4339 0 obj <> /K[4340 0 R] /P 4338 0 R /S/Div /Type/StructElem>> endobj 4340 0 obj <> /K[4341 0 R 4348 0 R 4353 0 R] /P 4339 0 R /S/Table /Type/StructElem>> endobj 4341 0 obj <> endobj 4342 0 obj <> /K[4343 0 R] /P 4341 0 R /S/TD /Type/StructElem>> endobj 4343 0 obj <> /K 0 /P 4342 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4344 0 obj <> /K[4345 0 R] /P 4341 0 R /S/TD /Type/StructElem>> endobj 4345 0 obj <> /K 1 /P 4344 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4346 0 obj <> /K[4347 0 R] /P 4341 0 R /S/TD /Type/StructElem>> endobj 4347 0 obj <> /K 2 /P 4346 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4348 0 obj <> endobj 4349 0 obj <> /K[4350 0 R] /P 4348 0 R /S/TD /Type/StructElem>> endobj 4350 0 obj <> /K 3 /P 4349 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4351 0 obj <> /K[4352 0 R] /P 4348 0 R /S/TD /Type/StructElem>> endobj 4352 0 obj <> /K 4 /P 4351 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4353 0 obj <> endobj 4354 0 obj <> /K[4355 0 R] /P 4353 0 R /S/TD /Type/StructElem>> endobj 4355 0 obj <> /K 5 /P 4354 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4356 0 obj <> /K[4357 0 R] /P 4353 0 R /S/TD /Type/StructElem>> endobj 4357 0 obj <> /K 6 /P 4356 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4358 0 obj <> /K 7 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4359 0 obj <> /K 8 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4360 0 obj <> /K 9 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4361 0 obj <> /K 10 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4362 0 obj <> /K 11 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4363 0 obj <> /K 12 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4364 0 obj <> /K 13 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4365 0 obj <> /K 14 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4366 0 obj <> /K 15 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4367 0 obj <> /K 16 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4368 0 obj <> /K 17 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4369 0 obj <> /K[4370 0 R] /P 4338 0 R /S/Table /Type/StructElem>> endobj 4370 0 obj <> endobj 4371 0 obj <> /K[4372 0 R 4373 0 R 4374 0 R 4375 0 R 4376 0 R 4377 0 R] /P 4370 0 R /S/TD /Type/StructElem>> endobj 4372 0 obj <> /K 18 /P 4371 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4373 0 obj <> /K 19 /P 4371 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4374 0 obj <> /K 20 /P 4371 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4375 0 obj <> /K 21 /P 4371 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4376 0 obj <> /K 22 /P 4371 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4377 0 obj <> /K 23 /P 4371 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4378 0 obj <> /K 24 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4379 0 obj <> /K 25 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4380 0 obj <> /K 26 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4381 0 obj <> /K 27 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4382 0 obj <> /K 28 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4383 0 obj <> /K 29 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4384 0 obj <> /K 30 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4385 0 obj <> /K 31 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4386 0 obj <> /K 32 /P 4338 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4387 0 obj <> endobj 4388 0 obj <> /K 33 /P 4387 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4389 0 obj <> /K 34 /P 4387 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4390 0 obj <> /K[4391 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4391 0 obj <> /K 35 /P 4390 0 R /Pg 578 0 R /S/P /Type/StructElem>> endobj 4392 0 obj <> endobj 4393 0 obj <> /K 0 /P 4392 0 R /Pg 583 0 R /S/P /Type/StructElem>> endobj 4394 0 obj <> /K 1 /P 4392 0 R /Pg 583 0 R /S/P /Type/StructElem>> endobj 4395 0 obj <> /K 2 /P 4392 0 R /Pg 583 0 R /S/P /Type/StructElem>> endobj 4396 0 obj <> /K 3 /P 4392 0 R /Pg 583 0 R /S/P /Type/StructElem>> endobj 4397 0 obj <> /K[4398 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4398 0 obj <> /K 4 /P 4397 0 R /Pg 583 0 R /S/P /Type/StructElem>> endobj 4399 0 obj <> /K[4400 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4400 0 obj <> /K 0 /P 4399 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4401 0 obj <> /K[4402 0 R 4403 0 R 4404 0 R 4405 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4402 0 obj <> /K 1 /P 4401 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4403 0 obj <> /K 2 /P 4401 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4404 0 obj <> /K 3 /P 4401 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4405 0 obj <> /K 4 /P 4401 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4406 0 obj <> endobj 4407 0 obj <> /K 5 /P 4406 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4408 0 obj <> endobj 4409 0 obj <> /K[4410 0 R 4449 0 R 4486 0 R 4525 0 R 4564 0 R 4599 0 R 4638 0 R 4677 0 R 4714 0 R 4753 0 R 4792 0 R 4816 0 R] /P 4408 0 R /S/Table /Type/StructElem>> endobj 4410 0 obj <> endobj 4411 0 obj <> /K[4412 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4412 0 obj <> /K[6 4413 0 R 4414 0 R] /P 4411 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4413 0 obj <> endobj 4414 0 obj <> endobj 4415 0 obj <> /K[4416 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4416 0 obj <> /K[9 4417 0 R 4418 0 R] /P 4415 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4417 0 obj <> endobj 4418 0 obj <> endobj 4419 0 obj <> /K[4420 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4420 0 obj <> /K[12 4421 0 R 4422 0 R] /P 4419 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4421 0 obj <> endobj 4422 0 obj <> endobj 4423 0 obj <> /K[4424 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4424 0 obj <> /K[15 4425 0 R 4426 0 R] /P 4423 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4425 0 obj <> endobj 4426 0 obj <> endobj 4427 0 obj <> /K[4428 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4428 0 obj <> /K[18 4429 0 R 4430 0 R] /P 4427 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4429 0 obj <> endobj 4430 0 obj <> endobj 4431 0 obj <> /K[4432 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4432 0 obj <> /K[21 4433 0 R 4434 0 R] /P 4431 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4433 0 obj <> endobj 4434 0 obj <> endobj 4435 0 obj <> /K[4436 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4436 0 obj <> /K[24 4437 0 R 4438 0 R] /P 4435 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4437 0 obj <> endobj 4438 0 obj <> endobj 4439 0 obj <> /K[4440 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4440 0 obj <> /K[27 4441 0 R 4442 0 R] /P 4439 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4441 0 obj <> endobj 4442 0 obj <> endobj 4443 0 obj <> /K[4444 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4444 0 obj <> /K[30 4445 0 R 4446 0 R] /P 4443 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4445 0 obj <> endobj 4446 0 obj <> endobj 4447 0 obj <> /K[4448 0 R] /P 4410 0 R /S/TD /Type/StructElem>> endobj 4448 0 obj <> /K 33 /P 4447 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4449 0 obj <> endobj 4450 0 obj <> /K[4451 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4451 0 obj <> /K 34 /P 4450 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4452 0 obj <> /K[4453 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4453 0 obj <> /K[35 4454 0 R 4455 0 R] /P 4452 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4454 0 obj <> endobj 4455 0 obj <> endobj 4456 0 obj <> /K[4457 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4457 0 obj <> /K[38 4458 0 R 4459 0 R] /P 4456 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4458 0 obj <> endobj 4459 0 obj <> endobj 4460 0 obj <> /K[4461 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4461 0 obj <> /K[41 4462 0 R 4463 0 R] /P 4460 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4462 0 obj <> endobj 4463 0 obj <> endobj 4464 0 obj <> /K[4465 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4465 0 obj <> /K[44 4466 0 R 4467 0 R] /P 4464 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4466 0 obj <> endobj 4467 0 obj <> endobj 4468 0 obj <> /K[4469 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4469 0 obj <> /K[47 4470 0 R 4471 0 R] /P 4468 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4470 0 obj <> endobj 4471 0 obj <> endobj 4472 0 obj <> /K[4473 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4473 0 obj <> /K[50 4474 0 R 4475 0 R] /P 4472 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4474 0 obj <> endobj 4475 0 obj <> endobj 4476 0 obj <> /K[4477 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4477 0 obj <> /K[53 4478 0 R 4479 0 R] /P 4476 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4478 0 obj <> endobj 4479 0 obj <> endobj 4480 0 obj <> /K[4481 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4481 0 obj <> /K[56 4482 0 R 4483 0 R] /P 4480 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4482 0 obj <> endobj 4483 0 obj <> endobj 4484 0 obj <> /K[4485 0 R] /P 4449 0 R /S/TD /Type/StructElem>> endobj 4485 0 obj <> /K 59 /P 4484 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4486 0 obj <> endobj 4487 0 obj <> /K[4488 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4488 0 obj <> /K[60 4489 0 R 4490 0 R] /P 4487 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4489 0 obj <> endobj 4490 0 obj <> endobj 4491 0 obj <> /K[4492 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4492 0 obj <> /K[63 4493 0 R 4494 0 R] /P 4491 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4493 0 obj <> endobj 4494 0 obj <> endobj 4495 0 obj <> /K[4496 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4496 0 obj <> /K[66 4497 0 R 4498 0 R] /P 4495 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4497 0 obj <> endobj 4498 0 obj <> endobj 4499 0 obj <> /K[4500 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4500 0 obj <> /K[69 4501 0 R 4502 0 R] /P 4499 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4501 0 obj <> endobj 4502 0 obj <> endobj 4503 0 obj <> /K[4504 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4504 0 obj <> /K[72 4505 0 R 4506 0 R] /P 4503 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4505 0 obj <> endobj 4506 0 obj <> endobj 4507 0 obj <> /K[4508 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4508 0 obj <> /K[75 4509 0 R 4510 0 R] /P 4507 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4509 0 obj <> endobj 4510 0 obj <> endobj 4511 0 obj <> /K[4512 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4512 0 obj <> /K[78 4513 0 R 4514 0 R] /P 4511 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4513 0 obj <> endobj 4514 0 obj <> endobj 4515 0 obj <> /K[4516 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4516 0 obj <> /K 81 /P 4515 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4517 0 obj <> /K[4518 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4518 0 obj <> /K[82 4519 0 R 4520 0 R] /P 4517 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4519 0 obj <> endobj 4520 0 obj <> endobj 4521 0 obj <> /K[4522 0 R] /P 4486 0 R /S/TD /Type/StructElem>> endobj 4522 0 obj <> /K[85 4523 0 R 4524 0 R] /P 4521 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4523 0 obj <> endobj 4524 0 obj <> endobj 4525 0 obj <> endobj 4526 0 obj <> /K[4527 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4527 0 obj <> /K[88 4528 0 R 4529 0 R] /P 4526 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4528 0 obj <> endobj 4529 0 obj <> endobj 4530 0 obj <> /K[4531 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4531 0 obj <> /K[91 4532 0 R 4533 0 R] /P 4530 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4532 0 obj <> endobj 4533 0 obj <> endobj 4534 0 obj <> /K[4535 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4535 0 obj <> /K[94 4536 0 R 4537 0 R] /P 4534 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4536 0 obj <> endobj 4537 0 obj <> endobj 4538 0 obj <> /K[4539 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4539 0 obj <> /K[97 4540 0 R 4541 0 R] /P 4538 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4540 0 obj <> endobj 4541 0 obj <> endobj 4542 0 obj <> /K[4543 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4543 0 obj <> /K[100 4544 0 R 4545 0 R] /P 4542 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4544 0 obj <> endobj 4545 0 obj <> endobj 4546 0 obj <> /K[4547 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4547 0 obj <> /K[103 4548 0 R 4549 0 R] /P 4546 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4548 0 obj <> endobj 4549 0 obj <> endobj 4550 0 obj <> /K[4551 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4551 0 obj <> /K[106 4552 0 R 4553 0 R] /P 4550 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4552 0 obj <> endobj 4553 0 obj <> endobj 4554 0 obj <> /K[4555 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4555 0 obj <> /K 109 /P 4554 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4556 0 obj <> /K[4557 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4557 0 obj <> /K[110 4558 0 R 4559 0 R] /P 4556 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4558 0 obj <> endobj 4559 0 obj <> endobj 4560 0 obj <> /K[4561 0 R] /P 4525 0 R /S/TD /Type/StructElem>> endobj 4561 0 obj <> /K[113 4562 0 R 4563 0 R] /P 4560 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4562 0 obj <> endobj 4563 0 obj <> endobj 4564 0 obj <> endobj 4565 0 obj <> /K[4566 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4566 0 obj <> /K 116 /P 4565 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4567 0 obj <> /K[4568 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4568 0 obj <> /K[117 4569 0 R 4570 0 R] /P 4567 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4569 0 obj <> endobj 4570 0 obj <> endobj 4571 0 obj <> /K[4572 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4572 0 obj <> /K[120 4573 0 R 4574 0 R] /P 4571 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4573 0 obj <> endobj 4574 0 obj <> endobj 4575 0 obj <> /K[4576 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4576 0 obj <> /K[123 4577 0 R 4578 0 R] /P 4575 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4577 0 obj <> endobj 4578 0 obj <> endobj 4579 0 obj <> /K[4580 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4580 0 obj <> /K[126 4581 0 R 4582 0 R] /P 4579 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4581 0 obj <> endobj 4582 0 obj <> endobj 4583 0 obj <> /K[4584 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4584 0 obj <> /K[129 4585 0 R 4586 0 R] /P 4583 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4585 0 obj <> endobj 4586 0 obj <> endobj 4587 0 obj <> /K[4588 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4588 0 obj <> /K[132 4589 0 R 4590 0 R] /P 4587 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4589 0 obj <> endobj 4590 0 obj <> endobj 4591 0 obj <> /K[4592 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4592 0 obj <> /K 135 /P 4591 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4593 0 obj <> /K[4594 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4594 0 obj <> /K[136 4595 0 R 4596 0 R] /P 4593 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4595 0 obj <> endobj 4596 0 obj <> endobj 4597 0 obj <> /K[4598 0 R] /P 4564 0 R /S/TD /Type/StructElem>> endobj 4598 0 obj <> /K 139 /P 4597 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4599 0 obj <> endobj 4600 0 obj <> /K[4601 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4601 0 obj <> /K[140 4602 0 R 4603 0 R] /P 4600 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4602 0 obj <> endobj 4603 0 obj <> endobj 4604 0 obj <> /K[4605 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4605 0 obj <> /K 143 /P 4604 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4606 0 obj <> /K[4607 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4607 0 obj <> /K[144 4608 0 R 4609 0 R] /P 4606 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4608 0 obj <> endobj 4609 0 obj <> endobj 4610 0 obj <> /K[4611 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4611 0 obj <> /K[147 4612 0 R 4613 0 R] /P 4610 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4612 0 obj <> endobj 4613 0 obj <> endobj 4614 0 obj <> /K[4615 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4615 0 obj <> /K[150 4616 0 R 4617 0 R] /P 4614 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4616 0 obj <> endobj 4617 0 obj <> endobj 4618 0 obj <> /K[4619 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4619 0 obj <> /K[153 4620 0 R 4621 0 R] /P 4618 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4620 0 obj <> endobj 4621 0 obj <> endobj 4622 0 obj <> /K[4623 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4623 0 obj <> /K[156 4624 0 R 4625 0 R] /P 4622 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4624 0 obj <> endobj 4625 0 obj <> endobj 4626 0 obj <> /K[4627 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4627 0 obj <> /K[159 4628 0 R 4629 0 R] /P 4626 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4628 0 obj <> endobj 4629 0 obj <> endobj 4630 0 obj <> /K[4631 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4631 0 obj <> /K[162 4632 0 R 4633 0 R] /P 4630 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4632 0 obj <> endobj 4633 0 obj <> endobj 4634 0 obj <> /K[4635 0 R] /P 4599 0 R /S/TD /Type/StructElem>> endobj 4635 0 obj <> /K[165 4636 0 R 4637 0 R] /P 4634 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4636 0 obj <> endobj 4637 0 obj <> endobj 4638 0 obj <> endobj 4639 0 obj <> /K[4640 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4640 0 obj <> /K[168 4641 0 R 4642 0 R] /P 4639 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4641 0 obj <> endobj 4642 0 obj <> endobj 4643 0 obj <> /K[4644 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4644 0 obj <> /K[171 4645 0 R 4646 0 R] /P 4643 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4645 0 obj <> endobj 4646 0 obj <> endobj 4647 0 obj <> /K[4648 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4648 0 obj <> /K 174 /P 4647 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4649 0 obj <> /K[4650 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4650 0 obj <> /K[175 4651 0 R 4652 0 R] /P 4649 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4651 0 obj <> endobj 4652 0 obj <> endobj 4653 0 obj <> /K[4654 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4654 0 obj <> /K[178 4655 0 R 4656 0 R] /P 4653 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4655 0 obj <> endobj 4656 0 obj <> endobj 4657 0 obj <> /K[4658 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4658 0 obj <> /K[181 4659 0 R 4660 0 R] /P 4657 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4659 0 obj <> endobj 4660 0 obj <> endobj 4661 0 obj <> /K[4662 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4662 0 obj <> /K[184 4663 0 R 4664 0 R] /P 4661 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4663 0 obj <> endobj 4664 0 obj <> endobj 4665 0 obj <> /K[4666 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4666 0 obj <> /K[187 4667 0 R 4668 0 R] /P 4665 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4667 0 obj <> endobj 4668 0 obj <> endobj 4669 0 obj <> /K[4670 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4670 0 obj <> /K[190 4671 0 R 4672 0 R] /P 4669 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4671 0 obj <> endobj 4672 0 obj <> endobj 4673 0 obj <> /K[4674 0 R] /P 4638 0 R /S/TD /Type/StructElem>> endobj 4674 0 obj <> /K[193 4675 0 R 4676 0 R] /P 4673 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4675 0 obj <> endobj 4676 0 obj <> endobj 4677 0 obj <> endobj 4678 0 obj <> /K[4679 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4679 0 obj <> /K 196 /P 4678 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4680 0 obj <> /K[4681 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4681 0 obj <> /K[197 4682 0 R 4683 0 R] /P 4680 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4682 0 obj <> endobj 4683 0 obj <> endobj 4684 0 obj <> /K[4685 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4685 0 obj <> /K[200 4686 0 R 4687 0 R] /P 4684 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4686 0 obj <> endobj 4687 0 obj <> endobj 4688 0 obj <> /K[4689 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4689 0 obj <> /K[203 4690 0 R 4691 0 R] /P 4688 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4690 0 obj <> endobj 4691 0 obj <> endobj 4692 0 obj <> /K[4693 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4693 0 obj <> /K[206 4694 0 R 4695 0 R] /P 4692 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4694 0 obj <> endobj 4695 0 obj <> endobj 4696 0 obj <> /K[4697 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4697 0 obj <> /K[209 4698 0 R 4699 0 R] /P 4696 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4698 0 obj <> endobj 4699 0 obj <> endobj 4700 0 obj <> /K[4701 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4701 0 obj <> /K[212 4702 0 R 4703 0 R] /P 4700 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4702 0 obj <> endobj 4703 0 obj <> endobj 4704 0 obj <> /K[4705 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4705 0 obj <> /K[215 4706 0 R 4707 0 R] /P 4704 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4706 0 obj <> endobj 4707 0 obj <> endobj 4708 0 obj <> /K[4709 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4709 0 obj <> /K[218 4710 0 R 4711 0 R] /P 4708 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4710 0 obj <> endobj 4711 0 obj <> endobj 4712 0 obj <> /K[4713 0 R] /P 4677 0 R /S/TD /Type/StructElem>> endobj 4713 0 obj <> /K 221 /P 4712 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4714 0 obj <> endobj 4715 0 obj <> /K[4716 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4716 0 obj <> /K 222 /P 4715 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4717 0 obj <> /K[4718 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4718 0 obj <> /K[223 4719 0 R 4720 0 R] /P 4717 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4719 0 obj <> endobj 4720 0 obj <> endobj 4721 0 obj <> /K[4722 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4722 0 obj <> /K[226 4723 0 R 4724 0 R] /P 4721 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4723 0 obj <> endobj 4724 0 obj <> endobj 4725 0 obj <> /K[4726 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4726 0 obj <> /K[229 4727 0 R 4728 0 R] /P 4725 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4727 0 obj <> endobj 4728 0 obj <> endobj 4729 0 obj <> /K[4730 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4730 0 obj <> /K[232 4731 0 R 4732 0 R] /P 4729 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4731 0 obj <> endobj 4732 0 obj <> endobj 4733 0 obj <> /K[4734 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4734 0 obj <> /K[235 4735 0 R 4736 0 R] /P 4733 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4735 0 obj <> endobj 4736 0 obj <> endobj 4737 0 obj <> /K[4738 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4738 0 obj <> /K[238 4739 0 R 4740 0 R] /P 4737 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4739 0 obj <> endobj 4740 0 obj <> endobj 4741 0 obj <> /K[4742 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4742 0 obj <> /K[241 4743 0 R 4744 0 R] /P 4741 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4743 0 obj <> endobj 4744 0 obj <> endobj 4745 0 obj <> /K[4746 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4746 0 obj <> /K[244 4747 0 R 4748 0 R] /P 4745 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4747 0 obj <> endobj 4748 0 obj <> endobj 4749 0 obj <> /K[4750 0 R] /P 4714 0 R /S/TD /Type/StructElem>> endobj 4750 0 obj <> /K[247 4751 0 R 4752 0 R] /P 4749 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4751 0 obj <> endobj 4752 0 obj <> endobj 4753 0 obj <> endobj 4754 0 obj <> /K[4755 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4755 0 obj <> /K 250 /P 4754 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4756 0 obj <> /K[4757 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4757 0 obj <> /K[251 4758 0 R 4759 0 R] /P 4756 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4758 0 obj <> endobj 4759 0 obj <> endobj 4760 0 obj <> /K[4761 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4761 0 obj <> /K[254 4762 0 R 4763 0 R] /P 4760 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4762 0 obj <> endobj 4763 0 obj <> endobj 4764 0 obj <> /K[4765 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4765 0 obj <> /K[257 4766 0 R 4767 0 R] /P 4764 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4766 0 obj <> endobj 4767 0 obj <> endobj 4768 0 obj <> /K[4769 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4769 0 obj <> /K[260 4770 0 R 4771 0 R] /P 4768 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4770 0 obj <> endobj 4771 0 obj <> endobj 4772 0 obj <> /K[4773 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4773 0 obj <> /K[263 4774 0 R 4775 0 R] /P 4772 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4774 0 obj <> endobj 4775 0 obj <> endobj 4776 0 obj <> /K[4777 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4777 0 obj <> /K[266 4778 0 R 4779 0 R] /P 4776 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4778 0 obj <> endobj 4779 0 obj <> endobj 4780 0 obj <> /K[4781 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4781 0 obj <> /K[269 4782 0 R 4783 0 R] /P 4780 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4782 0 obj <> endobj 4783 0 obj <> endobj 4784 0 obj <> /K[4785 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4785 0 obj <> /K[272 4786 0 R 4787 0 R] /P 4784 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4786 0 obj <> endobj 4787 0 obj <> endobj 4788 0 obj <> /K[4789 0 R] /P 4753 0 R /S/TD /Type/StructElem>> endobj 4789 0 obj <> /K[275 4790 0 R 4791 0 R] /P 4788 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4790 0 obj <> endobj 4791 0 obj <> endobj 4792 0 obj <> endobj 4793 0 obj <> /K[4794 0 R 4795 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4794 0 obj <> /K 278 /P 4793 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4795 0 obj <> /K 279 /P 4793 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4796 0 obj <> /K[4797 0 R 4798 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4797 0 obj <> /K 280 /P 4796 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4798 0 obj <> /K 281 /P 4796 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4799 0 obj <> /K[4800 0 R 4801 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4800 0 obj <> /K 282 /P 4799 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4801 0 obj <> /K 283 /P 4799 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4802 0 obj <> /K[4803 0 R 4804 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4803 0 obj <> /K 284 /P 4802 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4804 0 obj <> /K 285 /P 4802 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4805 0 obj <> /K[4806 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4806 0 obj <> /K 286 /P 4805 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4807 0 obj <> /K[4808 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4808 0 obj <> /K 287 /P 4807 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4809 0 obj <> /K[4810 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4810 0 obj <> /K 288 /P 4809 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4811 0 obj <> /K[4812 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4812 0 obj <> /K 289 /P 4811 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4813 0 obj <> /K[4814 0 R 4815 0 R] /P 4792 0 R /S/TD /Type/StructElem>> endobj 4814 0 obj <> /K 290 /P 4813 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4815 0 obj <> /K 291 /P 4813 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4816 0 obj <> endobj 4817 0 obj <> /K[4818 0 R] /P 4816 0 R /S/TD /Type/StructElem>> endobj 4818 0 obj <> /K 292 /P 4817 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4819 0 obj <> endobj 4820 0 obj <> /K 293 /P 4819 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4821 0 obj <> /K 294 /P 4819 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4822 0 obj <> /K[4823 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4823 0 obj <> /K 295 /P 4822 0 R /Pg 588 0 R /S/P /Type/StructElem>> endobj 4824 0 obj <> /K[4825 0 R 4826 0 R 4827 0 R 4828 0 R 4829 0 R 4830 0 R 4831 0 R 4832 0 R 4833 0 R 4834 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4825 0 obj <> /K 0 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4826 0 obj <> /K 1 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4827 0 obj <> /K 2 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4828 0 obj <> /K 3 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4829 0 obj <> /K 4 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4830 0 obj <> /K 5 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4831 0 obj <> /K 6 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4832 0 obj <> /K 7 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4833 0 obj <> /K 8 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4834 0 obj <> /K 9 /P 4824 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4835 0 obj <> endobj 4836 0 obj <> /K 10 /P 4835 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4837 0 obj <> /K 11 /P 4835 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4838 0 obj <> /K 12 /P 4835 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4839 0 obj <> /K[4840 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4840 0 obj <> /K 13 /P 4839 0 R /Pg 593 0 R /S/P /Type/StructElem>> endobj 4841 0 obj <> endobj 4842 0 obj <> /K 0 /P 4841 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4843 0 obj <> /K 1 /P 4841 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4844 0 obj <> /K 2 /P 4841 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4845 0 obj <> /K 3 /P 4841 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4846 0 obj <> /K 4 /P 4841 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4847 0 obj <> /K 5 /P 4841 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4848 0 obj <> /K 6 /P 4841 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4849 0 obj <> /K[4850 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4850 0 obj <> /K 7 /P 4849 0 R /Pg 598 0 R /S/P /Type/StructElem>> endobj 4851 0 obj <> /K[4852 0 R 4853 0 R 4854 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4852 0 obj <> /K 0 /P 4851 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4853 0 obj <> /K 1 /P 4851 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4854 0 obj <> /K 2 /P 4851 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4855 0 obj <> endobj 4856 0 obj <> /K 3 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4857 0 obj <> /K 4 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4858 0 obj <> /K 5 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4859 0 obj <> /K 6 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4860 0 obj <> /K 7 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4861 0 obj <> /K[4862 0 R] /P 4855 0 R /S/Table /Type/StructElem>> endobj 4862 0 obj <> endobj 4863 0 obj <> /K[4864 0 R 4865 0 R 4866 0 R 4867 0 R] /P 4862 0 R /S/TD /Type/StructElem>> endobj 4864 0 obj <> /K 8 /P 4863 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4865 0 obj <> /K 9 /P 4863 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4866 0 obj <> /K 10 /P 4863 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4867 0 obj <> /K 11 /P 4863 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4868 0 obj <> /K[4869 0 R] /P 4862 0 R /S/TD /Type/StructElem>> endobj 4869 0 obj <> /K 12 /P 4868 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4870 0 obj <> /K 13 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4871 0 obj <> /K 14 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4872 0 obj <> /K 15 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4873 0 obj <> /K 16 /P 4855 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4874 0 obj <> /K[4875 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4875 0 obj <> /K 17 /P 4874 0 R /Pg 603 0 R /S/P /Type/StructElem>> endobj 4876 0 obj <> endobj 4877 0 obj <> /K 0 /P 4876 0 R /Pg 611 0 R /S/P /Type/StructElem>> endobj 4878 0 obj <> /K 1 /P 4876 0 R /Pg 611 0 R /S/P /Type/StructElem>> endobj 4879 0 obj <> /K 2 /P 4876 0 R /Pg 611 0 R /S/P /Type/StructElem>> endobj 4880 0 obj <> /K 3 /P 4876 0 R /Pg 611 0 R /S/P /Type/StructElem>> endobj 4881 0 obj <> /K 4 /P 4876 0 R /Pg 611 0 R /S/P /Type/StructElem>> endobj 4882 0 obj <> /K[4883 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4883 0 obj <> /K 5 /P 4882 0 R /Pg 611 0 R /S/P /Type/StructElem>> endobj 4884 0 obj <> endobj 4885 0 obj <> /K 0 /P 4884 0 R /Pg 616 0 R /S/P /Type/StructElem>> endobj 4886 0 obj <> /K 1 /P 4884 0 R /Pg 616 0 R /S/P /Type/StructElem>> endobj 4887 0 obj <> /K 2 /P 4884 0 R /Pg 616 0 R /S/P /Type/StructElem>> endobj 4888 0 obj <> /K 3 /P 4884 0 R /Pg 616 0 R /S/P /Type/StructElem>> endobj 4889 0 obj <> /K[4890 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4890 0 obj <> /K 4 /P 4889 0 R /Pg 616 0 R /S/P /Type/StructElem>> endobj 4891 0 obj <> endobj 4892 0 obj <> /K 0 /P 4891 0 R /Pg 621 0 R /S/P /Type/StructElem>> endobj 4893 0 obj <> /K 1 /P 4891 0 R /Pg 621 0 R /S/P /Type/StructElem>> endobj 4894 0 obj <> /K 2 /P 4891 0 R /Pg 621 0 R /S/P /Type/StructElem>> endobj 4895 0 obj <> /K[4896 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4896 0 obj <> /K 3 /P 4895 0 R /Pg 621 0 R /S/P /Type/StructElem>> endobj 4897 0 obj <> endobj 4898 0 obj <> /K 0 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4899 0 obj <> /K 1 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4900 0 obj <> /K 2 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4901 0 obj <> /K 3 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4902 0 obj <> /K 4 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4903 0 obj <> /K 5 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4904 0 obj <> /K 6 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4905 0 obj <> /K 7 /P 4897 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4906 0 obj <> /K[4907 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4907 0 obj <> /K 8 /P 4906 0 R /Pg 626 0 R /S/P /Type/StructElem>> endobj 4908 0 obj <> endobj 4909 0 obj <> /K 0 /P 4908 0 R /Pg 631 0 R /S/P /Type/StructElem>> endobj 4910 0 obj <> /K 1 /P 4908 0 R /Pg 631 0 R /S/P /Type/StructElem>> endobj 4911 0 obj <> /K 2 /P 4908 0 R /Pg 631 0 R /S/P /Type/StructElem>> endobj 4912 0 obj <> /K 3 /P 4908 0 R /Pg 631 0 R /S/P /Type/StructElem>> endobj 4913 0 obj <> /K 4 /P 4908 0 R /Pg 631 0 R /S/P /Type/StructElem>> endobj 4914 0 obj <> /K 5 /P 4908 0 R /Pg 631 0 R /S/P /Type/StructElem>> endobj 4915 0 obj <> /K[4916 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4916 0 obj <> /K 6 /P 4915 0 R /Pg 631 0 R /S/P /Type/StructElem>> endobj 4917 0 obj <> endobj 4918 0 obj <> /K 0 /P 4917 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4919 0 obj <> /K 1 /P 4917 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4920 0 obj <> /K 2 /P 4917 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4921 0 obj <> /K 3 /P 4917 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4922 0 obj <> /K 4 /P 4917 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4923 0 obj <> /K 5 /P 4917 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4924 0 obj <> /K 6 /P 4917 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4925 0 obj <> /K[4926 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 4926 0 obj <> /K 7 /P 4925 0 R /Pg 636 0 R /S/P /Type/StructElem>> endobj 4927 0 obj <> endobj 4928 0 obj <> /K 0 /P 4927 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4929 0 obj <> /K[4930 0 R 4935 0 R 4942 0 R 4955 0 R 4970 0 R 4985 0 R 5000 0 R 5005 0 R 5012 0 R 5025 0 R 5040 0 R 5055 0 R] /P 4927 0 R /S/Table /Type/StructElem>> endobj 4930 0 obj <> endobj 4931 0 obj <> /K[4932 0 R] /P 4930 0 R /S/TD /Type/StructElem>> endobj 4932 0 obj <> /K 1 /P 4931 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4933 0 obj <> /K[4934 0 R] /P 4930 0 R /S/TD /Type/StructElem>> endobj 4934 0 obj <> /K 2 /P 4933 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4935 0 obj <> endobj 4936 0 obj <> /K[4937 0 R] /P 4935 0 R /S/TD /Type/StructElem>> endobj 4937 0 obj <> /K 3 /P 4936 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4938 0 obj <> /K[4939 0 R] /P 4935 0 R /S/TD /Type/StructElem>> endobj 4939 0 obj <> /K 4 /P 4938 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4940 0 obj <> /K[4941 0 R] /P 4935 0 R /S/TD /Type/StructElem>> endobj 4941 0 obj <> /K 5 /P 4940 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4942 0 obj <> endobj 4943 0 obj <> /K[4944 0 R] /P 4942 0 R /S/TD /Type/StructElem>> endobj 4944 0 obj <> /K 6 /P 4943 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4945 0 obj <> /K[4946 0 R] /P 4942 0 R /S/TD /Type/StructElem>> endobj 4946 0 obj <> /K 7 /P 4945 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4947 0 obj <> /K[4948 0 R] /P 4942 0 R /S/TD /Type/StructElem>> endobj 4948 0 obj <> /K 8 /P 4947 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4949 0 obj <> /K[4950 0 R] /P 4942 0 R /S/TD /Type/StructElem>> endobj 4950 0 obj <> /K 9 /P 4949 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4951 0 obj <> /K[4952 0 R] /P 4942 0 R /S/TD /Type/StructElem>> endobj 4952 0 obj <> /K 10 /P 4951 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4953 0 obj <> /K[4954 0 R] /P 4942 0 R /S/TD /Type/StructElem>> endobj 4954 0 obj <> /K 11 /P 4953 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4955 0 obj <> endobj 4956 0 obj <> /K[4957 0 R] /P 4955 0 R /S/TD /Type/StructElem>> endobj 4957 0 obj <> /K 12 /P 4956 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4958 0 obj <> /K[4959 0 R] /P 4955 0 R /S/TD /Type/StructElem>> endobj 4959 0 obj <> /K 13 /P 4958 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4960 0 obj <> /K[4961 0 R] /P 4955 0 R /S/TD /Type/StructElem>> endobj 4961 0 obj <> /K 14 /P 4960 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4962 0 obj <> /K[4963 0 R] /P 4955 0 R /S/TD /Type/StructElem>> endobj 4963 0 obj <> /K 15 /P 4962 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4964 0 obj <> /K[4965 0 R] /P 4955 0 R /S/TD /Type/StructElem>> endobj 4965 0 obj <> /K 16 /P 4964 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4966 0 obj <> /K[4967 0 R] /P 4955 0 R /S/TD /Type/StructElem>> endobj 4967 0 obj <> /K 17 /P 4966 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4968 0 obj <> /K[4969 0 R] /P 4955 0 R /S/TD /Type/StructElem>> endobj 4969 0 obj <> /K 18 /P 4968 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4970 0 obj <> endobj 4971 0 obj <> /K[4972 0 R] /P 4970 0 R /S/TD /Type/StructElem>> endobj 4972 0 obj <> /K 19 /P 4971 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4973 0 obj <> /K[4974 0 R] /P 4970 0 R /S/TD /Type/StructElem>> endobj 4974 0 obj <> /K 20 /P 4973 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4975 0 obj <> /K[4976 0 R] /P 4970 0 R /S/TD /Type/StructElem>> endobj 4976 0 obj <> /K 21 /P 4975 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4977 0 obj <> /K[4978 0 R] /P 4970 0 R /S/TD /Type/StructElem>> endobj 4978 0 obj <> /K 22 /P 4977 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4979 0 obj <> /K[4980 0 R] /P 4970 0 R /S/TD /Type/StructElem>> endobj 4980 0 obj <> /K 23 /P 4979 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4981 0 obj <> /K[4982 0 R] /P 4970 0 R /S/TD /Type/StructElem>> endobj 4982 0 obj <> /K 24 /P 4981 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4983 0 obj <> /K[4984 0 R] /P 4970 0 R /S/TD /Type/StructElem>> endobj 4984 0 obj <> /K 25 /P 4983 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4985 0 obj <> endobj 4986 0 obj <> /K[4987 0 R] /P 4985 0 R /S/TD /Type/StructElem>> endobj 4987 0 obj <> /K 26 /P 4986 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4988 0 obj <> /K[4989 0 R] /P 4985 0 R /S/TD /Type/StructElem>> endobj 4989 0 obj <> /K 27 /P 4988 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4990 0 obj <> /K[4991 0 R] /P 4985 0 R /S/TD /Type/StructElem>> endobj 4991 0 obj <> /K 28 /P 4990 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4992 0 obj <> /K[4993 0 R] /P 4985 0 R /S/TD /Type/StructElem>> endobj 4993 0 obj <> /K 29 /P 4992 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4994 0 obj <> /K[4995 0 R] /P 4985 0 R /S/TD /Type/StructElem>> endobj 4995 0 obj <> /K 30 /P 4994 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4996 0 obj <> /K[4997 0 R] /P 4985 0 R /S/TD /Type/StructElem>> endobj 4997 0 obj <> /K 31 /P 4996 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 4998 0 obj <> /K[4999 0 R] /P 4985 0 R /S/TD /Type/StructElem>> endobj 4999 0 obj <> /K 32 /P 4998 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5000 0 obj <> endobj 5001 0 obj <> /K[5002 0 R] /P 5000 0 R /S/TD /Type/StructElem>> endobj 5002 0 obj <> /K 33 /P 5001 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5003 0 obj <> /K[5004 0 R] /P 5000 0 R /S/TD /Type/StructElem>> endobj 5004 0 obj <> /K 34 /P 5003 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5005 0 obj <> endobj 5006 0 obj <> /K[5007 0 R] /P 5005 0 R /S/TD /Type/StructElem>> endobj 5007 0 obj <> /K 35 /P 5006 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5008 0 obj <> /K[5009 0 R] /P 5005 0 R /S/TD /Type/StructElem>> endobj 5009 0 obj <> /K 36 /P 5008 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5010 0 obj <> /K[5011 0 R] /P 5005 0 R /S/TD /Type/StructElem>> endobj 5011 0 obj <> /K 37 /P 5010 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5012 0 obj <> endobj 5013 0 obj <> /K[5014 0 R] /P 5012 0 R /S/TD /Type/StructElem>> endobj 5014 0 obj <> /K 38 /P 5013 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5015 0 obj <> /K[5016 0 R] /P 5012 0 R /S/TD /Type/StructElem>> endobj 5016 0 obj <> /K 39 /P 5015 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5017 0 obj <> /K[5018 0 R] /P 5012 0 R /S/TD /Type/StructElem>> endobj 5018 0 obj <> /K 40 /P 5017 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5019 0 obj <> /K[5020 0 R] /P 5012 0 R /S/TD /Type/StructElem>> endobj 5020 0 obj <> /K 41 /P 5019 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5021 0 obj <> /K[5022 0 R] /P 5012 0 R /S/TD /Type/StructElem>> endobj 5022 0 obj <> /K 42 /P 5021 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5023 0 obj <> /K[5024 0 R] /P 5012 0 R /S/TD /Type/StructElem>> endobj 5024 0 obj <> /K 43 /P 5023 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5025 0 obj <> endobj 5026 0 obj <> /K[5027 0 R] /P 5025 0 R /S/TD /Type/StructElem>> endobj 5027 0 obj <> /K 44 /P 5026 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5028 0 obj <> /K[5029 0 R] /P 5025 0 R /S/TD /Type/StructElem>> endobj 5029 0 obj <> /K 45 /P 5028 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5030 0 obj <> /K[5031 0 R] /P 5025 0 R /S/TD /Type/StructElem>> endobj 5031 0 obj <> /K 46 /P 5030 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5032 0 obj <> /K[5033 0 R] /P 5025 0 R /S/TD /Type/StructElem>> endobj 5033 0 obj <> /K 47 /P 5032 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5034 0 obj <> /K[5035 0 R] /P 5025 0 R /S/TD /Type/StructElem>> endobj 5035 0 obj <> /K 48 /P 5034 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5036 0 obj <> /K[5037 0 R] /P 5025 0 R /S/TD /Type/StructElem>> endobj 5037 0 obj <> /K 49 /P 5036 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5038 0 obj <> /K[5039 0 R] /P 5025 0 R /S/TD /Type/StructElem>> endobj 5039 0 obj <> /K 50 /P 5038 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5040 0 obj <> endobj 5041 0 obj <> /K[5042 0 R] /P 5040 0 R /S/TD /Type/StructElem>> endobj 5042 0 obj <> /K 51 /P 5041 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5043 0 obj <> /K[5044 0 R] /P 5040 0 R /S/TD /Type/StructElem>> endobj 5044 0 obj <> /K 52 /P 5043 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5045 0 obj <> /K[5046 0 R] /P 5040 0 R /S/TD /Type/StructElem>> endobj 5046 0 obj <> /K 53 /P 5045 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5047 0 obj <> /K[5048 0 R] /P 5040 0 R /S/TD /Type/StructElem>> endobj 5048 0 obj <> /K 54 /P 5047 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5049 0 obj <> /K[5050 0 R] /P 5040 0 R /S/TD /Type/StructElem>> endobj 5050 0 obj <> /K 55 /P 5049 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5051 0 obj <> /K[5052 0 R] /P 5040 0 R /S/TD /Type/StructElem>> endobj 5052 0 obj <> /K 56 /P 5051 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5053 0 obj <> /K[5054 0 R] /P 5040 0 R /S/TD /Type/StructElem>> endobj 5054 0 obj <> /K 57 /P 5053 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5055 0 obj <> endobj 5056 0 obj <> /K[5057 0 R] /P 5055 0 R /S/TD /Type/StructElem>> endobj 5057 0 obj <> /K 58 /P 5056 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5058 0 obj <> /K[5059 0 R] /P 5055 0 R /S/TD /Type/StructElem>> endobj 5059 0 obj <> /K 59 /P 5058 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5060 0 obj <> /K[5061 0 R] /P 5055 0 R /S/TD /Type/StructElem>> endobj 5061 0 obj <> /K 60 /P 5060 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5062 0 obj <> /K[5063 0 R] /P 5055 0 R /S/TD /Type/StructElem>> endobj 5063 0 obj <> /K 61 /P 5062 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5064 0 obj <> /K[5065 0 R] /P 5055 0 R /S/TD /Type/StructElem>> endobj 5065 0 obj <> /K 62 /P 5064 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5066 0 obj <> /K[5067 0 R] /P 5055 0 R /S/TD /Type/StructElem>> endobj 5067 0 obj <> /K 63 /P 5066 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5068 0 obj <> /K[5069 0 R] /P 5055 0 R /S/TD /Type/StructElem>> endobj 5069 0 obj <> /K 64 /P 5068 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5070 0 obj <> /K 65 /P 4927 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5071 0 obj <> /K[5072 0 R] /P 4927 0 R /S/Table /Type/StructElem>> endobj 5072 0 obj <> endobj 5073 0 obj <> /K[5074 0 R] /P 5072 0 R /S/TD /Type/StructElem>> endobj 5074 0 obj <> /K 66 /P 5073 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5075 0 obj <> /K[5076 0 R] /P 5072 0 R /S/TD /Type/StructElem>> endobj 5076 0 obj <> /K 67 /P 5075 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5077 0 obj <> /K[5078 0 R] /P 4927 0 R /S/Table /Type/StructElem>> endobj 5078 0 obj <> endobj 5079 0 obj <> /K[5080 0 R] /P 5078 0 R /S/TD /Type/StructElem>> endobj 5080 0 obj <> /K 68 /P 5079 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5081 0 obj <> /K[5082 0 R] /P 5078 0 R /S/TD /Type/StructElem>> endobj 5082 0 obj <> /K 69 /P 5081 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5083 0 obj <> /K 70 /P 4927 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5084 0 obj <> /K[5085 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5085 0 obj <> /K 71 /P 5084 0 R /Pg 641 0 R /S/P /Type/StructElem>> endobj 5086 0 obj <> endobj 5087 0 obj <> /K 0 /P 5086 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5088 0 obj <> /K[5089 0 R 5094 0 R 5101 0 R 5114 0 R 5129 0 R 5144 0 R 5159 0 R 5164 0 R 5171 0 R 5184 0 R 5199 0 R 5214 0 R] /P 5086 0 R /S/Table /Type/StructElem>> endobj 5089 0 obj <> endobj 5090 0 obj <> /K[5091 0 R] /P 5089 0 R /S/TD /Type/StructElem>> endobj 5091 0 obj <> /K 1 /P 5090 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5092 0 obj <> /K[5093 0 R] /P 5089 0 R /S/TD /Type/StructElem>> endobj 5093 0 obj <> /K 2 /P 5092 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5094 0 obj <> endobj 5095 0 obj <> /K[5096 0 R] /P 5094 0 R /S/TD /Type/StructElem>> endobj 5096 0 obj <> /K 3 /P 5095 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5097 0 obj <> /K[5098 0 R] /P 5094 0 R /S/TD /Type/StructElem>> endobj 5098 0 obj <> /K 4 /P 5097 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5099 0 obj <> /K[5100 0 R] /P 5094 0 R /S/TD /Type/StructElem>> endobj 5100 0 obj <> /K 5 /P 5099 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5101 0 obj <> endobj 5102 0 obj <> /K[5103 0 R] /P 5101 0 R /S/TD /Type/StructElem>> endobj 5103 0 obj <> /K 6 /P 5102 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5104 0 obj <> /K[5105 0 R] /P 5101 0 R /S/TD /Type/StructElem>> endobj 5105 0 obj <> /K 7 /P 5104 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5106 0 obj <> /K[5107 0 R] /P 5101 0 R /S/TD /Type/StructElem>> endobj 5107 0 obj <> /K 8 /P 5106 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5108 0 obj <> /K[5109 0 R] /P 5101 0 R /S/TD /Type/StructElem>> endobj 5109 0 obj <> /K 9 /P 5108 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5110 0 obj <> /K[5111 0 R] /P 5101 0 R /S/TD /Type/StructElem>> endobj 5111 0 obj <> /K 10 /P 5110 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5112 0 obj <> /K[5113 0 R] /P 5101 0 R /S/TD /Type/StructElem>> endobj 5113 0 obj <> /K 11 /P 5112 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5114 0 obj <> endobj 5115 0 obj <> /K[5116 0 R] /P 5114 0 R /S/TD /Type/StructElem>> endobj 5116 0 obj <> /K 12 /P 5115 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5117 0 obj <> /K[5118 0 R] /P 5114 0 R /S/TD /Type/StructElem>> endobj 5118 0 obj <> /K 13 /P 5117 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5119 0 obj <> /K[5120 0 R] /P 5114 0 R /S/TD /Type/StructElem>> endobj 5120 0 obj <> /K 14 /P 5119 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5121 0 obj <> /K[5122 0 R] /P 5114 0 R /S/TD /Type/StructElem>> endobj 5122 0 obj <> /K 15 /P 5121 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5123 0 obj <> /K[5124 0 R] /P 5114 0 R /S/TD /Type/StructElem>> endobj 5124 0 obj <> /K 16 /P 5123 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5125 0 obj <> /K[5126 0 R] /P 5114 0 R /S/TD /Type/StructElem>> endobj 5126 0 obj <> /K 17 /P 5125 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5127 0 obj <> /K[5128 0 R] /P 5114 0 R /S/TD /Type/StructElem>> endobj 5128 0 obj <> /K 18 /P 5127 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5129 0 obj <> endobj 5130 0 obj <> /K[5131 0 R] /P 5129 0 R /S/TD /Type/StructElem>> endobj 5131 0 obj <> /K 19 /P 5130 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5132 0 obj <> /K[5133 0 R] /P 5129 0 R /S/TD /Type/StructElem>> endobj 5133 0 obj <> /K 20 /P 5132 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5134 0 obj <> /K[5135 0 R] /P 5129 0 R /S/TD /Type/StructElem>> endobj 5135 0 obj <> /K 21 /P 5134 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5136 0 obj <> /K[5137 0 R] /P 5129 0 R /S/TD /Type/StructElem>> endobj 5137 0 obj <> /K 22 /P 5136 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5138 0 obj <> /K[5139 0 R] /P 5129 0 R /S/TD /Type/StructElem>> endobj 5139 0 obj <> /K 23 /P 5138 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5140 0 obj <> /K[5141 0 R] /P 5129 0 R /S/TD /Type/StructElem>> endobj 5141 0 obj <> /K 24 /P 5140 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5142 0 obj <> /K[5143 0 R] /P 5129 0 R /S/TD /Type/StructElem>> endobj 5143 0 obj <> /K 25 /P 5142 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5144 0 obj <> endobj 5145 0 obj <> /K[5146 0 R] /P 5144 0 R /S/TD /Type/StructElem>> endobj 5146 0 obj <> /K 26 /P 5145 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5147 0 obj <> /K[5148 0 R] /P 5144 0 R /S/TD /Type/StructElem>> endobj 5148 0 obj <> /K 27 /P 5147 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5149 0 obj <> /K[5150 0 R] /P 5144 0 R /S/TD /Type/StructElem>> endobj 5150 0 obj <> /K 28 /P 5149 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5151 0 obj <> /K[5152 0 R] /P 5144 0 R /S/TD /Type/StructElem>> endobj 5152 0 obj <> /K 29 /P 5151 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5153 0 obj <> /K[5154 0 R] /P 5144 0 R /S/TD /Type/StructElem>> endobj 5154 0 obj <> /K 30 /P 5153 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5155 0 obj <> /K[5156 0 R] /P 5144 0 R /S/TD /Type/StructElem>> endobj 5156 0 obj <> /K 31 /P 5155 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5157 0 obj <> /K[5158 0 R] /P 5144 0 R /S/TD /Type/StructElem>> endobj 5158 0 obj <> /K 32 /P 5157 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5159 0 obj <> endobj 5160 0 obj <> /K[5161 0 R] /P 5159 0 R /S/TD /Type/StructElem>> endobj 5161 0 obj <> /K 33 /P 5160 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5162 0 obj <> /K[5163 0 R] /P 5159 0 R /S/TD /Type/StructElem>> endobj 5163 0 obj <> /K 34 /P 5162 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5164 0 obj <> endobj 5165 0 obj <> /K[5166 0 R] /P 5164 0 R /S/TD /Type/StructElem>> endobj 5166 0 obj <> /K 35 /P 5165 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5167 0 obj <> /K[5168 0 R] /P 5164 0 R /S/TD /Type/StructElem>> endobj 5168 0 obj <> /K 36 /P 5167 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5169 0 obj <> /K[5170 0 R] /P 5164 0 R /S/TD /Type/StructElem>> endobj 5170 0 obj <> /K 37 /P 5169 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5171 0 obj <> endobj 5172 0 obj <> /K[5173 0 R] /P 5171 0 R /S/TD /Type/StructElem>> endobj 5173 0 obj <> /K 38 /P 5172 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5174 0 obj <> /K[5175 0 R] /P 5171 0 R /S/TD /Type/StructElem>> endobj 5175 0 obj <> /K 39 /P 5174 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5176 0 obj <> /K[5177 0 R] /P 5171 0 R /S/TD /Type/StructElem>> endobj 5177 0 obj <> /K 40 /P 5176 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5178 0 obj <> /K[5179 0 R] /P 5171 0 R /S/TD /Type/StructElem>> endobj 5179 0 obj <> /K 41 /P 5178 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5180 0 obj <> /K[5181 0 R] /P 5171 0 R /S/TD /Type/StructElem>> endobj 5181 0 obj <> /K 42 /P 5180 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5182 0 obj <> /K[5183 0 R] /P 5171 0 R /S/TD /Type/StructElem>> endobj 5183 0 obj <> /K 43 /P 5182 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5184 0 obj <> endobj 5185 0 obj <> /K[5186 0 R] /P 5184 0 R /S/TD /Type/StructElem>> endobj 5186 0 obj <> /K 44 /P 5185 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5187 0 obj <> /K[5188 0 R] /P 5184 0 R /S/TD /Type/StructElem>> endobj 5188 0 obj <> /K 45 /P 5187 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5189 0 obj <> /K[5190 0 R] /P 5184 0 R /S/TD /Type/StructElem>> endobj 5190 0 obj <> /K 46 /P 5189 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5191 0 obj <> /K[5192 0 R] /P 5184 0 R /S/TD /Type/StructElem>> endobj 5192 0 obj <> /K 47 /P 5191 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5193 0 obj <> /K[5194 0 R] /P 5184 0 R /S/TD /Type/StructElem>> endobj 5194 0 obj <> /K 48 /P 5193 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5195 0 obj <> /K[5196 0 R] /P 5184 0 R /S/TD /Type/StructElem>> endobj 5196 0 obj <> /K 49 /P 5195 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5197 0 obj <> /K[5198 0 R] /P 5184 0 R /S/TD /Type/StructElem>> endobj 5198 0 obj <> /K 50 /P 5197 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5199 0 obj <> endobj 5200 0 obj <> /K[5201 0 R] /P 5199 0 R /S/TD /Type/StructElem>> endobj 5201 0 obj <> /K 51 /P 5200 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5202 0 obj <> /K[5203 0 R] /P 5199 0 R /S/TD /Type/StructElem>> endobj 5203 0 obj <> /K 52 /P 5202 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5204 0 obj <> /K[5205 0 R] /P 5199 0 R /S/TD /Type/StructElem>> endobj 5205 0 obj <> /K 53 /P 5204 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5206 0 obj <> /K[5207 0 R] /P 5199 0 R /S/TD /Type/StructElem>> endobj 5207 0 obj <> /K 54 /P 5206 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5208 0 obj <> /K[5209 0 R] /P 5199 0 R /S/TD /Type/StructElem>> endobj 5209 0 obj <> /K 55 /P 5208 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5210 0 obj <> /K[5211 0 R] /P 5199 0 R /S/TD /Type/StructElem>> endobj 5211 0 obj <> /K 56 /P 5210 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5212 0 obj <> /K[5213 0 R] /P 5199 0 R /S/TD /Type/StructElem>> endobj 5213 0 obj <> /K 57 /P 5212 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5214 0 obj <> endobj 5215 0 obj <> /K[5216 0 R] /P 5214 0 R /S/TD /Type/StructElem>> endobj 5216 0 obj <> /K 58 /P 5215 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5217 0 obj <> /K[5218 0 R] /P 5214 0 R /S/TD /Type/StructElem>> endobj 5218 0 obj <> /K 59 /P 5217 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5219 0 obj <> /K[5220 0 R] /P 5214 0 R /S/TD /Type/StructElem>> endobj 5220 0 obj <> /K 60 /P 5219 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5221 0 obj <> /K[5222 0 R] /P 5214 0 R /S/TD /Type/StructElem>> endobj 5222 0 obj <> /K 61 /P 5221 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5223 0 obj <> /K[5224 0 R] /P 5214 0 R /S/TD /Type/StructElem>> endobj 5224 0 obj <> /K 62 /P 5223 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5225 0 obj <> /K[5226 0 R] /P 5214 0 R /S/TD /Type/StructElem>> endobj 5226 0 obj <> /K 63 /P 5225 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5227 0 obj <> /K[5228 0 R] /P 5214 0 R /S/TD /Type/StructElem>> endobj 5228 0 obj <> /K 64 /P 5227 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5229 0 obj <> /K 65 /P 5086 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5230 0 obj <> /K 66 /P 5086 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5231 0 obj <> /K[5232 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5232 0 obj <> /K 67 /P 5231 0 R /Pg 646 0 R /S/P /Type/StructElem>> endobj 5233 0 obj <> endobj 5234 0 obj <> /K 0 /P 5233 0 R /Pg 651 0 R /S/P /Type/StructElem>> endobj 5235 0 obj <> /K 1 /P 5233 0 R /Pg 651 0 R /S/P /Type/StructElem>> endobj 5236 0 obj <> /K 2 /P 5233 0 R /Pg 651 0 R /S/P /Type/StructElem>> endobj 5237 0 obj <> /K 3 /P 5233 0 R /Pg 651 0 R /S/P /Type/StructElem>> endobj 5238 0 obj <> /K 4 /P 5233 0 R /Pg 651 0 R /S/P /Type/StructElem>> endobj 5239 0 obj <> /K[5240 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5240 0 obj <> /K 5 /P 5239 0 R /Pg 651 0 R /S/P /Type/StructElem>> endobj 5241 0 obj <> endobj 5242 0 obj <> /K 0 /P 5241 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5243 0 obj <> /K[5244 0 R 5249 0 R 5256 0 R 5269 0 R 5284 0 R 5299 0 R 5314 0 R 5319 0 R 5326 0 R 5339 0 R 5354 0 R 5369 0 R] /P 5241 0 R /S/Table /Type/StructElem>> endobj 5244 0 obj <> endobj 5245 0 obj <> /K[5246 0 R] /P 5244 0 R /S/TD /Type/StructElem>> endobj 5246 0 obj <> /K 1 /P 5245 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5247 0 obj <> /K[5248 0 R] /P 5244 0 R /S/TD /Type/StructElem>> endobj 5248 0 obj <> /K 2 /P 5247 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5249 0 obj <> endobj 5250 0 obj <> /K[5251 0 R] /P 5249 0 R /S/TD /Type/StructElem>> endobj 5251 0 obj <> /K 3 /P 5250 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5252 0 obj <> /K[5253 0 R] /P 5249 0 R /S/TD /Type/StructElem>> endobj 5253 0 obj <> /K 4 /P 5252 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5254 0 obj <> /K[5255 0 R] /P 5249 0 R /S/TD /Type/StructElem>> endobj 5255 0 obj <> /K 5 /P 5254 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5256 0 obj <> endobj 5257 0 obj <> /K[5258 0 R] /P 5256 0 R /S/TD /Type/StructElem>> endobj 5258 0 obj <> /K 6 /P 5257 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5259 0 obj <> /K[5260 0 R] /P 5256 0 R /S/TD /Type/StructElem>> endobj 5260 0 obj <> /K 7 /P 5259 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5261 0 obj <> /K[5262 0 R] /P 5256 0 R /S/TD /Type/StructElem>> endobj 5262 0 obj <> /K 8 /P 5261 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5263 0 obj <> /K[5264 0 R] /P 5256 0 R /S/TD /Type/StructElem>> endobj 5264 0 obj <> /K 9 /P 5263 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5265 0 obj <> /K[5266 0 R] /P 5256 0 R /S/TD /Type/StructElem>> endobj 5266 0 obj <> /K 10 /P 5265 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5267 0 obj <> /K[5268 0 R] /P 5256 0 R /S/TD /Type/StructElem>> endobj 5268 0 obj <> /K 11 /P 5267 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5269 0 obj <> endobj 5270 0 obj <> /K[5271 0 R] /P 5269 0 R /S/TD /Type/StructElem>> endobj 5271 0 obj <> /K 12 /P 5270 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5272 0 obj <> /K[5273 0 R] /P 5269 0 R /S/TD /Type/StructElem>> endobj 5273 0 obj <> /K 13 /P 5272 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5274 0 obj <> /K[5275 0 R] /P 5269 0 R /S/TD /Type/StructElem>> endobj 5275 0 obj <> /K 14 /P 5274 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5276 0 obj <> /K[5277 0 R] /P 5269 0 R /S/TD /Type/StructElem>> endobj 5277 0 obj <> /K 15 /P 5276 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5278 0 obj <> /K[5279 0 R] /P 5269 0 R /S/TD /Type/StructElem>> endobj 5279 0 obj <> /K 16 /P 5278 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5280 0 obj <> /K[5281 0 R] /P 5269 0 R /S/TD /Type/StructElem>> endobj 5281 0 obj <> /K 17 /P 5280 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5282 0 obj <> /K[5283 0 R] /P 5269 0 R /S/TD /Type/StructElem>> endobj 5283 0 obj <> /K 18 /P 5282 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5284 0 obj <> endobj 5285 0 obj <> /K[5286 0 R] /P 5284 0 R /S/TD /Type/StructElem>> endobj 5286 0 obj <> /K 19 /P 5285 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5287 0 obj <> /K[5288 0 R] /P 5284 0 R /S/TD /Type/StructElem>> endobj 5288 0 obj <> /K 20 /P 5287 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5289 0 obj <> /K[5290 0 R] /P 5284 0 R /S/TD /Type/StructElem>> endobj 5290 0 obj <> /K 21 /P 5289 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5291 0 obj <> /K[5292 0 R] /P 5284 0 R /S/TD /Type/StructElem>> endobj 5292 0 obj <> /K 22 /P 5291 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5293 0 obj <> /K[5294 0 R] /P 5284 0 R /S/TD /Type/StructElem>> endobj 5294 0 obj <> /K 23 /P 5293 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5295 0 obj <> /K[5296 0 R] /P 5284 0 R /S/TD /Type/StructElem>> endobj 5296 0 obj <> /K 24 /P 5295 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5297 0 obj <> /K[5298 0 R] /P 5284 0 R /S/TD /Type/StructElem>> endobj 5298 0 obj <> /K 25 /P 5297 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5299 0 obj <> endobj 5300 0 obj <> /K[5301 0 R] /P 5299 0 R /S/TD /Type/StructElem>> endobj 5301 0 obj <> /K 26 /P 5300 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5302 0 obj <> /K[5303 0 R] /P 5299 0 R /S/TD /Type/StructElem>> endobj 5303 0 obj <> /K 27 /P 5302 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5304 0 obj <> /K[5305 0 R] /P 5299 0 R /S/TD /Type/StructElem>> endobj 5305 0 obj <> /K 28 /P 5304 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5306 0 obj <> /K[5307 0 R] /P 5299 0 R /S/TD /Type/StructElem>> endobj 5307 0 obj <> /K 29 /P 5306 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5308 0 obj <> /K[5309 0 R] /P 5299 0 R /S/TD /Type/StructElem>> endobj 5309 0 obj <> /K 30 /P 5308 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5310 0 obj <> /K[5311 0 R] /P 5299 0 R /S/TD /Type/StructElem>> endobj 5311 0 obj <> /K 31 /P 5310 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5312 0 obj <> /K[5313 0 R] /P 5299 0 R /S/TD /Type/StructElem>> endobj 5313 0 obj <> /K 32 /P 5312 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5314 0 obj <> endobj 5315 0 obj <> /K[5316 0 R] /P 5314 0 R /S/TD /Type/StructElem>> endobj 5316 0 obj <> /K 33 /P 5315 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5317 0 obj <> /K[5318 0 R] /P 5314 0 R /S/TD /Type/StructElem>> endobj 5318 0 obj <> /K 34 /P 5317 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5319 0 obj <> endobj 5320 0 obj <> /K[5321 0 R] /P 5319 0 R /S/TD /Type/StructElem>> endobj 5321 0 obj <> /K 35 /P 5320 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5322 0 obj <> /K[5323 0 R] /P 5319 0 R /S/TD /Type/StructElem>> endobj 5323 0 obj <> /K 36 /P 5322 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5324 0 obj <> /K[5325 0 R] /P 5319 0 R /S/TD /Type/StructElem>> endobj 5325 0 obj <> /K 37 /P 5324 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5326 0 obj <> endobj 5327 0 obj <> /K[5328 0 R] /P 5326 0 R /S/TD /Type/StructElem>> endobj 5328 0 obj <> /K 38 /P 5327 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5329 0 obj <> /K[5330 0 R] /P 5326 0 R /S/TD /Type/StructElem>> endobj 5330 0 obj <> /K 39 /P 5329 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5331 0 obj <> /K[5332 0 R] /P 5326 0 R /S/TD /Type/StructElem>> endobj 5332 0 obj <> /K 40 /P 5331 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5333 0 obj <> /K[5334 0 R] /P 5326 0 R /S/TD /Type/StructElem>> endobj 5334 0 obj <> /K 41 /P 5333 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5335 0 obj <> /K[5336 0 R] /P 5326 0 R /S/TD /Type/StructElem>> endobj 5336 0 obj <> /K 42 /P 5335 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5337 0 obj <> /K[5338 0 R] /P 5326 0 R /S/TD /Type/StructElem>> endobj 5338 0 obj <> /K 43 /P 5337 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5339 0 obj <> endobj 5340 0 obj <> /K[5341 0 R] /P 5339 0 R /S/TD /Type/StructElem>> endobj 5341 0 obj <> /K 44 /P 5340 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5342 0 obj <> /K[5343 0 R] /P 5339 0 R /S/TD /Type/StructElem>> endobj 5343 0 obj <> /K 45 /P 5342 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5344 0 obj <> /K[5345 0 R] /P 5339 0 R /S/TD /Type/StructElem>> endobj 5345 0 obj <> /K 46 /P 5344 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5346 0 obj <> /K[5347 0 R] /P 5339 0 R /S/TD /Type/StructElem>> endobj 5347 0 obj <> /K 47 /P 5346 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5348 0 obj <> /K[5349 0 R] /P 5339 0 R /S/TD /Type/StructElem>> endobj 5349 0 obj <> /K 48 /P 5348 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5350 0 obj <> /K[5351 0 R] /P 5339 0 R /S/TD /Type/StructElem>> endobj 5351 0 obj <> /K 49 /P 5350 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5352 0 obj <> /K[5353 0 R] /P 5339 0 R /S/TD /Type/StructElem>> endobj 5353 0 obj <> /K 50 /P 5352 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5354 0 obj <> endobj 5355 0 obj <> /K[5356 0 R] /P 5354 0 R /S/TD /Type/StructElem>> endobj 5356 0 obj <> /K 51 /P 5355 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5357 0 obj <> /K[5358 0 R] /P 5354 0 R /S/TD /Type/StructElem>> endobj 5358 0 obj <> /K 52 /P 5357 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5359 0 obj <> /K[5360 0 R] /P 5354 0 R /S/TD /Type/StructElem>> endobj 5360 0 obj <> /K 53 /P 5359 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5361 0 obj <> /K[5362 0 R] /P 5354 0 R /S/TD /Type/StructElem>> endobj 5362 0 obj <> /K 54 /P 5361 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5363 0 obj <> /K[5364 0 R] /P 5354 0 R /S/TD /Type/StructElem>> endobj 5364 0 obj <> /K 55 /P 5363 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5365 0 obj <> /K[5366 0 R] /P 5354 0 R /S/TD /Type/StructElem>> endobj 5366 0 obj <> /K 56 /P 5365 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5367 0 obj <> /K[5368 0 R] /P 5354 0 R /S/TD /Type/StructElem>> endobj 5368 0 obj <> /K 57 /P 5367 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5369 0 obj <> endobj 5370 0 obj <> /K[5371 0 R] /P 5369 0 R /S/TD /Type/StructElem>> endobj 5371 0 obj <> /K 58 /P 5370 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5372 0 obj <> /K[5373 0 R] /P 5369 0 R /S/TD /Type/StructElem>> endobj 5373 0 obj <> /K 59 /P 5372 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5374 0 obj <> /K[5375 0 R] /P 5369 0 R /S/TD /Type/StructElem>> endobj 5375 0 obj <> /K 60 /P 5374 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5376 0 obj <> /K[5377 0 R] /P 5369 0 R /S/TD /Type/StructElem>> endobj 5377 0 obj <> /K 61 /P 5376 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5378 0 obj <> /K[5379 0 R] /P 5369 0 R /S/TD /Type/StructElem>> endobj 5379 0 obj <> /K 62 /P 5378 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5380 0 obj <> /K[5381 0 R] /P 5369 0 R /S/TD /Type/StructElem>> endobj 5381 0 obj <> /K 63 /P 5380 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5382 0 obj <> /K[5383 0 R] /P 5369 0 R /S/TD /Type/StructElem>> endobj 5383 0 obj <> /K 64 /P 5382 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5384 0 obj <> /K 65 /P 5241 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5385 0 obj <> /K 66 /P 5241 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5386 0 obj <> /K 67 /P 5241 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5387 0 obj <> /K[5388 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5388 0 obj <> /K 68 /P 5387 0 R /Pg 656 0 R /S/P /Type/StructElem>> endobj 5389 0 obj <> endobj 5390 0 obj <> /K 0 /P 5389 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5391 0 obj <> /K[5392 0 R 5397 0 R 5404 0 R 5417 0 R 5432 0 R 5447 0 R 5462 0 R 5467 0 R 5474 0 R 5487 0 R 5502 0 R 5517 0 R] /P 5389 0 R /S/Table /Type/StructElem>> endobj 5392 0 obj <> endobj 5393 0 obj <> /K[5394 0 R] /P 5392 0 R /S/TD /Type/StructElem>> endobj 5394 0 obj <> /K 1 /P 5393 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5395 0 obj <> /K[5396 0 R] /P 5392 0 R /S/TD /Type/StructElem>> endobj 5396 0 obj <> /K 2 /P 5395 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5397 0 obj <> endobj 5398 0 obj <> /K[5399 0 R] /P 5397 0 R /S/TD /Type/StructElem>> endobj 5399 0 obj <> /K 3 /P 5398 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5400 0 obj <> /K[5401 0 R] /P 5397 0 R /S/TD /Type/StructElem>> endobj 5401 0 obj <> /K 4 /P 5400 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5402 0 obj <> /K[5403 0 R] /P 5397 0 R /S/TD /Type/StructElem>> endobj 5403 0 obj <> /K 5 /P 5402 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5404 0 obj <> endobj 5405 0 obj <> /K[5406 0 R] /P 5404 0 R /S/TD /Type/StructElem>> endobj 5406 0 obj <> /K 6 /P 5405 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5407 0 obj <> /K[5408 0 R] /P 5404 0 R /S/TD /Type/StructElem>> endobj 5408 0 obj <> /K 7 /P 5407 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5409 0 obj <> /K[5410 0 R] /P 5404 0 R /S/TD /Type/StructElem>> endobj 5410 0 obj <> /K 8 /P 5409 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5411 0 obj <> /K[5412 0 R] /P 5404 0 R /S/TD /Type/StructElem>> endobj 5412 0 obj <> /K 9 /P 5411 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5413 0 obj <> /K[5414 0 R] /P 5404 0 R /S/TD /Type/StructElem>> endobj 5414 0 obj <> /K 10 /P 5413 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5415 0 obj <> /K[5416 0 R] /P 5404 0 R /S/TD /Type/StructElem>> endobj 5416 0 obj <> /K 11 /P 5415 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5417 0 obj <> endobj 5418 0 obj <> /K[5419 0 R] /P 5417 0 R /S/TD /Type/StructElem>> endobj 5419 0 obj <> /K 12 /P 5418 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5420 0 obj <> /K[5421 0 R] /P 5417 0 R /S/TD /Type/StructElem>> endobj 5421 0 obj <> /K 13 /P 5420 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5422 0 obj <> /K[5423 0 R] /P 5417 0 R /S/TD /Type/StructElem>> endobj 5423 0 obj <> /K 14 /P 5422 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5424 0 obj <> /K[5425 0 R] /P 5417 0 R /S/TD /Type/StructElem>> endobj 5425 0 obj <> /K 15 /P 5424 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5426 0 obj <> /K[5427 0 R] /P 5417 0 R /S/TD /Type/StructElem>> endobj 5427 0 obj <> /K 16 /P 5426 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5428 0 obj <> /K[5429 0 R] /P 5417 0 R /S/TD /Type/StructElem>> endobj 5429 0 obj <> /K 17 /P 5428 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5430 0 obj <> /K[5431 0 R] /P 5417 0 R /S/TD /Type/StructElem>> endobj 5431 0 obj <> /K 18 /P 5430 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5432 0 obj <> endobj 5433 0 obj <> /K[5434 0 R] /P 5432 0 R /S/TD /Type/StructElem>> endobj 5434 0 obj <> /K 19 /P 5433 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5435 0 obj <> /K[5436 0 R] /P 5432 0 R /S/TD /Type/StructElem>> endobj 5436 0 obj <> /K 20 /P 5435 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5437 0 obj <> /K[5438 0 R] /P 5432 0 R /S/TD /Type/StructElem>> endobj 5438 0 obj <> /K 21 /P 5437 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5439 0 obj <> /K[5440 0 R] /P 5432 0 R /S/TD /Type/StructElem>> endobj 5440 0 obj <> /K 22 /P 5439 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5441 0 obj <> /K[5442 0 R] /P 5432 0 R /S/TD /Type/StructElem>> endobj 5442 0 obj <> /K 23 /P 5441 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5443 0 obj <> /K[5444 0 R] /P 5432 0 R /S/TD /Type/StructElem>> endobj 5444 0 obj <> /K 24 /P 5443 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5445 0 obj <> /K[5446 0 R] /P 5432 0 R /S/TD /Type/StructElem>> endobj 5446 0 obj <> /K 25 /P 5445 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5447 0 obj <> endobj 5448 0 obj <> /K[5449 0 R] /P 5447 0 R /S/TD /Type/StructElem>> endobj 5449 0 obj <> /K 26 /P 5448 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5450 0 obj <> /K[5451 0 R] /P 5447 0 R /S/TD /Type/StructElem>> endobj 5451 0 obj <> /K 27 /P 5450 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5452 0 obj <> /K[5453 0 R] /P 5447 0 R /S/TD /Type/StructElem>> endobj 5453 0 obj <> /K 28 /P 5452 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5454 0 obj <> /K[5455 0 R] /P 5447 0 R /S/TD /Type/StructElem>> endobj 5455 0 obj <> /K 29 /P 5454 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5456 0 obj <> /K[5457 0 R] /P 5447 0 R /S/TD /Type/StructElem>> endobj 5457 0 obj <> /K 30 /P 5456 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5458 0 obj <> /K[5459 0 R] /P 5447 0 R /S/TD /Type/StructElem>> endobj 5459 0 obj <> /K 31 /P 5458 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5460 0 obj <> /K[5461 0 R] /P 5447 0 R /S/TD /Type/StructElem>> endobj 5461 0 obj <> /K 32 /P 5460 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5462 0 obj <> endobj 5463 0 obj <> /K[5464 0 R] /P 5462 0 R /S/TD /Type/StructElem>> endobj 5464 0 obj <> /K 33 /P 5463 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5465 0 obj <> /K[5466 0 R] /P 5462 0 R /S/TD /Type/StructElem>> endobj 5466 0 obj <> /K 34 /P 5465 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5467 0 obj <> endobj 5468 0 obj <> /K[5469 0 R] /P 5467 0 R /S/TD /Type/StructElem>> endobj 5469 0 obj <> /K 35 /P 5468 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5470 0 obj <> /K[5471 0 R] /P 5467 0 R /S/TD /Type/StructElem>> endobj 5471 0 obj <> /K 36 /P 5470 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5472 0 obj <> /K[5473 0 R] /P 5467 0 R /S/TD /Type/StructElem>> endobj 5473 0 obj <> /K 37 /P 5472 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5474 0 obj <> endobj 5475 0 obj <> /K[5476 0 R] /P 5474 0 R /S/TD /Type/StructElem>> endobj 5476 0 obj <> /K 38 /P 5475 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5477 0 obj <> /K[5478 0 R] /P 5474 0 R /S/TD /Type/StructElem>> endobj 5478 0 obj <> /K 39 /P 5477 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5479 0 obj <> /K[5480 0 R] /P 5474 0 R /S/TD /Type/StructElem>> endobj 5480 0 obj <> /K 40 /P 5479 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5481 0 obj <> /K[5482 0 R] /P 5474 0 R /S/TD /Type/StructElem>> endobj 5482 0 obj <> /K 41 /P 5481 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5483 0 obj <> /K[5484 0 R] /P 5474 0 R /S/TD /Type/StructElem>> endobj 5484 0 obj <> /K 42 /P 5483 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5485 0 obj <> /K[5486 0 R] /P 5474 0 R /S/TD /Type/StructElem>> endobj 5486 0 obj <> /K 43 /P 5485 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5487 0 obj <> endobj 5488 0 obj <> /K[5489 0 R] /P 5487 0 R /S/TD /Type/StructElem>> endobj 5489 0 obj <> /K 44 /P 5488 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5490 0 obj <> /K[5491 0 R] /P 5487 0 R /S/TD /Type/StructElem>> endobj 5491 0 obj <> /K 45 /P 5490 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5492 0 obj <> /K[5493 0 R] /P 5487 0 R /S/TD /Type/StructElem>> endobj 5493 0 obj <> /K 46 /P 5492 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5494 0 obj <> /K[5495 0 R] /P 5487 0 R /S/TD /Type/StructElem>> endobj 5495 0 obj <> /K 47 /P 5494 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5496 0 obj <> /K[5497 0 R] /P 5487 0 R /S/TD /Type/StructElem>> endobj 5497 0 obj <> /K 48 /P 5496 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5498 0 obj <> /K[5499 0 R] /P 5487 0 R /S/TD /Type/StructElem>> endobj 5499 0 obj <> /K 49 /P 5498 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5500 0 obj <> /K[5501 0 R] /P 5487 0 R /S/TD /Type/StructElem>> endobj 5501 0 obj <> /K 50 /P 5500 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5502 0 obj <> endobj 5503 0 obj <> /K[5504 0 R] /P 5502 0 R /S/TD /Type/StructElem>> endobj 5504 0 obj <> /K 51 /P 5503 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5505 0 obj <> /K[5506 0 R] /P 5502 0 R /S/TD /Type/StructElem>> endobj 5506 0 obj <> /K 52 /P 5505 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5507 0 obj <> /K[5508 0 R] /P 5502 0 R /S/TD /Type/StructElem>> endobj 5508 0 obj <> /K 53 /P 5507 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5509 0 obj <> /K[5510 0 R] /P 5502 0 R /S/TD /Type/StructElem>> endobj 5510 0 obj <> /K 54 /P 5509 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5511 0 obj <> /K[5512 0 R] /P 5502 0 R /S/TD /Type/StructElem>> endobj 5512 0 obj <> /K 55 /P 5511 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5513 0 obj <> /K[5514 0 R] /P 5502 0 R /S/TD /Type/StructElem>> endobj 5514 0 obj <> /K 56 /P 5513 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5515 0 obj <> /K[5516 0 R] /P 5502 0 R /S/TD /Type/StructElem>> endobj 5516 0 obj <> /K 57 /P 5515 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5517 0 obj <> endobj 5518 0 obj <> /K[5519 0 R] /P 5517 0 R /S/TD /Type/StructElem>> endobj 5519 0 obj <> /K 58 /P 5518 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5520 0 obj <> /K[5521 0 R] /P 5517 0 R /S/TD /Type/StructElem>> endobj 5521 0 obj <> /K 59 /P 5520 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5522 0 obj <> /K[5523 0 R] /P 5517 0 R /S/TD /Type/StructElem>> endobj 5523 0 obj <> /K 60 /P 5522 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5524 0 obj <> /K[5525 0 R] /P 5517 0 R /S/TD /Type/StructElem>> endobj 5525 0 obj <> /K 61 /P 5524 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5526 0 obj <> /K[5527 0 R] /P 5517 0 R /S/TD /Type/StructElem>> endobj 5527 0 obj <> /K 62 /P 5526 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5528 0 obj <> /K[5529 0 R] /P 5517 0 R /S/TD /Type/StructElem>> endobj 5529 0 obj <> /K 63 /P 5528 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5530 0 obj <> /K[5531 0 R] /P 5517 0 R /S/TD /Type/StructElem>> endobj 5531 0 obj <> /K 64 /P 5530 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5532 0 obj <> /K 65 /P 5389 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5533 0 obj <> /K 66 /P 5389 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5534 0 obj <> /K[5535 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5535 0 obj <> /K 67 /P 5534 0 R /Pg 661 0 R /S/P /Type/StructElem>> endobj 5536 0 obj <> /K[5537 0 R 5538 0 R 5539 0 R 5540 0 R 5541 0 R 5542 0 R 5543 0 R 5544 0 R 5545 0 R 5546 0 R 5547 0 R 5548 0 R 5549 0 R 5550 0 R 5551 0 R 5552 0 R 5553 0 R 5554 0 R 5555 0 R 5556 0 R 5557 0 R 5558 0 R 5559 0 R 5560 0 R 5561 0 R 5562 0 R 5563 0 R 5564 0 R 5565 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5537 0 obj <> /K 0 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5538 0 obj <> /K 1 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5539 0 obj <> /K 2 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5540 0 obj <> /K 3 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5541 0 obj <> /K 4 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5542 0 obj <> /K 5 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5543 0 obj <> /K 6 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5544 0 obj <> /K 7 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5545 0 obj <> /K 8 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5546 0 obj <> /K 9 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5547 0 obj <> /K 10 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5548 0 obj <> /K 11 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5549 0 obj <> /K 12 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5550 0 obj <> /K 13 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5551 0 obj <> /K 14 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5552 0 obj <> /K 15 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5553 0 obj <> /K 16 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5554 0 obj <> /K 17 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5555 0 obj <> /K 18 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5556 0 obj <> /K 19 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5557 0 obj <> /K 20 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5558 0 obj <> /K 21 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5559 0 obj <> /K 22 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5560 0 obj <> /K 23 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5561 0 obj <> /K 24 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5562 0 obj <> /K 25 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5563 0 obj <> /K 26 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5564 0 obj <> /K 27 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5565 0 obj <> /K 28 /P 5536 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5566 0 obj <> /K[5567 0 R 5568 0 R 5569 0 R 5570 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5567 0 obj <> /K 29 /P 5566 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5568 0 obj <> /K 30 /P 5566 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5569 0 obj <> /K 31 /P 5566 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5570 0 obj <> /K 32 /P 5566 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5571 0 obj <> endobj 5572 0 obj <> /K 33 /P 5571 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5573 0 obj <> endobj 5574 0 obj <> /K[5575 0 R 5590 0 R 5605 0 R 5620 0 R 5633 0 R] /P 5573 0 R /S/Table /Type/StructElem>> endobj 5575 0 obj <> endobj 5576 0 obj <> /K[5577 0 R] /P 5575 0 R /S/TD /Type/StructElem>> endobj 5577 0 obj <> /K 34 /P 5576 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5578 0 obj <> /K[5579 0 R] /P 5575 0 R /S/TD /Type/StructElem>> endobj 5579 0 obj <> /K 35 /P 5578 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5580 0 obj <> /K[5581 0 R] /P 5575 0 R /S/TD /Type/StructElem>> endobj 5581 0 obj <> /K 36 /P 5580 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5582 0 obj <> /K[5583 0 R] /P 5575 0 R /S/TD /Type/StructElem>> endobj 5583 0 obj <> /K 37 /P 5582 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5584 0 obj <> /K[5585 0 R] /P 5575 0 R /S/TD /Type/StructElem>> endobj 5585 0 obj <> /K 38 /P 5584 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5586 0 obj <> /K[5587 0 R] /P 5575 0 R /S/TD /Type/StructElem>> endobj 5587 0 obj <> /K 39 /P 5586 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5588 0 obj <> /K[5589 0 R] /P 5575 0 R /S/TD /Type/StructElem>> endobj 5589 0 obj <> /K 40 /P 5588 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5590 0 obj <> endobj 5591 0 obj <> /K[5592 0 R] /P 5590 0 R /S/TD /Type/StructElem>> endobj 5592 0 obj <> /K 41 /P 5591 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5593 0 obj <> /K[5594 0 R] /P 5590 0 R /S/TD /Type/StructElem>> endobj 5594 0 obj <> /K 42 /P 5593 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5595 0 obj <> /K[5596 0 R] /P 5590 0 R /S/TD /Type/StructElem>> endobj 5596 0 obj <> /K 43 /P 5595 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5597 0 obj <> /K[5598 0 R] /P 5590 0 R /S/TD /Type/StructElem>> endobj 5598 0 obj <> /K 44 /P 5597 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5599 0 obj <> /K[5600 0 R] /P 5590 0 R /S/TD /Type/StructElem>> endobj 5600 0 obj <> /K 45 /P 5599 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5601 0 obj <> /K[5602 0 R] /P 5590 0 R /S/TD /Type/StructElem>> endobj 5602 0 obj <> /K 46 /P 5601 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5603 0 obj <> /K[5604 0 R] /P 5590 0 R /S/TD /Type/StructElem>> endobj 5604 0 obj <> /K 47 /P 5603 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5605 0 obj <> endobj 5606 0 obj <> /K[5607 0 R] /P 5605 0 R /S/TD /Type/StructElem>> endobj 5607 0 obj <> /K 48 /P 5606 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5608 0 obj <> /K[5609 0 R] /P 5605 0 R /S/TD /Type/StructElem>> endobj 5609 0 obj <> /K 49 /P 5608 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5610 0 obj <> /K[5611 0 R] /P 5605 0 R /S/TD /Type/StructElem>> endobj 5611 0 obj <> /K 50 /P 5610 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5612 0 obj <> /K[5613 0 R] /P 5605 0 R /S/TD /Type/StructElem>> endobj 5613 0 obj <> /K 51 /P 5612 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5614 0 obj <> /K[5615 0 R] /P 5605 0 R /S/TD /Type/StructElem>> endobj 5615 0 obj <> /K 52 /P 5614 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5616 0 obj <> /K[5617 0 R] /P 5605 0 R /S/TD /Type/StructElem>> endobj 5617 0 obj <> /K 53 /P 5616 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5618 0 obj <> /K[5619 0 R] /P 5605 0 R /S/TD /Type/StructElem>> endobj 5619 0 obj <> /K 54 /P 5618 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5620 0 obj <> endobj 5621 0 obj <> /K[5622 0 R] /P 5620 0 R /S/TD /Type/StructElem>> endobj 5622 0 obj <> /K 55 /P 5621 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5623 0 obj <> /K[5624 0 R] /P 5620 0 R /S/TD /Type/StructElem>> endobj 5624 0 obj <> /K 56 /P 5623 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5625 0 obj <> /K[5626 0 R] /P 5620 0 R /S/TD /Type/StructElem>> endobj 5626 0 obj <> /K 57 /P 5625 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5627 0 obj <> /K[5628 0 R] /P 5620 0 R /S/TD /Type/StructElem>> endobj 5628 0 obj <> /K 58 /P 5627 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5629 0 obj <> /K[5630 0 R] /P 5620 0 R /S/TD /Type/StructElem>> endobj 5630 0 obj <> /K 59 /P 5629 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5631 0 obj <> /K[5632 0 R] /P 5620 0 R /S/TD /Type/StructElem>> endobj 5632 0 obj <> /K 60 /P 5631 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5633 0 obj <> endobj 5634 0 obj <> /K[5635 0 R] /P 5633 0 R /S/TD /Type/StructElem>> endobj 5635 0 obj <> /K 61 /P 5634 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5636 0 obj <> /K[5637 0 R 5638 0 R] /P 5633 0 R /S/TD /Type/StructElem>> endobj 5637 0 obj <> /K 62 /P 5636 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5638 0 obj <> /K 63 /P 5636 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5639 0 obj <> /K[5640 0 R] /P 5633 0 R /S/TD /Type/StructElem>> endobj 5640 0 obj <> /K 64 /P 5639 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5641 0 obj <> /K 65 /P 5573 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5642 0 obj <> /K 66 /P 5573 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5643 0 obj <> /K 67 /P 5573 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5644 0 obj <> /K 68 /P 5573 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5645 0 obj <> /K 69 /P 5573 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5646 0 obj <> endobj 5647 0 obj <> /K 70 /P 5646 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5648 0 obj <> /K 71 /P 5646 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5649 0 obj <> /K[5650 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5650 0 obj <> /K 72 /P 5649 0 R /Pg 666 0 R /S/P /Type/StructElem>> endobj 5651 0 obj <> /K[5652 0 R 5653 0 R 5654 0 R 5655 0 R 5656 0 R 5657 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5652 0 obj <> /K 0 /P 5651 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5653 0 obj <> /K 1 /P 5651 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5654 0 obj <> /K 2 /P 5651 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5655 0 obj <> /K 3 /P 5651 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5656 0 obj <> /K 4 /P 5651 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5657 0 obj <> /K 5 /P 5651 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5658 0 obj <> /K[5659 0 R 5660 0 R 5661 0 R 5662 0 R 5663 0 R 5664 0 R 5665 0 R 5666 0 R 5667 0 R 5668 0 R 5669 0 R 5670 0 R 5671 0 R 5672 0 R 5673 0 R 5674 0 R 5675 0 R 5676 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5659 0 obj <> /K 6 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5660 0 obj <> /K 7 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5661 0 obj <> /K 8 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5662 0 obj <> /K 9 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5663 0 obj <> /K 10 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5664 0 obj <> /K 11 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5665 0 obj <> /K 12 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5666 0 obj <> /K 13 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5667 0 obj <> /K 14 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5668 0 obj <> /K 15 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5669 0 obj <> /K 16 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5670 0 obj <> /K 17 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5671 0 obj <> /K 18 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5672 0 obj <> /K 19 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5673 0 obj <> /K 20 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5674 0 obj <> /K 21 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5675 0 obj <> /K 22 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5676 0 obj <> /K 23 /P 5658 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5677 0 obj <> /K[5678 0 R 5679 0 R 5680 0 R 5681 0 R 5682 0 R 5683 0 R 5684 0 R 5685 0 R 5686 0 R 5687 0 R 5688 0 R 5689 0 R 5690 0 R 5691 0 R 5692 0 R 5693 0 R 5694 0 R 5695 0 R 5696 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5678 0 obj <> /K 24 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5679 0 obj <> /K 25 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5680 0 obj <> /K 26 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5681 0 obj <> /K 27 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5682 0 obj <> /K 28 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5683 0 obj <> /K 29 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5684 0 obj <> /K 30 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5685 0 obj <> /K 31 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5686 0 obj <> /K 32 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5687 0 obj <> /K 33 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5688 0 obj <> /K 34 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5689 0 obj <> /K 35 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5690 0 obj <> /K 36 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5691 0 obj <> /K 37 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5692 0 obj <> /K 38 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5693 0 obj <> /K 39 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5694 0 obj <> /K 40 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5695 0 obj <> /K 41 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5696 0 obj <> /K 42 /P 5677 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5697 0 obj <> endobj 5698 0 obj <> /K 43 /P 5697 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5699 0 obj <> endobj 5700 0 obj <> /K 44 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5701 0 obj <> /K 45 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5702 0 obj <> /K 46 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5703 0 obj <> /K 47 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5704 0 obj <> /K 48 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5705 0 obj <> /K 49 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5706 0 obj <> /K 50 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5707 0 obj <> /K 51 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5708 0 obj <> /K 52 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5709 0 obj <> /K 53 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5710 0 obj <> /K 54 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5711 0 obj <> /K 55 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5712 0 obj <> /K 56 /P 5699 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5713 0 obj <> endobj 5714 0 obj <> /K 57 /P 5713 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5715 0 obj <> /K 58 /P 5713 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5716 0 obj <> /K[5717 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5717 0 obj <> /K 59 /P 5716 0 R /Pg 671 0 R /S/P /Type/StructElem>> endobj 5718 0 obj <> endobj 5719 0 obj <> /K 0 /P 5718 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5720 0 obj <> /K[5721 0 R 5728 0 R 5733 0 R 5746 0 R 5761 0 R 5776 0 R 5791 0 R] /P 5718 0 R /S/Table /Type/StructElem>> endobj 5721 0 obj <> endobj 5722 0 obj <> /K[5723 0 R] /P 5721 0 R /S/TD /Type/StructElem>> endobj 5723 0 obj <> /K[1 5724 0 R 5725 0 R] /P 5722 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5724 0 obj <> endobj 5725 0 obj <> endobj 5726 0 obj <> /K[5727 0 R] /P 5721 0 R /S/TD /Type/StructElem>> endobj 5727 0 obj <> /K 4 /P 5726 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5728 0 obj <> endobj 5729 0 obj <> /K[5730 0 R] /P 5728 0 R /S/TD /Type/StructElem>> endobj 5730 0 obj <> /K 5 /P 5729 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5731 0 obj <> /K[5732 0 R] /P 5728 0 R /S/TD /Type/StructElem>> endobj 5732 0 obj <> /K 6 /P 5731 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5733 0 obj <> endobj 5734 0 obj <> /K[5735 0 R] /P 5733 0 R /S/TD /Type/StructElem>> endobj 5735 0 obj <> /K 7 /P 5734 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5736 0 obj <> /K[5737 0 R] /P 5733 0 R /S/TD /Type/StructElem>> endobj 5737 0 obj <> /K 8 /P 5736 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5738 0 obj <> /K[5739 0 R] /P 5733 0 R /S/TD /Type/StructElem>> endobj 5739 0 obj <> /K 9 /P 5738 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5740 0 obj <> /K[5741 0 R] /P 5733 0 R /S/TD /Type/StructElem>> endobj 5741 0 obj <> /K 10 /P 5740 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5742 0 obj <> /K[5743 0 R] /P 5733 0 R /S/TD /Type/StructElem>> endobj 5743 0 obj <> /K 11 /P 5742 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5744 0 obj <> /K[5745 0 R] /P 5733 0 R /S/TD /Type/StructElem>> endobj 5745 0 obj <> /K 12 /P 5744 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5746 0 obj <> endobj 5747 0 obj <> /K[5748 0 R] /P 5746 0 R /S/TD /Type/StructElem>> endobj 5748 0 obj <> /K 13 /P 5747 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5749 0 obj <> /K[5750 0 R] /P 5746 0 R /S/TD /Type/StructElem>> endobj 5750 0 obj <> /K 14 /P 5749 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5751 0 obj <> /K[5752 0 R] /P 5746 0 R /S/TD /Type/StructElem>> endobj 5752 0 obj <> /K 15 /P 5751 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5753 0 obj <> /K[5754 0 R] /P 5746 0 R /S/TD /Type/StructElem>> endobj 5754 0 obj <> /K 16 /P 5753 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5755 0 obj <> /K[5756 0 R] /P 5746 0 R /S/TD /Type/StructElem>> endobj 5756 0 obj <> /K 17 /P 5755 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5757 0 obj <> /K[5758 0 R] /P 5746 0 R /S/TD /Type/StructElem>> endobj 5758 0 obj <> /K 18 /P 5757 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5759 0 obj <> /K[5760 0 R] /P 5746 0 R /S/TD /Type/StructElem>> endobj 5760 0 obj <> /K 19 /P 5759 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5761 0 obj <> endobj 5762 0 obj <> /K[5763 0 R] /P 5761 0 R /S/TD /Type/StructElem>> endobj 5763 0 obj <> /K 20 /P 5762 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5764 0 obj <> /K[5765 0 R] /P 5761 0 R /S/TD /Type/StructElem>> endobj 5765 0 obj <> /K 21 /P 5764 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5766 0 obj <> /K[5767 0 R] /P 5761 0 R /S/TD /Type/StructElem>> endobj 5767 0 obj <> /K 22 /P 5766 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5768 0 obj <> /K[5769 0 R] /P 5761 0 R /S/TD /Type/StructElem>> endobj 5769 0 obj <> /K 23 /P 5768 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5770 0 obj <> /K[5771 0 R] /P 5761 0 R /S/TD /Type/StructElem>> endobj 5771 0 obj <> /K 24 /P 5770 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5772 0 obj <> /K[5773 0 R] /P 5761 0 R /S/TD /Type/StructElem>> endobj 5773 0 obj <> /K 25 /P 5772 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5774 0 obj <> /K[5775 0 R] /P 5761 0 R /S/TD /Type/StructElem>> endobj 5775 0 obj <> /K 26 /P 5774 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5776 0 obj <> endobj 5777 0 obj <> /K[5778 0 R] /P 5776 0 R /S/TD /Type/StructElem>> endobj 5778 0 obj <> /K 27 /P 5777 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5779 0 obj <> /K[5780 0 R] /P 5776 0 R /S/TD /Type/StructElem>> endobj 5780 0 obj <> /K 28 /P 5779 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5781 0 obj <> /K[5782 0 R] /P 5776 0 R /S/TD /Type/StructElem>> endobj 5782 0 obj <> /K 29 /P 5781 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5783 0 obj <> /K[5784 0 R] /P 5776 0 R /S/TD /Type/StructElem>> endobj 5784 0 obj <> /K 30 /P 5783 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5785 0 obj <> /K[5786 0 R] /P 5776 0 R /S/TD /Type/StructElem>> endobj 5786 0 obj <> /K 31 /P 5785 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5787 0 obj <> /K[5788 0 R] /P 5776 0 R /S/TD /Type/StructElem>> endobj 5788 0 obj <> /K 32 /P 5787 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5789 0 obj <> /K[5790 0 R] /P 5776 0 R /S/TD /Type/StructElem>> endobj 5790 0 obj <> /K 33 /P 5789 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5791 0 obj <> endobj 5792 0 obj <> /K[5793 0 R] /P 5791 0 R /S/TD /Type/StructElem>> endobj 5793 0 obj <> /K 34 /P 5792 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5794 0 obj <> /K[5795 0 R] /P 5791 0 R /S/TD /Type/StructElem>> endobj 5795 0 obj <> /K 35 /P 5794 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5796 0 obj <> /K[5797 0 R] /P 5791 0 R /S/TD /Type/StructElem>> endobj 5797 0 obj <> /K 36 /P 5796 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5798 0 obj <> /K[5799 0 R] /P 5791 0 R /S/TD /Type/StructElem>> endobj 5799 0 obj <> /K 37 /P 5798 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5800 0 obj <> /K[5801 0 R] /P 5791 0 R /S/TD /Type/StructElem>> endobj 5801 0 obj <> /K 38 /P 5800 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5802 0 obj <> /K[5803 0 R] /P 5791 0 R /S/TD /Type/StructElem>> endobj 5803 0 obj <> /K 39 /P 5802 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5804 0 obj <> /K[5805 0 R] /P 5791 0 R /S/TD /Type/StructElem>> endobj 5805 0 obj <> /K 40 /P 5804 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5806 0 obj <> /K 41 /P 5718 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5807 0 obj <> /K 42 /P 5718 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5808 0 obj <> /K 43 /P 5718 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5809 0 obj <> /K 44 /P 5718 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5810 0 obj <> /K[5811 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5811 0 obj <> /K 45 /P 5810 0 R /Pg 676 0 R /S/P /Type/StructElem>> endobj 5812 0 obj <> endobj 5813 0 obj <> /K 0 /P 5812 0 R /Pg 681 0 R /S/P /Type/StructElem>> endobj 5814 0 obj <> /K 1 /P 5812 0 R /Pg 681 0 R /S/P /Type/StructElem>> endobj 5815 0 obj <> /K 2 /P 5812 0 R /Pg 681 0 R /S/P /Type/StructElem>> endobj 5816 0 obj <> /K[5817 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5817 0 obj <> /K 3 /P 5816 0 R /Pg 681 0 R /S/P /Type/StructElem>> endobj 5818 0 obj <> endobj 5819 0 obj <> /K 0 /P 5818 0 R /Pg 686 0 R /S/P /Type/StructElem>> endobj 5820 0 obj <> /K 1 /P 5818 0 R /Pg 686 0 R /S/P /Type/StructElem>> endobj 5821 0 obj <> /K 2 /P 5818 0 R /Pg 686 0 R /S/P /Type/StructElem>> endobj 5822 0 obj <> /K 3 /P 5818 0 R /Pg 686 0 R /S/P /Type/StructElem>> endobj 5823 0 obj <> /K[5824 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5824 0 obj <> /K 4 /P 5823 0 R /Pg 686 0 R /S/P /Type/StructElem>> endobj 5825 0 obj <> endobj 5826 0 obj <> /K 0 /P 5825 0 R /Pg 691 0 R /S/P /Type/StructElem>> endobj 5827 0 obj <> /K 1 /P 5825 0 R /Pg 691 0 R /S/P /Type/StructElem>> endobj 5828 0 obj <> /K 2 /P 5825 0 R /Pg 691 0 R /S/P /Type/StructElem>> endobj 5829 0 obj <> /K 3 /P 5825 0 R /Pg 691 0 R /S/P /Type/StructElem>> endobj 5830 0 obj <> /K 4 /P 5825 0 R /Pg 691 0 R /S/P /Type/StructElem>> endobj 5831 0 obj <> /K 5 /P 5825 0 R /Pg 691 0 R /S/P /Type/StructElem>> endobj 5832 0 obj <> /K[5833 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5833 0 obj <> /K 6 /P 5832 0 R /Pg 691 0 R /S/P /Type/StructElem>> endobj 5834 0 obj <> endobj 5835 0 obj <> /K 0 /P 5834 0 R /Pg 696 0 R /S/P /Type/StructElem>> endobj 5836 0 obj <> /K 1 /P 5834 0 R /Pg 696 0 R /S/P /Type/StructElem>> endobj 5837 0 obj <> /K 2 /P 5834 0 R /Pg 696 0 R /S/P /Type/StructElem>> endobj 5838 0 obj <> /K 3 /P 5834 0 R /Pg 696 0 R /S/P /Type/StructElem>> endobj 5839 0 obj <> /K 4 /P 5834 0 R /Pg 696 0 R /S/P /Type/StructElem>> endobj 5840 0 obj <> /K 5 /P 5834 0 R /Pg 696 0 R /S/P /Type/StructElem>> endobj 5841 0 obj <> /K[5842 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5842 0 obj <> /K 6 /P 5841 0 R /Pg 696 0 R /S/P /Type/StructElem>> endobj 5843 0 obj <> endobj 5844 0 obj <> /K 0 /P 5843 0 R /Pg 701 0 R /S/P /Type/StructElem>> endobj 5845 0 obj <> /K 1 /P 5843 0 R /Pg 701 0 R /S/P /Type/StructElem>> endobj 5846 0 obj <> /K 2 /P 5843 0 R /Pg 701 0 R /S/P /Type/StructElem>> endobj 5847 0 obj <> /K 3 /P 5843 0 R /Pg 701 0 R /S/P /Type/StructElem>> endobj 5848 0 obj <> /K 4 /P 5843 0 R /Pg 701 0 R /S/P /Type/StructElem>> endobj 5849 0 obj <> /K[5850 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5850 0 obj <> /K 5 /P 5849 0 R /Pg 701 0 R /S/P /Type/StructElem>> endobj 5851 0 obj <> endobj 5852 0 obj <> /K 0 /P 5851 0 R /Pg 706 0 R /S/P /Type/StructElem>> endobj 5853 0 obj <> /K 1 /P 5851 0 R /Pg 706 0 R /S/P /Type/StructElem>> endobj 5854 0 obj <> /K 2 /P 5851 0 R /Pg 706 0 R /S/P /Type/StructElem>> endobj 5855 0 obj <> /K 3 /P 5851 0 R /Pg 706 0 R /S/P /Type/StructElem>> endobj 5856 0 obj <> /K[5857 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5857 0 obj <> /K 4 /P 5856 0 R /Pg 706 0 R /S/P /Type/StructElem>> endobj 5858 0 obj <> /K[5859 0 R 5860 0 R 5861 0 R 5862 0 R 5863 0 R 5864 0 R 5865 0 R 5866 0 R 5867 0 R 5868 0 R 5869 0 R 5870 0 R 5871 0 R 5872 0 R 5873 0 R 5874 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5859 0 obj <> /K 0 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5860 0 obj <> /K 1 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5861 0 obj <> /K 2 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5862 0 obj <> /K 3 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5863 0 obj <> /K 4 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5864 0 obj <> /K 5 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5865 0 obj <> /K 6 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5866 0 obj <> /K 7 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5867 0 obj <> /K 8 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5868 0 obj <> /K 9 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5869 0 obj <> /K 10 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5870 0 obj <> /K 11 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5871 0 obj <> /K 12 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5872 0 obj <> /K 13 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5873 0 obj <> /K 14 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5874 0 obj <> /K 15 /P 5858 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5875 0 obj <> /K[5876 0 R 5877 0 R 5878 0 R 5879 0 R 5880 0 R 5881 0 R 5882 0 R 5883 0 R 5884 0 R 5885 0 R 5886 0 R 5887 0 R 5888 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5876 0 obj <> /K 16 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5877 0 obj <> /K 17 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5878 0 obj <> /K 18 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5879 0 obj <> /K 19 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5880 0 obj <> /K 20 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5881 0 obj <> /K 21 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5882 0 obj <> /K 22 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5883 0 obj <> /K 23 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5884 0 obj <> /K 24 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5885 0 obj <> /K 25 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5886 0 obj <> /K 26 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5887 0 obj <> /K 27 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5888 0 obj <> /K 28 /P 5875 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5889 0 obj <> endobj 5890 0 obj <> /K 29 /P 5889 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5891 0 obj <> /K 30 /P 5889 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5892 0 obj <> /K 31 /P 5889 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5893 0 obj <> /K[5894 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5894 0 obj <> /K 32 /P 5893 0 R /Pg 711 0 R /S/P /Type/StructElem>> endobj 5895 0 obj <> endobj 5896 0 obj <> /K 0 /P 5895 0 R /Pg 716 0 R /S/P /Type/StructElem>> endobj 5897 0 obj <> /K 1 /P 5895 0 R /Pg 716 0 R /S/P /Type/StructElem>> endobj 5898 0 obj <> /K 2 /P 5895 0 R /Pg 716 0 R /S/P /Type/StructElem>> endobj 5899 0 obj <> /K 3 /P 5895 0 R /Pg 716 0 R /S/P /Type/StructElem>> endobj 5900 0 obj <> /K 4 /P 5895 0 R /Pg 716 0 R /S/P /Type/StructElem>> endobj 5901 0 obj <> /K[5902 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5902 0 obj <> /K 5 /P 5901 0 R /Pg 716 0 R /S/P /Type/StructElem>> endobj 5903 0 obj <> /K[5904 0 R 5905 0 R 5906 0 R 5907 0 R 5908 0 R 5909 0 R 5910 0 R 5911 0 R 5912 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5904 0 obj <> /K 0 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5905 0 obj <> /K 1 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5906 0 obj <> /K 2 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5907 0 obj <> /K 3 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5908 0 obj <> /K 4 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5909 0 obj <> /K 5 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5910 0 obj <> /K 6 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5911 0 obj <> /K 7 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5912 0 obj <> /K 8 /P 5903 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5913 0 obj <> endobj 5914 0 obj <> /K 9 /P 5913 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5915 0 obj <> /K 10 /P 5913 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5916 0 obj <> /K[5917 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5917 0 obj <> /K 11 /P 5916 0 R /Pg 721 0 R /S/P /Type/StructElem>> endobj 5918 0 obj <> /K[5919 0 R 5920 0 R 5921 0 R 5922 0 R 5923 0 R 5924 0 R 5925 0 R 5926 0 R 5927 0 R 5928 0 R 5929 0 R 5930 0 R 5931 0 R 5932 0 R 5933 0 R 5934 0 R 5935 0 R 5936 0 R 5937 0 R 5938 0 R 5939 0 R 5940 0 R 5941 0 R 5942 0 R 5943 0 R 5944 0 R 5945 0 R 5946 0 R 5947 0 R 5948 0 R 5949 0 R 5950 0 R 5951 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5919 0 obj <> /K 0 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5920 0 obj <> /K 1 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5921 0 obj <> /K 2 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5922 0 obj <> /K 3 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5923 0 obj <> /K 4 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5924 0 obj <> /K 5 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5925 0 obj <> /K 6 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5926 0 obj <> /K 7 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5927 0 obj <> /K 8 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5928 0 obj <> /K 9 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5929 0 obj <> /K 10 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5930 0 obj <> /K 11 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5931 0 obj <> /K 12 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5932 0 obj <> /K 13 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5933 0 obj <> /K 14 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5934 0 obj <> /K 15 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5935 0 obj <> /K 16 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5936 0 obj <> /K 17 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5937 0 obj <> /K 18 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5938 0 obj <> /K 19 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5939 0 obj <> /K 20 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5940 0 obj <> /K 21 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5941 0 obj <> /K 22 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5942 0 obj <> /K 23 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5943 0 obj <> /K 24 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5944 0 obj <> /K 25 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5945 0 obj <> /K 26 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5946 0 obj <> /K 27 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5947 0 obj <> /K 28 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5948 0 obj <> /K 29 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5949 0 obj <> /K 30 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5950 0 obj <> /K 31 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5951 0 obj <> /K 32 /P 5918 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5952 0 obj <> endobj 5953 0 obj <> /K 33 /P 5952 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5954 0 obj <> endobj 5955 0 obj <> /K 34 /P 5954 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5956 0 obj <> /K 35 /P 5954 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5957 0 obj <> /K 36 /P 5954 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5958 0 obj <> /K[5959 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5959 0 obj <> /K 37 /P 5958 0 R /Pg 726 0 R /S/P /Type/StructElem>> endobj 5960 0 obj <> endobj 5961 0 obj <> /K 0 /P 5960 0 R /Pg 731 0 R /S/P /Type/StructElem>> endobj 5962 0 obj <> endobj 5963 0 obj <> /K 1 /P 5962 0 R /Pg 731 0 R /S/P /Type/StructElem>> endobj 5964 0 obj <> /K[5965 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5965 0 obj <> /K 2 /P 5964 0 R /Pg 731 0 R /S/P /Type/StructElem>> endobj 5966 0 obj <> endobj 5967 0 obj <> /K 0 /P 5966 0 R /Pg 736 0 R /S/P /Type/StructElem>> endobj 5968 0 obj <> /K 1 /P 5966 0 R /Pg 736 0 R /S/P /Type/StructElem>> endobj 5969 0 obj <> /K 2 /P 5966 0 R /Pg 736 0 R /S/P /Type/StructElem>> endobj 5970 0 obj <> /K[5971 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5971 0 obj <> /K 3 /P 5970 0 R /Pg 736 0 R /S/P /Type/StructElem>> endobj 5972 0 obj <> /K[5973 0 R 5974 0 R 5975 0 R 5976 0 R 5977 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5973 0 obj <> /K 0 /P 5972 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5974 0 obj <> /K 1 /P 5972 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5975 0 obj <> /K 2 /P 5972 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5976 0 obj <> /K 3 /P 5972 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5977 0 obj <> /K 4 /P 5972 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5978 0 obj <> /K[5979 0 R 5980 0 R 5981 0 R 5982 0 R 5983 0 R 5984 0 R 5985 0 R 5986 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5979 0 obj <> /K 5 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5980 0 obj <> /K 6 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5981 0 obj <> /K 7 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5982 0 obj <> /K 8 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5983 0 obj <> /K 9 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5984 0 obj <> /K 10 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5985 0 obj <> /K 11 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5986 0 obj <> /K 12 /P 5978 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5987 0 obj <> /K[5988 0 R 5989 0 R 5990 0 R 5991 0 R 5992 0 R 5993 0 R 5994 0 R 5995 0 R 5996 0 R 5997 0 R 5998 0 R 5999 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 5988 0 obj <> /K 13 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5989 0 obj <> /K 14 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5990 0 obj <> /K 15 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5991 0 obj <> /K 16 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5992 0 obj <> /K 17 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5993 0 obj <> /K 18 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5994 0 obj <> /K 19 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5995 0 obj <> /K 20 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5996 0 obj <> /K 21 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5997 0 obj <> /K 22 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5998 0 obj <> /K 23 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 5999 0 obj <> /K 24 /P 5987 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 6000 0 obj <> endobj 6001 0 obj <> /K 25 /P 6000 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 6002 0 obj <> endobj 6003 0 obj <> /K 26 /P 6002 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 6004 0 obj <> /K 27 /P 6002 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 6005 0 obj <> endobj 6006 0 obj <> /K 28 /P 6005 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 6007 0 obj <> /K[6008 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6008 0 obj <> /K 29 /P 6007 0 R /Pg 741 0 R /S/P /Type/StructElem>> endobj 6009 0 obj <> endobj 6010 0 obj <> /K 0 /P 6009 0 R /Pg 746 0 R /S/P /Type/StructElem>> endobj 6011 0 obj <> /K 1 /P 6009 0 R /Pg 746 0 R /S/P /Type/StructElem>> endobj 6012 0 obj <> /K 2 /P 6009 0 R /Pg 746 0 R /S/P /Type/StructElem>> endobj 6013 0 obj <> /K 3 /P 6009 0 R /Pg 746 0 R /S/P /Type/StructElem>> endobj 6014 0 obj <> /K[6015 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6015 0 obj <> /K 4 /P 6014 0 R /Pg 746 0 R /S/P /Type/StructElem>> endobj 6016 0 obj <> endobj 6017 0 obj <> /K 0 /P 6016 0 R /Pg 751 0 R /S/P /Type/StructElem>> endobj 6018 0 obj <> /K 1 /P 6016 0 R /Pg 751 0 R /S/P /Type/StructElem>> endobj 6019 0 obj <> /K 2 /P 6016 0 R /Pg 751 0 R /S/P /Type/StructElem>> endobj 6020 0 obj <> /K 3 /P 6016 0 R /Pg 751 0 R /S/P /Type/StructElem>> endobj 6021 0 obj <> /K[6022 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6022 0 obj <> /K 4 /P 6021 0 R /Pg 751 0 R /S/P /Type/StructElem>> endobj 6023 0 obj <> /K[6024 0 R 6025 0 R 6026 0 R 6027 0 R 6028 0 R 6029 0 R 6030 0 R 6031 0 R 6032 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6024 0 obj <> /K 0 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6025 0 obj <> /K 1 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6026 0 obj <> /K 2 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6027 0 obj <> /K 3 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6028 0 obj <> /K 4 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6029 0 obj <> /K 5 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6030 0 obj <> /K 6 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6031 0 obj <> /K 7 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6032 0 obj <> /K 8 /P 6023 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6033 0 obj <> /K[6034 0 R 6035 0 R 6036 0 R 6037 0 R 6038 0 R 6039 0 R 6040 0 R 6041 0 R 6042 0 R 6043 0 R 6044 0 R 6045 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6034 0 obj <> /K 9 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6035 0 obj <> /K 10 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6036 0 obj <> /K 11 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6037 0 obj <> /K 12 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6038 0 obj <> /K 13 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6039 0 obj <> /K 14 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6040 0 obj <> /K 15 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6041 0 obj <> /K 16 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6042 0 obj <> /K 17 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6043 0 obj <> /K 18 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6044 0 obj <> /K 19 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6045 0 obj <> /K 20 /P 6033 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6046 0 obj <> endobj 6047 0 obj <> /K 21 /P 6046 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6048 0 obj <> endobj 6049 0 obj <> /K[6050 0 R] /P 6048 0 R /S/Table /Type/StructElem>> endobj 6050 0 obj <> endobj 6051 0 obj <> /K[6052 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6052 0 obj <> /K 22 /P 6051 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6053 0 obj <> /K[6054 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6054 0 obj <> /K 23 /P 6053 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6055 0 obj <> /K[6056 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6056 0 obj <> /K 24 /P 6055 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6057 0 obj <> /K[6058 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6058 0 obj <> /K 25 /P 6057 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6059 0 obj <> /K[6060 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6060 0 obj <> /K 26 /P 6059 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6061 0 obj <> /K[6062 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6062 0 obj <> /K 27 /P 6061 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6063 0 obj <> /K[6064 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6064 0 obj <> /K 28 /P 6063 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6065 0 obj <> /K[6066 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6066 0 obj <> /K 29 /P 6065 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6067 0 obj <> /K[6068 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6068 0 obj <> /K 30 /P 6067 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6069 0 obj <> /K[6070 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6070 0 obj <> /K 31 /P 6069 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6071 0 obj <> /K[6072 0 R] /P 6050 0 R /S/TD /Type/StructElem>> endobj 6072 0 obj <> /K 32 /P 6071 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6073 0 obj <> /K[6074 0 R 6075 0 R 6076 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6074 0 obj <> /K 33 /P 6073 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6075 0 obj <> /K 34 /P 6073 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6076 0 obj <> /K 35 /P 6073 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6077 0 obj <> /K[6078 0 R 6079 0 R 6080 0 R 6081 0 R 6082 0 R 6083 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6078 0 obj <> /K 36 /P 6077 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6079 0 obj <> /K 37 /P 6077 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6080 0 obj <> /K 38 /P 6077 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6081 0 obj <> /K 39 /P 6077 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6082 0 obj <> /K 40 /P 6077 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6083 0 obj <> /K 41 /P 6077 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6084 0 obj <> endobj 6085 0 obj <> /K[6086 0 R] /P 6084 0 R /S/Table /Type/StructElem>> endobj 6086 0 obj <> endobj 6087 0 obj <> /K[6088 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6088 0 obj <> /K 42 /P 6087 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6089 0 obj <> /K[6090 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6090 0 obj <> /K 43 /P 6089 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6091 0 obj <> /K[6092 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6092 0 obj <> /K 44 /P 6091 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6093 0 obj <> /K[6094 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6094 0 obj <> /K 45 /P 6093 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6095 0 obj <> /K[6096 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6096 0 obj <> /K 46 /P 6095 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6097 0 obj <> /K[6098 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6098 0 obj <> /K 47 /P 6097 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6099 0 obj <> /K[6100 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6100 0 obj <> /K 48 /P 6099 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6101 0 obj <> /K[6102 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6102 0 obj <> /K 49 /P 6101 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6103 0 obj <> /K[6104 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6104 0 obj <> /K 50 /P 6103 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6105 0 obj <> /K[6106 0 R] /P 6086 0 R /S/TD /Type/StructElem>> endobj 6106 0 obj <> /K 51 /P 6105 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6107 0 obj <> endobj 6108 0 obj <> /K[6109 0 R] /P 6107 0 R /S/Table /Type/StructElem>> endobj 6109 0 obj <> endobj 6110 0 obj <> /K[6111 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6111 0 obj <> /K 52 /P 6110 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6112 0 obj <> /K[6113 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6113 0 obj <> /K 53 /P 6112 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6114 0 obj <> /K[6115 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6115 0 obj <> /K 54 /P 6114 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6116 0 obj <> /K[6117 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6117 0 obj <> /K 55 /P 6116 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6118 0 obj <> /K[6119 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6119 0 obj <> /K 56 /P 6118 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6120 0 obj <> /K[6121 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6121 0 obj <> /K 57 /P 6120 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6122 0 obj <> /K[6123 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6123 0 obj <> /K 58 /P 6122 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6124 0 obj <> /K[6125 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6125 0 obj <> /K 59 /P 6124 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6126 0 obj <> /K[6127 0 R 6128 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6127 0 obj <> /K 60 /P 6126 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6128 0 obj <> /K 61 /P 6126 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6129 0 obj <> /K[6130 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6130 0 obj <> /K 62 /P 6129 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6131 0 obj <> /K[6132 0 R] /P 6109 0 R /S/TD /Type/StructElem>> endobj 6132 0 obj <> /K 63 /P 6131 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6133 0 obj <> /K 64 /P 6107 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6134 0 obj <> /K[6135 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6135 0 obj <> /K 65 /P 6134 0 R /Pg 756 0 R /S/P /Type/StructElem>> endobj 6136 0 obj <> /K[6137 0 R 6138 0 R 6139 0 R 6140 0 R 6141 0 R 6142 0 R 6143 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6137 0 obj <> /K 0 /P 6136 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6138 0 obj <> /K 1 /P 6136 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6139 0 obj <> /K 2 /P 6136 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6140 0 obj <> /K 3 /P 6136 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6141 0 obj <> /K 4 /P 6136 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6142 0 obj <> /K 5 /P 6136 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6143 0 obj <> /K 6 /P 6136 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6144 0 obj <> endobj 6145 0 obj <> /K 7 /P 6144 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6146 0 obj <> endobj 6147 0 obj <> /K 8 /P 6146 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6148 0 obj <> /K 9 /P 6146 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6149 0 obj <> /K[6150 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6150 0 obj <> /K 10 /P 6149 0 R /Pg 764 0 R /S/P /Type/StructElem>> endobj 6151 0 obj <> /K[6152 0 R 6153 0 R 6154 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6152 0 obj <> /K 0 /P 6151 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6153 0 obj <> /K 1 /P 6151 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6154 0 obj <> /K 2 /P 6151 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6155 0 obj <> endobj 6156 0 obj <> /K 3 /P 6155 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6157 0 obj <> /K 4 /P 6155 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6158 0 obj <> /K 5 /P 6155 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6159 0 obj <> /K 6 /P 6155 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6160 0 obj <> /K 7 /P 6155 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6161 0 obj <> /K 8 /P 6155 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6162 0 obj <> /K[6163 0 R 6164 0 R 6165 0 R 6166 0 R 6167 0 R 6168 0 R 6169 0 R 6170 0 R 6171 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6163 0 obj <> /K 9 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6164 0 obj <> /K 10 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6165 0 obj <> /K 11 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6166 0 obj <> /K 12 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6167 0 obj <> /K 13 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6168 0 obj <> /K 14 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6169 0 obj <> /K 15 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6170 0 obj <> /K 16 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6171 0 obj <> /K 17 /P 6162 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6172 0 obj <> /K[6173 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6173 0 obj <> /K 18 /P 6172 0 R /Pg 769 0 R /S/P /Type/StructElem>> endobj 6174 0 obj <> /K[6175 0 R 6176 0 R 6177 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6175 0 obj <> /K 0 /P 6174 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6176 0 obj <> /K 1 /P 6174 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6177 0 obj <> /K 2 /P 6174 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6178 0 obj <> endobj 6179 0 obj <> /K 3 /P 6178 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6180 0 obj <> /K[6181 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6181 0 obj <> /K 4 /P 6180 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6182 0 obj <> endobj 6183 0 obj <> /K[6184 0 R 6191 0 R] /P 6182 0 R /S/Table /Type/StructElem>> endobj 6184 0 obj <> endobj 6185 0 obj <> /K[6186 0 R 6187 0 R 6188 0 R] /P 6184 0 R /S/TD /Type/StructElem>> endobj 6186 0 obj <> /K 5 /P 6185 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6187 0 obj <> /K 6 /P 6185 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6188 0 obj <> /K 7 /P 6185 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6189 0 obj <> /K[6190 0 R] /P 6184 0 R /S/TD /Type/StructElem>> endobj 6190 0 obj <> /K 8 /P 6189 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6191 0 obj <> endobj 6192 0 obj <> /K[6193 0 R 6194 0 R] /P 6191 0 R /S/TD /Type/StructElem>> endobj 6193 0 obj <> /K 9 /P 6192 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6194 0 obj <> /K 10 /P 6192 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6195 0 obj <> /K 11 /P 6182 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6196 0 obj <> /K 12 /P 6182 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6197 0 obj <> /K 13 /P 6182 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6198 0 obj <> /K[6199 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6199 0 obj <> /K 14 /P 6198 0 R /Pg 774 0 R /S/P /Type/StructElem>> endobj 6200 0 obj <> endobj 6201 0 obj <> /K 0 /P 6200 0 R /Pg 779 0 R /S/P /Type/StructElem>> endobj 6202 0 obj <> /K 1 /P 6200 0 R /Pg 779 0 R /S/P /Type/StructElem>> endobj 6203 0 obj <> /K 2 /P 6200 0 R /Pg 779 0 R /S/P /Type/StructElem>> endobj 6204 0 obj <> /K 3 /P 6200 0 R /Pg 779 0 R /S/P /Type/StructElem>> endobj 6205 0 obj <> /K[6206 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6206 0 obj <> /K 4 /P 6205 0 R /Pg 779 0 R /S/P /Type/StructElem>> endobj 6207 0 obj <> endobj 6208 0 obj <> /K 0 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6209 0 obj <> /K 1 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6210 0 obj <> /K 2 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6211 0 obj <> /K 3 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6212 0 obj <> /K 4 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6213 0 obj <> /K 5 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6214 0 obj <> /K[6215 0 R] /P 6207 0 R /S/Table /Type/StructElem>> endobj 6215 0 obj <> endobj 6216 0 obj <> /K[6217 0 R 6218 0 R 6219 0 R] /P 6215 0 R /S/TD /Type/StructElem>> endobj 6217 0 obj <> /K 6 /P 6216 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6218 0 obj <> /K 7 /P 6216 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6219 0 obj <> /K 8 /P 6216 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6220 0 obj <> /K[6221 0 R] /P 6215 0 R /S/TD /Type/StructElem>> endobj 6221 0 obj <> /K 9 /P 6220 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6222 0 obj <> /K 10 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6223 0 obj <> /K 11 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6224 0 obj <> /K 12 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6225 0 obj <> /K 13 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6226 0 obj <> /K 14 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6227 0 obj <> /K 15 /P 6207 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6228 0 obj <> /K[6229 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6229 0 obj <> /K 16 /P 6228 0 R /Pg 784 0 R /S/P /Type/StructElem>> endobj 6230 0 obj <> endobj 6231 0 obj <> /K 0 /P 6230 0 R /Pg 789 0 R /S/P /Type/StructElem>> endobj 6232 0 obj <> /K 1 /P 6230 0 R /Pg 789 0 R /S/P /Type/StructElem>> endobj 6233 0 obj <> /K 2 /P 6230 0 R /Pg 789 0 R /S/P /Type/StructElem>> endobj 6234 0 obj <> /K 3 /P 6230 0 R /Pg 789 0 R /S/P /Type/StructElem>> endobj 6235 0 obj <> /K 4 /P 6230 0 R /Pg 789 0 R /S/P /Type/StructElem>> endobj 6236 0 obj <> /K 5 /P 6230 0 R /Pg 789 0 R /S/P /Type/StructElem>> endobj 6237 0 obj <> /K[6238 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6238 0 obj <> /K 6 /P 6237 0 R /Pg 789 0 R /S/P /Type/StructElem>> endobj 6239 0 obj <> endobj 6240 0 obj <> /K 0 /P 6239 0 R /Pg 794 0 R /S/P /Type/StructElem>> endobj 6241 0 obj <> /K 1 /P 6239 0 R /Pg 794 0 R /S/P /Type/StructElem>> endobj 6242 0 obj <> /K 2 /P 6239 0 R /Pg 794 0 R /S/P /Type/StructElem>> endobj 6243 0 obj <> /K 3 /P 6239 0 R /Pg 794 0 R /S/P /Type/StructElem>> endobj 6244 0 obj <> /K 4 /P 6239 0 R /Pg 794 0 R /S/P /Type/StructElem>> endobj 6245 0 obj <> /K[6246 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6246 0 obj <> /K 5 /P 6245 0 R /Pg 794 0 R /S/P /Type/StructElem>> endobj 6247 0 obj <> endobj 6248 0 obj <> /K 0 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6249 0 obj <> /K 1 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6250 0 obj <> /K 2 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6251 0 obj <> /K 3 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6252 0 obj <> /K 4 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6253 0 obj <> /K 5 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6254 0 obj <> /K 6 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6255 0 obj <> /K 7 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6256 0 obj <> /K 8 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6257 0 obj <> /K 9 /P 6247 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6258 0 obj <> /K[6259 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6259 0 obj <> /K 10 /P 6258 0 R /Pg 799 0 R /S/P /Type/StructElem>> endobj 6260 0 obj <> /K[6261 0 R 6262 0 R 6263 0 R 6264 0 R 6265 0 R 6266 0 R 6267 0 R 6268 0 R 6269 0 R 6270 0 R 6271 0 R 6272 0 R 6273 0 R 6274 0 R 6275 0 R 6276 0 R 6277 0 R 6278 0 R 6279 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6261 0 obj <> /K 0 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6262 0 obj <> /K 1 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6263 0 obj <> /K 2 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6264 0 obj <> /K 3 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6265 0 obj <> /K 4 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6266 0 obj <> /K 5 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6267 0 obj <> /K 6 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6268 0 obj <> /K 7 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6269 0 obj <> /K 8 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6270 0 obj <> /K 9 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6271 0 obj <> /K 10 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6272 0 obj <> /K 11 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6273 0 obj <> /K 12 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6274 0 obj <> /K 13 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6275 0 obj <> /K 14 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6276 0 obj <> /K 15 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6277 0 obj <> /K 16 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6278 0 obj <> /K 17 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6279 0 obj <> /K 18 /P 6260 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6280 0 obj <> endobj 6281 0 obj <> /K 19 /P 6280 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6282 0 obj <> endobj 6283 0 obj <> /K 20 /P 6282 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6284 0 obj <> /K 21 /P 6282 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6285 0 obj <> /K[6286 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6286 0 obj <> /K 22 /P 6285 0 R /Pg 804 0 R /S/P /Type/StructElem>> endobj 6287 0 obj <> endobj 6288 0 obj <> /K 0 /P 6287 0 R /Pg 809 0 R /S/P /Type/StructElem>> endobj 6289 0 obj <> /K 1 /P 6287 0 R /Pg 809 0 R /S/P /Type/StructElem>> endobj 6290 0 obj <> /K 2 /P 6287 0 R /Pg 809 0 R /S/P /Type/StructElem>> endobj 6291 0 obj <> /K 3 /P 6287 0 R /Pg 809 0 R /S/P /Type/StructElem>> endobj 6292 0 obj <> /K 4 /P 6287 0 R /Pg 809 0 R /S/P /Type/StructElem>> endobj 6293 0 obj <> /K[6294 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6294 0 obj <> /K 5 /P 6293 0 R /Pg 809 0 R /S/P /Type/StructElem>> endobj 6295 0 obj <> endobj 6296 0 obj <> /K 0 /P 6295 0 R /Pg 814 0 R /S/P /Type/StructElem>> endobj 6297 0 obj <> /K 1 /P 6295 0 R /Pg 814 0 R /S/P /Type/StructElem>> endobj 6298 0 obj <> /K 2 /P 6295 0 R /Pg 814 0 R /S/P /Type/StructElem>> endobj 6299 0 obj <> /K[6300 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6300 0 obj <> /K 3 /P 6299 0 R /Pg 814 0 R /S/P /Type/StructElem>> endobj 6301 0 obj <> /K[6302 0 R 6303 0 R 6304 0 R 6305 0 R 6306 0 R 6307 0 R 6308 0 R 6309 0 R 6310 0 R 6311 0 R 6312 0 R 6313 0 R 6314 0 R 6315 0 R 6316 0 R 6317 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6302 0 obj <> /K 0 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6303 0 obj <> /K 1 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6304 0 obj <> /K 2 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6305 0 obj <> /K 3 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6306 0 obj <> /K 4 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6307 0 obj <> /K 5 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6308 0 obj <> /K 6 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6309 0 obj <> /K 7 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6310 0 obj <> /K 8 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6311 0 obj <> /K 9 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6312 0 obj <> /K 10 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6313 0 obj <> /K 11 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6314 0 obj <> /K 12 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6315 0 obj <> /K 13 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6316 0 obj <> /K 14 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6317 0 obj <> /K 15 /P 6301 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6318 0 obj <> endobj 6319 0 obj <> /K 16 /P 6318 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6320 0 obj <> /K 17 /P 6318 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6321 0 obj <> /K 18 /P 6318 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6322 0 obj <> /K 19 /P 6318 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6323 0 obj <> /K 20 /P 6318 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6324 0 obj <> /K[6325 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6325 0 obj <> /K 21 /P 6324 0 R /Pg 819 0 R /S/P /Type/StructElem>> endobj 6326 0 obj <> endobj 6327 0 obj <> /K 0 /P 6326 0 R /Pg 824 0 R /S/P /Type/StructElem>> endobj 6328 0 obj <> /K 1 /P 6326 0 R /Pg 824 0 R /S/P /Type/StructElem>> endobj 6329 0 obj <> /K 2 /P 6326 0 R /Pg 824 0 R /S/P /Type/StructElem>> endobj 6330 0 obj <> /K[6331 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6331 0 obj <> /K 3 /P 6330 0 R /Pg 824 0 R /S/P /Type/StructElem>> endobj 6332 0 obj <> endobj 6333 0 obj <> /K 0 /P 6332 0 R /Pg 829 0 R /S/P /Type/StructElem>> endobj 6334 0 obj <> /K 1 /P 6332 0 R /Pg 829 0 R /S/P /Type/StructElem>> endobj 6335 0 obj <> /K 2 /P 6332 0 R /Pg 829 0 R /S/P /Type/StructElem>> endobj 6336 0 obj <> /K 3 /P 6332 0 R /Pg 829 0 R /S/P /Type/StructElem>> endobj 6337 0 obj <> /K 4 /P 6332 0 R /Pg 829 0 R /S/P /Type/StructElem>> endobj 6338 0 obj <> /K 5 /P 6332 0 R /Pg 829 0 R /S/P /Type/StructElem>> endobj 6339 0 obj <> /K[6340 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6340 0 obj <> /K 6 /P 6339 0 R /Pg 829 0 R /S/P /Type/StructElem>> endobj 6341 0 obj <> endobj 6342 0 obj <> /K 0 /P 6341 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6343 0 obj <> /K 1 /P 6341 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6344 0 obj <> /K 2 /P 6341 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6345 0 obj <> /K 3 /P 6341 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6346 0 obj <> /K 4 /P 6341 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6347 0 obj <> /K 5 /P 6341 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6348 0 obj <> /K 6 /P 6341 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6349 0 obj <> /K[6350 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6350 0 obj <> /K 7 /P 6349 0 R /Pg 834 0 R /S/P /Type/StructElem>> endobj 6351 0 obj <> endobj 6352 0 obj <> /K 0 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6353 0 obj <> /K 1 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6354 0 obj <> /K 2 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6355 0 obj <> /K 3 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6356 0 obj <> /K 4 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6357 0 obj <> /K 5 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6358 0 obj <> /K 6 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6359 0 obj <> /K 7 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6360 0 obj <> /K 8 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6361 0 obj <> /K 9 /P 6351 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6362 0 obj <> endobj 6363 0 obj <> /K 10 /P 6362 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6364 0 obj <> /K[6365 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6365 0 obj <> /K 11 /P 6364 0 R /Pg 839 0 R /S/P /Type/StructElem>> endobj 6366 0 obj <> endobj 6367 0 obj <> /K 0 /P 6366 0 R /Pg 844 0 R /S/P /Type/StructElem>> endobj 6368 0 obj <> /K 1 /P 6366 0 R /Pg 844 0 R /S/P /Type/StructElem>> endobj 6369 0 obj <> /K[6370 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6370 0 obj <> /K 2 /P 6369 0 R /Pg 844 0 R /S/P /Type/StructElem>> endobj 6371 0 obj <> endobj 6372 0 obj <> /K 0 /P 6371 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6373 0 obj <> /K 1 /P 6371 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6374 0 obj <> /K 2 /P 6371 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6375 0 obj <> /K 3 /P 6371 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6376 0 obj <> /K[6377 0 R] /P 6371 0 R /S/Table /Type/StructElem>> endobj 6377 0 obj <> endobj 6378 0 obj <> /K[6379 0 R 6380 0 R 6381 0 R] /P 6377 0 R /S/TD /Type/StructElem>> endobj 6379 0 obj <> /K 4 /P 6378 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6380 0 obj <> /K 5 /P 6378 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6381 0 obj <> /K 6 /P 6378 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6382 0 obj <> /K[6383 0 R] /P 6377 0 R /S/TD /Type/StructElem>> endobj 6383 0 obj <> /K 7 /P 6382 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6384 0 obj <> /K 8 /P 6371 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6385 0 obj <> /K[6386 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6386 0 obj <> /K 9 /P 6385 0 R /Pg 849 0 R /S/P /Type/StructElem>> endobj 6387 0 obj <> endobj 6388 0 obj <> /K 0 /P 6387 0 R /Pg 854 0 R /S/P /Type/StructElem>> endobj 6389 0 obj <> /K[6390 0 R] /P 6387 0 R /S/Table /Type/StructElem>> endobj 6390 0 obj <> endobj 6391 0 obj <> /K[6392 0 R 6393 0 R] /P 6390 0 R /S/TD /Type/StructElem>> endobj 6392 0 obj <> /K 1 /P 6391 0 R /Pg 854 0 R /S/P /Type/StructElem>> endobj 6393 0 obj <> /K 2 /P 6391 0 R /Pg 854 0 R /S/P /Type/StructElem>> endobj 6394 0 obj <> /K[6395 0 R 6396 0 R] /P 6390 0 R /S/TD /Type/StructElem>> endobj 6395 0 obj <> /K 3 /P 6394 0 R /Pg 854 0 R /S/P /Type/StructElem>> endobj 6396 0 obj <> /K 4 /P 6394 0 R /Pg 854 0 R /S/P /Type/StructElem>> endobj 6397 0 obj <> /K 5 /P 6387 0 R /Pg 854 0 R /S/P /Type/StructElem>> endobj 6398 0 obj <> /K[6399 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6399 0 obj <> /K 6 /P 6398 0 R /Pg 854 0 R /S/P /Type/StructElem>> endobj 6400 0 obj <> endobj 6401 0 obj <> /K 0 /P 6400 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6402 0 obj <> /K 1 /P 6400 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6403 0 obj <> /K 2 /P 6400 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6404 0 obj <> /K[6405 0 R 6410 0 R 6415 0 R 6420 0 R 6425 0 R 6432 0 R 6437 0 R 6444 0 R] /P 6400 0 R /S/Table /Type/StructElem>> endobj 6405 0 obj <> endobj 6406 0 obj <> /K[6407 0 R] /P 6405 0 R /S/TD /Type/StructElem>> endobj 6407 0 obj <> /K 3 /P 6406 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6408 0 obj <> /K[6409 0 R] /P 6405 0 R /S/TD /Type/StructElem>> endobj 6409 0 obj <> /K 4 /P 6408 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6410 0 obj <> endobj 6411 0 obj <> /K[6412 0 R] /P 6410 0 R /S/TD /Type/StructElem>> endobj 6412 0 obj <> /K 5 /P 6411 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6413 0 obj <> /K[6414 0 R] /P 6410 0 R /S/TD /Type/StructElem>> endobj 6414 0 obj <> /K 6 /P 6413 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6415 0 obj <> endobj 6416 0 obj <> /K[6417 0 R] /P 6415 0 R /S/TD /Type/StructElem>> endobj 6417 0 obj <> /K 7 /P 6416 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6418 0 obj <> /K[6419 0 R] /P 6415 0 R /S/TD /Type/StructElem>> endobj 6419 0 obj <> /K 8 /P 6418 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6420 0 obj <> endobj 6421 0 obj <> /K[6422 0 R] /P 6420 0 R /S/TD /Type/StructElem>> endobj 6422 0 obj <> /K 9 /P 6421 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6423 0 obj <> /K[6424 0 R] /P 6420 0 R /S/TD /Type/StructElem>> endobj 6424 0 obj <> /K 10 /P 6423 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6425 0 obj <> endobj 6426 0 obj <> /K[6427 0 R] /P 6425 0 R /S/TD /Type/StructElem>> endobj 6427 0 obj <> /K 11 /P 6426 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6428 0 obj <> /K[6429 0 R] /P 6425 0 R /S/TD /Type/StructElem>> endobj 6429 0 obj <> /K 12 /P 6428 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6430 0 obj <> /K[6431 0 R] /P 6425 0 R /S/TD /Type/StructElem>> endobj 6431 0 obj <> /K 13 /P 6430 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6432 0 obj <> endobj 6433 0 obj <> /K[6434 0 R] /P 6432 0 R /S/TD /Type/StructElem>> endobj 6434 0 obj <> /K 14 /P 6433 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6435 0 obj <> /K[6436 0 R] /P 6432 0 R /S/TD /Type/StructElem>> endobj 6436 0 obj <> /K 15 /P 6435 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6437 0 obj <> endobj 6438 0 obj <> /K[6439 0 R] /P 6437 0 R /S/TD /Type/StructElem>> endobj 6439 0 obj <> /K 16 /P 6438 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6440 0 obj <> /K[6441 0 R] /P 6437 0 R /S/TD /Type/StructElem>> endobj 6441 0 obj <> /K 17 /P 6440 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6442 0 obj <> /K[6443 0 R] /P 6437 0 R /S/TD /Type/StructElem>> endobj 6443 0 obj <> /K 18 /P 6442 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6444 0 obj <> endobj 6445 0 obj <> /K[6446 0 R] /P 6444 0 R /S/TD /Type/StructElem>> endobj 6446 0 obj <> /K 19 /P 6445 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6447 0 obj <> /K[6448 0 R] /P 6444 0 R /S/TD /Type/StructElem>> endobj 6448 0 obj <> /K 20 /P 6447 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6449 0 obj <> /K 21 /P 6400 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6450 0 obj <> /K[6451 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6451 0 obj <> /K 22 /P 6450 0 R /Pg 859 0 R /S/P /Type/StructElem>> endobj 6452 0 obj <> endobj 6453 0 obj <> /K[6454 0 R 6459 0 R 6468 0 R 6475 0 R 6484 0 R 6493 0 R 6504 0 R 6513 0 R 6524 0 R] /P 6452 0 R /S/Table /Type/StructElem>> endobj 6454 0 obj <> endobj 6455 0 obj <> /K[6456 0 R] /P 6454 0 R /S/TD /Type/StructElem>> endobj 6456 0 obj <> /K 0 /P 6455 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6457 0 obj <> /K[6458 0 R] /P 6454 0 R /S/TD /Type/StructElem>> endobj 6458 0 obj <> /K 1 /P 6457 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6459 0 obj <> endobj 6460 0 obj <> /K[6461 0 R] /P 6459 0 R /S/TD /Type/StructElem>> endobj 6461 0 obj <> /K 2 /P 6460 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6462 0 obj <> /K[6463 0 R] /P 6459 0 R /S/TD /Type/StructElem>> endobj 6463 0 obj <> /K 3 /P 6462 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6464 0 obj <> /K[6465 0 R] /P 6459 0 R /S/TD /Type/StructElem>> endobj 6465 0 obj <> /K[4 6466 0 R 6467 0 R] /P 6464 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6466 0 obj <> endobj 6467 0 obj <> endobj 6468 0 obj <> endobj 6469 0 obj <> /K[6470 0 R] /P 6468 0 R /S/TD /Type/StructElem>> endobj 6470 0 obj <> /K 7 /P 6469 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6471 0 obj <> /K[6472 0 R] /P 6468 0 R /S/TD /Type/StructElem>> endobj 6472 0 obj <> /K 8 /P 6471 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6473 0 obj <> /K[6474 0 R] /P 6468 0 R /S/TD /Type/StructElem>> endobj 6474 0 obj <> /K 9 /P 6473 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6475 0 obj <> endobj 6476 0 obj <> /K[6477 0 R] /P 6475 0 R /S/TD /Type/StructElem>> endobj 6477 0 obj <> /K 10 /P 6476 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6478 0 obj <> /K[6479 0 R] /P 6475 0 R /S/TD /Type/StructElem>> endobj 6479 0 obj <> /K 11 /P 6478 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6480 0 obj <> /K[6481 0 R] /P 6475 0 R /S/TD /Type/StructElem>> endobj 6481 0 obj <> /K[12 6482 0 R 6483 0 R] /P 6480 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6482 0 obj <> endobj 6483 0 obj <> endobj 6484 0 obj <> endobj 6485 0 obj <> /K[6486 0 R] /P 6484 0 R /S/TD /Type/StructElem>> endobj 6486 0 obj <> /K 15 /P 6485 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6487 0 obj <> /K[6488 0 R] /P 6484 0 R /S/TD /Type/StructElem>> endobj 6488 0 obj <> /K 16 /P 6487 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6489 0 obj <> /K[6490 0 R] /P 6484 0 R /S/TD /Type/StructElem>> endobj 6490 0 obj <> /K[17 6491 0 R 6492 0 R] /P 6489 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6491 0 obj <> endobj 6492 0 obj <> endobj 6493 0 obj <> endobj 6494 0 obj <> /K[6495 0 R] /P 6493 0 R /S/TD /Type/StructElem>> endobj 6495 0 obj <> /K 20 /P 6494 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6496 0 obj <> /K[6497 0 R] /P 6493 0 R /S/TD /Type/StructElem>> endobj 6497 0 obj <> /K 21 /P 6496 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6498 0 obj <> /K[6499 0 R] /P 6493 0 R /S/TD /Type/StructElem>> endobj 6499 0 obj <> /K 22 /P 6498 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6500 0 obj <> /K[6501 0 R] /P 6493 0 R /S/TD /Type/StructElem>> endobj 6501 0 obj <> /K[23 6502 0 R 6503 0 R] /P 6500 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6502 0 obj <> endobj 6503 0 obj <> endobj 6504 0 obj <> endobj 6505 0 obj <> /K[6506 0 R] /P 6504 0 R /S/TD /Type/StructElem>> endobj 6506 0 obj <> /K 26 /P 6505 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6507 0 obj <> /K[6508 0 R] /P 6504 0 R /S/TD /Type/StructElem>> endobj 6508 0 obj <> /K 27 /P 6507 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6509 0 obj <> /K[6510 0 R] /P 6504 0 R /S/TD /Type/StructElem>> endobj 6510 0 obj <> /K[28 6511 0 R 6512 0 R] /P 6509 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6511 0 obj <> endobj 6512 0 obj <> endobj 6513 0 obj <> endobj 6514 0 obj <> /K[6515 0 R] /P 6513 0 R /S/TD /Type/StructElem>> endobj 6515 0 obj <> /K 31 /P 6514 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6516 0 obj <> /K[6517 0 R] /P 6513 0 R /S/TD /Type/StructElem>> endobj 6517 0 obj <> /K 32 /P 6516 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6518 0 obj <> /K[6519 0 R] /P 6513 0 R /S/TD /Type/StructElem>> endobj 6519 0 obj <> /K 33 /P 6518 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6520 0 obj <> /K[6521 0 R] /P 6513 0 R /S/TD /Type/StructElem>> endobj 6521 0 obj <> /K[34 6522 0 R 6523 0 R] /P 6520 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6522 0 obj <> endobj 6523 0 obj <> endobj 6524 0 obj <> endobj 6525 0 obj <> /K[6526 0 R] /P 6524 0 R /S/TD /Type/StructElem>> endobj 6526 0 obj <> /K 37 /P 6525 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6527 0 obj <> /K[6528 0 R] /P 6524 0 R /S/TD /Type/StructElem>> endobj 6528 0 obj <> /K 38 /P 6527 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6529 0 obj <> /K[6530 0 R] /P 6524 0 R /S/TD /Type/StructElem>> endobj 6530 0 obj <> /K[39 6531 0 R 6532 0 R] /P 6529 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6531 0 obj <> endobj 6532 0 obj <> endobj 6533 0 obj <> /K 42 /P 6452 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6534 0 obj <> /K[6535 0 R 6540 0 R 6545 0 R 6550 0 R 6557 0 R 6562 0 R 6567 0 R 6572 0 R 6577 0 R] /P 6452 0 R /S/Table /Type/StructElem>> endobj 6535 0 obj <> endobj 6536 0 obj <> /K[6537 0 R] /P 6535 0 R /S/TD /Type/StructElem>> endobj 6537 0 obj <> /K 43 /P 6536 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6538 0 obj <> /K[6539 0 R] /P 6535 0 R /S/TD /Type/StructElem>> endobj 6539 0 obj <> /K 44 /P 6538 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6540 0 obj <> endobj 6541 0 obj <> /K[6542 0 R] /P 6540 0 R /S/TD /Type/StructElem>> endobj 6542 0 obj <> /K 45 /P 6541 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6543 0 obj <> /K[6544 0 R] /P 6540 0 R /S/TD /Type/StructElem>> endobj 6544 0 obj <> /K 46 /P 6543 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6545 0 obj <> endobj 6546 0 obj <> /K[6547 0 R] /P 6545 0 R /S/TD /Type/StructElem>> endobj 6547 0 obj <> /K 47 /P 6546 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6548 0 obj <> /K[6549 0 R] /P 6545 0 R /S/TD /Type/StructElem>> endobj 6549 0 obj <> /K 48 /P 6548 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6550 0 obj <> endobj 6551 0 obj <> /K[6552 0 R] /P 6550 0 R /S/TD /Type/StructElem>> endobj 6552 0 obj <> /K 49 /P 6551 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6553 0 obj <> /K[6554 0 R] /P 6550 0 R /S/TD /Type/StructElem>> endobj 6554 0 obj <> /K 50 /P 6553 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6555 0 obj <> /K[6556 0 R] /P 6550 0 R /S/TD /Type/StructElem>> endobj 6556 0 obj <> /K 51 /P 6555 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6557 0 obj <> endobj 6558 0 obj <> /K[6559 0 R] /P 6557 0 R /S/TD /Type/StructElem>> endobj 6559 0 obj <> /K 52 /P 6558 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6560 0 obj <> /K[6561 0 R] /P 6557 0 R /S/TD /Type/StructElem>> endobj 6561 0 obj <> /K 53 /P 6560 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6562 0 obj <> endobj 6563 0 obj <> /K[6564 0 R] /P 6562 0 R /S/TD /Type/StructElem>> endobj 6564 0 obj <> /K 54 /P 6563 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6565 0 obj <> /K[6566 0 R] /P 6562 0 R /S/TD /Type/StructElem>> endobj 6566 0 obj <> /K 55 /P 6565 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6567 0 obj <> endobj 6568 0 obj <> /K[6569 0 R] /P 6567 0 R /S/TD /Type/StructElem>> endobj 6569 0 obj <> /K 56 /P 6568 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6570 0 obj <> /K[6571 0 R] /P 6567 0 R /S/TD /Type/StructElem>> endobj 6571 0 obj <> /K 57 /P 6570 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6572 0 obj <> endobj 6573 0 obj <> /K[6574 0 R] /P 6572 0 R /S/TD /Type/StructElem>> endobj 6574 0 obj <> /K 58 /P 6573 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6575 0 obj <> /K[6576 0 R] /P 6572 0 R /S/TD /Type/StructElem>> endobj 6576 0 obj <> /K 59 /P 6575 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6577 0 obj <> endobj 6578 0 obj <> /K[6579 0 R] /P 6577 0 R /S/TD /Type/StructElem>> endobj 6579 0 obj <> /K 60 /P 6578 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6580 0 obj <> /K[6581 0 R] /P 6577 0 R /S/TD /Type/StructElem>> endobj 6581 0 obj <> /K 61 /P 6580 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6582 0 obj <> /K[6583 0 R] /P 6577 0 R /S/TD /Type/StructElem>> endobj 6583 0 obj <> /K 62 /P 6582 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6584 0 obj <> /K 63 /P 6452 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6585 0 obj <> /K[6586 0 R 6591 0 R 6596 0 R 6601 0 R 6606 0 R 6613 0 R 6618 0 R 6623 0 R 6628 0 R 6633 0 R] /P 6452 0 R /S/Table /Type/StructElem>> endobj 6586 0 obj <> endobj 6587 0 obj <> /K[6588 0 R] /P 6586 0 R /S/TD /Type/StructElem>> endobj 6588 0 obj <> /K 64 /P 6587 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6589 0 obj <> /K[6590 0 R] /P 6586 0 R /S/TD /Type/StructElem>> endobj 6590 0 obj <> /K 65 /P 6589 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6591 0 obj <> endobj 6592 0 obj <> /K[6593 0 R] /P 6591 0 R /S/TD /Type/StructElem>> endobj 6593 0 obj <> /K 66 /P 6592 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6594 0 obj <> /K[6595 0 R] /P 6591 0 R /S/TD /Type/StructElem>> endobj 6595 0 obj <> /K 67 /P 6594 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6596 0 obj <> endobj 6597 0 obj <> /K[6598 0 R] /P 6596 0 R /S/TD /Type/StructElem>> endobj 6598 0 obj <> /K 68 /P 6597 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6599 0 obj <> /K[6600 0 R] /P 6596 0 R /S/TD /Type/StructElem>> endobj 6600 0 obj <> /K 69 /P 6599 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6601 0 obj <> endobj 6602 0 obj <> /K[6603 0 R] /P 6601 0 R /S/TD /Type/StructElem>> endobj 6603 0 obj <> /K 70 /P 6602 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6604 0 obj <> /K[6605 0 R] /P 6601 0 R /S/TD /Type/StructElem>> endobj 6605 0 obj <> /K 71 /P 6604 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6606 0 obj <> endobj 6607 0 obj <> /K[6608 0 R] /P 6606 0 R /S/TD /Type/StructElem>> endobj 6608 0 obj <> /K 72 /P 6607 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6609 0 obj <> /K[6610 0 R] /P 6606 0 R /S/TD /Type/StructElem>> endobj 6610 0 obj <> /K 73 /P 6609 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6611 0 obj <> /K[6612 0 R] /P 6606 0 R /S/TD /Type/StructElem>> endobj 6612 0 obj <> /K 74 /P 6611 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6613 0 obj <> endobj 6614 0 obj <> /K[6615 0 R] /P 6613 0 R /S/TD /Type/StructElem>> endobj 6615 0 obj <> /K 75 /P 6614 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6616 0 obj <> /K[6617 0 R] /P 6613 0 R /S/TD /Type/StructElem>> endobj 6617 0 obj <> /K 76 /P 6616 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6618 0 obj <> endobj 6619 0 obj <> /K[6620 0 R] /P 6618 0 R /S/TD /Type/StructElem>> endobj 6620 0 obj <> /K 77 /P 6619 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6621 0 obj <> /K[6622 0 R] /P 6618 0 R /S/TD /Type/StructElem>> endobj 6622 0 obj <> /K 78 /P 6621 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6623 0 obj <> endobj 6624 0 obj <> /K[6625 0 R] /P 6623 0 R /S/TD /Type/StructElem>> endobj 6625 0 obj <> /K 79 /P 6624 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6626 0 obj <> /K[6627 0 R] /P 6623 0 R /S/TD /Type/StructElem>> endobj 6627 0 obj <> /K 80 /P 6626 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6628 0 obj <> endobj 6629 0 obj <> /K[6630 0 R] /P 6628 0 R /S/TD /Type/StructElem>> endobj 6630 0 obj <> /K 81 /P 6629 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6631 0 obj <> /K[6632 0 R] /P 6628 0 R /S/TD /Type/StructElem>> endobj 6632 0 obj <> /K 82 /P 6631 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6633 0 obj <> endobj 6634 0 obj <> /K[6635 0 R] /P 6633 0 R /S/TD /Type/StructElem>> endobj 6635 0 obj <> /K 83 /P 6634 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6636 0 obj <> /K[6637 0 R] /P 6633 0 R /S/TD /Type/StructElem>> endobj 6637 0 obj <> /K 84 /P 6636 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6638 0 obj <> /K[6639 0 R] /P 6633 0 R /S/TD /Type/StructElem>> endobj 6639 0 obj <> /K 85 /P 6638 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6640 0 obj <> /K 86 /P 6452 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6641 0 obj <> /K[6642 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6642 0 obj <> /K 87 /P 6641 0 R /Pg 864 0 R /S/P /Type/StructElem>> endobj 6643 0 obj <> endobj 6644 0 obj <> /K[6645 0 R 6650 0 R 6655 0 R 6662 0 R 6667 0 R 6672 0 R 6677 0 R 6682 0 R] /P 6643 0 R /S/Table /Type/StructElem>> endobj 6645 0 obj <> endobj 6646 0 obj <> /K[6647 0 R] /P 6645 0 R /S/TD /Type/StructElem>> endobj 6647 0 obj <> /K 0 /P 6646 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6648 0 obj <> /K[6649 0 R] /P 6645 0 R /S/TD /Type/StructElem>> endobj 6649 0 obj <> /K 1 /P 6648 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6650 0 obj <> endobj 6651 0 obj <> /K[6652 0 R] /P 6650 0 R /S/TD /Type/StructElem>> endobj 6652 0 obj <> /K 2 /P 6651 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6653 0 obj <> /K[6654 0 R] /P 6650 0 R /S/TD /Type/StructElem>> endobj 6654 0 obj <> /K 3 /P 6653 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6655 0 obj <> endobj 6656 0 obj <> /K[6657 0 R] /P 6655 0 R /S/TD /Type/StructElem>> endobj 6657 0 obj <> /K 4 /P 6656 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6658 0 obj <> /K[6659 0 R] /P 6655 0 R /S/TD /Type/StructElem>> endobj 6659 0 obj <> /K 5 /P 6658 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6660 0 obj <> /K[6661 0 R] /P 6655 0 R /S/TD /Type/StructElem>> endobj 6661 0 obj <> /K 6 /P 6660 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6662 0 obj <> endobj 6663 0 obj <> /K[6664 0 R] /P 6662 0 R /S/TD /Type/StructElem>> endobj 6664 0 obj <> /K 7 /P 6663 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6665 0 obj <> /K[6666 0 R] /P 6662 0 R /S/TD /Type/StructElem>> endobj 6666 0 obj <> /K 8 /P 6665 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6667 0 obj <> endobj 6668 0 obj <> /K[6669 0 R] /P 6667 0 R /S/TD /Type/StructElem>> endobj 6669 0 obj <> /K 9 /P 6668 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6670 0 obj <> /K[6671 0 R] /P 6667 0 R /S/TD /Type/StructElem>> endobj 6671 0 obj <> /K 10 /P 6670 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6672 0 obj <> endobj 6673 0 obj <> /K[6674 0 R] /P 6672 0 R /S/TD /Type/StructElem>> endobj 6674 0 obj <> /K 11 /P 6673 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6675 0 obj <> /K[6676 0 R] /P 6672 0 R /S/TD /Type/StructElem>> endobj 6676 0 obj <> /K 12 /P 6675 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6677 0 obj <> endobj 6678 0 obj <> /K[6679 0 R] /P 6677 0 R /S/TD /Type/StructElem>> endobj 6679 0 obj <> /K 13 /P 6678 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6680 0 obj <> /K[6681 0 R] /P 6677 0 R /S/TD /Type/StructElem>> endobj 6681 0 obj <> /K 14 /P 6680 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6682 0 obj <> endobj 6683 0 obj <> /K[6684 0 R] /P 6682 0 R /S/TD /Type/StructElem>> endobj 6684 0 obj <> /K 15 /P 6683 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6685 0 obj <> /K[6686 0 R] /P 6682 0 R /S/TD /Type/StructElem>> endobj 6686 0 obj <> /K 16 /P 6685 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6687 0 obj <> /K[6688 0 R] /P 6682 0 R /S/TD /Type/StructElem>> endobj 6688 0 obj <> /K 17 /P 6687 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6689 0 obj <> /K 18 /P 6643 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6690 0 obj <> /K[6691 0 R 6698 0 R 6705 0 R 6712 0 R 6719 0 R] /P 6643 0 R /S/Table /Type/StructElem>> endobj 6691 0 obj <> endobj 6692 0 obj <> /K[6693 0 R] /P 6691 0 R /S/TD /Type/StructElem>> endobj 6693 0 obj <> /K 19 /P 6692 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6694 0 obj <> /K[6695 0 R] /P 6691 0 R /S/TD /Type/StructElem>> endobj 6695 0 obj <> /K 20 /P 6694 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6696 0 obj <> /K[6697 0 R] /P 6691 0 R /S/TD /Type/StructElem>> endobj 6697 0 obj <> /K 21 /P 6696 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6698 0 obj <> endobj 6699 0 obj <> /K[6700 0 R] /P 6698 0 R /S/TD /Type/StructElem>> endobj 6700 0 obj <> /K 22 /P 6699 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6701 0 obj <> /K[6702 0 R] /P 6698 0 R /S/TD /Type/StructElem>> endobj 6702 0 obj <> /K 23 /P 6701 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6703 0 obj <> /K[6704 0 R] /P 6698 0 R /S/TD /Type/StructElem>> endobj 6704 0 obj <> /K 24 /P 6703 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6705 0 obj <> endobj 6706 0 obj <> /K[6707 0 R] /P 6705 0 R /S/TD /Type/StructElem>> endobj 6707 0 obj <> /K 25 /P 6706 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6708 0 obj <> /K[6709 0 R] /P 6705 0 R /S/TD /Type/StructElem>> endobj 6709 0 obj <> /K 26 /P 6708 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6710 0 obj <> /K[6711 0 R] /P 6705 0 R /S/TD /Type/StructElem>> endobj 6711 0 obj <> /K 27 /P 6710 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6712 0 obj <> endobj 6713 0 obj <> /K[6714 0 R] /P 6712 0 R /S/TD /Type/StructElem>> endobj 6714 0 obj <> /K 28 /P 6713 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6715 0 obj <> /K[6716 0 R] /P 6712 0 R /S/TD /Type/StructElem>> endobj 6716 0 obj <> /K 29 /P 6715 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6717 0 obj <> /K[6718 0 R] /P 6712 0 R /S/TD /Type/StructElem>> endobj 6718 0 obj <> /K 30 /P 6717 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6719 0 obj <> endobj 6720 0 obj <> /K[6721 0 R] /P 6719 0 R /S/TD /Type/StructElem>> endobj 6721 0 obj <> /K 31 /P 6720 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6722 0 obj <> /K[6723 0 R] /P 6719 0 R /S/TD /Type/StructElem>> endobj 6723 0 obj <> /K 32 /P 6722 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6724 0 obj <> /K[6725 0 R] /P 6719 0 R /S/TD /Type/StructElem>> endobj 6725 0 obj <> /K 33 /P 6724 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6726 0 obj <> /K 34 /P 6643 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6727 0 obj <> /K[6728 0 R 6733 0 R 6738 0 R 6743 0 R 6748 0 R 6753 0 R 6760 0 R 6765 0 R 6772 0 R] /P 6643 0 R /S/Table /Type/StructElem>> endobj 6728 0 obj <> endobj 6729 0 obj <> /K[6730 0 R] /P 6728 0 R /S/TD /Type/StructElem>> endobj 6730 0 obj <> /K 35 /P 6729 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6731 0 obj <> /K[6732 0 R] /P 6728 0 R /S/TD /Type/StructElem>> endobj 6732 0 obj <> /K 36 /P 6731 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6733 0 obj <> endobj 6734 0 obj <> /K[6735 0 R] /P 6733 0 R /S/TD /Type/StructElem>> endobj 6735 0 obj <> /K 37 /P 6734 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6736 0 obj <> /K[6737 0 R] /P 6733 0 R /S/TD /Type/StructElem>> endobj 6737 0 obj <> /K 38 /P 6736 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6738 0 obj <> endobj 6739 0 obj <> /K[6740 0 R] /P 6738 0 R /S/TD /Type/StructElem>> endobj 6740 0 obj <> /K 39 /P 6739 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6741 0 obj <> /K[6742 0 R] /P 6738 0 R /S/TD /Type/StructElem>> endobj 6742 0 obj <> /K 40 /P 6741 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6743 0 obj <> endobj 6744 0 obj <> /K[6745 0 R] /P 6743 0 R /S/TD /Type/StructElem>> endobj 6745 0 obj <> /K 41 /P 6744 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6746 0 obj <> /K[6747 0 R] /P 6743 0 R /S/TD /Type/StructElem>> endobj 6747 0 obj <> /K 42 /P 6746 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6748 0 obj <> endobj 6749 0 obj <> /K[6750 0 R] /P 6748 0 R /S/TD /Type/StructElem>> endobj 6750 0 obj <> /K 43 /P 6749 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6751 0 obj <> /K[6752 0 R] /P 6748 0 R /S/TD /Type/StructElem>> endobj 6752 0 obj <> /K 44 /P 6751 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6753 0 obj <> endobj 6754 0 obj <> /K[6755 0 R] /P 6753 0 R /S/TD /Type/StructElem>> endobj 6755 0 obj <> /K 45 /P 6754 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6756 0 obj <> /K[6757 0 R] /P 6753 0 R /S/TD /Type/StructElem>> endobj 6757 0 obj <> /K 46 /P 6756 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6758 0 obj <> /K[6759 0 R] /P 6753 0 R /S/TD /Type/StructElem>> endobj 6759 0 obj <> /K 47 /P 6758 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6760 0 obj <> endobj 6761 0 obj <> /K[6762 0 R] /P 6760 0 R /S/TD /Type/StructElem>> endobj 6762 0 obj <> /K 48 /P 6761 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6763 0 obj <> /K[6764 0 R] /P 6760 0 R /S/TD /Type/StructElem>> endobj 6764 0 obj <> /K 49 /P 6763 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6765 0 obj <> endobj 6766 0 obj <> /K[6767 0 R] /P 6765 0 R /S/TD /Type/StructElem>> endobj 6767 0 obj <> /K 50 /P 6766 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6768 0 obj <> /K[6769 0 R] /P 6765 0 R /S/TD /Type/StructElem>> endobj 6769 0 obj <> /K 51 /P 6768 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6770 0 obj <> /K[6771 0 R] /P 6765 0 R /S/TD /Type/StructElem>> endobj 6771 0 obj <> /K 52 /P 6770 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6772 0 obj <> endobj 6773 0 obj <> /K[6774 0 R] /P 6772 0 R /S/TD /Type/StructElem>> endobj 6774 0 obj <> /K 53 /P 6773 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6775 0 obj <> /K[6776 0 R] /P 6772 0 R /S/TD /Type/StructElem>> endobj 6776 0 obj <> /K 54 /P 6775 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6777 0 obj <> /K 55 /P 6643 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6778 0 obj <> /K[6779 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6779 0 obj <> /K 56 /P 6778 0 R /Pg 869 0 R /S/P /Type/StructElem>> endobj 6780 0 obj <> endobj 6781 0 obj <> /K[6782 0 R 6787 0 R 6792 0 R 6797 0 R 6802 0 R 6807 0 R 6812 0 R 6819 0 R 6824 0 R 6831 0 R] /P 6780 0 R /S/Table /Type/StructElem>> endobj 6782 0 obj <> endobj 6783 0 obj <> /K[6784 0 R] /P 6782 0 R /S/TD /Type/StructElem>> endobj 6784 0 obj <> /K 0 /P 6783 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6785 0 obj <> /K[6786 0 R] /P 6782 0 R /S/TD /Type/StructElem>> endobj 6786 0 obj <> /K 1 /P 6785 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6787 0 obj <> endobj 6788 0 obj <> /K[6789 0 R] /P 6787 0 R /S/TD /Type/StructElem>> endobj 6789 0 obj <> /K 2 /P 6788 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6790 0 obj <> /K[6791 0 R] /P 6787 0 R /S/TD /Type/StructElem>> endobj 6791 0 obj <> /K 3 /P 6790 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6792 0 obj <> endobj 6793 0 obj <> /K[6794 0 R] /P 6792 0 R /S/TD /Type/StructElem>> endobj 6794 0 obj <> /K 4 /P 6793 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6795 0 obj <> /K[6796 0 R] /P 6792 0 R /S/TD /Type/StructElem>> endobj 6796 0 obj <> /K 5 /P 6795 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6797 0 obj <> endobj 6798 0 obj <> /K[6799 0 R] /P 6797 0 R /S/TD /Type/StructElem>> endobj 6799 0 obj <> /K 6 /P 6798 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6800 0 obj <> /K[6801 0 R] /P 6797 0 R /S/TD /Type/StructElem>> endobj 6801 0 obj <> /K 7 /P 6800 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6802 0 obj <> endobj 6803 0 obj <> /K[6804 0 R] /P 6802 0 R /S/TD /Type/StructElem>> endobj 6804 0 obj <> /K 8 /P 6803 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6805 0 obj <> /K[6806 0 R] /P 6802 0 R /S/TD /Type/StructElem>> endobj 6806 0 obj <> /K 9 /P 6805 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6807 0 obj <> endobj 6808 0 obj <> /K[6809 0 R] /P 6807 0 R /S/TD /Type/StructElem>> endobj 6809 0 obj <> /K 10 /P 6808 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6810 0 obj <> /K[6811 0 R] /P 6807 0 R /S/TD /Type/StructElem>> endobj 6811 0 obj <> /K 11 /P 6810 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6812 0 obj <> endobj 6813 0 obj <> /K[6814 0 R] /P 6812 0 R /S/TD /Type/StructElem>> endobj 6814 0 obj <> /K 12 /P 6813 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6815 0 obj <> /K[6816 0 R] /P 6812 0 R /S/TD /Type/StructElem>> endobj 6816 0 obj <> /K 13 /P 6815 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6817 0 obj <> /K[6818 0 R] /P 6812 0 R /S/TD /Type/StructElem>> endobj 6818 0 obj <> /K 14 /P 6817 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6819 0 obj <> endobj 6820 0 obj <> /K[6821 0 R] /P 6819 0 R /S/TD /Type/StructElem>> endobj 6821 0 obj <> /K 15 /P 6820 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6822 0 obj <> /K[6823 0 R] /P 6819 0 R /S/TD /Type/StructElem>> endobj 6823 0 obj <> /K 16 /P 6822 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6824 0 obj <> endobj 6825 0 obj <> /K[6826 0 R] /P 6824 0 R /S/TD /Type/StructElem>> endobj 6826 0 obj <> /K 17 /P 6825 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6827 0 obj <> /K[6828 0 R] /P 6824 0 R /S/TD /Type/StructElem>> endobj 6828 0 obj <> /K 18 /P 6827 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6829 0 obj <> /K[6830 0 R] /P 6824 0 R /S/TD /Type/StructElem>> endobj 6830 0 obj <> /K 19 /P 6829 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6831 0 obj <> endobj 6832 0 obj <> /K[6833 0 R] /P 6831 0 R /S/TD /Type/StructElem>> endobj 6833 0 obj <> /K 20 /P 6832 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6834 0 obj <> /K[6835 0 R] /P 6831 0 R /S/TD /Type/StructElem>> endobj 6835 0 obj <> /K 21 /P 6834 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6836 0 obj <> /K 22 /P 6780 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6837 0 obj <> /K[6838 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6838 0 obj <> /K 23 /P 6837 0 R /Pg 874 0 R /S/P /Type/StructElem>> endobj 6839 0 obj <> endobj 6840 0 obj <> /K 0 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6841 0 obj <> /K 1 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6842 0 obj <> /K 2 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6843 0 obj <> /K 3 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6844 0 obj <> /K 4 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6845 0 obj <> /K 5 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6846 0 obj <> /K 6 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6847 0 obj <> /K 7 /P 6839 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6848 0 obj <> /K[6849 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6849 0 obj <> /K 8 /P 6848 0 R /Pg 879 0 R /S/P /Type/StructElem>> endobj 6850 0 obj <> endobj 6851 0 obj <> /K 0 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6852 0 obj <> /K 1 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6853 0 obj <> /K 2 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6854 0 obj <> /K 3 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6855 0 obj <> /K 4 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6856 0 obj <> /K 5 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6857 0 obj <> /K 6 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6858 0 obj <> /K 7 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6859 0 obj <> /K 8 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6860 0 obj <> /K 9 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6861 0 obj <> /K 10 /P 6850 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6862 0 obj <> /K[6863 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6863 0 obj <> /K 11 /P 6862 0 R /Pg 884 0 R /S/P /Type/StructElem>> endobj 6864 0 obj <> endobj 6865 0 obj <> /K 0 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6866 0 obj <> /K 1 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6867 0 obj <> /K 2 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6868 0 obj <> /K 3 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6869 0 obj <> /K 4 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6870 0 obj <> /K 5 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6871 0 obj <> /K 6 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6872 0 obj <> /K 7 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6873 0 obj <> /K 8 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6874 0 obj <> /K 9 /P 6864 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6875 0 obj <> /K[6876 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6876 0 obj <> /K 10 /P 6875 0 R /Pg 889 0 R /S/P /Type/StructElem>> endobj 6877 0 obj <> endobj 6878 0 obj <> /K 0 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6879 0 obj <> /K 1 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6880 0 obj <> /K 2 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6881 0 obj <> /K 3 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6882 0 obj <> /K 4 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6883 0 obj <> /K 5 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6884 0 obj <> /K 6 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6885 0 obj <> /K 7 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6886 0 obj <> /K 8 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6887 0 obj <> /K 9 /P 6877 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6888 0 obj <> /K[6889 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6889 0 obj <> /K 10 /P 6888 0 R /Pg 894 0 R /S/P /Type/StructElem>> endobj 6890 0 obj <> endobj 6891 0 obj <> /K 0 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6892 0 obj <> /K 1 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6893 0 obj <> /K 2 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6894 0 obj <> /K 3 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6895 0 obj <> /K 4 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6896 0 obj <> /K 5 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6897 0 obj <> /K 6 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6898 0 obj <> /K 7 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6899 0 obj <> /K 8 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6900 0 obj <> /K 9 /P 6890 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6901 0 obj <> /K[6902 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6902 0 obj <> /K 10 /P 6901 0 R /Pg 899 0 R /S/P /Type/StructElem>> endobj 6903 0 obj <> endobj 6904 0 obj <> /K 0 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6905 0 obj <> /K 1 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6906 0 obj <> /K 2 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6907 0 obj <> /K 3 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6908 0 obj <> /K 4 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6909 0 obj <> /K 5 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6910 0 obj <> /K 6 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6911 0 obj <> /K 7 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6912 0 obj <> /K 8 /P 6903 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6913 0 obj <> /K[6914 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6914 0 obj <> /K 9 /P 6913 0 R /Pg 904 0 R /S/P /Type/StructElem>> endobj 6915 0 obj <> endobj 6916 0 obj <> /K 0 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6917 0 obj <> /K 1 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6918 0 obj <> /K 2 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6919 0 obj <> /K 3 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6920 0 obj <> /K 4 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6921 0 obj <> /K 5 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6922 0 obj <> /K 6 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6923 0 obj <> /K 7 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6924 0 obj <> /K 8 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6925 0 obj <> /K 9 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6926 0 obj <> /K 10 /P 6915 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6927 0 obj <> /K[6928 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6928 0 obj <> /K 11 /P 6927 0 R /Pg 909 0 R /S/P /Type/StructElem>> endobj 6929 0 obj <> endobj 6930 0 obj <> /K 0 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6931 0 obj <> /K 1 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6932 0 obj <> /K 2 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6933 0 obj <> /K 3 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6934 0 obj <> /K 4 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6935 0 obj <> /K 5 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6936 0 obj <> /K 6 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6937 0 obj <> /K 7 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6938 0 obj <> /K 8 /P 6929 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6939 0 obj <> /K[6940 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6940 0 obj <> /K 9 /P 6939 0 R /Pg 914 0 R /S/P /Type/StructElem>> endobj 6941 0 obj <> endobj 6942 0 obj <> /K 0 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6943 0 obj <> /K 1 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6944 0 obj <> /K 2 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6945 0 obj <> /K 3 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6946 0 obj <> /K 4 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6947 0 obj <> /K 5 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6948 0 obj <> /K 6 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6949 0 obj <> /K 7 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6950 0 obj <> /K 8 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6951 0 obj <> /K 9 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6952 0 obj <> /K 10 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6953 0 obj <> /K 11 /P 6941 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6954 0 obj <> /K[6955 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6955 0 obj <> /K 12 /P 6954 0 R /Pg 919 0 R /S/P /Type/StructElem>> endobj 6956 0 obj <> endobj 6957 0 obj <> /K 0 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6958 0 obj <> /K 1 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6959 0 obj <> /K 2 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6960 0 obj <> /K 3 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6961 0 obj <> /K 4 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6962 0 obj <> /K 5 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6963 0 obj <> /K 6 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6964 0 obj <> /K 7 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6965 0 obj <> /K 8 /P 6956 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6966 0 obj <> /K[6967 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6967 0 obj <> /K 9 /P 6966 0 R /Pg 924 0 R /S/P /Type/StructElem>> endobj 6968 0 obj <> endobj 6969 0 obj <> /K 0 /P 6968 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6970 0 obj <> /K 1 /P 6968 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6971 0 obj <> /K 2 /P 6968 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6972 0 obj <> /K 3 /P 6968 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6973 0 obj <> /K 4 /P 6968 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6974 0 obj <> /K 5 /P 6968 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6975 0 obj <> /K 6 /P 6968 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6976 0 obj <> /K[6977 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6977 0 obj <> /K 7 /P 6976 0 R /Pg 929 0 R /S/P /Type/StructElem>> endobj 6978 0 obj <> endobj 6979 0 obj <> /K 0 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6980 0 obj <> /K 1 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6981 0 obj <> /K 2 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6982 0 obj <> /K 3 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6983 0 obj <> /K 4 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6984 0 obj <> /K 5 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6985 0 obj <> /K 6 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6986 0 obj <> /K 7 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6987 0 obj <> /K 8 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6988 0 obj <> /K 9 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6989 0 obj <> /K 10 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6990 0 obj <> /K 11 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6991 0 obj <> /K 12 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6992 0 obj <> /K 13 /P 6978 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6993 0 obj <> /K[6994 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 6994 0 obj <> /K 14 /P 6993 0 R /Pg 934 0 R /S/P /Type/StructElem>> endobj 6995 0 obj <> endobj 6996 0 obj <> /K 0 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 6997 0 obj <> /K 1 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 6998 0 obj <> /K 2 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 6999 0 obj <> /K 3 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7000 0 obj <> /K 4 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7001 0 obj <> /K 5 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7002 0 obj <> /K 6 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7003 0 obj <> /K 7 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7004 0 obj <> /K 8 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7005 0 obj <> /K 9 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7006 0 obj <> /K 10 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7007 0 obj <> /K 11 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7008 0 obj <> /K 12 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7009 0 obj <> /K 13 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7010 0 obj <> /K 14 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7011 0 obj <> /K 15 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7012 0 obj <> /K 16 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7013 0 obj <> /K 17 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7014 0 obj <> /K 18 /P 6995 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7015 0 obj <> /K[7016 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7016 0 obj <> /K 19 /P 7015 0 R /Pg 939 0 R /S/P /Type/StructElem>> endobj 7017 0 obj <> endobj 7018 0 obj <> /K 0 /P 7017 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7019 0 obj <> /K 1 /P 7017 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7020 0 obj <> /K 2 /P 7017 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7021 0 obj <> /K 3 /P 7017 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7022 0 obj <> /K 4 /P 7017 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7023 0 obj <> /K 5 /P 7017 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7024 0 obj <> /K 6 /P 7017 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7025 0 obj <> endobj 7026 0 obj <> /K 7 /P 7025 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7027 0 obj <> /K[7028 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7028 0 obj <> /K 8 /P 7027 0 R /Pg 944 0 R /S/P /Type/StructElem>> endobj 7029 0 obj <> endobj 7030 0 obj <> /K 0 /P 7029 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7031 0 obj <> /K 1 /P 7029 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7032 0 obj <> /K 2 /P 7029 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7033 0 obj <> /K 3 /P 7029 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7034 0 obj <> /K 4 /P 7029 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7035 0 obj <> /K 5 /P 7029 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7036 0 obj <> /K 6 /P 7029 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7037 0 obj <> /K[7038 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7038 0 obj <> /K 7 /P 7037 0 R /Pg 949 0 R /S/P /Type/StructElem>> endobj 7039 0 obj <> endobj 7040 0 obj <> /K 0 /P 7039 0 R /Pg 954 0 R /S/P /Type/StructElem>> endobj 7041 0 obj <> /K 1 /P 7039 0 R /Pg 954 0 R /S/P /Type/StructElem>> endobj 7042 0 obj <> /K 2 /P 7039 0 R /Pg 954 0 R /S/P /Type/StructElem>> endobj 7043 0 obj <> /K 3 /P 7039 0 R /Pg 954 0 R /S/P /Type/StructElem>> endobj 7044 0 obj <> /K[7045 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7045 0 obj <> /K 4 /P 7044 0 R /Pg 954 0 R /S/P /Type/StructElem>> endobj 7046 0 obj <> endobj 7047 0 obj <> /K 0 /P 7046 0 R /Pg 959 0 R /S/P /Type/StructElem>> endobj 7048 0 obj <> /K 1 /P 7046 0 R /Pg 959 0 R /S/P /Type/StructElem>> endobj 7049 0 obj <> /K 2 /P 7046 0 R /Pg 959 0 R /S/P /Type/StructElem>> endobj 7050 0 obj <> /K 3 /P 7046 0 R /Pg 959 0 R /S/P /Type/StructElem>> endobj 7051 0 obj <> /K[7052 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7052 0 obj <> /K 4 /P 7051 0 R /Pg 959 0 R /S/P /Type/StructElem>> endobj 7053 0 obj <> endobj 7054 0 obj <> /K 0 /P 7053 0 R /Pg 964 0 R /S/P /Type/StructElem>> endobj 7055 0 obj <> /K 1 /P 7053 0 R /Pg 964 0 R /S/P /Type/StructElem>> endobj 7056 0 obj <> /K 2 /P 7053 0 R /Pg 964 0 R /S/P /Type/StructElem>> endobj 7057 0 obj <> /K 3 /P 7053 0 R /Pg 964 0 R /S/P /Type/StructElem>> endobj 7058 0 obj <> /K[7059 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7059 0 obj <> /K 4 /P 7058 0 R /Pg 964 0 R /S/P /Type/StructElem>> endobj 7060 0 obj <> endobj 7061 0 obj <> /K 0 /P 7060 0 R /Pg 969 0 R /S/P /Type/StructElem>> endobj 7062 0 obj <> /K 1 /P 7060 0 R /Pg 969 0 R /S/P /Type/StructElem>> endobj 7063 0 obj <> /K 2 /P 7060 0 R /Pg 969 0 R /S/P /Type/StructElem>> endobj 7064 0 obj <> /K 3 /P 7060 0 R /Pg 969 0 R /S/P /Type/StructElem>> endobj 7065 0 obj <> /K 4 /P 7060 0 R /Pg 969 0 R /S/P /Type/StructElem>> endobj 7066 0 obj <> /K 5 /P 7060 0 R /Pg 969 0 R /S/P /Type/StructElem>> endobj 7067 0 obj <> /K[7068 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7068 0 obj <> /K 6 /P 7067 0 R /Pg 969 0 R /S/P /Type/StructElem>> endobj 7069 0 obj <> endobj 7070 0 obj <> /K 0 /P 7069 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7071 0 obj <> /K 1 /P 7069 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7072 0 obj <> /K 2 /P 7069 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7073 0 obj <> /K 3 /P 7069 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7074 0 obj <> /K 4 /P 7069 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7075 0 obj <> /K 5 /P 7069 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7076 0 obj <> /K 6 /P 7069 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7077 0 obj <> /K[7078 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7078 0 obj <> /K 7 /P 7077 0 R /Pg 974 0 R /S/P /Type/StructElem>> endobj 7079 0 obj <> endobj 7080 0 obj <> /K 0 /P 7079 0 R /Pg 979 0 R /S/P /Type/StructElem>> endobj 7081 0 obj <> /K 1 /P 7079 0 R /Pg 979 0 R /S/P /Type/StructElem>> endobj 7082 0 obj <> /K 2 /P 7079 0 R /Pg 979 0 R /S/P /Type/StructElem>> endobj 7083 0 obj <> /K 3 /P 7079 0 R /Pg 979 0 R /S/P /Type/StructElem>> endobj 7084 0 obj <> /K 4 /P 7079 0 R /Pg 979 0 R /S/P /Type/StructElem>> endobj 7085 0 obj <> /K 5 /P 7079 0 R /Pg 979 0 R /S/P /Type/StructElem>> endobj 7086 0 obj <> /K[7087 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7087 0 obj <> /K 6 /P 7086 0 R /Pg 979 0 R /S/P /Type/StructElem>> endobj 7088 0 obj <> endobj 7089 0 obj <> /K 0 /P 7088 0 R /Pg 984 0 R /S/P /Type/StructElem>> endobj 7090 0 obj <> /K 1 /P 7088 0 R /Pg 984 0 R /S/P /Type/StructElem>> endobj 7091 0 obj <> /K 2 /P 7088 0 R /Pg 984 0 R /S/P /Type/StructElem>> endobj 7092 0 obj <> /K[7093 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7093 0 obj <> /K 3 /P 7092 0 R /Pg 984 0 R /S/P /Type/StructElem>> endobj 7094 0 obj <> endobj 7095 0 obj <> /K 0 /P 7094 0 R /Pg 989 0 R /S/P /Type/StructElem>> endobj 7096 0 obj <> /K 1 /P 7094 0 R /Pg 989 0 R /S/P /Type/StructElem>> endobj 7097 0 obj <> /K 2 /P 7094 0 R /Pg 989 0 R /S/P /Type/StructElem>> endobj 7098 0 obj <> /K 3 /P 7094 0 R /Pg 989 0 R /S/P /Type/StructElem>> endobj 7099 0 obj <> /K[7100 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7100 0 obj <> /K 4 /P 7099 0 R /Pg 989 0 R /S/P /Type/StructElem>> endobj 7101 0 obj <> endobj 7102 0 obj <> /K 0 /P 7101 0 R /Pg 994 0 R /S/P /Type/StructElem>> endobj 7103 0 obj <> /K 1 /P 7101 0 R /Pg 994 0 R /S/P /Type/StructElem>> endobj 7104 0 obj <> /K 2 /P 7101 0 R /Pg 994 0 R /S/P /Type/StructElem>> endobj 7105 0 obj <> /K 3 /P 7101 0 R /Pg 994 0 R /S/P /Type/StructElem>> endobj 7106 0 obj <> /K 4 /P 7101 0 R /Pg 994 0 R /S/P /Type/StructElem>> endobj 7107 0 obj <> /K 5 /P 7101 0 R /Pg 994 0 R /S/P /Type/StructElem>> endobj 7108 0 obj <> /K[7109 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7109 0 obj <> /K 6 /P 7108 0 R /Pg 994 0 R /S/P /Type/StructElem>> endobj 7110 0 obj <> endobj 7111 0 obj <> /K 0 /P 7110 0 R /Pg 999 0 R /S/P /Type/StructElem>> endobj 7112 0 obj <> /K 1 /P 7110 0 R /Pg 999 0 R /S/P /Type/StructElem>> endobj 7113 0 obj <> /K 2 /P 7110 0 R /Pg 999 0 R /S/P /Type/StructElem>> endobj 7114 0 obj <> /K[7115 0 R] /P 1252 0 R /S/Div /Type/StructElem>> endobj 7115 0 obj <> /K 3 /P 7114 0 R /Pg 999 0 R /S/P /Type/StructElem>> endobj 7116 0 obj <> endobj 7117 0 obj [1254 0 R 1255 0 R 1256 0 R 1257 0 R 1258 0 R 1259 0 R 1260 0 R] endobj 7118 0 obj [1262 0 R 1264 0 R 1269 0 R 1271 0 R 1273 0 R] endobj 7119 0 obj [1275 0 R 1276 0 R 1277 0 R 1278 0 R 1279 0 R] endobj 7120 0 obj [1281 0 R 1282 0 R] endobj 7121 0 obj [1284 0 R 1288 0 R 1290 0 R 1292 0 R 1295 0 R 1297 0 R 1299 0 R 1302 0 R 1303 0 R 1304 0 R 1306 0 R 1308 0 R 1310 0 R 1313 0 R 1314 0 R 1315 0 R 1317 0 R 1319 0 R 1321 0 R 1324 0 R 1325 0 R 1326 0 R 1328 0 R 1330 0 R 1332 0 R 1335 0 R 1336 0 R 1337 0 R 1339 0 R 1341 0 R 1343 0 R 1346 0 R 1347 0 R 1348 0 R 1350 0 R 1351 0 R 1352 0 R 1354 0 R 1356 0 R 1359 0 R 1360 0 R 1361 0 R 1363 0 R 1364 0 R 1365 0 R 1367 0 R 1369 0 R 1370 0 R 1371 0 R 1374 0 R 1375 0 R 1376 0 R 1378 0 R 1379 0 R 1380 0 R 1382 0 R 1384 0 R 1387 0 R 1388 0 R 1389 0 R 1391 0 R 1392 0 R 1393 0 R 1395 0 R 1397 0 R 1400 0 R 1401 0 R 1402 0 R 1404 0 R 1405 0 R 1406 0 R 1408 0 R 1410 0 R 1413 0 R 1414 0 R 1415 0 R 1417 0 R 1419 0 R 1421 0 R 1424 0 R 1425 0 R 1426 0 R 1428 0 R 1429 0 R 1430 0 R 1432 0 R 1434 0 R 1437 0 R 1438 0 R 1439 0 R 1441 0 R 1442 0 R 1443 0 R 1445 0 R 1447 0 R 1450 0 R 1451 0 R 1452 0 R 1454 0 R 1455 0 R 1456 0 R 1458 0 R 1460 0 R 1463 0 R 1464 0 R 1465 0 R 1467 0 R 1468 0 R 1469 0 R 1471 0 R 1473 0 R 1476 0 R 1478 0 R 1480 0 R 1483 0 R 1484 0 R 1485 0 R 1487 0 R 1489 0 R 1491 0 R 1494 0 R 1495 0 R 1496 0 R 1498 0 R 1500 0 R 1502 0 R 1505 0 R 1506 0 R 1507 0 R 1509 0 R 1511 0 R 1513 0 R 1516 0 R 1517 0 R 1518 0 R 1520 0 R 1521 0 R 1522 0 R 1524 0 R 1526 0 R 1529 0 R 1530 0 R 1531 0 R 1533 0 R 1534 0 R 1535 0 R 1537 0 R 1539 0 R 1542 0 R 1543 0 R 1544 0 R 1546 0 R 1547 0 R 1548 0 R 1550 0 R 1552 0 R 1554 0 R] endobj 7122 0 obj [1556 0 R 1557 0 R 1558 0 R 1559 0 R 1560 0 R 1561 0 R 1562 0 R 1563 0 R 1564 0 R 1565 0 R 1566 0 R 1567 0 R 1568 0 R 1569 0 R 1570 0 R 1571 0 R 1572 0 R 1573 0 R 1574 0 R 1575 0 R 1576 0 R 1577 0 R 1578 0 R 1579 0 R 1580 0 R 1581 0 R 1582 0 R 1583 0 R 1584 0 R 1585 0 R 1587 0 R] endobj 7123 0 obj [1592 0 R 1593 0 R 1595 0 R 1596 0 R 1597 0 R 1599 0 R 1602 0 R 1604 0 R 1606 0 R 1609 0 R 1610 0 R 1611 0 R 1613 0 R 1615 0 R 1617 0 R 1620 0 R 1621 0 R 1622 0 R 1624 0 R 1626 0 R 1628 0 R 1631 0 R 1632 0 R 1633 0 R 1635 0 R 1636 0 R 1637 0 R 1639 0 R 1641 0 R 1644 0 R 1645 0 R 1646 0 R 1648 0 R 1649 0 R 1650 0 R 1652 0 R 1654 0 R 1657 0 R 1658 0 R 1659 0 R 1661 0 R 1662 0 R 1663 0 R 1665 0 R 1667 0 R 1670 0 R 1671 0 R 1672 0 R 1674 0 R 1675 0 R 1676 0 R 1678 0 R 1680 0 R 1683 0 R 1684 0 R 1685 0 R 1687 0 R 1688 0 R 1689 0 R 1691 0 R 1693 0 R 1696 0 R 1697 0 R 1698 0 R 1700 0 R 1702 0 R 1704 0 R 1707 0 R 1708 0 R 1709 0 R 1711 0 R 1712 0 R 1713 0 R 1715 0 R 1717 0 R 1720 0 R 1721 0 R 1722 0 R 1724 0 R 1725 0 R 1726 0 R 1728 0 R 1730 0 R 1733 0 R 1734 0 R 1735 0 R 1737 0 R 1739 0 R 1741 0 R 1744 0 R 1745 0 R 1746 0 R 1748 0 R 1749 0 R 1750 0 R 1752 0 R 1754 0 R 1757 0 R 1758 0 R 1759 0 R 1761 0 R 1762 0 R 1763 0 R 1765 0 R 1767 0 R 1770 0 R 1771 0 R 1772 0 R 1774 0 R 1775 0 R 1776 0 R 1778 0 R 1780 0 R 1783 0 R 1784 0 R 1785 0 R 1787 0 R 1789 0 R 1791 0 R 1794 0 R 1795 0 R 1796 0 R 1798 0 R 1799 0 R 1800 0 R 1802 0 R 1804 0 R 1807 0 R 1808 0 R 1809 0 R 1811 0 R 1812 0 R 1813 0 R 1815 0 R 1817 0 R 1820 0 R 1821 0 R 1822 0 R 1824 0 R 1826 0 R 1828 0 R 1831 0 R 1833 0 R 1835 0 R 1838 0 R 1839 0 R 1840 0 R 1842 0 R 1844 0 R 1846 0 R 1849 0 R 1850 0 R 1851 0 R 1853 0 R 1854 0 R 1855 0 R 1857 0 R 1859 0 R 1862 0 R 1863 0 R 1864 0 R 1866 0 R 1867 0 R 1868 0 R 1870 0 R 1872 0 R 1875 0 R 1876 0 R 1877 0 R 1879 0 R 1880 0 R 1881 0 R 1883 0 R 1885 0 R 1888 0 R 1889 0 R 1890 0 R 1892 0 R 1893 0 R 1894 0 R 1896 0 R 1898 0 R 1901 0 R 1902 0 R 1903 0 R 1905 0 R 1907 0 R 1909 0 R 1912 0 R 1913 0 R 1914 0 R 1916 0 R 1917 0 R 1918 0 R 1920 0 R 1922 0 R 1925 0 R 1926 0 R 1927 0 R 1929 0 R 1930 0 R 1931 0 R 1933 0 R 1935 0 R 1938 0 R 1939 0 R 1940 0 R 1942 0 R 1943 0 R 1944 0 R 1946 0 R 1948 0 R 1951 0 R 1952 0 R 1953 0 R 1955 0 R 1957 0 R 1959 0 R 1962 0 R 1964 0 R 1966 0 R] endobj 7124 0 obj [1968 0 R 1969 0 R 1970 0 R 1971 0 R 1973 0 R] endobj 7125 0 obj [1975 0 R 1976 0 R 1977 0 R 1979 0 R] endobj 7126 0 obj [1981 0 R 1982 0 R 1983 0 R 1985 0 R] endobj 7127 0 obj [1987 0 R 1988 0 R 1989 0 R 1991 0 R] endobj 7128 0 obj [1993 0 R 1994 0 R 1995 0 R 1997 0 R] endobj 7129 0 obj [1999 0 R 2000 0 R 2001 0 R 2002 0 R 2003 0 R 2004 0 R 2006 0 R] endobj 7130 0 obj [2008 0 R 2009 0 R 2010 0 R 2011 0 R 2012 0 R 2013 0 R 2014 0 R 2015 0 R 2016 0 R 2017 0 R 2018 0 R 2020 0 R] endobj 7131 0 obj [2022 0 R 2023 0 R 2024 0 R 2025 0 R 2026 0 R 2027 0 R 2029 0 R] endobj 7132 0 obj [2031 0 R 2032 0 R 2033 0 R 2034 0 R 2035 0 R 2036 0 R 2037 0 R 2038 0 R 2040 0 R] endobj 7133 0 obj [2042 0 R 2043 0 R 2047 0 R 2048 0 R 2049 0 R 2050 0 R 2052 0 R 2054 0 R 2055 0 R 2056 0 R 2057 0 R 2059 0 R 2060 0 R 2061 0 R 2063 0 R 2064 0 R 2065 0 R 2066 0 R 2067 0 R 2069 0 R 2070 0 R 2071 0 R 2073 0 R 2074 0 R 2076 0 R 2077 0 R 2079 0 R 2080 0 R 2081 0 R 2083 0 R 2084 0 R 2085 0 R 2087 0 R 2088 0 R 2089 0 R 2090 0 R 2092 0 R 2093 0 R 2095 0 R 2096 0 R 2097 0 R 2098 0 R 2100 0 R 2101 0 R 2102 0 R 2103 0 R 2104 0 R 2105 0 R 2107 0 R 2108 0 R 2109 0 R 2110 0 R 2111 0 R 2113 0 R 2114 0 R 2115 0 R 2117 0 R 2118 0 R 2119 0 R 2120 0 R 2121 0 R 2122 0 R 2123 0 R 2125 0 R 2126 0 R 2127 0 R 2128 0 R 2129 0 R 2131 0 R 2132 0 R 2133 0 R 2134 0 R 2135 0 R 2137 0 R 2138 0 R 2139 0 R 2140 0 R 2141 0 R 2142 0 R 2143 0 R 2144 0 R 2145 0 R 2146 0 R 2147 0 R 2148 0 R 2150 0 R 2151 0 R 2153 0 R 2154 0 R 2156 0 R 2158 0 R] endobj 7134 0 obj [2160 0 R 2161 0 R 2162 0 R 2163 0 R 2164 0 R 2165 0 R 2166 0 R 2167 0 R 2169 0 R 2170 0 R 2171 0 R 2172 0 R 2173 0 R 2174 0 R 2176 0 R 2178 0 R] endobj 7135 0 obj [2180 0 R 2181 0 R 2182 0 R 2183 0 R 2184 0 R 2185 0 R 2186 0 R 2187 0 R 2188 0 R 2189 0 R 2191 0 R 2192 0 R 2193 0 R 2194 0 R 2195 0 R 2197 0 R 2199 0 R 2201 0 R] endobj 7136 0 obj [2203 0 R 2204 0 R 2205 0 R 2206 0 R 2207 0 R 2208 0 R 2209 0 R 2210 0 R 2211 0 R 2212 0 R 2213 0 R 2214 0 R 2215 0 R 2217 0 R] endobj 7137 0 obj [2219 0 R 2220 0 R 2221 0 R 2222 0 R 2224 0 R 2225 0 R 2226 0 R 2227 0 R 2228 0 R 2230 0 R 2231 0 R 2233 0 R] endobj 7138 0 obj [2235 0 R 2236 0 R 2237 0 R 2238 0 R 2239 0 R 2240 0 R 2241 0 R 2242 0 R 2243 0 R 2244 0 R 2245 0 R 2246 0 R 2248 0 R 2250 0 R 2252 0 R] endobj 7139 0 obj [2254 0 R 2255 0 R 2256 0 R 2257 0 R 2258 0 R 2259 0 R 2261 0 R] endobj 7140 0 obj [2263 0 R 2264 0 R 2265 0 R 2266 0 R 2267 0 R 2268 0 R 2269 0 R 2270 0 R 2272 0 R] endobj 7141 0 obj [2274 0 R 2275 0 R 2276 0 R 2277 0 R 2278 0 R 2279 0 R 2280 0 R 2281 0 R 2282 0 R 2283 0 R 2284 0 R 2285 0 R 2286 0 R 2287 0 R 2288 0 R 2290 0 R] endobj 7142 0 obj [2292 0 R 2293 0 R 2295 0 R] endobj 7143 0 obj [2297 0 R 2298 0 R 2299 0 R 2301 0 R] endobj 7144 0 obj [2303 0 R 2304 0 R 2305 0 R 2306 0 R 2307 0 R 2309 0 R] endobj 7145 0 obj [2311 0 R 2312 0 R 2313 0 R 2314 0 R 2315 0 R 2317 0 R] endobj 7146 0 obj [2319 0 R 2320 0 R 2321 0 R 2322 0 R 2324 0 R] endobj 7147 0 obj [2326 0 R 2327 0 R 2328 0 R 2329 0 R 2330 0 R 2331 0 R 2332 0 R 2336 0 R 2337 0 R 2338 0 R 2340 0 R 2342 0 R] endobj 7148 0 obj [2344 0 R 2345 0 R 2346 0 R 2350 0 R 2351 0 R 2353 0 R 2354 0 R 2356 0 R 2358 0 R] endobj 7149 0 obj [2360 0 R 2361 0 R 2362 0 R 2363 0 R 2364 0 R 2365 0 R 2367 0 R] endobj 7150 0 obj [2370 0 R 2371 0 R 2372 0 R 2373 0 R 2374 0 R 2376 0 R 2377 0 R 2378 0 R 2379 0 R 2380 0 R 2381 0 R 2382 0 R 2384 0 R] endobj 7151 0 obj [2386 0 R 2387 0 R 2388 0 R 2389 0 R 2390 0 R 2391 0 R 2392 0 R 2393 0 R 2395 0 R] endobj 7152 0 obj [2397 0 R 2398 0 R 2399 0 R 2400 0 R 2401 0 R 2402 0 R 2404 0 R] endobj 7153 0 obj [2406 0 R 2407 0 R 2408 0 R 2409 0 R 2410 0 R 2412 0 R] endobj 7154 0 obj [2414 0 R 2415 0 R 2416 0 R 2417 0 R 2419 0 R] endobj 7155 0 obj [2421 0 R 2422 0 R 2426 0 R 2427 0 R 2428 0 R 2430 0 R 2431 0 R 2432 0 R 2433 0 R 2434 0 R 2435 0 R 2436 0 R 2437 0 R 2439 0 R] endobj 7156 0 obj [2441 0 R 2442 0 R 2443 0 R 2444 0 R 2445 0 R 2449 0 R 2450 0 R 2452 0 R 2453 0 R 2454 0 R 2455 0 R 2456 0 R 2458 0 R] endobj 7157 0 obj [2460 0 R 2461 0 R 2462 0 R 2463 0 R 2464 0 R 2465 0 R 2467 0 R] endobj 7158 0 obj [2469 0 R 2470 0 R 2471 0 R 2472 0 R 2473 0 R 2474 0 R 2476 0 R] endobj 7159 0 obj [2478 0 R 2479 0 R 2480 0 R 2481 0 R 2483 0 R] endobj 7160 0 obj [2485 0 R 2486 0 R 2487 0 R 2488 0 R 2489 0 R 2491 0 R] endobj 7161 0 obj [2493 0 R 2494 0 R 2495 0 R 2496 0 R 2497 0 R 2498 0 R 2499 0 R 2500 0 R 2501 0 R 2503 0 R] endobj 7162 0 obj [2505 0 R 2506 0 R 2507 0 R 2508 0 R 2509 0 R 2510 0 R 2511 0 R 2512 0 R 2513 0 R 2515 0 R] endobj 7163 0 obj [2520 0 R 2521 0 R 2522 0 R 2524 0 R 2527 0 R 2528 0 R 2530 0 R 2533 0 R 2535 0 R 2538 0 R 2540 0 R 2541 0 R 2542 0 R 2543 0 R 2544 0 R 2545 0 R 2547 0 R] endobj 7164 0 obj [2552 0 R 2555 0 R 2557 0 R 2560 0 R 2562 0 R 2565 0 R 2567 0 R 2570 0 R 2572 0 R 2575 0 R 2577 0 R 2578 0 R 2579 0 R 2580 0 R 2581 0 R 2583 0 R] endobj 7165 0 obj [2585 0 R 2586 0 R 2587 0 R 2588 0 R 2589 0 R 2590 0 R 2591 0 R 2592 0 R 2593 0 R 2594 0 R 2595 0 R 2597 0 R] endobj 7166 0 obj [2599 0 R 2600 0 R 2601 0 R 2602 0 R 2604 0 R 2605 0 R 2606 0 R 2610 0 R 2612 0 R 2613 0 R 2615 0 R 2618 0 R 2620 0 R 2623 0 R 2625 0 R 2627 0 R 2629 0 R 2630 0 R 2632 0 R 2633 0 R 2634 0 R 2635 0 R 2637 0 R] endobj 7167 0 obj [2639 0 R 2640 0 R 2641 0 R 2642 0 R 2643 0 R 2644 0 R 2645 0 R 2647 0 R] endobj 7168 0 obj [2649 0 R 2650 0 R 2654 0 R 2655 0 R 2657 0 R 2658 0 R 2661 0 R 2662 0 R 2665 0 R 2666 0 R 2667 0 R 2668 0 R 2669 0 R 2671 0 R] endobj 7169 0 obj [2673 0 R 2674 0 R 2675 0 R 2676 0 R 2677 0 R 2678 0 R 2680 0 R] endobj 7170 0 obj [2682 0 R 2683 0 R 2684 0 R 2685 0 R 2686 0 R 2687 0 R 2688 0 R 2689 0 R 2690 0 R 2691 0 R 2692 0 R 2693 0 R 2695 0 R 2697 0 R 2698 0 R 2699 0 R 2701 0 R] endobj 7171 0 obj [2703 0 R 2704 0 R 2705 0 R 2706 0 R 2707 0 R 2708 0 R 2709 0 R 2710 0 R 2711 0 R 2712 0 R 2713 0 R 2714 0 R 2715 0 R 2716 0 R 2717 0 R 2718 0 R 2719 0 R 2720 0 R 2721 0 R 2722 0 R 2723 0 R 2724 0 R 2725 0 R 2726 0 R 2727 0 R 2729 0 R 2731 0 R 2732 0 R 2734 0 R] endobj 7172 0 obj [2736 0 R 2737 0 R 2738 0 R 2739 0 R 2740 0 R 2741 0 R 2743 0 R] endobj 7173 0 obj [2745 0 R 2746 0 R 2747 0 R 2751 0 R 2753 0 R 2758 0 R 2760 0 R 2762 0 R 2763 0 R 2764 0 R 2766 0 R] endobj 7174 0 obj [2768 0 R 2772 0 R 2774 0 R 2777 0 R 2779 0 R 2781 0 R 2784 0 R 2786 0 R 2788 0 R 2790 0 R 2792 0 R 2794 0 R 2797 0 R 2799 0 R 2801 0 R 2803 0 R 2805 0 R 2807 0 R 2809 0 R 2812 0 R 2814 0 R 2816 0 R 2818 0 R 2820 0 R 2822 0 R 2824 0 R 2827 0 R 2829 0 R 2831 0 R 2833 0 R 2835 0 R 2837 0 R 2839 0 R 2842 0 R 2844 0 R 2847 0 R 2849 0 R 2851 0 R 2854 0 R 2856 0 R 2858 0 R 2860 0 R 2862 0 R 2864 0 R 2867 0 R 2869 0 R 2871 0 R 2873 0 R 2875 0 R 2877 0 R 2879 0 R 2882 0 R 2884 0 R 2886 0 R 2888 0 R 2890 0 R 2892 0 R 2894 0 R 2897 0 R 2899 0 R 2901 0 R 2903 0 R 2905 0 R 2907 0 R 2909 0 R 2910 0 R 2911 0 R 2913 0 R] endobj 7175 0 obj [2915 0 R 2919 0 R 2921 0 R 2924 0 R 2926 0 R 2928 0 R 2931 0 R 2933 0 R 2935 0 R 2937 0 R 2939 0 R 2941 0 R 2944 0 R 2946 0 R 2948 0 R 2950 0 R 2952 0 R 2954 0 R 2956 0 R 2959 0 R 2961 0 R 2963 0 R 2965 0 R 2967 0 R 2969 0 R 2971 0 R 2974 0 R 2976 0 R 2978 0 R 2980 0 R 2982 0 R 2984 0 R 2986 0 R 2989 0 R 2991 0 R 2994 0 R 2996 0 R 2998 0 R 3001 0 R 3003 0 R 3005 0 R 3007 0 R 3009 0 R 3011 0 R 3014 0 R 3016 0 R 3018 0 R 3020 0 R 3022 0 R 3024 0 R 3026 0 R 3029 0 R 3031 0 R 3033 0 R 3035 0 R 3037 0 R 3039 0 R 3041 0 R 3044 0 R 3046 0 R 3048 0 R 3050 0 R 3052 0 R 3054 0 R 3056 0 R 3057 0 R 3058 0 R 3059 0 R 3060 0 R 3061 0 R 3063 0 R] endobj 7176 0 obj [3065 0 R 3066 0 R 3067 0 R 3068 0 R 3069 0 R 3071 0 R] endobj 7177 0 obj [3076 0 R 3078 0 R 3079 0 R 3080 0 R 3083 0 R 3084 0 R 3085 0 R 3087 0 R 3090 0 R 3092 0 R 3093 0 R 3094 0 R 3097 0 R 3098 0 R 3099 0 R 3101 0 R 3104 0 R 3106 0 R 3109 0 R 3110 0 R 3112 0 R 3115 0 R 3117 0 R 3120 0 R 3122 0 R 3125 0 R 3126 0 R 3127 0 R 3129 0 R 3132 0 R 3133 0 R 3134 0 R 3136 0 R 3137 0 R 3138 0 R 3141 0 R 3142 0 R 3143 0 R 3145 0 R 3148 0 R 3150 0 R 3151 0 R 3152 0 R 3153 0 R 3154 0 R 3155 0 R 3156 0 R 3157 0 R 3158 0 R 3159 0 R 3160 0 R 3161 0 R 3162 0 R 3163 0 R 3164 0 R 3165 0 R 3166 0 R 3167 0 R 3168 0 R 3169 0 R 3170 0 R 3171 0 R 3172 0 R 3173 0 R 3174 0 R 3175 0 R 3176 0 R 3177 0 R 3178 0 R 3179 0 R 3180 0 R 3181 0 R 3182 0 R 3183 0 R 3184 0 R 3185 0 R 3187 0 R 3189 0 R 3190 0 R 3191 0 R 3192 0 R 3194 0 R] endobj 7178 0 obj [3196 0 R 3197 0 R 3198 0 R 3199 0 R 3200 0 R 3202 0 R] endobj 7179 0 obj [3208 0 R 3210 0 R 3212 0 R 3215 0 R 3217 0 R 3219 0 R 3222 0 R 3224 0 R 3227 0 R 3229 0 R 3232 0 R 3234 0 R 3236 0 R 3237 0 R 3241 0 R 3243 0 R 3244 0 R 3245 0 R 3246 0 R 3247 0 R 3248 0 R 3249 0 R 3250 0 R 3251 0 R 3252 0 R 3253 0 R 3254 0 R 3255 0 R 3256 0 R 3260 0 R 3262 0 R 3264 0 R 3266 0 R 3268 0 R 3269 0 R 3270 0 R 3271 0 R 3272 0 R 3273 0 R 3274 0 R 3275 0 R 3276 0 R 3278 0 R 3279 0 R 3281 0 R] endobj 7180 0 obj [3283 0 R 3284 0 R 3285 0 R 3287 0 R] endobj 7181 0 obj [3289 0 R 3290 0 R 3291 0 R 3292 0 R 3293 0 R 3294 0 R 3295 0 R 3296 0 R 3297 0 R 3298 0 R 3299 0 R 3300 0 R 3301 0 R 3302 0 R 3303 0 R 3304 0 R 3305 0 R 3306 0 R 3307 0 R 3308 0 R 3309 0 R 3310 0 R 3311 0 R 3312 0 R 3313 0 R 3314 0 R 3315 0 R 3316 0 R 3317 0 R 3318 0 R 3320 0 R 3321 0 R 3323 0 R] endobj 7182 0 obj [3326 0 R 3327 0 R 3328 0 R 3329 0 R 3330 0 R 3331 0 R 3332 0 R 3333 0 R 3334 0 R 3336 0 R 3338 0 R 3339 0 R 3343 0 R 3344 0 R 3345 0 R 3346 0 R 3347 0 R 3348 0 R 3349 0 R 3350 0 R 3351 0 R 3353 0 R 3354 0 R 3356 0 R 3357 0 R 3358 0 R 3360 0 R 3361 0 R 3362 0 R 3363 0 R 3364 0 R 3365 0 R 3367 0 R 3369 0 R] endobj 7183 0 obj [3371 0 R 3372 0 R 3373 0 R 3374 0 R 3375 0 R 3376 0 R 3377 0 R 3378 0 R 3379 0 R 3380 0 R 3381 0 R 3382 0 R 3383 0 R 3384 0 R 3385 0 R 3386 0 R 3387 0 R 3388 0 R 3389 0 R 3390 0 R 3391 0 R 3392 0 R 3393 0 R 3394 0 R 3395 0 R 3396 0 R 3397 0 R 3398 0 R 3400 0 R 3401 0 R 3403 0 R] endobj 7184 0 obj [3405 0 R 3406 0 R 3407 0 R 3408 0 R 3409 0 R 3410 0 R 3411 0 R 3412 0 R 3413 0 R 3414 0 R 3415 0 R 3416 0 R 3417 0 R 3418 0 R 3419 0 R 3421 0 R 3422 0 R 3424 0 R] endobj 7185 0 obj [3426 0 R 3427 0 R 3428 0 R 3429 0 R 3431 0 R] endobj 7186 0 obj [3433 0 R 3434 0 R 3435 0 R 3437 0 R] endobj 7187 0 obj [3439 0 R 3440 0 R 3441 0 R 3443 0 R] endobj 7188 0 obj [3445 0 R 3446 0 R 3447 0 R 3448 0 R 3449 0 R 3450 0 R 3451 0 R 3453 0 R] endobj 7189 0 obj [3455 0 R 3456 0 R 3457 0 R 3458 0 R 3459 0 R 3460 0 R 3461 0 R 3462 0 R 3463 0 R 3464 0 R 3466 0 R] endobj 7190 0 obj [3468 0 R 3469 0 R 3470 0 R 3475 0 R 3476 0 R 3478 0 R 3480 0 R 3482 0 R 3483 0 R 3485 0 R] endobj 7191 0 obj [3487 0 R 3488 0 R 3489 0 R 3494 0 R 3496 0 R 3498 0 R 3500 0 R 3502 0 R 3504 0 R 3506 0 R 3508 0 R 3510 0 R 3512 0 R 3514 0 R 3516 0 R 3518 0 R 3520 0 R 3522 0 R 3524 0 R 3526 0 R 3528 0 R 3530 0 R 3532 0 R 3534 0 R 3536 0 R 3538 0 R 3540 0 R 3542 0 R 3544 0 R 3546 0 R 3548 0 R 3550 0 R 3552 0 R 3554 0 R 3557 0 R 3558 0 R 3559 0 R 3560 0 R 3562 0 R 3563 0 R 3564 0 R 3565 0 R 3567 0 R] endobj 7192 0 obj [3569 0 R 3570 0 R 3571 0 R 3572 0 R 3573 0 R 3574 0 R 3575 0 R 3576 0 R 3577 0 R 3578 0 R 3579 0 R 3580 0 R 3581 0 R 3583 0 R 3584 0 R 3585 0 R 3586 0 R 3587 0 R 3589 0 R] endobj 7193 0 obj [3591 0 R 3592 0 R 3593 0 R 3594 0 R 3595 0 R 3596 0 R 3597 0 R 3598 0 R 3599 0 R 3600 0 R 3601 0 R 3602 0 R 3603 0 R 3605 0 R] endobj 7194 0 obj [3607 0 R 3608 0 R 3609 0 R 3610 0 R 3611 0 R 3612 0 R 3614 0 R] endobj 7195 0 obj [3616 0 R 3621 0 R 3623 0 R 3627 0 R 3628 0 R 3630 0 R 3631 0 R 3632 0 R 3633 0 R 3635 0 R] endobj 7196 0 obj [3637 0 R 3638 0 R 3639 0 R 3640 0 R 3641 0 R 3642 0 R 3643 0 R 3644 0 R 3646 0 R] endobj 7197 0 obj [3648 0 R 3649 0 R 3650 0 R 3651 0 R 3652 0 R 3653 0 R 3655 0 R] endobj 7198 0 obj [3657 0 R 3658 0 R 3659 0 R 3664 0 R 3666 0 R 3668 0 R 3670 0 R 3671 0 R 3673 0 R] endobj 7199 0 obj [3675 0 R 3676 0 R 3677 0 R 3678 0 R 3680 0 R] endobj 7200 0 obj [3682 0 R 3683 0 R 3684 0 R 3685 0 R 3686 0 R 3687 0 R 3688 0 R 3689 0 R 3690 0 R 3691 0 R 3692 0 R 3693 0 R 3694 0 R 3695 0 R 3696 0 R 3697 0 R 3698 0 R 3699 0 R 3700 0 R 3701 0 R 3702 0 R 3703 0 R 3704 0 R 3705 0 R 3707 0 R 3709 0 R 3710 0 R 3711 0 R 3712 0 R 3714 0 R] endobj 7201 0 obj [3716 0 R 3717 0 R 3718 0 R 3719 0 R 3720 0 R 3721 0 R 3722 0 R 3723 0 R 3724 0 R 3725 0 R 3726 0 R 3727 0 R 3728 0 R 3729 0 R 3730 0 R 3731 0 R 3732 0 R 3733 0 R 3734 0 R 3735 0 R 3736 0 R 3737 0 R 3738 0 R 3739 0 R 3740 0 R 3741 0 R 3742 0 R 3743 0 R 3745 0 R 3749 0 R 3750 0 R 3751 0 R 3752 0 R 3753 0 R 3754 0 R 3755 0 R 3756 0 R 3757 0 R 3758 0 R 3759 0 R 3760 0 R 3762 0 R 3763 0 R 3764 0 R 3766 0 R 3767 0 R 3768 0 R 3769 0 R 3770 0 R 3771 0 R 3772 0 R 3773 0 R 3774 0 R 3775 0 R 3776 0 R 3777 0 R 3778 0 R 3779 0 R 3781 0 R 3782 0 R 3783 0 R 3786 0 R 3787 0 R 3788 0 R 3790 0 R 3791 0 R 3792 0 R 3794 0 R 3795 0 R 3796 0 R 3798 0 R 3801 0 R 3802 0 R 3803 0 R 3805 0 R 3806 0 R 3807 0 R 3810 0 R 3812 0 R 3815 0 R 3817 0 R 3820 0 R 3823 0 R 3826 0 R 3827 0 R 3828 0 R 3830 0 R 3831 0 R 3832 0 R 3833 0 R 3834 0 R 3835 0 R 3836 0 R 3838 0 R] endobj 7202 0 obj [3840 0 R 3841 0 R 3842 0 R 3843 0 R 3844 0 R 3845 0 R 3847 0 R 3848 0 R 3849 0 R 3850 0 R 3852 0 R] endobj 7203 0 obj [3854 0 R 3855 0 R 3856 0 R 3857 0 R 3858 0 R 3860 0 R] endobj 7204 0 obj [3862 0 R 3863 0 R 3864 0 R 3865 0 R 3867 0 R] endobj 7205 0 obj [3869 0 R 3870 0 R 3871 0 R 3873 0 R] endobj 7206 0 obj [3875 0 R 3876 0 R 3877 0 R 3878 0 R 3879 0 R 3881 0 R] endobj 7207 0 obj [3883 0 R 3884 0 R 3886 0 R 3888 0 R 3890 0 R 3891 0 R 3892 0 R 3893 0 R 3895 0 R 3896 0 R 3897 0 R 3898 0 R 3899 0 R 3900 0 R 3902 0 R 3904 0 R] endobj 7208 0 obj [3906 0 R 3907 0 R 3908 0 R 3909 0 R 3911 0 R] endobj 7209 0 obj [3913 0 R 3914 0 R 3915 0 R 3916 0 R 3917 0 R 3918 0 R 3919 0 R 3921 0 R 3926 0 R 3928 0 R 3929 0 R 3930 0 R 3932 0 R 3935 0 R 3937 0 R 3938 0 R 3939 0 R 3941 0 R 3942 0 R 3943 0 R 3946 0 R 3948 0 R 3949 0 R 3950 0 R 3952 0 R 3953 0 R 3954 0 R 3957 0 R 3959 0 R 3960 0 R 3961 0 R 3963 0 R 3964 0 R 3965 0 R 3968 0 R 3970 0 R 3971 0 R 3972 0 R 3974 0 R 3975 0 R 3976 0 R 3979 0 R 3981 0 R 3982 0 R 3983 0 R 3985 0 R 3986 0 R 3987 0 R 3990 0 R 3992 0 R 3993 0 R 3994 0 R 3996 0 R 3997 0 R 3998 0 R 4000 0 R 4001 0 R 4003 0 R 4005 0 R] endobj 7210 0 obj [4007 0 R 4008 0 R 4009 0 R 4010 0 R 4012 0 R] endobj 7211 0 obj [4014 0 R 4015 0 R 4016 0 R 4017 0 R 4018 0 R 4019 0 R 4021 0 R 4022 0 R 4024 0 R] endobj 7212 0 obj [4026 0 R 4027 0 R 4028 0 R 4029 0 R 4030 0 R 4031 0 R 4032 0 R 4033 0 R 4034 0 R 4035 0 R 4036 0 R 4037 0 R 4038 0 R 4039 0 R 4040 0 R 4041 0 R 4042 0 R 4043 0 R 4044 0 R 4045 0 R 4046 0 R 4047 0 R 4048 0 R 4049 0 R 4050 0 R 4051 0 R 4052 0 R 4053 0 R 4054 0 R 4056 0 R 4057 0 R 4058 0 R 4059 0 R 4061 0 R] endobj 7213 0 obj [4063 0 R 4064 0 R 4065 0 R 4066 0 R 4067 0 R 4068 0 R 4070 0 R] endobj 7214 0 obj [4072 0 R 4073 0 R 4074 0 R 4075 0 R 4076 0 R 4078 0 R] endobj 7215 0 obj [4080 0 R 4081 0 R 4082 0 R 4083 0 R 4085 0 R] endobj 7216 0 obj [4087 0 R 4088 0 R 4089 0 R 4090 0 R 4092 0 R] endobj 7217 0 obj [4094 0 R 4095 0 R 4096 0 R 4098 0 R] endobj 7218 0 obj [4100 0 R 4101 0 R 4102 0 R 4103 0 R 4104 0 R 4106 0 R] endobj 7219 0 obj [4108 0 R 4109 0 R 4110 0 R 4111 0 R 4112 0 R 4113 0 R 4114 0 R 4115 0 R 4116 0 R 4117 0 R 4119 0 R] endobj 7220 0 obj [4121 0 R 4122 0 R 4124 0 R 4126 0 R 4128 0 R 4130 0 R 4132 0 R 4134 0 R 4136 0 R 4137 0 R 4138 0 R 4139 0 R 4140 0 R 4142 0 R] endobj 7221 0 obj [4144 0 R 4145 0 R 4146 0 R 4147 0 R 4148 0 R 4149 0 R 4150 0 R 4151 0 R 4152 0 R 4154 0 R 4155 0 R 4157 0 R 4158 0 R 4159 0 R 4163 0 R 4164 0 R 4166 0 R 4167 0 R 4169 0 R] endobj 7222 0 obj [4171 0 R 4172 0 R 4173 0 R 4174 0 R 4175 0 R 4176 0 R 4177 0 R 4178 0 R 4179 0 R 4181 0 R] endobj 7223 0 obj [4183 0 R 4184 0 R 4185 0 R 4186 0 R 4187 0 R 4189 0 R] endobj 7224 0 obj [4191 0 R 4192 0 R 4193 0 R 4195 0 R] endobj 7225 0 obj [4197 0 R 4198 0 R 4199 0 R 4200 0 R 4201 0 R 4202 0 R 4203 0 R 4204 0 R 4205 0 R 4207 0 R 4209 0 R] endobj 7226 0 obj [4211 0 R 4212 0 R 4213 0 R 4214 0 R 4215 0 R 4216 0 R 4217 0 R 4221 0 R 4222 0 R 4223 0 R 4225 0 R 4226 0 R 4227 0 R 4229 0 R] endobj 7227 0 obj [4231 0 R 4232 0 R 4233 0 R 4237 0 R 4239 0 R 4241 0 R 4243 0 R 4245 0 R 4247 0 R 4250 0 R 4252 0 R 4254 0 R 4256 0 R 4258 0 R 4260 0 R 4263 0 R 4265 0 R 4267 0 R 4269 0 R 4271 0 R 4273 0 R 4274 0 R 4275 0 R 4277 0 R] endobj 7228 0 obj [4279 0 R 4283 0 R 4285 0 R 4287 0 R 4289 0 R 4291 0 R 4293 0 R 4296 0 R 4298 0 R 4300 0 R 4302 0 R 4304 0 R 4306 0 R 4309 0 R 4311 0 R 4313 0 R 4315 0 R 4317 0 R 4319 0 R 4320 0 R 4321 0 R 4323 0 R] endobj 7229 0 obj [4325 0 R 4326 0 R 4327 0 R 4328 0 R 4329 0 R 4331 0 R] endobj 7230 0 obj [4333 0 R 4334 0 R 4335 0 R 4337 0 R] endobj 7231 0 obj [4343 0 R 4345 0 R 4347 0 R 4350 0 R 4352 0 R 4355 0 R 4357 0 R 4358 0 R 4359 0 R 4360 0 R 4361 0 R 4362 0 R 4363 0 R 4364 0 R 4365 0 R 4366 0 R 4367 0 R 4368 0 R 4372 0 R 4373 0 R 4374 0 R 4375 0 R 4376 0 R 4377 0 R 4378 0 R 4379 0 R 4380 0 R 4381 0 R 4382 0 R 4383 0 R 4384 0 R 4385 0 R 4386 0 R 4388 0 R 4389 0 R 4391 0 R] endobj 7232 0 obj [4393 0 R 4394 0 R 4395 0 R 4396 0 R 4398 0 R] endobj 7233 0 obj [4400 0 R 4402 0 R 4403 0 R 4404 0 R 4405 0 R 4407 0 R 4412 0 R 4413 0 R 4414 0 R 4416 0 R 4417 0 R 4418 0 R 4420 0 R 4421 0 R 4422 0 R 4424 0 R 4425 0 R 4426 0 R 4428 0 R 4429 0 R 4430 0 R 4432 0 R 4433 0 R 4434 0 R 4436 0 R 4437 0 R 4438 0 R 4440 0 R 4441 0 R 4442 0 R 4444 0 R 4445 0 R 4446 0 R 4448 0 R 4451 0 R 4453 0 R 4454 0 R 4455 0 R 4457 0 R 4458 0 R 4459 0 R 4461 0 R 4462 0 R 4463 0 R 4465 0 R 4466 0 R 4467 0 R 4469 0 R 4470 0 R 4471 0 R 4473 0 R 4474 0 R 4475 0 R 4477 0 R 4478 0 R 4479 0 R 4481 0 R 4482 0 R 4483 0 R 4485 0 R 4488 0 R 4489 0 R 4490 0 R 4492 0 R 4493 0 R 4494 0 R 4496 0 R 4497 0 R 4498 0 R 4500 0 R 4501 0 R 4502 0 R 4504 0 R 4505 0 R 4506 0 R 4508 0 R 4509 0 R 4510 0 R 4512 0 R 4513 0 R 4514 0 R 4516 0 R 4518 0 R 4519 0 R 4520 0 R 4522 0 R 4523 0 R 4524 0 R 4527 0 R 4528 0 R 4529 0 R 4531 0 R 4532 0 R 4533 0 R 4535 0 R 4536 0 R 4537 0 R 4539 0 R 4540 0 R 4541 0 R 4543 0 R 4544 0 R 4545 0 R 4547 0 R 4548 0 R 4549 0 R 4551 0 R 4552 0 R 4553 0 R 4555 0 R 4557 0 R 4558 0 R 4559 0 R 4561 0 R 4562 0 R 4563 0 R 4566 0 R 4568 0 R 4569 0 R 4570 0 R 4572 0 R 4573 0 R 4574 0 R 4576 0 R 4577 0 R 4578 0 R 4580 0 R 4581 0 R 4582 0 R 4584 0 R 4585 0 R 4586 0 R 4588 0 R 4589 0 R 4590 0 R 4592 0 R 4594 0 R 4595 0 R 4596 0 R 4598 0 R 4601 0 R 4602 0 R 4603 0 R 4605 0 R 4607 0 R 4608 0 R 4609 0 R 4611 0 R 4612 0 R 4613 0 R 4615 0 R 4616 0 R 4617 0 R 4619 0 R 4620 0 R 4621 0 R 4623 0 R 4624 0 R 4625 0 R 4627 0 R 4628 0 R 4629 0 R 4631 0 R 4632 0 R 4633 0 R 4635 0 R 4636 0 R 4637 0 R 4640 0 R 4641 0 R 4642 0 R 4644 0 R 4645 0 R 4646 0 R 4648 0 R 4650 0 R 4651 0 R 4652 0 R 4654 0 R 4655 0 R 4656 0 R 4658 0 R 4659 0 R 4660 0 R 4662 0 R 4663 0 R 4664 0 R 4666 0 R 4667 0 R 4668 0 R 4670 0 R 4671 0 R 4672 0 R 4674 0 R 4675 0 R 4676 0 R 4679 0 R 4681 0 R 4682 0 R 4683 0 R 4685 0 R 4686 0 R 4687 0 R 4689 0 R 4690 0 R 4691 0 R 4693 0 R 4694 0 R 4695 0 R 4697 0 R 4698 0 R 4699 0 R 4701 0 R 4702 0 R 4703 0 R 4705 0 R 4706 0 R 4707 0 R 4709 0 R 4710 0 R 4711 0 R 4713 0 R 4716 0 R 4718 0 R 4719 0 R 4720 0 R 4722 0 R 4723 0 R 4724 0 R 4726 0 R 4727 0 R 4728 0 R 4730 0 R 4731 0 R 4732 0 R 4734 0 R 4735 0 R 4736 0 R 4738 0 R 4739 0 R 4740 0 R 4742 0 R 4743 0 R 4744 0 R 4746 0 R 4747 0 R 4748 0 R 4750 0 R 4751 0 R 4752 0 R 4755 0 R 4757 0 R 4758 0 R 4759 0 R 4761 0 R 4762 0 R 4763 0 R 4765 0 R 4766 0 R 4767 0 R 4769 0 R 4770 0 R 4771 0 R 4773 0 R 4774 0 R 4775 0 R 4777 0 R 4778 0 R 4779 0 R 4781 0 R 4782 0 R 4783 0 R 4785 0 R 4786 0 R 4787 0 R 4789 0 R 4790 0 R 4791 0 R 4794 0 R 4795 0 R 4797 0 R 4798 0 R 4800 0 R 4801 0 R 4803 0 R 4804 0 R 4806 0 R 4808 0 R 4810 0 R 4812 0 R 4814 0 R 4815 0 R 4818 0 R 4820 0 R 4821 0 R 4823 0 R] endobj 7234 0 obj [4825 0 R 4826 0 R 4827 0 R 4828 0 R 4829 0 R 4830 0 R 4831 0 R 4832 0 R 4833 0 R 4834 0 R 4836 0 R 4837 0 R 4838 0 R 4840 0 R] endobj 7235 0 obj [4842 0 R 4843 0 R 4844 0 R 4845 0 R 4846 0 R 4847 0 R 4848 0 R 4850 0 R] endobj 7236 0 obj [4852 0 R 4853 0 R 4854 0 R 4856 0 R 4857 0 R 4858 0 R 4859 0 R 4860 0 R 4864 0 R 4865 0 R 4866 0 R 4867 0 R 4869 0 R 4870 0 R 4871 0 R 4872 0 R 4873 0 R 4875 0 R] endobj 7237 0 obj [4877 0 R 4878 0 R 4879 0 R 4880 0 R 4881 0 R 4883 0 R] endobj 7238 0 obj [4885 0 R 4886 0 R 4887 0 R 4888 0 R 4890 0 R] endobj 7239 0 obj [4892 0 R 4893 0 R 4894 0 R 4896 0 R] endobj 7240 0 obj [4898 0 R 4899 0 R 4900 0 R 4901 0 R 4902 0 R 4903 0 R 4904 0 R 4905 0 R 4907 0 R] endobj 7241 0 obj [4909 0 R 4910 0 R 4911 0 R 4912 0 R 4913 0 R 4914 0 R 4916 0 R] endobj 7242 0 obj [4918 0 R 4919 0 R 4920 0 R 4921 0 R 4922 0 R 4923 0 R 4924 0 R 4926 0 R] endobj 7243 0 obj [4928 0 R 4932 0 R 4934 0 R 4937 0 R 4939 0 R 4941 0 R 4944 0 R 4946 0 R 4948 0 R 4950 0 R 4952 0 R 4954 0 R 4957 0 R 4959 0 R 4961 0 R 4963 0 R 4965 0 R 4967 0 R 4969 0 R 4972 0 R 4974 0 R 4976 0 R 4978 0 R 4980 0 R 4982 0 R 4984 0 R 4987 0 R 4989 0 R 4991 0 R 4993 0 R 4995 0 R 4997 0 R 4999 0 R 5002 0 R 5004 0 R 5007 0 R 5009 0 R 5011 0 R 5014 0 R 5016 0 R 5018 0 R 5020 0 R 5022 0 R 5024 0 R 5027 0 R 5029 0 R 5031 0 R 5033 0 R 5035 0 R 5037 0 R 5039 0 R 5042 0 R 5044 0 R 5046 0 R 5048 0 R 5050 0 R 5052 0 R 5054 0 R 5057 0 R 5059 0 R 5061 0 R 5063 0 R 5065 0 R 5067 0 R 5069 0 R 5070 0 R 5074 0 R 5076 0 R 5080 0 R 5082 0 R 5083 0 R 5085 0 R] endobj 7244 0 obj [5087 0 R 5091 0 R 5093 0 R 5096 0 R 5098 0 R 5100 0 R 5103 0 R 5105 0 R 5107 0 R 5109 0 R 5111 0 R 5113 0 R 5116 0 R 5118 0 R 5120 0 R 5122 0 R 5124 0 R 5126 0 R 5128 0 R 5131 0 R 5133 0 R 5135 0 R 5137 0 R 5139 0 R 5141 0 R 5143 0 R 5146 0 R 5148 0 R 5150 0 R 5152 0 R 5154 0 R 5156 0 R 5158 0 R 5161 0 R 5163 0 R 5166 0 R 5168 0 R 5170 0 R 5173 0 R 5175 0 R 5177 0 R 5179 0 R 5181 0 R 5183 0 R 5186 0 R 5188 0 R 5190 0 R 5192 0 R 5194 0 R 5196 0 R 5198 0 R 5201 0 R 5203 0 R 5205 0 R 5207 0 R 5209 0 R 5211 0 R 5213 0 R 5216 0 R 5218 0 R 5220 0 R 5222 0 R 5224 0 R 5226 0 R 5228 0 R 5229 0 R 5230 0 R 5232 0 R] endobj 7245 0 obj [5234 0 R 5235 0 R 5236 0 R 5237 0 R 5238 0 R 5240 0 R] endobj 7246 0 obj [5242 0 R 5246 0 R 5248 0 R 5251 0 R 5253 0 R 5255 0 R 5258 0 R 5260 0 R 5262 0 R 5264 0 R 5266 0 R 5268 0 R 5271 0 R 5273 0 R 5275 0 R 5277 0 R 5279 0 R 5281 0 R 5283 0 R 5286 0 R 5288 0 R 5290 0 R 5292 0 R 5294 0 R 5296 0 R 5298 0 R 5301 0 R 5303 0 R 5305 0 R 5307 0 R 5309 0 R 5311 0 R 5313 0 R 5316 0 R 5318 0 R 5321 0 R 5323 0 R 5325 0 R 5328 0 R 5330 0 R 5332 0 R 5334 0 R 5336 0 R 5338 0 R 5341 0 R 5343 0 R 5345 0 R 5347 0 R 5349 0 R 5351 0 R 5353 0 R 5356 0 R 5358 0 R 5360 0 R 5362 0 R 5364 0 R 5366 0 R 5368 0 R 5371 0 R 5373 0 R 5375 0 R 5377 0 R 5379 0 R 5381 0 R 5383 0 R 5384 0 R 5385 0 R 5386 0 R 5388 0 R] endobj 7247 0 obj [5390 0 R 5394 0 R 5396 0 R 5399 0 R 5401 0 R 5403 0 R 5406 0 R 5408 0 R 5410 0 R 5412 0 R 5414 0 R 5416 0 R 5419 0 R 5421 0 R 5423 0 R 5425 0 R 5427 0 R 5429 0 R 5431 0 R 5434 0 R 5436 0 R 5438 0 R 5440 0 R 5442 0 R 5444 0 R 5446 0 R 5449 0 R 5451 0 R 5453 0 R 5455 0 R 5457 0 R 5459 0 R 5461 0 R 5464 0 R 5466 0 R 5469 0 R 5471 0 R 5473 0 R 5476 0 R 5478 0 R 5480 0 R 5482 0 R 5484 0 R 5486 0 R 5489 0 R 5491 0 R 5493 0 R 5495 0 R 5497 0 R 5499 0 R 5501 0 R 5504 0 R 5506 0 R 5508 0 R 5510 0 R 5512 0 R 5514 0 R 5516 0 R 5519 0 R 5521 0 R 5523 0 R 5525 0 R 5527 0 R 5529 0 R 5531 0 R 5532 0 R 5533 0 R 5535 0 R] endobj 7248 0 obj [5537 0 R 5538 0 R 5539 0 R 5540 0 R 5541 0 R 5542 0 R 5543 0 R 5544 0 R 5545 0 R 5546 0 R 5547 0 R 5548 0 R 5549 0 R 5550 0 R 5551 0 R 5552 0 R 5553 0 R 5554 0 R 5555 0 R 5556 0 R 5557 0 R 5558 0 R 5559 0 R 5560 0 R 5561 0 R 5562 0 R 5563 0 R 5564 0 R 5565 0 R 5567 0 R 5568 0 R 5569 0 R 5570 0 R 5572 0 R 5577 0 R 5579 0 R 5581 0 R 5583 0 R 5585 0 R 5587 0 R 5589 0 R 5592 0 R 5594 0 R 5596 0 R 5598 0 R 5600 0 R 5602 0 R 5604 0 R 5607 0 R 5609 0 R 5611 0 R 5613 0 R 5615 0 R 5617 0 R 5619 0 R 5622 0 R 5624 0 R 5626 0 R 5628 0 R 5630 0 R 5632 0 R 5635 0 R 5637 0 R 5638 0 R 5640 0 R 5641 0 R 5642 0 R 5643 0 R 5644 0 R 5645 0 R 5647 0 R 5648 0 R 5650 0 R] endobj 7249 0 obj [5652 0 R 5653 0 R 5654 0 R 5655 0 R 5656 0 R 5657 0 R 5659 0 R 5660 0 R 5661 0 R 5662 0 R 5663 0 R 5664 0 R 5665 0 R 5666 0 R 5667 0 R 5668 0 R 5669 0 R 5670 0 R 5671 0 R 5672 0 R 5673 0 R 5674 0 R 5675 0 R 5676 0 R 5678 0 R 5679 0 R 5680 0 R 5681 0 R 5682 0 R 5683 0 R 5684 0 R 5685 0 R 5686 0 R 5687 0 R 5688 0 R 5689 0 R 5690 0 R 5691 0 R 5692 0 R 5693 0 R 5694 0 R 5695 0 R 5696 0 R 5698 0 R 5700 0 R 5701 0 R 5702 0 R 5703 0 R 5704 0 R 5705 0 R 5706 0 R 5707 0 R 5708 0 R 5709 0 R 5710 0 R 5711 0 R 5712 0 R 5714 0 R 5715 0 R 5717 0 R] endobj 7250 0 obj [5719 0 R 5723 0 R 5724 0 R 5725 0 R 5727 0 R 5730 0 R 5732 0 R 5735 0 R 5737 0 R 5739 0 R 5741 0 R 5743 0 R 5745 0 R 5748 0 R 5750 0 R 5752 0 R 5754 0 R 5756 0 R 5758 0 R 5760 0 R 5763 0 R 5765 0 R 5767 0 R 5769 0 R 5771 0 R 5773 0 R 5775 0 R 5778 0 R 5780 0 R 5782 0 R 5784 0 R 5786 0 R 5788 0 R 5790 0 R 5793 0 R 5795 0 R 5797 0 R 5799 0 R 5801 0 R 5803 0 R 5805 0 R 5806 0 R 5807 0 R 5808 0 R 5809 0 R 5811 0 R] endobj 7251 0 obj [5813 0 R 5814 0 R 5815 0 R 5817 0 R] endobj 7252 0 obj [5819 0 R 5820 0 R 5821 0 R 5822 0 R 5824 0 R] endobj 7253 0 obj [5826 0 R 5827 0 R 5828 0 R 5829 0 R 5830 0 R 5831 0 R 5833 0 R] endobj 7254 0 obj [5835 0 R 5836 0 R 5837 0 R 5838 0 R 5839 0 R 5840 0 R 5842 0 R] endobj 7255 0 obj [5844 0 R 5845 0 R 5846 0 R 5847 0 R 5848 0 R 5850 0 R] endobj 7256 0 obj [5852 0 R 5853 0 R 5854 0 R 5855 0 R 5857 0 R] endobj 7257 0 obj [5859 0 R 5860 0 R 5861 0 R 5862 0 R 5863 0 R 5864 0 R 5865 0 R 5866 0 R 5867 0 R 5868 0 R 5869 0 R 5870 0 R 5871 0 R 5872 0 R 5873 0 R 5874 0 R 5876 0 R 5877 0 R 5878 0 R 5879 0 R 5880 0 R 5881 0 R 5882 0 R 5883 0 R 5884 0 R 5885 0 R 5886 0 R 5887 0 R 5888 0 R 5890 0 R 5891 0 R 5892 0 R 5894 0 R] endobj 7258 0 obj [5896 0 R 5897 0 R 5898 0 R 5899 0 R 5900 0 R 5902 0 R] endobj 7259 0 obj [5904 0 R 5905 0 R 5906 0 R 5907 0 R 5908 0 R 5909 0 R 5910 0 R 5911 0 R 5912 0 R 5914 0 R 5915 0 R 5917 0 R] endobj 7260 0 obj [5919 0 R 5920 0 R 5921 0 R 5922 0 R 5923 0 R 5924 0 R 5925 0 R 5926 0 R 5927 0 R 5928 0 R 5929 0 R 5930 0 R 5931 0 R 5932 0 R 5933 0 R 5934 0 R 5935 0 R 5936 0 R 5937 0 R 5938 0 R 5939 0 R 5940 0 R 5941 0 R 5942 0 R 5943 0 R 5944 0 R 5945 0 R 5946 0 R 5947 0 R 5948 0 R 5949 0 R 5950 0 R 5951 0 R 5953 0 R 5955 0 R 5956 0 R 5957 0 R 5959 0 R] endobj 7261 0 obj [5961 0 R 5963 0 R 5965 0 R] endobj 7262 0 obj [5967 0 R 5968 0 R 5969 0 R 5971 0 R] endobj 7263 0 obj [5973 0 R 5974 0 R 5975 0 R 5976 0 R 5977 0 R 5979 0 R 5980 0 R 5981 0 R 5982 0 R 5983 0 R 5984 0 R 5985 0 R 5986 0 R 5988 0 R 5989 0 R 5990 0 R 5991 0 R 5992 0 R 5993 0 R 5994 0 R 5995 0 R 5996 0 R 5997 0 R 5998 0 R 5999 0 R 6001 0 R 6003 0 R 6004 0 R 6006 0 R 6008 0 R] endobj 7264 0 obj [6010 0 R 6011 0 R 6012 0 R 6013 0 R 6015 0 R] endobj 7265 0 obj [6017 0 R 6018 0 R 6019 0 R 6020 0 R 6022 0 R] endobj 7266 0 obj [6024 0 R 6025 0 R 6026 0 R 6027 0 R 6028 0 R 6029 0 R 6030 0 R 6031 0 R 6032 0 R 6034 0 R 6035 0 R 6036 0 R 6037 0 R 6038 0 R 6039 0 R 6040 0 R 6041 0 R 6042 0 R 6043 0 R 6044 0 R 6045 0 R 6047 0 R 6052 0 R 6054 0 R 6056 0 R 6058 0 R 6060 0 R 6062 0 R 6064 0 R 6066 0 R 6068 0 R 6070 0 R 6072 0 R 6074 0 R 6075 0 R 6076 0 R 6078 0 R 6079 0 R 6080 0 R 6081 0 R 6082 0 R 6083 0 R 6088 0 R 6090 0 R 6092 0 R 6094 0 R 6096 0 R 6098 0 R 6100 0 R 6102 0 R 6104 0 R 6106 0 R 6111 0 R 6113 0 R 6115 0 R 6117 0 R 6119 0 R 6121 0 R 6123 0 R 6125 0 R 6127 0 R 6128 0 R 6130 0 R 6132 0 R 6133 0 R 6135 0 R] endobj 7267 0 obj [6137 0 R 6138 0 R 6139 0 R 6140 0 R 6141 0 R 6142 0 R 6143 0 R 6145 0 R 6147 0 R 6148 0 R 6150 0 R] endobj 7268 0 obj [6152 0 R 6153 0 R 6154 0 R 6156 0 R 6157 0 R 6158 0 R 6159 0 R 6160 0 R 6161 0 R 6163 0 R 6164 0 R 6165 0 R 6166 0 R 6167 0 R 6168 0 R 6169 0 R 6170 0 R 6171 0 R 6173 0 R] endobj 7269 0 obj [6175 0 R 6176 0 R 6177 0 R 6179 0 R 6181 0 R 6186 0 R 6187 0 R 6188 0 R 6190 0 R 6193 0 R 6194 0 R 6195 0 R 6196 0 R 6197 0 R 6199 0 R] endobj 7270 0 obj [6201 0 R 6202 0 R 6203 0 R 6204 0 R 6206 0 R] endobj 7271 0 obj [6208 0 R 6209 0 R 6210 0 R 6211 0 R 6212 0 R 6213 0 R 6217 0 R 6218 0 R 6219 0 R 6221 0 R 6222 0 R 6223 0 R 6224 0 R 6225 0 R 6226 0 R 6227 0 R 6229 0 R] endobj 7272 0 obj [6231 0 R 6232 0 R 6233 0 R 6234 0 R 6235 0 R 6236 0 R 6238 0 R] endobj 7273 0 obj [6240 0 R 6241 0 R 6242 0 R 6243 0 R 6244 0 R 6246 0 R] endobj 7274 0 obj [6248 0 R 6249 0 R 6250 0 R 6251 0 R 6252 0 R 6253 0 R 6254 0 R 6255 0 R 6256 0 R 6257 0 R 6259 0 R] endobj 7275 0 obj [6261 0 R 6262 0 R 6263 0 R 6264 0 R 6265 0 R 6266 0 R 6267 0 R 6268 0 R 6269 0 R 6270 0 R 6271 0 R 6272 0 R 6273 0 R 6274 0 R 6275 0 R 6276 0 R 6277 0 R 6278 0 R 6279 0 R 6281 0 R 6283 0 R 6284 0 R 6286 0 R] endobj 7276 0 obj [6288 0 R 6289 0 R 6290 0 R 6291 0 R 6292 0 R 6294 0 R] endobj 7277 0 obj [6296 0 R 6297 0 R 6298 0 R 6300 0 R] endobj 7278 0 obj [6302 0 R 6303 0 R 6304 0 R 6305 0 R 6306 0 R 6307 0 R 6308 0 R 6309 0 R 6310 0 R 6311 0 R 6312 0 R 6313 0 R 6314 0 R 6315 0 R 6316 0 R 6317 0 R 6319 0 R 6320 0 R 6321 0 R 6322 0 R 6323 0 R 6325 0 R] endobj 7279 0 obj [6327 0 R 6328 0 R 6329 0 R 6331 0 R] endobj 7280 0 obj [6333 0 R 6334 0 R 6335 0 R 6336 0 R 6337 0 R 6338 0 R 6340 0 R] endobj 7281 0 obj [6342 0 R 6343 0 R 6344 0 R 6345 0 R 6346 0 R 6347 0 R 6348 0 R 6350 0 R] endobj 7282 0 obj [6352 0 R 6353 0 R 6354 0 R 6355 0 R 6356 0 R 6357 0 R 6358 0 R 6359 0 R 6360 0 R 6361 0 R 6363 0 R 6365 0 R] endobj 7283 0 obj [6367 0 R 6368 0 R 6370 0 R] endobj 7284 0 obj [6372 0 R 6373 0 R 6374 0 R 6375 0 R 6379 0 R 6380 0 R 6381 0 R 6383 0 R 6384 0 R 6386 0 R] endobj 7285 0 obj [6388 0 R 6392 0 R 6393 0 R 6395 0 R 6396 0 R 6397 0 R 6399 0 R] endobj 7286 0 obj [6401 0 R 6402 0 R 6403 0 R 6407 0 R 6409 0 R 6412 0 R 6414 0 R 6417 0 R 6419 0 R 6422 0 R 6424 0 R 6427 0 R 6429 0 R 6431 0 R 6434 0 R 6436 0 R 6439 0 R 6441 0 R 6443 0 R 6446 0 R 6448 0 R 6449 0 R 6451 0 R] endobj 7287 0 obj [6456 0 R 6458 0 R 6461 0 R 6463 0 R 6465 0 R 6466 0 R 6467 0 R 6470 0 R 6472 0 R 6474 0 R 6477 0 R 6479 0 R 6481 0 R 6482 0 R 6483 0 R 6486 0 R 6488 0 R 6490 0 R 6491 0 R 6492 0 R 6495 0 R 6497 0 R 6499 0 R 6501 0 R 6502 0 R 6503 0 R 6506 0 R 6508 0 R 6510 0 R 6511 0 R 6512 0 R 6515 0 R 6517 0 R 6519 0 R 6521 0 R 6522 0 R 6523 0 R 6526 0 R 6528 0 R 6530 0 R 6531 0 R 6532 0 R 6533 0 R 6537 0 R 6539 0 R 6542 0 R 6544 0 R 6547 0 R 6549 0 R 6552 0 R 6554 0 R 6556 0 R 6559 0 R 6561 0 R 6564 0 R 6566 0 R 6569 0 R 6571 0 R 6574 0 R 6576 0 R 6579 0 R 6581 0 R 6583 0 R 6584 0 R 6588 0 R 6590 0 R 6593 0 R 6595 0 R 6598 0 R 6600 0 R 6603 0 R 6605 0 R 6608 0 R 6610 0 R 6612 0 R 6615 0 R 6617 0 R 6620 0 R 6622 0 R 6625 0 R 6627 0 R 6630 0 R 6632 0 R 6635 0 R 6637 0 R 6639 0 R 6640 0 R 6642 0 R] endobj 7288 0 obj [6647 0 R 6649 0 R 6652 0 R 6654 0 R 6657 0 R 6659 0 R 6661 0 R 6664 0 R 6666 0 R 6669 0 R 6671 0 R 6674 0 R 6676 0 R 6679 0 R 6681 0 R 6684 0 R 6686 0 R 6688 0 R 6689 0 R 6693 0 R 6695 0 R 6697 0 R 6700 0 R 6702 0 R 6704 0 R 6707 0 R 6709 0 R 6711 0 R 6714 0 R 6716 0 R 6718 0 R 6721 0 R 6723 0 R 6725 0 R 6726 0 R 6730 0 R 6732 0 R 6735 0 R 6737 0 R 6740 0 R 6742 0 R 6745 0 R 6747 0 R 6750 0 R 6752 0 R 6755 0 R 6757 0 R 6759 0 R 6762 0 R 6764 0 R 6767 0 R 6769 0 R 6771 0 R 6774 0 R 6776 0 R 6777 0 R 6779 0 R] endobj 7289 0 obj [6784 0 R 6786 0 R 6789 0 R 6791 0 R 6794 0 R 6796 0 R 6799 0 R 6801 0 R 6804 0 R 6806 0 R 6809 0 R 6811 0 R 6814 0 R 6816 0 R 6818 0 R 6821 0 R 6823 0 R 6826 0 R 6828 0 R 6830 0 R 6833 0 R 6835 0 R 6836 0 R 6838 0 R] endobj 7290 0 obj [6840 0 R 6841 0 R 6842 0 R 6843 0 R 6844 0 R 6845 0 R 6846 0 R 6847 0 R 6849 0 R] endobj 7291 0 obj [6851 0 R 6852 0 R 6853 0 R 6854 0 R 6855 0 R 6856 0 R 6857 0 R 6858 0 R 6859 0 R 6860 0 R 6861 0 R 6863 0 R] endobj 7292 0 obj [6865 0 R 6866 0 R 6867 0 R 6868 0 R 6869 0 R 6870 0 R 6871 0 R 6872 0 R 6873 0 R 6874 0 R 6876 0 R] endobj 7293 0 obj [6878 0 R 6879 0 R 6880 0 R 6881 0 R 6882 0 R 6883 0 R 6884 0 R 6885 0 R 6886 0 R 6887 0 R 6889 0 R] endobj 7294 0 obj [6891 0 R 6892 0 R 6893 0 R 6894 0 R 6895 0 R 6896 0 R 6897 0 R 6898 0 R 6899 0 R 6900 0 R 6902 0 R] endobj 7295 0 obj [6904 0 R 6905 0 R 6906 0 R 6907 0 R 6908 0 R 6909 0 R 6910 0 R 6911 0 R 6912 0 R 6914 0 R] endobj 7296 0 obj [6916 0 R 6917 0 R 6918 0 R 6919 0 R 6920 0 R 6921 0 R 6922 0 R 6923 0 R 6924 0 R 6925 0 R 6926 0 R 6928 0 R] endobj 7297 0 obj [6930 0 R 6931 0 R 6932 0 R 6933 0 R 6934 0 R 6935 0 R 6936 0 R 6937 0 R 6938 0 R 6940 0 R] endobj 7298 0 obj [6942 0 R 6943 0 R 6944 0 R 6945 0 R 6946 0 R 6947 0 R 6948 0 R 6949 0 R 6950 0 R 6951 0 R 6952 0 R 6953 0 R 6955 0 R] endobj 7299 0 obj [6957 0 R 6958 0 R 6959 0 R 6960 0 R 6961 0 R 6962 0 R 6963 0 R 6964 0 R 6965 0 R 6967 0 R] endobj 7300 0 obj [6969 0 R 6970 0 R 6971 0 R 6972 0 R 6973 0 R 6974 0 R 6975 0 R 6977 0 R] endobj 7301 0 obj [6979 0 R 6980 0 R 6981 0 R 6982 0 R 6983 0 R 6984 0 R 6985 0 R 6986 0 R 6987 0 R 6988 0 R 6989 0 R 6990 0 R 6991 0 R 6992 0 R 6994 0 R] endobj 7302 0 obj [6996 0 R 6997 0 R 6998 0 R 6999 0 R 7000 0 R 7001 0 R 7002 0 R 7003 0 R 7004 0 R 7005 0 R 7006 0 R 7007 0 R 7008 0 R 7009 0 R 7010 0 R 7011 0 R 7012 0 R 7013 0 R 7014 0 R 7016 0 R] endobj 7303 0 obj [7018 0 R 7019 0 R 7020 0 R 7021 0 R 7022 0 R 7023 0 R 7024 0 R 7026 0 R 7028 0 R] endobj 7304 0 obj [7030 0 R 7031 0 R 7032 0 R 7033 0 R 7034 0 R 7035 0 R 7036 0 R 7038 0 R] endobj 7305 0 obj [7040 0 R 7041 0 R 7042 0 R 7043 0 R 7045 0 R] endobj 7306 0 obj [7047 0 R 7048 0 R 7049 0 R 7050 0 R 7052 0 R] endobj 7307 0 obj [7054 0 R 7055 0 R 7056 0 R 7057 0 R 7059 0 R] endobj 7308 0 obj [7061 0 R 7062 0 R 7063 0 R 7064 0 R 7065 0 R 7066 0 R 7068 0 R] endobj 7309 0 obj [7070 0 R 7071 0 R 7072 0 R 7073 0 R 7074 0 R 7075 0 R 7076 0 R 7078 0 R] endobj 7310 0 obj [7080 0 R 7081 0 R 7082 0 R 7083 0 R 7084 0 R 7085 0 R 7087 0 R] endobj 7311 0 obj [7089 0 R 7090 0 R 7091 0 R 7093 0 R] endobj 7312 0 obj [7095 0 R 7096 0 R 7097 0 R 7098 0 R 7100 0 R] endobj 7313 0 obj [7102 0 R 7103 0 R 7104 0 R 7105 0 R 7106 0 R 7107 0 R 7109 0 R] endobj 7314 0 obj [7111 0 R 7112 0 R 7113 0 R 7115 0 R] endobj 7315 0 obj <> endobj 7316 0 obj <> endobj 7317 0 obj <> endobj 7318 0 obj <> endobj 7319 0 obj <> endobj 7320 0 obj <> endobj 7321 0 obj <> endobj 7322 0 obj <> endobj 7323 0 obj <> endobj 7324 0 obj <> endobj 7325 0 obj <> endobj 7326 0 obj <> endobj 7327 0 obj <> endobj 7328 0 obj <> endobj 7329 0 obj <> endobj 7330 0 obj <> endobj 7331 0 obj <> endobj 7332 0 obj <> endobj 7333 0 obj <> endobj 7334 0 obj <> endobj 7335 0 obj <> endobj 7336 0 obj <> endobj 7337 0 obj <> endobj 7338 0 obj <> stream OmniPage 17 1 2005,E A endstream endobj 7339 0 obj <> endobj 7340 0 obj <> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"E.,X%%щ1-9Ҁ.ǒ/O$&'=ޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj xref 0 7341 0000000000 65535 f 0000018837 00000 n 0000019016 00000 n 0000019042 00000 n 0000020368 00000 n 0000020496 00000 n 0000025293 00000 n 0000025472 00000 n 0000025498 00000 n 0000028852 00000 n 0000028959 00000 n 0000037040 00000 n 0000037222 00000 n 0000037250 00000 n 0000039644 00000 n 0000039752 00000 n 0000047246 00000 n 0000047428 00000 n 0000047456 00000 n 0000067696 00000 n 0000067826 00000 n 0000075904 00000 n 0000076086 00000 n 0000076114 00000 n 0000083807 00000 n 0000083937 00000 n 0000093498 00000 n 0000093680 00000 n 0000093708 00000 n 0000122446 00000 n 0000122620 00000 n 0000134490 00000 n 0000134672 00000 n 0000134700 00000 n 0000135813 00000 n 0000135921 00000 n 0000138154 00000 n 0000138336 00000 n 0000138364 00000 n 0000140915 00000 n 0000141023 00000 n 0000149013 00000 n 0000149195 00000 n 0000149223 00000 n 0000152577 00000 n 0000152685 00000 n 0000162317 00000 n 0000162500 00000 n 0000162528 00000 n 0000166091 00000 n 0000166199 00000 n 0000175527 00000 n 0000175710 00000 n 0000175738 00000 n 0000178673 00000 n 0000178781 00000 n 0000187942 00000 n 0000188125 00000 n 0000188153 00000 n 0000191617 00000 n 0000191747 00000 n 0000200079 00000 n 0000200262 00000 n 0000200290 00000 n 0000205551 00000 n 0000205769 00000 n 0000215375 00000 n 0000215558 00000 n 0000215586 00000 n 0000220412 00000 n 0000220564 00000 n 0000231681 00000 n 0000231864 00000 n 0000231892 00000 n 0000236798 00000 n 0000236994 00000 n 0000246648 00000 n 0000246831 00000 n 0000246859 00000 n 0000264463 00000 n 0000264728 00000 n 0000304625 00000 n 0000304808 00000 n 0000304836 00000 n 0000308796 00000 n 0000309015 00000 n 0000317111 00000 n 0000317294 00000 n 0000317322 00000 n 0000323118 00000 n 0000323338 00000 n 0000337957 00000 n 0000338140 00000 n 0000338168 00000 n 0000343426 00000 n 0000343622 00000 n 0000353364 00000 n 0000353547 00000 n 0000353575 00000 n 0000357389 00000 n 0000357609 00000 n 0000368163 00000 n 0000368349 00000 n 0000368379 00000 n 0000374801 00000 n 0000375112 00000 n 0000375825 00000 n 0000376015 00000 n 0000376712 00000 n 0000388172 00000 n 0000388358 00000 n 0000388388 00000 n 0000393081 00000 n 0000393324 00000 n 0000403110 00000 n 0000403296 00000 n 0000403326 00000 n 0000407242 00000 n 0000407374 00000 n 0000417309 00000 n 0000417495 00000 n 0000417525 00000 n 0000424113 00000 n 0000424333 00000 n 0000433241 00000 n 0000433427 00000 n 0000433457 00000 n 0000434296 00000 n 0000434406 00000 n 0000437666 00000 n 0000437852 00000 n 0000437882 00000 n 0000440466 00000 n 0000440598 00000 n 0000448433 00000 n 0000448619 00000 n 0000448649 00000 n 0000452911 00000 n 0000453110 00000 n 0000464259 00000 n 0000464445 00000 n 0000464475 00000 n 0000470772 00000 n 0000470948 00000 n 0000481359 00000 n 0000481545 00000 n 0000481575 00000 n 0000486084 00000 n 0000486282 00000 n 0000498256 00000 n 0000498442 00000 n 0000498472 00000 n 0000506821 00000 n 0000507020 00000 n 0000515762 00000 n 0000515948 00000 n 0000515978 00000 n 0000523996 00000 n 0000524216 00000 n 0000533942 00000 n 0000534128 00000 n 0000534158 00000 n 0000538640 00000 n 0000538794 00000 n 0000550150 00000 n 0000550336 00000 n 0000550366 00000 n 0000553595 00000 n 0000553816 00000 n 0000566989 00000 n 0000567175 00000 n 0000567205 00000 n 0000571554 00000 n 0000571708 00000 n 0000582563 00000 n 0000582749 00000 n 0000582779 00000 n 0000587283 00000 n 0000587459 00000 n 0000597280 00000 n 0000597466 00000 n 0000597496 00000 n 0000602100 00000 n 0000602210 00000 n 0000612614 00000 n 0000612800 00000 n 0000612830 00000 n 0000617479 00000 n 0000617655 00000 n 0000627264 00000 n 0000627450 00000 n 0000627480 00000 n 0000633938 00000 n 0000634226 00000 n 0000643422 00000 n 0000643608 00000 n 0000643638 00000 n 0000649169 00000 n 0000649434 00000 n 0000658912 00000 n 0000659098 00000 n 0000659128 00000 n 0000662881 00000 n 0000663035 00000 n 0000672852 00000 n 0000673038 00000 n 0000673068 00000 n 0000676907 00000 n 0000677039 00000 n 0000687691 00000 n 0000687877 00000 n 0000687907 00000 n 0000691340 00000 n 0000691450 00000 n 0000700426 00000 n 0000700612 00000 n 0000700642 00000 n 0000704044 00000 n 0000704176 00000 n 0000714047 00000 n 0000714233 00000 n 0000714263 00000 n 0000718376 00000 n 0000718552 00000 n 0000727583 00000 n 0000727769 00000 n 0000727799 00000 n 0000733531 00000 n 0000733751 00000 n 0000741115 00000 n 0000741301 00000 n 0000741331 00000 n 0000746718 00000 n 0000746894 00000 n 0000753997 00000 n 0000754183 00000 n 0000754213 00000 n 0000760631 00000 n 0000760942 00000 n 0000770505 00000 n 0000770691 00000 n 0000770721 00000 n 0000775826 00000 n 0000776002 00000 n 0000786313 00000 n 0000786499 00000 n 0000786529 00000 n 0000792950 00000 n 0000793216 00000 n 0000801837 00000 n 0000802023 00000 n 0000802053 00000 n 0000806036 00000 n 0000806190 00000 n 0000815511 00000 n 0000815697 00000 n 0000815727 00000 n 0000820870 00000 n 0000821135 00000 n 0000830078 00000 n 0000830264 00000 n 0000830294 00000 n 0000835091 00000 n 0000835267 00000 n 0000844596 00000 n 0000844782 00000 n 0000844812 00000 n 0000849431 00000 n 0000849631 00000 n 0000868530 00000 n 0000868716 00000 n 0000868746 00000 n 0000874039 00000 n 0000874171 00000 n 0000894968 00000 n 0000895154 00000 n 0000895184 00000 n 0000898618 00000 n 0000898750 00000 n 0000909199 00000 n 0000909385 00000 n 0000909415 00000 n 0000913313 00000 n 0000913467 00000 n 0000924429 00000 n 0000924615 00000 n 0000924645 00000 n 0000936092 00000 n 0000936224 00000 n 0000947547 00000 n 0000947733 00000 n 0000947763 00000 n 0000959319 00000 n 0000959452 00000 n 0000973147 00000 n 0000973333 00000 n 0000973363 00000 n 0000976970 00000 n 0000977102 00000 n 0000986061 00000 n 0000986247 00000 n 0000986277 00000 n 0000999109 00000 n 0000999399 00000 n 0001010440 00000 n 0001010626 00000 n 0001010656 00000 n 0001014388 00000 n 0001014520 00000 n 0001026910 00000 n 0001027096 00000 n 0001027126 00000 n 0001034767 00000 n 0001034991 00000 n 0001043531 00000 n 0001043717 00000 n 0001043747 00000 n 0001047215 00000 n 0001047347 00000 n 0001056096 00000 n 0001056282 00000 n 0001056312 00000 n 0001065219 00000 n 0001065531 00000 n 0001066208 00000 n 0001066398 00000 n 0001067047 00000 n 0001078452 00000 n 0001078638 00000 n 0001078668 00000 n 0001088253 00000 n 0001088472 00000 n 0001088693 00000 n 0001088876 00000 n 0001089301 00000 n 0001101722 00000 n 0001101908 00000 n 0001101938 00000 n 0001109790 00000 n 0001109989 00000 n 0001121923 00000 n 0001122109 00000 n 0001122139 00000 n 0001126580 00000 n 0001126757 00000 n 0001138413 00000 n 0001138599 00000 n 0001138629 00000 n 0001142036 00000 n 0001142168 00000 n 0001151477 00000 n 0001151663 00000 n 0001151693 00000 n 0001153154 00000 n 0001153286 00000 n 0001157784 00000 n 0001157970 00000 n 0001158000 00000 n 0001160431 00000 n 0001160541 00000 n 0001168862 00000 n 0001169048 00000 n 0001169078 00000 n 0001173582 00000 n 0001173758 00000 n 0001183412 00000 n 0001183598 00000 n 0001183628 00000 n 0001187725 00000 n 0001187857 00000 n 0001196562 00000 n 0001196748 00000 n 0001196778 00000 n 0001202127 00000 n 0001202303 00000 n 0001213160 00000 n 0001213346 00000 n 0001213376 00000 n 0001222548 00000 n 0001222861 00000 n 0001239086 00000 n 0001239272 00000 n 0001239302 00000 n 0001244255 00000 n 0001244499 00000 n 0001269610 00000 n 0001269796 00000 n 0001269826 00000 n 0001273280 00000 n 0001273479 00000 n 0001274095 00000 n 0001274292 00000 n 0001274941 00000 n 0001285967 00000 n 0001286153 00000 n 0001286183 00000 n 0001290138 00000 n 0001290292 00000 n 0001300986 00000 n 0001301172 00000 n 0001301202 00000 n 0001305452 00000 n 0001305606 00000 n 0001314561 00000 n 0001314747 00000 n 0001314777 00000 n 0001319236 00000 n 0001319434 00000 n 0001328398 00000 n 0001328584 00000 n 0001328614 00000 n 0001332326 00000 n 0001332480 00000 n 0001342375 00000 n 0001342561 00000 n 0001342591 00000 n 0001346484 00000 n 0001346660 00000 n 0001356781 00000 n 0001356967 00000 n 0001356997 00000 n 0001360525 00000 n 0001360657 00000 n 0001370275 00000 n 0001370461 00000 n 0001370491 00000 n 0001377709 00000 n 0001377886 00000 n 0001394755 00000 n 0001394941 00000 n 0001394971 00000 n 0001413723 00000 n 0001414012 00000 n 0001430772 00000 n 0001430958 00000 n 0001430988 00000 n 0001434967 00000 n 0001435099 00000 n 0001449675 00000 n 0001449861 00000 n 0001449891 00000 n 0001454542 00000 n 0001454718 00000 n 0001464898 00000 n 0001465084 00000 n 0001465114 00000 n 0001469984 00000 n 0001470138 00000 n 0001481484 00000 n 0001481670 00000 n 0001481700 00000 n 0001485836 00000 n 0001486034 00000 n 0001496927 00000 n 0001497113 00000 n 0001497143 00000 n 0001500665 00000 n 0001500775 00000 n 0001510966 00000 n 0001511152 00000 n 0001511182 00000 n 0001516172 00000 n 0001516326 00000 n 0001529619 00000 n 0001529805 00000 n 0001529835 00000 n 0001533606 00000 n 0001533716 00000 n 0001544904 00000 n 0001545090 00000 n 0001545120 00000 n 0001553320 00000 n 0001553497 00000 n 0001570823 00000 n 0001571009 00000 n 0001571039 00000 n 0001574566 00000 n 0001574698 00000 n 0001585505 00000 n 0001585691 00000 n 0001585721 00000 n 0001587867 00000 n 0001588022 00000 n 0001599693 00000 n 0001599879 00000 n 0001599909 00000 n 0001609449 00000 n 0001609672 00000 n 0001624345 00000 n 0001624531 00000 n 0001624561 00000 n 0001628021 00000 n 0001628153 00000 n 0001637144 00000 n 0001637330 00000 n 0001637360 00000 n 0001640728 00000 n 0001640838 00000 n 0001649546 00000 n 0001649732 00000 n 0001649762 00000 n 0001651994 00000 n 0001652104 00000 n 0001658330 00000 n 0001658516 00000 n 0001658546 00000 n 0001661068 00000 n 0001661178 00000 n 0001668196 00000 n 0001668383 00000 n 0001668413 00000 n 0001671294 00000 n 0001671404 00000 n 0001679315 00000 n 0001679502 00000 n 0001679532 00000 n 0001685488 00000 n 0001685686 00000 n 0001696013 00000 n 0001696200 00000 n 0001696230 00000 n 0001702484 00000 n 0001702748 00000 n 0001710661 00000 n 0001710848 00000 n 0001710878 00000 n 0001714838 00000 n 0001715015 00000 n 0001724336 00000 n 0001724523 00000 n 0001724553 00000 n 0001732012 00000 n 0001732166 00000 n 0001740423 00000 n 0001740610 00000 n 0001740640 00000 n 0001745264 00000 n 0001745440 00000 n 0001755366 00000 n 0001755553 00000 n 0001755583 00000 n 0001758938 00000 n 0001759070 00000 n 0001767963 00000 n 0001768150 00000 n 0001768180 00000 n 0001772521 00000 n 0001772675 00000 n 0001783490 00000 n 0001783677 00000 n 0001783707 00000 n 0001788387 00000 n 0001788585 00000 n 0001797485 00000 n 0001797672 00000 n 0001797702 00000 n 0001803138 00000 n 0001803359 00000 n 0001811009 00000 n 0001811196 00000 n 0001811226 00000 n 0001818927 00000 n 0001819103 00000 n 0001830279 00000 n 0001830466 00000 n 0001830496 00000 n 0001837362 00000 n 0001837516 00000 n 0001848890 00000 n 0001849077 00000 n 0001849107 00000 n 0001852973 00000 n 0001853127 00000 n 0001863338 00000 n 0001863525 00000 n 0001863555 00000 n 0001867277 00000 n 0001867431 00000 n 0001877319 00000 n 0001877506 00000 n 0001877536 00000 n 0001886039 00000 n 0001886284 00000 n 0001898230 00000 n 0001898417 00000 n 0001898447 00000 n 0001902352 00000 n 0001902484 00000 n 0001913442 00000 n 0001913629 00000 n 0001913659 00000 n 0001944041 00000 n 0001944286 00000 n 0001961207 00000 n 0001961394 00000 n 0001961424 00000 n 0001965895 00000 n 0001966073 00000 n 0001978951 00000 n 0001979138 00000 n 0001979168 00000 n 0001983148 00000 n 0001983324 00000 n 0001993636 00000 n 0001993823 00000 n 0001993853 00000 n 0002003353 00000 n 0002003618 00000 n 0002004295 00000 n 0002004484 00000 n 0002005133 00000 n 0002015167 00000 n 0002015354 00000 n 0002015384 00000 n 0002019504 00000 n 0002019658 00000 n 0002029760 00000 n 0002029947 00000 n 0002029977 00000 n 0002033604 00000 n 0002033736 00000 n 0002043581 00000 n 0002043768 00000 n 0002043798 00000 n 0002047776 00000 n 0002047908 00000 n 0002058204 00000 n 0002058391 00000 n 0002058421 00000 n 0002063037 00000 n 0002063191 00000 n 0002074271 00000 n 0002074458 00000 n 0002074488 00000 n 0002079341 00000 n 0002079517 00000 n 0002089753 00000 n 0002089940 00000 n 0002089970 00000 n 0002093886 00000 n 0002094062 00000 n 0002103202 00000 n 0002103389 00000 n 0002103419 00000 n 0002116193 00000 n 0002116392 00000 n 0002129802 00000 n 0002129989 00000 n 0002130019 00000 n 0002142180 00000 n 0002142356 00000 n 0002156634 00000 n 0002156821 00000 n 0002156851 00000 n 0002161520 00000 n 0002161674 00000 n 0002173442 00000 n 0002173629 00000 n 0002173659 00000 n 0002185844 00000 n 0002185998 00000 n 0002201656 00000 n 0002201843 00000 n 0002201873 00000 n 0002214917 00000 n 0002215138 00000 n 0002227141 00000 n 0002227328 00000 n 0002227358 00000 n 0002241718 00000 n 0002241940 00000 n 0002256985 00000 n 0002257172 00000 n 0002257202 00000 n 0002270960 00000 n 0002271206 00000 n 0002286244 00000 n 0002286431 00000 n 0002286461 00000 n 0002295203 00000 n 0002295357 00000 n 0002309304 00000 n 0002309491 00000 n 0002309521 00000 n 0002311015 00000 n 0002311147 00000 n 0002315402 00000 n 0002315589 00000 n 0002315619 00000 n 0002318017 00000 n 0002318172 00000 n 0002326369 00000 n 0002326556 00000 n 0002326586 00000 n 0002332887 00000 n 0002333107 00000 n 0002343969 00000 n 0002344156 00000 n 0002344186 00000 n 0002347981 00000 n 0002348135 00000 n 0002358641 00000 n 0002358828 00000 n 0002358858 00000 n 0002365767 00000 n 0002365921 00000 n 0002376288 00000 n 0002376475 00000 n 0002376505 00000 n 0002380385 00000 n 0002380539 00000 n 0002390422 00000 n 0002390609 00000 n 0002390639 00000 n 0002397513 00000 n 0002397712 00000 n 0002414813 00000 n 0002415000 00000 n 0002415030 00000 n 0002418774 00000 n 0002418906 00000 n 0002428987 00000 n 0002429174 00000 n 0002429204 00000 n 0002432299 00000 n 0002432453 00000 n 0002452230 00000 n 0002452417 00000 n 0002452447 00000 n 0002459263 00000 n 0002459463 00000 n 0002479299 00000 n 0002479486 00000 n 0002479516 00000 n 0002480941 00000 n 0002481095 00000 n 0002501285 00000 n 0002501472 00000 n 0002501502 00000 n 0002505043 00000 n 0002505153 00000 n 0002515879 00000 n 0002516066 00000 n 0002516096 00000 n 0002523584 00000 n 0002523807 00000 n 0002539950 00000 n 0002540137 00000 n 0002540167 00000 n 0002543745 00000 n 0002543877 00000 n 0002553887 00000 n 0002554074 00000 n 0002554104 00000 n 0002558046 00000 n 0002558200 00000 n 0002570075 00000 n 0002570262 00000 n 0002570292 00000 n 0002581091 00000 n 0002581335 00000 n 0002582039 00000 n 0002582225 00000 n 0002582874 00000 n 0002597793 00000 n 0002597980 00000 n 0002598010 00000 n 0002601209 00000 n 0002601363 00000 n 0002621466 00000 n 0002621653 00000 n 0002621683 00000 n 0002627318 00000 n 0002627541 00000 n 0002639487 00000 n 0002639674 00000 n 0002639704 00000 n 0002645023 00000 n 0002645223 00000 n 0002660005 00000 n 0002660192 00000 n 0002660222 00000 n 0002663926 00000 n 0002664080 00000 n 0002675741 00000 n 0002675928 00000 n 0002675958 00000 n 0002682154 00000 n 0002682374 00000 n 0002691593 00000 n 0002691780 00000 n 0002691810 00000 n 0002697268 00000 n 0002697466 00000 n 0002708706 00000 n 0002708893 00000 n 0002708923 00000 n 0002712591 00000 n 0002712745 00000 n 0002723564 00000 n 0002723751 00000 n 0002723781 00000 n 0002729963 00000 n 0002730184 00000 n 0002741040 00000 n 0002741227 00000 n 0002741257 00000 n 0002746955 00000 n 0002747200 00000 n 0002766246 00000 n 0002766433 00000 n 0002766463 00000 n 0002770335 00000 n 0002770445 00000 n 0002780697 00000 n 0002780884 00000 n 0002780914 00000 n 0002784595 00000 n 0002784727 00000 n 0002795139 00000 n 0002795326 00000 n 0002795356 00000 n 0002801454 00000 n 0002801699 00000 n 0002813050 00000 n 0002813237 00000 n 0002813267 00000 n 0002816314 00000 n 0002816446 00000 n 0002825420 00000 n 0002825607 00000 n 0002825637 00000 n 0002828424 00000 n 0002828534 00000 n 0002836428 00000 n 0002836615 00000 n 0002836645 00000 n 0002840010 00000 n 0002840142 00000 n 0002848798 00000 n 0002848985 00000 n 0002849015 00000 n 0002852622 00000 n 0002852732 00000 n 0002860345 00000 n 0002860532 00000 n 0002860562 00000 n 0002861643 00000 n 0002861753 00000 n 0002865272 00000 n 0002865459 00000 n 0002865489 00000 n 0002868129 00000 n 0002868283 00000 n 0002874448 00000 n 0002874635 00000 n 0002874665 00000 n 0002877482 00000 n 0002877681 00000 n 0002881594 00000 n 0002881781 00000 n 0002881811 00000 n 0002885881 00000 n 0002885991 00000 n 0002892699 00000 n 0002892886 00000 n 0002892916 00000 n 0002905025 00000 n 0002905157 00000 n 0002916782 00000 n 0002916969 00000 n 0002916999 00000 n 0002925766 00000 n 0002925943 00000 n 0002936885 00000 n 0002937072 00000 n 0002937102 00000 n 0002941145 00000 n 0002941322 00000 n 0002947637 00000 n 0002947824 00000 n 0002947854 00000 n 0002951776 00000 n 0002951930 00000 n 0002961465 00000 n 0002961652 00000 n 0002961682 00000 n 0002966359 00000 n 0002966535 00000 n 0002977623 00000 n 0002977810 00000 n 0002977840 00000 n 0002982193 00000 n 0002982325 00000 n 0002993834 00000 n 0002994021 00000 n 0002994051 00000 n 0002998525 00000 n 0002998657 00000 n 0003010874 00000 n 0003011061 00000 n 0003011091 00000 n 0003015556 00000 n 0003015688 00000 n 0003028011 00000 n 0003028198 00000 n 0003028228 00000 n 0003032597 00000 n 0003032729 00000 n 0003044206 00000 n 0003044393 00000 n 0003044423 00000 n 0003049167 00000 n 0003049321 00000 n 0003060420 00000 n 0003060607 00000 n 0003060637 00000 n 0003064392 00000 n 0003064524 00000 n 0003075064 00000 n 0003075251 00000 n 0003075281 00000 n 0003080222 00000 n 0003080398 00000 n 0003090961 00000 n 0003091148 00000 n 0003091178 00000 n 0003095353 00000 n 0003095507 00000 n 0003105822 00000 n 0003106009 00000 n 0003106039 00000 n 0003109289 00000 n 0003109443 00000 n 0003118690 00000 n 0003118877 00000 n 0003118907 00000 n 0003122361 00000 n 0003122560 00000 n 0003127155 00000 n 0003127342 00000 n 0003127372 00000 n 0003131828 00000 n 0003131960 00000 n 0003135945 00000 n 0003136132 00000 n 0003136162 00000 n 0003138491 00000 n 0003138645 00000 n 0003142380 00000 n 0003142567 00000 n 0003142597 00000 n 0003147113 00000 n 0003147289 00000 n 0003153715 00000 n 0003153902 00000 n 0003153932 00000 n 0003156999 00000 n 0003157131 00000 n 0003164673 00000 n 0003164860 00000 n 0003164890 00000 n 0003168020 00000 n 0003168130 00000 n 0003177966 00000 n 0003178153 00000 n 0003178183 00000 n 0003181162 00000 n 0003181272 00000 n 0003190801 00000 n 0003190988 00000 n 0003191018 00000 n 0003194527 00000 n 0003194637 00000 n 0003204582 00000 n 0003204769 00000 n 0003204799 00000 n 0003208639 00000 n 0003208771 00000 n 0003217166 00000 n 0003217353 00000 n 0003217383 00000 n 0003220818 00000 n 0003220928 00000 n 0003230588 00000 n 0003230775 00000 n 0003230805 00000 n 0003233138 00000 n 0003233248 00000 n 0003240874 00000 n 0003241061 00000 n 0003241091 00000 n 0003243692 00000 n 0003243802 00000 n 0003251043 00000 n 0003251230 00000 n 0003251260 00000 n 0003254670 00000 n 0003254780 00000 n 0003263641 00000 n 0003263830 00000 n 0003263862 00000 n 0003265825 00000 n 0003265959 00000 n 0003272682 00000 n 0003273410 00000 n 0003273595 00000 n 0003274293 00000 n 0003275022 00000 n 0003275211 00000 n 0003275925 00000 n 0003276626 00000 n 0003276810 00000 n 0003277444 00000 n 0003278214 00000 n 0003278394 00000 n 0003279108 00000 n 0003279790 00000 n 0003279970 00000 n 0003280620 00000 n 0003281237 00000 n 0003281431 00000 n 0003282065 00000 n 0003282867 00000 n 0003283049 00000 n 0003283779 00000 n 0003284580 00000 n 0003284759 00000 n 0003285457 00000 n 0003286162 00000 n 0003286347 00000 n 0003286997 00000 n 0003287602 00000 n 0003287786 00000 n 0003288404 00000 n 0003289112 00000 n 0003289299 00000 n 0003289981 00000 n 0003290720 00000 n 0003290905 00000 n 0003291587 00000 n 0003292316 00000 n 0003292502 00000 n 0003293152 00000 n 0003293918 00000 n 0003294097 00000 n 0003294779 00000 n 0003295518 00000 n 0003295714 00000 n 0003296364 00000 n 0003297170 00000 n 0003297349 00000 n 0003298063 00000 n 0003298331 00000 n 0003298572 00000 n 0003298813 00000 n 0003299054 00000 n 0003299295 00000 n 0003299536 00000 n 0003299777 00000 n 0003300018 00000 n 0003300264 00000 n 0003300505 00000 n 0003300746 00000 n 0003300987 00000 n 0003301228 00000 n 0003301469 00000 n 0003301710 00000 n 0003301951 00000 n 0003302320 00000 n 0003302571 00000 n 0003302854 00000 n 0003303095 00000 n 0003303362 00000 n 0003303603 00000 n 0003303844 00000 n 0003304085 00000 n 0003304326 00000 n 0003304567 00000 n 0003304808 00000 n 0003305049 00000 n 0003305290 00000 n 0003305531 00000 n 0003305772 00000 n 0003306013 00000 n 0003306254 00000 n 0003306503 00000 n 0003306744 00000 n 0003306985 00000 n 0003307226 00000 n 0003307467 00000 n 0003307708 00000 n 0003307949 00000 n 0003308190 00000 n 0003308431 00000 n 0003308672 00000 n 0003308913 00000 n 0003309154 00000 n 0003309395 00000 n 0003309636 00000 n 0003309877 00000 n 0003310118 00000 n 0003310359 00000 n 0003310600 00000 n 0003310841 00000 n 0003311082 00000 n 0003311323 00000 n 0003311564 00000 n 0003311805 00000 n 0003312046 00000 n 0003312287 00000 n 0003312528 00000 n 0003312769 00000 n 0003313063 00000 n 0003313304 00000 n 0003313557 00000 n 0003313798 00000 n 0003314039 00000 n 0003314289 00000 n 0003314530 00000 n 0003314776 00000 n 0003315017 00000 n 0003315258 00000 n 0003315499 00000 n 0003315740 00000 n 0003315981 00000 n 0003316222 00000 n 0003316471 00000 n 0003316734 00000 n 0003316980 00000 n 0003317221 00000 n 0003317462 00000 n 0003317703 00000 n 0003317944 00000 n 0003318185 00000 n 0003318426 00000 n 0003318694 00000 n 0003318935 00000 n 0003319176 00000 n 0003319417 00000 n 0003319658 00000 n 0003319899 00000 n 0003320140 00000 n 0003320381 00000 n 0003320622 00000 n 0003320863 00000 n 0003321104 00000 n 0003321424 00000 n 0003321665 00000 n 0003321906 00000 n 0003322147 00000 n 0003322388 00000 n 0003322634 00000 n 0003322875 00000 n 0003323116 00000 n 0003323357 00000 n 0003323598 00000 n 0003323839 00000 n 0003324080 00000 n 0003324321 00000 n 0003324562 00000 n 0003324803 00000 n 0003325044 00000 n 0003325285 00000 n 0003325526 00000 n 0003325767 00000 n 0003326008 00000 n 0003326249 00000 n 0003326490 00000 n 0003326736 00000 n 0003326977 00000 n 0003327218 00000 n 0003327459 00000 n 0003327700 00000 n 0003327941 00000 n 0003328182 00000 n 0003328423 00000 n 0003328664 00000 n 0003328905 00000 n 0003329146 00000 n 0003329387 00000 n 0003329628 00000 n 0003329869 00000 n 0003330110 00000 n 0003330356 00000 n 0003330597 00000 n 0003330838 00000 n 0003331079 00000 n 0003331320 00000 n 0003331561 00000 n 0003331802 00000 n 0003332043 00000 n 0003332284 00000 n 0003332542 00000 n 0003332783 00000 n 0003333024 00000 n 0003333274 00000 n 0003333515 00000 n 0003333756 00000 n 0003334004 00000 n 0003334245 00000 n 0003334486 00000 n 0003334759 00000 n 0003335000 00000 n 0003335241 00000 n 0003335482 00000 n 0003335723 00000 n 0003335964 00000 n 0003336205 00000 n 0003336446 00000 n 0003336687 00000 n 0003337117 00000 n 0003337358 00000 n 0003337599 00000 n 0003337872 00000 n 0003338113 00000 n 0003338354 00000 n 0003338595 00000 n 0003338836 00000 n 0003339077 00000 n 0003339323 00000 n 0003339564 00000 n 0003339810 00000 n 0003340051 00000 n 0003340292 00000 n 0003340533 00000 n 0003340774 00000 n 0003341015 00000 n 0003341256 00000 n 0003341497 00000 n 0003341738 00000 n 0003341979 00000 n 0003342220 00000 n 0003342461 00000 n 0003342702 00000 n 0003342943 00000 n 0003343184 00000 n 0003343425 00000 n 0003343666 00000 n 0003343907 00000 n 0003344148 00000 n 0003344389 00000 n 0003344630 00000 n 0003344871 00000 n 0003345112 00000 n 0003345353 00000 n 0003345594 00000 n 0003345835 00000 n 0003346076 00000 n 0003346317 00000 n 0003346558 00000 n 0003346668 00000 n 0003346750 00000 n 0003351415 00000 n 0003351547 00000 n 0003351663 00000 n 0003351779 00000 n 0003351895 00000 n 0003352011 00000 n 0003352127 00000 n 0003352243 00000 n 0003352359 00000 n 0003352437 00000 n 0003352550 00000 n 0003352628 00000 n 0003352741 00000 n 0003352853 00000 n 0003352994 00000 n 0003353079 00000 n 0003353215 00000 n 0003353328 00000 n 0003353465 00000 n 0003353578 00000 n 0003353690 00000 n 0003353803 00000 n 0003353917 00000 n 0003354030 00000 n 0003354143 00000 n 0003354256 00000 n 0003354369 00000 n 0003354482 00000 n 0003354569 00000 n 0003354683 00000 n 0003354797 00000 n 0003354884 00000 n 0003354998 00000 n 0003355357 00000 n 0003355451 00000 n 0003355588 00000 n 0003355702 00000 n 0003355840 00000 n 0003355954 00000 n 0003356092 00000 n 0003356206 00000 n 0003356300 00000 n 0003356440 00000 n 0003356554 00000 n 0003356695 00000 n 0003356809 00000 n 0003356950 00000 n 0003357064 00000 n 0003357167 00000 n 0003357306 00000 n 0003357439 00000 n 0003357539 00000 n 0003357639 00000 n 0003357779 00000 n 0003357894 00000 n 0003358035 00000 n 0003358150 00000 n 0003358290 00000 n 0003358405 00000 n 0003358508 00000 n 0003358647 00000 n 0003358781 00000 n 0003358882 00000 n 0003358983 00000 n 0003359123 00000 n 0003359238 00000 n 0003359379 00000 n 0003359494 00000 n 0003359634 00000 n 0003359749 00000 n 0003359852 00000 n 0003359991 00000 n 0003360125 00000 n 0003360226 00000 n 0003360327 00000 n 0003360467 00000 n 0003360582 00000 n 0003360723 00000 n 0003360838 00000 n 0003360978 00000 n 0003361093 00000 n 0003361196 00000 n 0003361335 00000 n 0003361469 00000 n 0003361570 00000 n 0003361671 00000 n 0003361811 00000 n 0003361926 00000 n 0003362067 00000 n 0003362182 00000 n 0003362322 00000 n 0003362437 00000 n 0003362540 00000 n 0003362680 00000 n 0003362814 00000 n 0003362915 00000 n 0003363016 00000 n 0003363157 00000 n 0003363291 00000 n 0003363392 00000 n 0003363493 00000 n 0003363635 00000 n 0003363750 00000 n 0003363891 00000 n 0003364006 00000 n 0003364109 00000 n 0003364249 00000 n 0003364383 00000 n 0003364484 00000 n 0003364585 00000 n 0003364726 00000 n 0003364860 00000 n 0003364961 00000 n 0003365062 00000 n 0003365204 00000 n 0003365319 00000 n 0003365460 00000 n 0003365594 00000 n 0003365695 00000 n 0003365796 00000 n 0003365899 00000 n 0003366038 00000 n 0003366172 00000 n 0003366273 00000 n 0003366374 00000 n 0003366514 00000 n 0003366648 00000 n 0003366749 00000 n 0003366850 00000 n 0003366991 00000 n 0003367106 00000 n 0003367246 00000 n 0003367361 00000 n 0003367464 00000 n 0003367604 00000 n 0003367738 00000 n 0003367839 00000 n 0003367940 00000 n 0003368081 00000 n 0003368215 00000 n 0003368316 00000 n 0003368417 00000 n 0003368559 00000 n 0003368674 00000 n 0003368815 00000 n 0003368930 00000 n 0003369033 00000 n 0003369173 00000 n 0003369307 00000 n 0003369408 00000 n 0003369509 00000 n 0003369650 00000 n 0003369784 00000 n 0003369885 00000 n 0003369986 00000 n 0003370128 00000 n 0003370243 00000 n 0003370384 00000 n 0003370499 00000 n 0003370602 00000 n 0003370741 00000 n 0003370875 00000 n 0003370976 00000 n 0003371077 00000 n 0003371217 00000 n 0003371332 00000 n 0003371473 00000 n 0003371588 00000 n 0003371728 00000 n 0003371843 00000 n 0003371946 00000 n 0003372085 00000 n 0003372219 00000 n 0003372320 00000 n 0003372421 00000 n 0003372561 00000 n 0003372695 00000 n 0003372796 00000 n 0003372897 00000 n 0003373038 00000 n 0003373153 00000 n 0003373293 00000 n 0003373408 00000 n 0003373511 00000 n 0003373650 00000 n 0003373784 00000 n 0003373885 00000 n 0003373986 00000 n 0003374126 00000 n 0003374260 00000 n 0003374361 00000 n 0003374462 00000 n 0003374603 00000 n 0003374718 00000 n 0003374858 00000 n 0003374973 00000 n 0003375076 00000 n 0003375216 00000 n 0003375350 00000 n 0003375451 00000 n 0003375552 00000 n 0003375693 00000 n 0003375827 00000 n 0003375928 00000 n 0003376030 00000 n 0003376172 00000 n 0003376288 00000 n 0003376429 00000 n 0003376545 00000 n 0003376648 00000 n 0003376788 00000 n 0003376923 00000 n 0003377025 00000 n 0003377127 00000 n 0003377268 00000 n 0003377403 00000 n 0003377505 00000 n 0003377607 00000 n 0003377749 00000 n 0003377865 00000 n 0003378006 00000 n 0003378122 00000 n 0003378216 00000 n 0003378356 00000 n 0003378472 00000 n 0003378613 00000 n 0003378729 00000 n 0003378870 00000 n 0003378986 00000 n 0003379089 00000 n 0003379226 00000 n 0003379361 00000 n 0003379463 00000 n 0003379565 00000 n 0003379703 00000 n 0003379819 00000 n 0003379958 00000 n 0003380074 00000 n 0003380212 00000 n 0003380328 00000 n 0003380431 00000 n 0003380571 00000 n 0003380706 00000 n 0003380808 00000 n 0003380910 00000 n 0003381051 00000 n 0003381167 00000 n 0003381309 00000 n 0003381425 00000 n 0003381566 00000 n 0003381682 00000 n 0003381785 00000 n 0003381924 00000 n 0003382059 00000 n 0003382161 00000 n 0003382263 00000 n 0003382403 00000 n 0003382519 00000 n 0003382660 00000 n 0003382776 00000 n 0003382916 00000 n 0003383032 00000 n 0003383135 00000 n 0003383275 00000 n 0003383410 00000 n 0003383512 00000 n 0003383614 00000 n 0003383755 00000 n 0003383890 00000 n 0003383992 00000 n 0003384094 00000 n 0003384236 00000 n 0003384352 00000 n 0003384493 00000 n 0003384609 00000 n 0003384712 00000 n 0003384851 00000 n 0003384986 00000 n 0003385088 00000 n 0003385190 00000 n 0003385330 00000 n 0003385465 00000 n 0003385567 00000 n 0003385669 00000 n 0003385810 00000 n 0003385926 00000 n 0003386066 00000 n 0003386182 00000 n 0003386285 00000 n 0003386424 00000 n 0003386559 00000 n 0003386661 00000 n 0003386763 00000 n 0003386903 00000 n 0003387038 00000 n 0003387140 00000 n 0003387242 00000 n 0003387383 00000 n 0003387499 00000 n 0003387639 00000 n 0003387755 00000 n 0003387867 00000 n 0003387983 00000 n 0003388322 00000 n 0003388436 00000 n 0003388550 00000 n 0003388664 00000 n 0003388778 00000 n 0003388892 00000 n 0003389006 00000 n 0003389120 00000 n 0003389234 00000 n 0003389348 00000 n 0003389462 00000 n 0003389577 00000 n 0003389692 00000 n 0003389807 00000 n 0003389922 00000 n 0003390037 00000 n 0003390152 00000 n 0003390267 00000 n 0003390382 00000 n 0003390497 00000 n 0003390612 00000 n 0003390727 00000 n 0003390842 00000 n 0003390957 00000 n 0003391072 00000 n 0003391187 00000 n 0003391302 00000 n 0003391417 00000 n 0003391532 00000 n 0003391647 00000 n 0003391762 00000 n 0003391874 00000 n 0003391989 00000 n 0003392067 00000 n 0003392485 00000 n 0003392579 00000 n 0003392717 00000 n 0003392841 00000 n 0003392941 00000 n 0003393081 00000 n 0003393214 00000 n 0003393314 00000 n 0003393414 00000 n 0003393553 00000 n 0003393667 00000 n 0003393761 00000 n 0003393899 00000 n 0003394013 00000 n 0003394153 00000 n 0003394267 00000 n 0003394407 00000 n 0003394521 00000 n 0003394624 00000 n 0003394763 00000 n 0003394896 00000 n 0003394997 00000 n 0003395098 00000 n 0003395239 00000 n 0003395354 00000 n 0003395494 00000 n 0003395609 00000 n 0003395750 00000 n 0003395865 00000 n 0003395968 00000 n 0003396106 00000 n 0003396240 00000 n 0003396341 00000 n 0003396442 00000 n 0003396582 00000 n 0003396697 00000 n 0003396836 00000 n 0003396951 00000 n 0003397091 00000 n 0003397206 00000 n 0003397309 00000 n 0003397448 00000 n 0003397582 00000 n 0003397683 00000 n 0003397784 00000 n 0003397925 00000 n 0003398059 00000 n 0003398160 00000 n 0003398261 00000 n 0003398401 00000 n 0003398516 00000 n 0003398657 00000 n 0003398772 00000 n 0003398875 00000 n 0003399013 00000 n 0003399147 00000 n 0003399248 00000 n 0003399349 00000 n 0003399489 00000 n 0003399623 00000 n 0003399724 00000 n 0003399825 00000 n 0003399964 00000 n 0003400079 00000 n 0003400219 00000 n 0003400334 00000 n 0003400437 00000 n 0003400575 00000 n 0003400709 00000 n 0003400810 00000 n 0003400911 00000 n 0003401051 00000 n 0003401185 00000 n 0003401286 00000 n 0003401387 00000 n 0003401526 00000 n 0003401641 00000 n 0003401781 00000 n 0003401896 00000 n 0003401999 00000 n 0003402138 00000 n 0003402272 00000 n 0003402373 00000 n 0003402474 00000 n 0003402615 00000 n 0003402749 00000 n 0003402850 00000 n 0003402951 00000 n 0003403091 00000 n 0003403206 00000 n 0003403347 00000 n 0003403462 00000 n 0003403565 00000 n 0003403704 00000 n 0003403838 00000 n 0003403939 00000 n 0003404040 00000 n 0003404181 00000 n 0003404315 00000 n 0003404416 00000 n 0003404517 00000 n 0003404657 00000 n 0003404772 00000 n 0003404913 00000 n 0003405028 00000 n 0003405131 00000 n 0003405270 00000 n 0003405404 00000 n 0003405505 00000 n 0003405606 00000 n 0003405747 00000 n 0003405862 00000 n 0003406002 00000 n 0003406117 00000 n 0003406258 00000 n 0003406373 00000 n 0003406476 00000 n 0003406614 00000 n 0003406748 00000 n 0003406849 00000 n 0003406950 00000 n 0003407090 00000 n 0003407224 00000 n 0003407325 00000 n 0003407426 00000 n 0003407565 00000 n 0003407680 00000 n 0003407820 00000 n 0003407935 00000 n 0003408038 00000 n 0003408177 00000 n 0003408311 00000 n 0003408412 00000 n 0003408513 00000 n 0003408654 00000 n 0003408788 00000 n 0003408889 00000 n 0003408990 00000 n 0003409130 00000 n 0003409245 00000 n 0003409386 00000 n 0003409501 00000 n 0003409604 00000 n 0003409742 00000 n 0003409876 00000 n 0003409977 00000 n 0003410078 00000 n 0003410218 00000 n 0003410333 00000 n 0003410472 00000 n 0003410587 00000 n 0003410727 00000 n 0003410842 00000 n 0003410945 00000 n 0003411083 00000 n 0003411217 00000 n 0003411318 00000 n 0003411419 00000 n 0003411559 00000 n 0003411693 00000 n 0003411794 00000 n 0003411895 00000 n 0003412034 00000 n 0003412149 00000 n 0003412289 00000 n 0003412404 00000 n 0003412507 00000 n 0003412645 00000 n 0003412779 00000 n 0003412880 00000 n 0003412981 00000 n 0003413121 00000 n 0003413256 00000 n 0003413358 00000 n 0003413460 00000 n 0003413599 00000 n 0003413715 00000 n 0003413855 00000 n 0003413971 00000 n 0003414074 00000 n 0003414212 00000 n 0003414347 00000 n 0003414449 00000 n 0003414551 00000 n 0003414691 00000 n 0003414826 00000 n 0003414928 00000 n 0003415030 00000 n 0003415169 00000 n 0003415285 00000 n 0003415425 00000 n 0003415541 00000 n 0003415644 00000 n 0003415782 00000 n 0003415917 00000 n 0003416019 00000 n 0003416121 00000 n 0003416261 00000 n 0003416377 00000 n 0003416516 00000 n 0003416632 00000 n 0003416772 00000 n 0003416888 00000 n 0003416991 00000 n 0003417129 00000 n 0003417264 00000 n 0003417366 00000 n 0003417468 00000 n 0003417608 00000 n 0003417743 00000 n 0003417845 00000 n 0003417947 00000 n 0003418086 00000 n 0003418202 00000 n 0003418342 00000 n 0003418458 00000 n 0003418561 00000 n 0003418699 00000 n 0003418834 00000 n 0003418936 00000 n 0003419038 00000 n 0003419178 00000 n 0003419313 00000 n 0003419415 00000 n 0003419517 00000 n 0003419656 00000 n 0003419772 00000 n 0003419912 00000 n 0003420028 00000 n 0003420131 00000 n 0003420269 00000 n 0003420404 00000 n 0003420506 00000 n 0003420608 00000 n 0003420748 00000 n 0003420864 00000 n 0003421003 00000 n 0003421119 00000 n 0003421259 00000 n 0003421375 00000 n 0003421469 00000 n 0003421608 00000 n 0003421724 00000 n 0003421865 00000 n 0003421981 00000 n 0003422122 00000 n 0003422238 00000 n 0003422341 00000 n 0003422480 00000 n 0003422615 00000 n 0003422717 00000 n 0003422819 00000 n 0003422960 00000 n 0003423076 00000 n 0003423216 00000 n 0003423332 00000 n 0003423473 00000 n 0003423589 00000 n 0003423692 00000 n 0003423831 00000 n 0003423966 00000 n 0003424068 00000 n 0003424170 00000 n 0003424311 00000 n 0003424446 00000 n 0003424548 00000 n 0003424650 00000 n 0003424790 00000 n 0003424906 00000 n 0003425047 00000 n 0003425163 00000 n 0003425266 00000 n 0003425405 00000 n 0003425540 00000 n 0003425642 00000 n 0003425744 00000 n 0003425885 00000 n 0003426020 00000 n 0003426122 00000 n 0003426224 00000 n 0003426364 00000 n 0003426480 00000 n 0003426621 00000 n 0003426737 00000 n 0003426840 00000 n 0003426979 00000 n 0003427114 00000 n 0003427216 00000 n 0003427318 00000 n 0003427459 00000 n 0003427594 00000 n 0003427696 00000 n 0003427798 00000 n 0003427938 00000 n 0003428054 00000 n 0003428195 00000 n 0003428311 00000 n 0003428414 00000 n 0003428553 00000 n 0003428688 00000 n 0003428790 00000 n 0003428892 00000 n 0003429033 00000 n 0003429168 00000 n 0003429270 00000 n 0003429372 00000 n 0003429512 00000 n 0003429628 00000 n 0003429769 00000 n 0003429885 00000 n 0003429988 00000 n 0003430126 00000 n 0003430261 00000 n 0003430363 00000 n 0003430465 00000 n 0003430605 00000 n 0003430721 00000 n 0003430860 00000 n 0003430976 00000 n 0003431116 00000 n 0003431232 00000 n 0003431335 00000 n 0003431473 00000 n 0003431608 00000 n 0003431710 00000 n 0003431812 00000 n 0003431952 00000 n 0003432087 00000 n 0003432189 00000 n 0003432291 00000 n 0003432430 00000 n 0003432546 00000 n 0003432686 00000 n 0003432802 00000 n 0003432905 00000 n 0003433044 00000 n 0003433179 00000 n 0003433281 00000 n 0003433383 00000 n 0003433524 00000 n 0003433659 00000 n 0003433761 00000 n 0003433863 00000 n 0003434003 00000 n 0003434119 00000 n 0003434260 00000 n 0003434376 00000 n 0003434479 00000 n 0003434617 00000 n 0003434752 00000 n 0003434854 00000 n 0003434956 00000 n 0003435096 00000 n 0003435231 00000 n 0003435333 00000 n 0003435435 00000 n 0003435574 00000 n 0003435690 00000 n 0003435830 00000 n 0003435946 00000 n 0003436049 00000 n 0003436187 00000 n 0003436322 00000 n 0003436424 00000 n 0003436526 00000 n 0003436666 00000 n 0003436782 00000 n 0003436921 00000 n 0003437037 00000 n 0003437177 00000 n 0003437293 00000 n 0003437387 00000 n 0003437526 00000 n 0003437642 00000 n 0003437783 00000 n 0003437899 00000 n 0003438040 00000 n 0003438156 00000 n 0003438261 00000 n 0003438375 00000 n 0003438489 00000 n 0003438603 00000 n 0003438717 00000 n 0003438829 00000 n 0003438943 00000 n 0003439039 00000 n 0003439153 00000 n 0003439267 00000 n 0003439381 00000 n 0003439493 00000 n 0003439607 00000 n 0003439703 00000 n 0003439817 00000 n 0003439931 00000 n 0003440045 00000 n 0003440157 00000 n 0003440271 00000 n 0003440367 00000 n 0003440481 00000 n 0003440595 00000 n 0003440709 00000 n 0003440821 00000 n 0003440935 00000 n 0003441031 00000 n 0003441145 00000 n 0003441259 00000 n 0003441373 00000 n 0003441485 00000 n 0003441599 00000 n 0003441722 00000 n 0003441836 00000 n 0003441950 00000 n 0003442064 00000 n 0003442178 00000 n 0003442292 00000 n 0003442406 00000 n 0003442518 00000 n 0003442632 00000 n 0003442800 00000 n 0003442914 00000 n 0003443028 00000 n 0003443142 00000 n 0003443256 00000 n 0003443370 00000 n 0003443484 00000 n 0003443598 00000 n 0003443712 00000 n 0003443826 00000 n 0003443940 00000 n 0003444055 00000 n 0003444167 00000 n 0003444282 00000 n 0003444405 00000 n 0003444519 00000 n 0003444633 00000 n 0003444747 00000 n 0003444861 00000 n 0003444975 00000 n 0003445089 00000 n 0003445201 00000 n 0003445315 00000 n 0003445456 00000 n 0003445570 00000 n 0003445684 00000 n 0003445798 00000 n 0003445912 00000 n 0003446026 00000 n 0003446140 00000 n 0003446254 00000 n 0003446368 00000 n 0003446480 00000 n 0003446594 00000 n 0003446735 00000 n 0003446849 00000 n 0003446963 00000 n 0003447163 00000 n 0003447410 00000 n 0003447580 00000 n 0003447694 00000 n 0003447808 00000 n 0003447922 00000 n 0003448036 00000 n 0003448177 00000 n 0003448291 00000 n 0003448461 00000 n 0003448575 00000 n 0003448689 00000 n 0003448803 00000 n 0003448918 00000 n 0003449078 00000 n 0003449193 00000 n 0003449308 00000 n 0003449423 00000 n 0003449598 00000 n 0003449713 00000 n 0003449828 00000 n 0003449943 00000 n 0003450058 00000 n 0003450173 00000 n 0003450316 00000 n 0003450450 00000 n 0003450551 00000 n 0003450652 00000 n 0003450802 00000 n 0003450917 00000 n 0003451032 00000 n 0003451184 00000 n 0003451299 00000 n 0003451414 00000 n 0003451574 00000 n 0003451689 00000 n 0003451804 00000 n 0003451919 00000 n 0003452078 00000 n 0003452193 00000 n 0003452308 00000 n 0003452423 00000 n 0003452592 00000 n 0003452707 00000 n 0003452822 00000 n 0003452937 00000 n 0003453052 00000 n 0003453203 00000 n 0003453318 00000 n 0003453433 00000 n 0003453602 00000 n 0003453717 00000 n 0003453832 00000 n 0003453947 00000 n 0003454062 00000 n 0003454250 00000 n 0003454365 00000 n 0003454480 00000 n 0003454595 00000 n 0003454710 00000 n 0003454825 00000 n 0003454940 00000 n 0003455117 00000 n 0003455232 00000 n 0003455347 00000 n 0003455462 00000 n 0003455577 00000 n 0003455692 00000 n 0003455853 00000 n 0003455968 00000 n 0003456083 00000 n 0003456198 00000 n 0003456394 00000 n 0003456509 00000 n 0003456624 00000 n 0003456739 00000 n 0003456854 00000 n 0003456969 00000 n 0003457084 00000 n 0003457199 00000 n 0003457376 00000 n 0003457491 00000 n 0003457606 00000 n 0003457721 00000 n 0003457836 00000 n 0003457951 00000 n 0003458128 00000 n 0003458243 00000 n 0003458358 00000 n 0003458473 00000 n 0003458588 00000 n 0003458703 00000 n 0003458899 00000 n 0003459014 00000 n 0003459129 00000 n 0003459244 00000 n 0003459359 00000 n 0003459474 00000 n 0003459589 00000 n 0003459704 00000 n 0003459819 00000 n 0003459934 00000 n 0003460049 00000 n 0003460164 00000 n 0003460279 00000 n 0003460400 00000 n 0003460515 00000 n 0003460630 00000 n 0003460751 00000 n 0003460866 00000 n 0003460981 00000 n 0003461059 00000 n 0003461174 00000 n 0003461286 00000 n 0003461401 00000 n 0003461576 00000 n 0003461690 00000 n 0003461804 00000 n 0003461918 00000 n 0003462032 00000 n 0003462146 00000 n 0003462260 00000 n 0003462374 00000 n 0003462488 00000 n 0003462611 00000 n 0003462725 00000 n 0003462839 00000 n 0003462954 00000 n 0003463069 00000 n 0003463184 00000 n 0003463299 00000 n 0003463377 00000 n 0003463492 00000 n 0003463604 00000 n 0003463719 00000 n 0003463878 00000 n 0003463992 00000 n 0003464106 00000 n 0003464220 00000 n 0003464334 00000 n 0003464448 00000 n 0003464562 00000 n 0003464676 00000 n 0003464790 00000 n 0003464904 00000 n 0003465018 00000 n 0003465166 00000 n 0003465281 00000 n 0003465396 00000 n 0003465511 00000 n 0003465626 00000 n 0003465741 00000 n 0003465853 00000 n 0003465968 00000 n 0003466046 00000 n 0003466161 00000 n 0003466273 00000 n 0003466388 00000 n 0003466574 00000 n 0003466688 00000 n 0003466802 00000 n 0003466916 00000 n 0003467030 00000 n 0003467144 00000 n 0003467258 00000 n 0003467372 00000 n 0003467486 00000 n 0003467600 00000 n 0003467714 00000 n 0003467829 00000 n 0003467944 00000 n 0003468059 00000 n 0003468171 00000 n 0003468286 00000 n 0003468425 00000 n 0003468539 00000 n 0003468653 00000 n 0003468767 00000 n 0003468881 00000 n 0003468995 00000 n 0003469109 00000 n 0003469223 00000 n 0003469337 00000 n 0003469451 00000 n 0003469565 00000 n 0003469652 00000 n 0003469766 00000 n 0003469881 00000 n 0003469993 00000 n 0003470108 00000 n 0003470285 00000 n 0003470400 00000 n 0003470515 00000 n 0003470630 00000 n 0003470745 00000 n 0003470860 00000 n 0003470975 00000 n 0003471090 00000 n 0003471205 00000 n 0003471320 00000 n 0003471435 00000 n 0003471551 00000 n 0003471667 00000 n 0003471779 00000 n 0003471895 00000 n 0003472007 00000 n 0003472123 00000 n 0003472235 00000 n 0003472351 00000 n 0003472474 00000 n 0003472589 00000 n 0003472704 00000 n 0003472819 00000 n 0003472934 00000 n 0003473049 00000 n 0003473164 00000 n 0003473276 00000 n 0003473391 00000 n 0003473532 00000 n 0003473647 00000 n 0003473762 00000 n 0003473877 00000 n 0003473992 00000 n 0003474107 00000 n 0003474222 00000 n 0003474337 00000 n 0003474452 00000 n 0003474564 00000 n 0003474679 00000 n 0003474883 00000 n 0003474998 00000 n 0003475113 00000 n 0003475228 00000 n 0003475343 00000 n 0003475458 00000 n 0003475573 00000 n 0003475688 00000 n 0003475803 00000 n 0003475918 00000 n 0003476033 00000 n 0003476149 00000 n 0003476265 00000 n 0003476381 00000 n 0003476497 00000 n 0003476613 00000 n 0003476725 00000 n 0003476841 00000 n 0003476928 00000 n 0003477043 00000 n 0003477158 00000 n 0003477270 00000 n 0003477385 00000 n 0003477481 00000 n 0003477596 00000 n 0003477711 00000 n 0003477826 00000 n 0003477938 00000 n 0003478053 00000 n 0003478167 00000 n 0003478282 00000 n 0003478397 00000 n 0003478512 00000 n 0003478627 00000 n 0003478742 00000 n 0003478854 00000 n 0003478969 00000 n 0003479083 00000 n 0003479198 00000 n 0003479313 00000 n 0003479428 00000 n 0003479543 00000 n 0003479658 00000 n 0003479770 00000 n 0003479885 00000 n 0003479990 00000 n 0003480105 00000 n 0003480220 00000 n 0003480335 00000 n 0003480450 00000 n 0003480562 00000 n 0003480677 00000 n 0003480818 00000 n 0003480933 00000 n 0003481048 00000 n 0003481163 00000 n 0003481278 00000 n 0003481393 00000 n 0003481508 00000 n 0003481623 00000 n 0003481783 00000 n 0003481868 00000 n 0003482027 00000 n 0003482142 00000 n 0003482257 00000 n 0003482372 00000 n 0003482514 00000 n 0003482630 00000 n 0003482742 00000 n 0003482858 00000 n 0003482972 00000 n 0003483087 00000 n 0003483202 00000 n 0003483317 00000 n 0003483477 00000 n 0003483562 00000 n 0003483714 00000 n 0003483829 00000 n 0003483944 00000 n 0003484086 00000 n 0003484201 00000 n 0003484316 00000 n 0003484394 00000 n 0003484509 00000 n 0003484621 00000 n 0003484736 00000 n 0003484859 00000 n 0003484974 00000 n 0003485089 00000 n 0003485204 00000 n 0003485319 00000 n 0003485434 00000 n 0003485549 00000 n 0003485661 00000 n 0003485776 00000 n 0003485915 00000 n 0003486036 00000 n 0003486151 00000 n 0003486266 00000 n 0003486381 00000 n 0003486496 00000 n 0003486611 00000 n 0003486743 00000 n 0003486858 00000 n 0003486973 00000 n 0003487088 00000 n 0003487203 00000 n 0003487318 00000 n 0003487434 00000 n 0003487550 00000 n 0003487662 00000 n 0003487778 00000 n 0003487919 00000 n 0003488034 00000 n 0003488149 00000 n 0003488264 00000 n 0003488379 00000 n 0003488494 00000 n 0003488609 00000 n 0003488724 00000 n 0003488839 00000 n 0003488951 00000 n 0003489066 00000 n 0003489189 00000 n 0003489304 00000 n 0003489419 00000 n 0003489534 00000 n 0003489649 00000 n 0003489764 00000 n 0003489879 00000 n 0003489991 00000 n 0003490106 00000 n 0003490220 00000 n 0003490335 00000 n 0003490450 00000 n 0003490565 00000 n 0003490680 00000 n 0003490795 00000 n 0003490907 00000 n 0003491022 00000 n 0003491127 00000 n 0003491242 00000 n 0003491357 00000 n 0003491472 00000 n 0003491587 00000 n 0003491699 00000 n 0003491814 00000 n 0003491973 00000 n 0003492088 00000 n 0003492203 00000 n 0003492344 00000 n 0003492429 00000 n 0003492587 00000 n 0003492702 00000 n 0003492817 00000 n 0003492932 00000 n 0003493071 00000 n 0003493186 00000 n 0003493301 00000 n 0003493416 00000 n 0003493531 00000 n 0003493646 00000 n 0003493762 00000 n 0003493878 00000 n 0003493994 00000 n 0003494106 00000 n 0003494222 00000 n 0003494381 00000 n 0003494496 00000 n 0003494611 00000 n 0003494726 00000 n 0003494841 00000 n 0003494956 00000 n 0003495115 00000 n 0003495200 00000 n 0003495352 00000 n 0003495467 00000 n 0003495582 00000 n 0003495724 00000 n 0003495839 00000 n 0003495954 00000 n 0003496069 00000 n 0003496185 00000 n 0003496301 00000 n 0003496413 00000 n 0003496529 00000 n 0003496652 00000 n 0003496767 00000 n 0003496882 00000 n 0003496997 00000 n 0003497112 00000 n 0003497227 00000 n 0003497342 00000 n 0003497454 00000 n 0003497569 00000 n 0003497692 00000 n 0003497807 00000 n 0003497922 00000 n 0003498037 00000 n 0003498152 00000 n 0003498267 00000 n 0003498382 00000 n 0003498494 00000 n 0003498609 00000 n 0003498714 00000 n 0003498829 00000 n 0003498944 00000 n 0003499059 00000 n 0003499174 00000 n 0003499286 00000 n 0003499401 00000 n 0003499515 00000 n 0003499630 00000 n 0003499745 00000 n 0003499860 00000 n 0003499975 00000 n 0003500090 00000 n 0003500202 00000 n 0003500317 00000 n 0003500467 00000 n 0003500582 00000 n 0003500697 00000 n 0003500812 00000 n 0003500927 00000 n 0003501042 00000 n 0003501157 00000 n 0003501272 00000 n 0003501387 00000 n 0003501502 00000 n 0003501614 00000 n 0003501729 00000 n 0003501879 00000 n 0003501994 00000 n 0003502109 00000 n 0003502224 00000 n 0003502339 00000 n 0003502454 00000 n 0003502569 00000 n 0003502684 00000 n 0003502799 00000 n 0003502914 00000 n 0003503026 00000 n 0003503141 00000 n 0003503264 00000 n 0003503448 00000 n 0003503533 00000 n 0003503676 00000 n 0003503810 00000 n 0003503911 00000 n 0003504012 00000 n 0003504154 00000 n 0003504269 00000 n 0003504354 00000 n 0003504507 00000 n 0003504622 00000 n 0003504737 00000 n 0003504880 00000 n 0003504995 00000 n 0003505080 00000 n 0003505223 00000 n 0003505338 00000 n 0003505480 00000 n 0003505595 00000 n 0003505680 00000 n 0003505823 00000 n 0003505938 00000 n 0003506080 00000 n 0003506196 00000 n 0003506312 00000 n 0003506428 00000 n 0003506544 00000 n 0003506660 00000 n 0003506776 00000 n 0003506888 00000 n 0003507004 00000 n 0003507118 00000 n 0003507321 00000 n 0003507397 00000 n 0003507534 00000 n 0003507649 00000 n 0003507734 00000 n 0003507873 00000 n 0003507988 00000 n 0003508126 00000 n 0003508241 00000 n 0003508326 00000 n 0003508464 00000 n 0003508579 00000 n 0003508716 00000 n 0003508831 00000 n 0003508916 00000 n 0003509055 00000 n 0003509170 00000 n 0003509308 00000 n 0003509423 00000 n 0003509508 00000 n 0003509647 00000 n 0003509762 00000 n 0003509900 00000 n 0003510015 00000 n 0003510100 00000 n 0003510239 00000 n 0003510354 00000 n 0003510492 00000 n 0003510608 00000 n 0003510724 00000 n 0003510840 00000 n 0003510956 00000 n 0003511072 00000 n 0003511184 00000 n 0003511300 00000 n 0003511468 00000 n 0003511583 00000 n 0003511698 00000 n 0003511813 00000 n 0003511928 00000 n 0003512043 00000 n 0003512158 00000 n 0003512273 00000 n 0003512388 00000 n 0003512503 00000 n 0003512618 00000 n 0003512734 00000 n 0003512846 00000 n 0003512962 00000 n 0003513101 00000 n 0003513216 00000 n 0003513331 00000 n 0003513446 00000 n 0003513561 00000 n 0003513675 00000 n 0003513790 00000 n 0003513905 00000 n 0003514020 00000 n 0003514196 00000 n 0003514290 00000 n 0003514429 00000 n 0003514544 00000 n 0003514692 00000 n 0003514807 00000 n 0003514922 00000 n 0003515059 00000 n 0003515175 00000 n 0003515260 00000 n 0003515399 00000 n 0003515515 00000 n 0003515654 00000 n 0003515788 00000 n 0003515891 00000 n 0003516031 00000 n 0003516165 00000 n 0003516305 00000 n 0003516439 00000 n 0003516579 00000 n 0003516695 00000 n 0003516833 00000 n 0003516967 00000 n 0003517083 00000 n 0003517188 00000 n 0003517304 00000 n 0003517420 00000 n 0003517536 00000 n 0003517652 00000 n 0003517764 00000 n 0003517880 00000 n 0003518012 00000 n 0003518127 00000 n 0003518242 00000 n 0003518357 00000 n 0003518472 00000 n 0003518587 00000 n 0003518702 00000 n 0003518817 00000 n 0003518929 00000 n 0003519044 00000 n 0003519176 00000 n 0003519291 00000 n 0003519406 00000 n 0003519605 00000 n 0003519690 00000 n 0003519840 00000 n 0003519955 00000 n 0003520070 00000 n 0003520217 00000 n 0003520332 00000 n 0003520447 00000 n 0003520523 00000 n 0003520671 00000 n 0003520786 00000 n 0003520901 00000 n 0003520977 00000 n 0003521118 00000 n 0003521233 00000 n 0003521348 00000 n 0003521464 00000 n 0003521580 00000 n 0003521696 00000 n 0003521808 00000 n 0003521924 00000 n 0003522047 00000 n 0003522162 00000 n 0003522277 00000 n 0003522392 00000 n 0003522507 00000 n 0003522622 00000 n 0003522737 00000 n 0003522849 00000 n 0003522964 00000 n 0003523175 00000 n 0003523290 00000 n 0003523405 00000 n 0003523520 00000 n 0003523635 00000 n 0003523750 00000 n 0003523865 00000 n 0003523980 00000 n 0003524095 00000 n 0003524210 00000 n 0003524325 00000 n 0003524441 00000 n 0003524557 00000 n 0003524635 00000 n 0003524751 00000 n 0003524847 00000 n 0003524963 00000 n 0003525079 00000 n 0003525195 00000 n 0003525307 00000 n 0003525423 00000 n 0003525751 00000 n 0003525866 00000 n 0003525981 00000 n 0003526096 00000 n 0003526211 00000 n 0003526326 00000 n 0003526441 00000 n 0003526556 00000 n 0003526671 00000 n 0003526786 00000 n 0003526901 00000 n 0003527017 00000 n 0003527133 00000 n 0003527249 00000 n 0003527365 00000 n 0003527481 00000 n 0003527597 00000 n 0003527713 00000 n 0003527829 00000 n 0003527945 00000 n 0003528061 00000 n 0003528177 00000 n 0003528293 00000 n 0003528409 00000 n 0003528525 00000 n 0003528641 00000 n 0003528719 00000 n 0003528835 00000 n 0003528922 00000 n 0003529038 00000 n 0003529154 00000 n 0003529266 00000 n 0003529382 00000 n 0003529505 00000 n 0003529620 00000 n 0003529735 00000 n 0003529850 00000 n 0003529965 00000 n 0003530080 00000 n 0003530195 00000 n 0003530307 00000 n 0003530422 00000 n 0003530527 00000 n 0003530642 00000 n 0003530757 00000 n 0003530872 00000 n 0003531032 00000 n 0003531117 00000 n 0003531260 00000 n 0003531375 00000 n 0003531516 00000 n 0003531631 00000 n 0003531743 00000 n 0003531883 00000 n 0003531968 00000 n 0003532109 00000 n 0003532224 00000 n 0003532363 00000 n 0003532478 00000 n 0003532574 00000 n 0003532689 00000 n 0003532804 00000 n 0003532919 00000 n 0003533031 00000 n 0003533147 00000 n 0003533252 00000 n 0003533367 00000 n 0003533691 00000 n 0003533776 00000 n 0003533917 00000 n 0003534032 00000 n 0003534173 00000 n 0003534288 00000 n 0003534382 00000 n 0003534522 00000 n 0003534637 00000 n 0003534777 00000 n 0003534892 00000 n 0003535032 00000 n 0003535147 00000 n 0003535268 00000 n 0003535410 00000 n 0003535525 00000 n 0003535667 00000 n 0003535782 00000 n 0003535924 00000 n 0003536039 00000 n 0003536181 00000 n 0003536296 00000 n 0003536438 00000 n 0003536554 00000 n 0003536696 00000 n 0003536812 00000 n 0003536942 00000 n 0003537083 00000 n 0003537199 00000 n 0003537340 00000 n 0003537456 00000 n 0003537597 00000 n 0003537713 00000 n 0003537854 00000 n 0003537970 00000 n 0003538111 00000 n 0003538227 00000 n 0003538368 00000 n 0003538484 00000 n 0003538625 00000 n 0003538741 00000 n 0003538871 00000 n 0003539012 00000 n 0003539128 00000 n 0003539269 00000 n 0003539385 00000 n 0003539526 00000 n 0003539642 00000 n 0003539783 00000 n 0003539899 00000 n 0003540040 00000 n 0003540156 00000 n 0003540297 00000 n 0003540413 00000 n 0003540554 00000 n 0003540670 00000 n 0003540800 00000 n 0003540940 00000 n 0003541056 00000 n 0003541196 00000 n 0003541312 00000 n 0003541452 00000 n 0003541568 00000 n 0003541708 00000 n 0003541824 00000 n 0003541964 00000 n 0003542080 00000 n 0003542220 00000 n 0003542336 00000 n 0003542476 00000 n 0003542592 00000 n 0003542677 00000 n 0003542819 00000 n 0003542935 00000 n 0003543077 00000 n 0003543193 00000 n 0003543287 00000 n 0003543427 00000 n 0003543543 00000 n 0003543683 00000 n 0003543799 00000 n 0003543939 00000 n 0003544055 00000 n 0003544176 00000 n 0003544318 00000 n 0003544434 00000 n 0003544576 00000 n 0003544692 00000 n 0003544834 00000 n 0003544950 00000 n 0003545092 00000 n 0003545208 00000 n 0003545350 00000 n 0003545466 00000 n 0003545608 00000 n 0003545724 00000 n 0003545854 00000 n 0003545994 00000 n 0003546110 00000 n 0003546250 00000 n 0003546366 00000 n 0003546506 00000 n 0003546622 00000 n 0003546762 00000 n 0003546878 00000 n 0003547018 00000 n 0003547134 00000 n 0003547274 00000 n 0003547390 00000 n 0003547530 00000 n 0003547646 00000 n 0003547776 00000 n 0003547916 00000 n 0003548032 00000 n 0003548172 00000 n 0003548288 00000 n 0003548428 00000 n 0003548544 00000 n 0003548684 00000 n 0003548800 00000 n 0003548940 00000 n 0003549056 00000 n 0003549196 00000 n 0003549312 00000 n 0003549452 00000 n 0003549568 00000 n 0003549698 00000 n 0003549838 00000 n 0003549954 00000 n 0003550094 00000 n 0003550210 00000 n 0003550350 00000 n 0003550466 00000 n 0003550606 00000 n 0003550722 00000 n 0003550862 00000 n 0003550978 00000 n 0003551118 00000 n 0003551234 00000 n 0003551374 00000 n 0003551490 00000 n 0003551606 00000 n 0003551722 00000 n 0003551834 00000 n 0003551950 00000 n 0003552082 00000 n 0003552197 00000 n 0003552519 00000 n 0003552604 00000 n 0003552743 00000 n 0003552858 00000 n 0003552998 00000 n 0003553113 00000 n 0003553207 00000 n 0003553347 00000 n 0003553462 00000 n 0003553602 00000 n 0003553717 00000 n 0003553857 00000 n 0003553972 00000 n 0003554093 00000 n 0003554235 00000 n 0003554350 00000 n 0003554492 00000 n 0003554607 00000 n 0003554749 00000 n 0003554864 00000 n 0003555005 00000 n 0003555120 00000 n 0003555262 00000 n 0003555378 00000 n 0003555518 00000 n 0003555634 00000 n 0003555764 00000 n 0003555904 00000 n 0003556020 00000 n 0003556161 00000 n 0003556277 00000 n 0003556418 00000 n 0003556534 00000 n 0003556675 00000 n 0003556791 00000 n 0003556931 00000 n 0003557047 00000 n 0003557188 00000 n 0003557304 00000 n 0003557443 00000 n 0003557559 00000 n 0003557689 00000 n 0003557829 00000 n 0003557945 00000 n 0003558086 00000 n 0003558202 00000 n 0003558343 00000 n 0003558459 00000 n 0003558600 00000 n 0003558716 00000 n 0003558856 00000 n 0003558972 00000 n 0003559113 00000 n 0003559229 00000 n 0003559368 00000 n 0003559484 00000 n 0003559614 00000 n 0003559753 00000 n 0003559869 00000 n 0003560009 00000 n 0003560125 00000 n 0003560265 00000 n 0003560381 00000 n 0003560521 00000 n 0003560637 00000 n 0003560776 00000 n 0003560892 00000 n 0003561032 00000 n 0003561148 00000 n 0003561286 00000 n 0003561402 00000 n 0003561487 00000 n 0003561628 00000 n 0003561744 00000 n 0003561886 00000 n 0003562002 00000 n 0003562096 00000 n 0003562238 00000 n 0003562354 00000 n 0003562496 00000 n 0003562612 00000 n 0003562754 00000 n 0003562870 00000 n 0003562991 00000 n 0003563131 00000 n 0003563247 00000 n 0003563387 00000 n 0003563503 00000 n 0003563643 00000 n 0003563759 00000 n 0003563898 00000 n 0003564014 00000 n 0003564154 00000 n 0003564270 00000 n 0003564408 00000 n 0003564524 00000 n 0003564654 00000 n 0003564794 00000 n 0003564910 00000 n 0003565051 00000 n 0003565167 00000 n 0003565308 00000 n 0003565424 00000 n 0003565565 00000 n 0003565681 00000 n 0003565821 00000 n 0003565937 00000 n 0003566078 00000 n 0003566194 00000 n 0003566333 00000 n 0003566449 00000 n 0003566579 00000 n 0003566719 00000 n 0003566835 00000 n 0003566976 00000 n 0003567092 00000 n 0003567233 00000 n 0003567349 00000 n 0003567490 00000 n 0003567606 00000 n 0003567746 00000 n 0003567862 00000 n 0003568003 00000 n 0003568119 00000 n 0003568258 00000 n 0003568374 00000 n 0003568504 00000 n 0003568644 00000 n 0003568760 00000 n 0003568901 00000 n 0003569017 00000 n 0003569158 00000 n 0003569274 00000 n 0003569415 00000 n 0003569531 00000 n 0003569671 00000 n 0003569787 00000 n 0003569928 00000 n 0003570044 00000 n 0003570183 00000 n 0003570299 00000 n 0003570415 00000 n 0003570531 00000 n 0003570647 00000 n 0003570763 00000 n 0003570879 00000 n 0003570991 00000 n 0003571107 00000 n 0003571221 00000 n 0003571336 00000 n 0003571451 00000 n 0003571566 00000 n 0003571681 00000 n 0003571796 00000 n 0003571908 00000 n 0003572023 00000 n 0003572432 00000 n 0003572676 00000 n 0003572761 00000 n 0003572900 00000 n 0003573015 00000 n 0003573154 00000 n 0003573288 00000 n 0003573389 00000 n 0003573490 00000 n 0003573575 00000 n 0003573714 00000 n 0003573848 00000 n 0003573949 00000 n 0003574050 00000 n 0003574189 00000 n 0003574304 00000 n 0003574389 00000 n 0003574529 00000 n 0003574644 00000 n 0003574784 00000 n 0003574918 00000 n 0003575020 00000 n 0003575122 00000 n 0003575207 00000 n 0003575347 00000 n 0003575482 00000 n 0003575584 00000 n 0003575686 00000 n 0003575826 00000 n 0003575942 00000 n 0003576027 00000 n 0003576165 00000 n 0003576281 00000 n 0003576419 00000 n 0003576535 00000 n 0003576620 00000 n 0003576770 00000 n 0003576886 00000 n 0003577002 00000 n 0003577143 00000 n 0003577259 00000 n 0003577344 00000 n 0003577484 00000 n 0003577600 00000 n 0003577740 00000 n 0003577856 00000 n 0003577941 00000 n 0003578081 00000 n 0003578197 00000 n 0003578337 00000 n 0003578453 00000 n 0003578538 00000 n 0003578679 00000 n 0003578814 00000 n 0003578916 00000 n 0003579018 00000 n 0003579159 00000 n 0003579275 00000 n 0003579360 00000 n 0003579501 00000 n 0003579636 00000 n 0003579738 00000 n 0003579840 00000 n 0003579981 00000 n 0003580116 00000 n 0003580218 00000 n 0003580320 00000 n 0003580405 00000 n 0003580543 00000 n 0003580678 00000 n 0003580780 00000 n 0003580882 00000 n 0003581020 00000 n 0003581136 00000 n 0003581221 00000 n 0003581363 00000 n 0003581479 00000 n 0003581621 00000 n 0003581756 00000 n 0003581858 00000 n 0003581960 00000 n 0003582076 00000 n 0003582192 00000 n 0003582308 00000 n 0003582424 00000 n 0003582540 00000 n 0003582656 00000 n 0003582772 00000 n 0003582888 00000 n 0003583004 00000 n 0003583120 00000 n 0003583236 00000 n 0003583352 00000 n 0003583468 00000 n 0003583584 00000 n 0003583700 00000 n 0003583816 00000 n 0003583932 00000 n 0003584048 00000 n 0003584164 00000 n 0003584280 00000 n 0003584396 00000 n 0003584512 00000 n 0003584628 00000 n 0003584744 00000 n 0003584860 00000 n 0003584976 00000 n 0003585092 00000 n 0003585208 00000 n 0003585324 00000 n 0003585440 00000 n 0003585556 00000 n 0003585672 00000 n 0003585788 00000 n 0003585866 00000 n 0003585982 00000 n 0003586087 00000 n 0003586203 00000 n 0003586319 00000 n 0003586435 00000 n 0003586551 00000 n 0003586663 00000 n 0003586779 00000 n 0003586893 00000 n 0003587008 00000 n 0003587123 00000 n 0003587238 00000 n 0003587353 00000 n 0003587468 00000 n 0003587580 00000 n 0003587695 00000 n 0003588023 00000 n 0003588135 00000 n 0003588312 00000 n 0003588406 00000 n 0003588547 00000 n 0003588680 00000 n 0003588822 00000 n 0003588955 00000 n 0003589097 00000 n 0003589230 00000 n 0003589324 00000 n 0003589463 00000 n 0003589596 00000 n 0003589736 00000 n 0003589869 00000 n 0003590009 00000 n 0003590124 00000 n 0003590209 00000 n 0003590348 00000 n 0003590481 00000 n 0003590621 00000 n 0003590754 00000 n 0003590839 00000 n 0003590977 00000 n 0003591110 00000 n 0003591249 00000 n 0003591382 00000 n 0003591476 00000 n 0003591615 00000 n 0003591749 00000 n 0003591889 00000 n 0003592023 00000 n 0003592163 00000 n 0003592297 00000 n 0003592413 00000 n 0003592570 00000 n 0003592655 00000 n 0003592794 00000 n 0003592910 00000 n 0003593045 00000 n 0003593161 00000 n 0003593277 00000 n 0003593393 00000 n 0003593509 00000 n 0003593625 00000 n 0003593741 00000 n 0003593857 00000 n 0003593973 00000 n 0003594089 00000 n 0003594205 00000 n 0003594321 00000 n 0003594437 00000 n 0003594553 00000 n 0003594669 00000 n 0003594829 00000 n 0003594941 00000 n 0003595083 00000 n 0003595199 00000 n 0003595341 00000 n 0003595457 00000 n 0003595598 00000 n 0003595714 00000 n 0003595854 00000 n 0003595970 00000 n 0003596110 00000 n 0003596226 00000 n 0003596342 00000 n 0003596458 00000 n 0003596574 00000 n 0003596690 00000 n 0003596806 00000 n 0003596922 00000 n 0003597038 00000 n 0003597154 00000 n 0003597241 00000 n 0003597357 00000 n 0003597473 00000 n 0003597585 00000 n 0003597701 00000 n 0003597797 00000 n 0003597912 00000 n 0003598027 00000 n 0003598142 00000 n 0003598254 00000 n 0003598369 00000 n 0003598724 00000 n 0003598839 00000 n 0003598954 00000 n 0003599069 00000 n 0003599184 00000 n 0003599299 00000 n 0003599414 00000 n 0003599529 00000 n 0003599644 00000 n 0003599759 00000 n 0003599874 00000 n 0003599990 00000 n 0003600106 00000 n 0003600222 00000 n 0003600338 00000 n 0003600454 00000 n 0003600570 00000 n 0003600686 00000 n 0003600802 00000 n 0003600937 00000 n 0003601039 00000 n 0003601141 00000 n 0003601257 00000 n 0003601373 00000 n 0003601489 00000 n 0003601605 00000 n 0003601721 00000 n 0003601837 00000 n 0003601953 00000 n 0003602069 00000 n 0003602185 00000 n 0003602272 00000 n 0003602388 00000 n 0003602504 00000 n 0003602616 00000 n 0003602732 00000 n 0003602916 00000 n 0003603028 00000 n 0003603143 00000 n 0003603258 00000 n 0003603373 00000 n 0003603488 00000 n 0003603603 00000 n 0003603718 00000 n 0003603833 00000 n 0003603948 00000 n 0003604063 00000 n 0003604141 00000 n 0003604256 00000 n 0003604397 00000 n 0003604513 00000 n 0003604629 00000 n 0003604773 00000 n 0003604849 00000 n 0003605017 00000 n 0003605133 00000 n 0003605249 00000 n 0003605365 00000 n 0003605481 00000 n 0003605597 00000 n 0003605713 00000 n 0003605829 00000 n 0003605945 00000 n 0003606061 00000 n 0003606182 00000 n 0003606298 00000 n 0003606414 00000 n 0003606544 00000 n 0003606660 00000 n 0003606776 00000 n 0003606892 00000 n 0003607049 00000 n 0003607165 00000 n 0003607281 00000 n 0003607397 00000 n 0003607513 00000 n 0003607629 00000 n 0003607745 00000 n 0003607823 00000 n 0003607939 00000 n 0003608051 00000 n 0003608167 00000 n 0003608522 00000 n 0003608637 00000 n 0003608752 00000 n 0003608867 00000 n 0003608982 00000 n 0003609097 00000 n 0003609212 00000 n 0003609327 00000 n 0003609442 00000 n 0003609557 00000 n 0003609672 00000 n 0003609788 00000 n 0003609904 00000 n 0003610020 00000 n 0003610136 00000 n 0003610252 00000 n 0003610368 00000 n 0003610484 00000 n 0003610600 00000 n 0003610716 00000 n 0003610832 00000 n 0003610948 00000 n 0003611064 00000 n 0003611180 00000 n 0003611296 00000 n 0003611412 00000 n 0003611528 00000 n 0003611644 00000 n 0003611760 00000 n 0003611847 00000 n 0003611963 00000 n 0003612079 00000 n 0003612191 00000 n 0003612307 00000 n 0003612545 00000 n 0003612660 00000 n 0003612775 00000 n 0003612890 00000 n 0003613005 00000 n 0003613120 00000 n 0003613235 00000 n 0003613350 00000 n 0003613465 00000 n 0003613580 00000 n 0003613695 00000 n 0003613811 00000 n 0003613927 00000 n 0003614043 00000 n 0003614159 00000 n 0003614275 00000 n 0003614362 00000 n 0003614478 00000 n 0003614594 00000 n 0003614706 00000 n 0003614822 00000 n 0003614927 00000 n 0003615042 00000 n 0003615157 00000 n 0003615272 00000 n 0003615387 00000 n 0003615499 00000 n 0003615614 00000 n 0003615710 00000 n 0003615825 00000 n 0003615940 00000 n 0003616055 00000 n 0003616167 00000 n 0003616282 00000 n 0003616378 00000 n 0003616493 00000 n 0003616608 00000 n 0003616723 00000 n 0003616835 00000 n 0003616950 00000 n 0003617082 00000 n 0003617197 00000 n 0003617312 00000 n 0003617427 00000 n 0003617542 00000 n 0003617657 00000 n 0003617772 00000 n 0003617887 00000 n 0003617999 00000 n 0003618114 00000 n 0003618273 00000 n 0003618388 00000 n 0003618503 00000 n 0003618618 00000 n 0003618733 00000 n 0003618848 00000 n 0003618963 00000 n 0003619078 00000 n 0003619193 00000 n 0003619308 00000 n 0003619423 00000 n 0003619535 00000 n 0003619651 00000 n 0003619747 00000 n 0003619862 00000 n 0003619977 00000 n 0003620092 00000 n 0003620204 00000 n 0003620344 00000 n 0003620438 00000 n 0003620588 00000 n 0003620703 00000 n 0003620818 00000 n 0003620958 00000 n 0003621073 00000 n 0003621212 00000 n 0003621327 00000 n 0003621414 00000 n 0003621529 00000 n 0003621644 00000 n 0003621756 00000 n 0003621871 00000 n 0003622001 00000 n 0003622116 00000 n 0003622231 00000 n 0003622346 00000 n 0003622476 00000 n 0003622680 00000 n 0003623026 00000 n 0003623165 00000 n 0003623298 00000 n 0003623439 00000 n 0003623572 00000 n 0003623712 00000 n 0003623845 00000 n 0003623983 00000 n 0003624116 00000 n 0003624256 00000 n 0003624389 00000 n 0003624529 00000 n 0003624662 00000 n 0003624801 00000 n 0003624934 00000 n 0003625074 00000 n 0003625208 00000 n 0003625347 00000 n 0003625481 00000 n 0003625619 00000 n 0003625753 00000 n 0003625892 00000 n 0003626026 00000 n 0003626164 00000 n 0003626298 00000 n 0003626436 00000 n 0003626570 00000 n 0003626708 00000 n 0003626842 00000 n 0003626982 00000 n 0003627116 00000 n 0003627256 00000 n 0003627390 00000 n 0003627530 00000 n 0003627664 00000 n 0003627804 00000 n 0003627938 00000 n 0003628076 00000 n 0003628210 00000 n 0003628349 00000 n 0003628483 00000 n 0003628621 00000 n 0003628755 00000 n 0003628894 00000 n 0003629028 00000 n 0003629168 00000 n 0003629302 00000 n 0003629441 00000 n 0003629575 00000 n 0003629715 00000 n 0003629849 00000 n 0003629988 00000 n 0003630122 00000 n 0003630260 00000 n 0003630394 00000 n 0003630532 00000 n 0003630666 00000 n 0003630802 00000 n 0003630936 00000 n 0003631076 00000 n 0003631210 00000 n 0003631348 00000 n 0003631482 00000 n 0003631558 00000 n 0003631706 00000 n 0003631822 00000 n 0003631938 00000 n 0003632054 00000 n 0003632170 00000 n 0003632275 00000 n 0003632391 00000 n 0003632507 00000 n 0003632623 00000 n 0003632739 00000 n 0003632851 00000 n 0003632967 00000 n 0003633187 00000 n 0003633302 00000 n 0003633417 00000 n 0003633532 00000 n 0003633647 00000 n 0003633762 00000 n 0003633877 00000 n 0003633992 00000 n 0003634107 00000 n 0003634222 00000 n 0003634337 00000 n 0003634453 00000 n 0003634569 00000 n 0003634685 00000 n 0003634799 00000 n 0003634915 00000 n 0003635031 00000 n 0003635147 00000 n 0003635263 00000 n 0003635379 00000 n 0003635491 00000 n 0003635607 00000 n 0003635793 00000 n 0003635908 00000 n 0003636023 00000 n 0003636138 00000 n 0003636253 00000 n 0003636368 00000 n 0003636483 00000 n 0003636598 00000 n 0003636713 00000 n 0003636828 00000 n 0003636943 00000 n 0003637059 00000 n 0003637175 00000 n 0003637291 00000 n 0003637403 00000 n 0003637519 00000 n 0003637642 00000 n 0003637757 00000 n 0003637872 00000 n 0003637987 00000 n 0003638102 00000 n 0003638217 00000 n 0003638332 00000 n 0003638444 00000 n 0003638559 00000 n 0003638637 00000 n 0003638752 00000 n 0003638864 00000 n 0003639006 00000 n 0003639082 00000 n 0003639224 00000 n 0003639339 00000 n 0003639453 00000 n 0003639568 00000 n 0003639727 00000 n 0003639812 00000 n 0003639963 00000 n 0003640078 00000 n 0003640193 00000 n 0003640334 00000 n 0003640449 00000 n 0003640564 00000 n 0003640679 00000 n 0003640794 00000 n 0003640906 00000 n 0003641021 00000 n 0003641162 00000 n 0003641277 00000 n 0003641392 00000 n 0003641507 00000 n 0003641622 00000 n 0003641737 00000 n 0003641852 00000 n 0003641967 00000 n 0003642082 00000 n 0003642194 00000 n 0003642309 00000 n 0003642432 00000 n 0003642547 00000 n 0003642662 00000 n 0003642777 00000 n 0003642892 00000 n 0003643007 00000 n 0003643122 00000 n 0003643234 00000 n 0003643349 00000 n 0003643445 00000 n 0003643560 00000 n 0003643675 00000 n 0003643790 00000 n 0003643868 00000 n 0003644026 00000 n 0003644111 00000 n 0003644250 00000 n 0003644365 00000 n 0003644502 00000 n 0003644617 00000 n 0003644729 00000 n 0003644844 00000 n 0003644931 00000 n 0003645046 00000 n 0003645161 00000 n 0003645273 00000 n 0003645388 00000 n 0003645493 00000 n 0003645608 00000 n 0003645723 00000 n 0003645838 00000 n 0003645953 00000 n 0003646065 00000 n 0003646180 00000 n 0003646481 00000 n 0003646596 00000 n 0003646711 00000 n 0003646826 00000 n 0003646941 00000 n 0003647056 00000 n 0003647171 00000 n 0003647286 00000 n 0003647401 00000 n 0003647516 00000 n 0003647631 00000 n 0003647747 00000 n 0003647863 00000 n 0003647979 00000 n 0003648095 00000 n 0003648211 00000 n 0003648327 00000 n 0003648443 00000 n 0003648559 00000 n 0003648675 00000 n 0003648810 00000 n 0003648912 00000 n 0003649014 00000 n 0003649130 00000 n 0003649246 00000 n 0003649324 00000 n 0003649440 00000 n 0003649545 00000 n 0003649661 00000 n 0003649777 00000 n 0003649893 00000 n 0003650009 00000 n 0003650121 00000 n 0003650237 00000 n 0003650592 00000 n 0003650707 00000 n 0003650822 00000 n 0003650937 00000 n 0003651052 00000 n 0003651167 00000 n 0003651282 00000 n 0003651397 00000 n 0003651512 00000 n 0003651627 00000 n 0003651742 00000 n 0003651858 00000 n 0003651974 00000 n 0003652090 00000 n 0003652206 00000 n 0003652322 00000 n 0003652438 00000 n 0003652554 00000 n 0003652670 00000 n 0003652786 00000 n 0003652902 00000 n 0003653018 00000 n 0003653134 00000 n 0003653250 00000 n 0003653366 00000 n 0003653482 00000 n 0003653598 00000 n 0003653714 00000 n 0003653830 00000 n 0003653953 00000 n 0003654069 00000 n 0003654275 00000 n 0003654378 00000 n 0003654615 00000 n 0003654731 00000 n 0003654847 00000 n 0003654963 00000 n 0003655079 00000 n 0003655195 00000 n 0003655311 00000 n 0003655427 00000 n 0003655543 00000 n 0003655659 00000 n 0003655775 00000 n 0003655891 00000 n 0003656007 00000 n 0003656147 00000 n 0003656282 00000 n 0003656384 00000 n 0003656486 00000 n 0003656742 00000 n 0003656858 00000 n 0003656974 00000 n 0003657090 00000 n 0003657206 00000 n 0003657322 00000 n 0003657438 00000 n 0003657554 00000 n 0003657670 00000 n 0003657786 00000 n 0003657902 00000 n 0003658018 00000 n 0003658134 00000 n 0003658250 00000 n 0003658366 00000 n 0003658504 00000 n 0003658639 00000 n 0003658741 00000 n 0003658843 00000 n 0003658946 00000 n 0003659085 00000 n 0003659220 00000 n 0003659322 00000 n 0003659424 00000 n 0003659564 00000 n 0003659699 00000 n 0003659801 00000 n 0003659903 00000 n 0003660042 00000 n 0003660177 00000 n 0003660279 00000 n 0003660381 00000 n 0003660521 00000 n 0003660637 00000 n 0003660722 00000 n 0003660863 00000 n 0003660998 00000 n 0003661100 00000 n 0003661202 00000 n 0003661342 00000 n 0003661477 00000 n 0003661579 00000 n 0003661681 00000 n 0003661766 00000 n 0003661906 00000 n 0003662022 00000 n 0003662161 00000 n 0003662277 00000 n 0003662362 00000 n 0003662502 00000 n 0003662618 00000 n 0003662757 00000 n 0003662873 00000 n 0003662949 00000 n 0003663091 00000 n 0003663207 00000 n 0003663283 00000 n 0003663423 00000 n 0003663539 00000 n 0003663624 00000 n 0003663766 00000 n 0003663901 00000 n 0003664003 00000 n 0003664105 00000 n 0003664246 00000 n 0003664381 00000 n 0003664483 00000 n 0003664585 00000 n 0003664701 00000 n 0003664817 00000 n 0003664933 00000 n 0003665049 00000 n 0003665161 00000 n 0003665277 00000 n 0003665434 00000 n 0003665549 00000 n 0003665664 00000 n 0003665779 00000 n 0003665894 00000 n 0003666009 00000 n 0003666124 00000 n 0003666229 00000 n 0003666344 00000 n 0003666459 00000 n 0003666574 00000 n 0003666689 00000 n 0003666801 00000 n 0003666917 00000 n 0003667031 00000 n 0003667146 00000 n 0003667261 00000 n 0003667376 00000 n 0003667491 00000 n 0003667606 00000 n 0003667718 00000 n 0003667833 00000 n 0003667938 00000 n 0003668053 00000 n 0003668168 00000 n 0003668283 00000 n 0003668398 00000 n 0003668510 00000 n 0003668625 00000 n 0003668721 00000 n 0003668836 00000 n 0003668951 00000 n 0003669066 00000 n 0003669178 00000 n 0003669293 00000 n 0003669407 00000 n 0003669522 00000 n 0003669637 00000 n 0003669752 00000 n 0003669867 00000 n 0003669982 00000 n 0003670094 00000 n 0003670209 00000 n 0003670296 00000 n 0003670411 00000 n 0003670526 00000 n 0003670604 00000 n 0003670719 00000 n 0003670831 00000 n 0003670946 00000 n 0003671051 00000 n 0003671166 00000 n 0003671281 00000 n 0003671396 00000 n 0003671511 00000 n 0003671634 00000 n 0003671749 00000 n 0003671864 00000 n 0003671980 00000 n 0003672096 00000 n 0003672212 00000 n 0003672328 00000 n 0003672440 00000 n 0003672556 00000 n 0003672668 00000 n 0003672784 00000 n 0003672889 00000 n 0003673004 00000 n 0003673119 00000 n 0003673234 00000 n 0003673349 00000 n 0003673461 00000 n 0003673576 00000 n 0003673742 00000 n 0003673857 00000 n 0003673972 00000 n 0003674087 00000 n 0003674202 00000 n 0003674317 00000 n 0003674432 00000 n 0003674547 00000 n 0003674625 00000 n 0003674740 00000 n 0003674818 00000 n 0003675050 00000 n 0003675144 00000 n 0003675283 00000 n 0003675398 00000 n 0003675534 00000 n 0003675668 00000 n 0003675770 00000 n 0003675872 00000 n 0003676011 00000 n 0003676127 00000 n 0003676221 00000 n 0003676362 00000 n 0003676478 00000 n 0003676616 00000 n 0003676751 00000 n 0003676853 00000 n 0003676955 00000 n 0003677096 00000 n 0003677231 00000 n 0003677333 00000 n 0003677435 00000 n 0003677529 00000 n 0003677669 00000 n 0003677785 00000 n 0003677922 00000 n 0003678057 00000 n 0003678159 00000 n 0003678261 00000 n 0003678401 00000 n 0003678536 00000 n 0003678638 00000 n 0003678740 00000 n 0003678834 00000 n 0003678973 00000 n 0003679089 00000 n 0003679225 00000 n 0003679360 00000 n 0003679462 00000 n 0003679564 00000 n 0003679703 00000 n 0003679838 00000 n 0003679940 00000 n 0003680042 00000 n 0003680136 00000 n 0003680275 00000 n 0003680391 00000 n 0003680527 00000 n 0003680662 00000 n 0003680764 00000 n 0003680866 00000 n 0003681005 00000 n 0003681140 00000 n 0003681242 00000 n 0003681344 00000 n 0003681438 00000 n 0003681578 00000 n 0003681694 00000 n 0003681831 00000 n 0003681966 00000 n 0003682068 00000 n 0003682170 00000 n 0003682310 00000 n 0003682445 00000 n 0003682547 00000 n 0003682649 00000 n 0003682743 00000 n 0003682884 00000 n 0003683000 00000 n 0003683138 00000 n 0003683273 00000 n 0003683375 00000 n 0003683477 00000 n 0003683618 00000 n 0003683753 00000 n 0003683855 00000 n 0003683957 00000 n 0003684078 00000 n 0003684194 00000 n 0003684310 00000 n 0003684388 00000 n 0003684504 00000 n 0003684616 00000 n 0003684732 00000 n 0003684837 00000 n 0003684952 00000 n 0003685067 00000 n 0003685182 00000 n 0003685297 00000 n 0003685409 00000 n 0003685524 00000 n 0003685681 00000 n 0003685796 00000 n 0003685911 00000 n 0003686026 00000 n 0003686141 00000 n 0003686256 00000 n 0003686371 00000 n 0003686458 00000 n 0003686573 00000 n 0003686688 00000 n 0003686800 00000 n 0003686915 00000 n 0003687279 00000 n 0003687394 00000 n 0003687509 00000 n 0003687624 00000 n 0003687739 00000 n 0003687854 00000 n 0003687969 00000 n 0003688084 00000 n 0003688199 00000 n 0003688314 00000 n 0003688429 00000 n 0003688545 00000 n 0003688661 00000 n 0003688777 00000 n 0003688893 00000 n 0003689009 00000 n 0003689125 00000 n 0003689241 00000 n 0003689357 00000 n 0003689473 00000 n 0003689589 00000 n 0003689705 00000 n 0003689821 00000 n 0003689937 00000 n 0003690053 00000 n 0003690169 00000 n 0003690285 00000 n 0003690401 00000 n 0003690517 00000 n 0003690633 00000 n 0003690738 00000 n 0003690854 00000 n 0003690970 00000 n 0003691086 00000 n 0003691202 00000 n 0003691314 00000 n 0003691430 00000 n 0003691553 00000 n 0003691668 00000 n 0003691783 00000 n 0003691898 00000 n 0003692013 00000 n 0003692128 00000 n 0003692243 00000 n 0003692355 00000 n 0003692470 00000 n 0003692584 00000 n 0003692699 00000 n 0003692814 00000 n 0003692929 00000 n 0003693044 00000 n 0003693159 00000 n 0003693271 00000 n 0003693386 00000 n 0003693491 00000 n 0003693606 00000 n 0003693721 00000 n 0003693836 00000 n 0003693951 00000 n 0003694063 00000 n 0003694178 00000 n 0003694283 00000 n 0003694398 00000 n 0003694513 00000 n 0003694628 00000 n 0003694743 00000 n 0003694855 00000 n 0003694970 00000 n 0003695066 00000 n 0003695181 00000 n 0003695296 00000 n 0003695411 00000 n 0003695523 00000 n 0003695638 00000 n 0003695752 00000 n 0003695867 00000 n 0003695982 00000 n 0003696097 00000 n 0003696212 00000 n 0003696327 00000 n 0003696439 00000 n 0003696554 00000 n 0003696713 00000 n 0003696828 00000 n 0003696943 00000 n 0003697058 00000 n 0003697173 00000 n 0003697288 00000 n 0003697403 00000 n 0003697518 00000 n 0003697633 00000 n 0003697748 00000 n 0003697863 00000 n 0003697975 00000 n 0003698091 00000 n 0003698178 00000 n 0003698293 00000 n 0003698408 00000 n 0003698520 00000 n 0003698635 00000 n 0003698747 00000 n 0003698862 00000 n 0003698974 00000 n 0003699089 00000 n 0003699201 00000 n 0003699316 00000 n 0003699428 00000 n 0003699543 00000 n 0003699655 00000 n 0003699770 00000 n 0003699884 00000 n 0003699999 00000 n 0003700114 00000 n 0003700230 00000 n 0003700346 00000 n 0003700462 00000 n 0003700574 00000 n 0003700690 00000 n 0003700874 00000 n 0003700989 00000 n 0003701104 00000 n 0003701219 00000 n 0003701334 00000 n 0003701449 00000 n 0003701564 00000 n 0003701679 00000 n 0003701794 00000 n 0003701909 00000 n 0003701996 00000 n 0003702111 00000 n 0003702227 00000 n 0003702341 00000 n 0003702457 00000 n 0003702573 00000 n 0003702689 00000 n 0003702849 00000 n 0003702934 00000 n 0003703086 00000 n 0003703202 00000 n 0003703318 00000 n 0003703459 00000 n 0003703575 00000 n 0003703691 00000 n 0003703803 00000 n 0003703919 00000 n 0003704069 00000 n 0003704184 00000 n 0003704299 00000 n 0003704414 00000 n 0003704529 00000 n 0003704644 00000 n 0003704759 00000 n 0003704874 00000 n 0003704989 00000 n 0003705104 00000 n 0003705216 00000 n 0003705331 00000 n 0003705445 00000 n 0003705560 00000 n 0003705675 00000 n 0003705790 00000 n 0003705905 00000 n 0003706020 00000 n 0003706132 00000 n 0003706247 00000 n 0003706343 00000 n 0003706458 00000 n 0003706573 00000 n 0003706688 00000 n 0003706800 00000 n 0003706915 00000 n 0003707065 00000 n 0003707180 00000 n 0003707295 00000 n 0003707410 00000 n 0003707525 00000 n 0003707640 00000 n 0003707755 00000 n 0003707870 00000 n 0003707985 00000 n 0003708100 00000 n 0003708178 00000 n 0003708293 00000 n 0003708405 00000 n 0003708521 00000 n 0003708680 00000 n 0003708795 00000 n 0003708910 00000 n 0003709025 00000 n 0003709140 00000 n 0003709255 00000 n 0003709370 00000 n 0003709485 00000 n 0003709651 00000 n 0003709736 00000 n 0003709896 00000 n 0003710011 00000 n 0003710126 00000 n 0003710241 00000 n 0003710383 00000 n 0003710499 00000 n 0003710615 00000 n 0003710731 00000 n 0003710843 00000 n 0003710959 00000 n 0003711082 00000 n 0003711197 00000 n 0003711312 00000 n 0003711427 00000 n 0003711662 00000 n 0003711783 00000 n 0003711922 00000 n 0003712037 00000 n 0003712174 00000 n 0003712289 00000 n 0003712430 00000 n 0003712545 00000 n 0003712684 00000 n 0003712799 00000 n 0003712936 00000 n 0003713051 00000 n 0003713192 00000 n 0003713307 00000 n 0003713428 00000 n 0003713566 00000 n 0003713681 00000 n 0003713817 00000 n 0003713933 00000 n 0003714073 00000 n 0003714189 00000 n 0003714327 00000 n 0003714443 00000 n 0003714579 00000 n 0003714695 00000 n 0003714835 00000 n 0003714951 00000 n 0003715072 00000 n 0003715210 00000 n 0003715326 00000 n 0003715462 00000 n 0003715578 00000 n 0003715718 00000 n 0003715834 00000 n 0003715972 00000 n 0003716088 00000 n 0003716224 00000 n 0003716340 00000 n 0003716480 00000 n 0003716596 00000 n 0003716712 00000 n 0003716828 00000 n 0003716940 00000 n 0003717056 00000 n 0003717161 00000 n 0003717276 00000 n 0003717510 00000 n 0003717631 00000 n 0003717770 00000 n 0003717885 00000 n 0003718026 00000 n 0003718141 00000 n 0003718282 00000 n 0003718397 00000 n 0003718537 00000 n 0003718652 00000 n 0003718791 00000 n 0003718906 00000 n 0003719047 00000 n 0003719162 00000 n 0003719283 00000 n 0003719421 00000 n 0003719536 00000 n 0003719676 00000 n 0003719791 00000 n 0003719931 00000 n 0003720046 00000 n 0003720185 00000 n 0003720301 00000 n 0003720439 00000 n 0003720555 00000 n 0003720695 00000 n 0003720811 00000 n 0003720932 00000 n 0003721071 00000 n 0003721187 00000 n 0003721328 00000 n 0003721444 00000 n 0003721585 00000 n 0003721701 00000 n 0003721841 00000 n 0003721957 00000 n 0003722096 00000 n 0003722212 00000 n 0003722353 00000 n 0003722469 00000 n 0003722585 00000 n 0003722701 00000 n 0003722813 00000 n 0003722929 00000 n 0003723043 00000 n 0003723158 00000 n 0003723273 00000 n 0003723388 00000 n 0003723503 00000 n 0003723618 00000 n 0003723730 00000 n 0003723845 00000 n 0003723941 00000 n 0003724056 00000 n 0003724171 00000 n 0003724286 00000 n 0003724398 00000 n 0003724513 00000 n 0003724814 00000 n 0003724926 00000 n 0003725089 00000 n 0003725183 00000 n 0003725321 00000 n 0003725436 00000 n 0003725573 00000 n 0003725706 00000 n 0003725845 00000 n 0003725978 00000 n 0003726063 00000 n 0003726202 00000 n 0003726335 00000 n 0003726476 00000 n 0003726591 00000 n 0003726676 00000 n 0003726816 00000 n 0003726949 00000 n 0003727091 00000 n 0003727224 00000 n 0003727339 00000 n 0003727454 00000 n 0003727569 00000 n 0003727685 00000 n 0003727801 00000 n 0003727917 00000 n 0003728033 00000 n 0003728149 00000 n 0003728265 00000 n 0003728381 00000 n 0003728497 00000 n 0003728656 00000 n 0003728732 00000 n 0003728918 00000 n 0003729034 00000 n 0003729150 00000 n 0003729266 00000 n 0003729382 00000 n 0003729498 00000 n 0003729614 00000 n 0003729730 00000 n 0003729846 00000 n 0003729962 00000 n 0003730078 00000 n 0003730194 00000 n 0003730310 00000 n 0003730426 00000 n 0003730542 00000 n 0003730658 00000 n 0003730745 00000 n 0003730861 00000 n 0003730977 00000 n 0003731089 00000 n 0003731205 00000 n 0003731310 00000 n 0003731425 00000 n 0003731540 00000 n 0003731655 00000 n 0003731770 00000 n 0003731882 00000 n 0003731997 00000 n 0003732109 00000 n 0003732224 00000 n 0003732363 00000 n 0003732478 00000 n 0003732593 00000 n 0003732708 00000 n 0003732823 00000 n 0003732901 00000 n 0003733016 00000 n 0003733094 00000 n 0003733375 00000 n 0003733532 00000 n 0003733672 00000 n 0003733806 00000 n 0003733907 00000 n 0003734008 00000 n 0003734149 00000 n 0003734283 00000 n 0003734385 00000 n 0003734487 00000 n 0003734628 00000 n 0003734763 00000 n 0003734865 00000 n 0003734967 00000 n 0003735106 00000 n 0003735241 00000 n 0003735343 00000 n 0003735445 00000 n 0003735585 00000 n 0003735720 00000 n 0003735822 00000 n 0003735924 00000 n 0003736065 00000 n 0003736200 00000 n 0003736302 00000 n 0003736404 00000 n 0003736543 00000 n 0003736678 00000 n 0003736780 00000 n 0003736882 00000 n 0003737022 00000 n 0003737157 00000 n 0003737259 00000 n 0003737361 00000 n 0003737500 00000 n 0003737635 00000 n 0003737737 00000 n 0003737839 00000 n 0003737980 00000 n 0003738096 00000 n 0003738253 00000 n 0003738394 00000 n 0003738510 00000 n 0003738652 00000 n 0003738787 00000 n 0003738889 00000 n 0003738991 00000 n 0003739133 00000 n 0003739268 00000 n 0003739370 00000 n 0003739472 00000 n 0003739612 00000 n 0003739747 00000 n 0003739849 00000 n 0003739951 00000 n 0003740092 00000 n 0003740227 00000 n 0003740329 00000 n 0003740431 00000 n 0003740573 00000 n 0003740708 00000 n 0003740810 00000 n 0003740912 00000 n 0003741052 00000 n 0003741187 00000 n 0003741289 00000 n 0003741391 00000 n 0003741532 00000 n 0003741667 00000 n 0003741769 00000 n 0003741871 00000 n 0003742011 00000 n 0003742146 00000 n 0003742248 00000 n 0003742350 00000 n 0003742492 00000 n 0003742608 00000 n 0003742765 00000 n 0003742903 00000 n 0003743038 00000 n 0003743140 00000 n 0003743242 00000 n 0003743381 00000 n 0003743516 00000 n 0003743618 00000 n 0003743720 00000 n 0003743859 00000 n 0003743994 00000 n 0003744096 00000 n 0003744198 00000 n 0003744335 00000 n 0003744470 00000 n 0003744572 00000 n 0003744674 00000 n 0003744812 00000 n 0003744947 00000 n 0003745049 00000 n 0003745151 00000 n 0003745290 00000 n 0003745425 00000 n 0003745527 00000 n 0003745629 00000 n 0003745766 00000 n 0003745901 00000 n 0003746003 00000 n 0003746105 00000 n 0003746243 00000 n 0003746359 00000 n 0003746496 00000 n 0003746631 00000 n 0003746733 00000 n 0003746835 00000 n 0003746974 00000 n 0003747109 00000 n 0003747211 00000 n 0003747313 00000 n 0003747470 00000 n 0003747610 00000 n 0003747745 00000 n 0003747847 00000 n 0003747949 00000 n 0003748090 00000 n 0003748225 00000 n 0003748327 00000 n 0003748429 00000 n 0003748570 00000 n 0003748705 00000 n 0003748807 00000 n 0003748909 00000 n 0003749048 00000 n 0003749183 00000 n 0003749285 00000 n 0003749387 00000 n 0003749527 00000 n 0003749663 00000 n 0003749766 00000 n 0003749869 00000 n 0003750010 00000 n 0003750146 00000 n 0003750249 00000 n 0003750352 00000 n 0003750491 00000 n 0003750627 00000 n 0003750730 00000 n 0003750833 00000 n 0003750973 00000 n 0003751090 00000 n 0003751229 00000 n 0003751365 00000 n 0003751468 00000 n 0003751571 00000 n 0003751712 00000 n 0003751848 00000 n 0003751951 00000 n 0003752054 00000 n 0003752211 00000 n 0003752352 00000 n 0003752469 00000 n 0003752611 00000 n 0003752747 00000 n 0003752850 00000 n 0003752953 00000 n 0003753095 00000 n 0003753231 00000 n 0003753334 00000 n 0003753437 00000 n 0003753577 00000 n 0003753713 00000 n 0003753816 00000 n 0003753919 00000 n 0003754060 00000 n 0003754196 00000 n 0003754299 00000 n 0003754402 00000 n 0003754544 00000 n 0003754680 00000 n 0003754783 00000 n 0003754886 00000 n 0003755026 00000 n 0003755162 00000 n 0003755265 00000 n 0003755368 00000 n 0003755509 00000 n 0003755626 00000 n 0003755766 00000 n 0003755902 00000 n 0003756005 00000 n 0003756108 00000 n 0003756250 00000 n 0003756367 00000 n 0003756524 00000 n 0003756663 00000 n 0003756799 00000 n 0003756902 00000 n 0003757005 00000 n 0003757145 00000 n 0003757262 00000 n 0003757402 00000 n 0003757538 00000 n 0003757641 00000 n 0003757744 00000 n 0003757882 00000 n 0003758018 00000 n 0003758121 00000 n 0003758224 00000 n 0003758363 00000 n 0003758499 00000 n 0003758602 00000 n 0003758705 00000 n 0003758845 00000 n 0003758981 00000 n 0003759084 00000 n 0003759187 00000 n 0003759325 00000 n 0003759461 00000 n 0003759564 00000 n 0003759667 00000 n 0003759806 00000 n 0003759942 00000 n 0003760045 00000 n 0003760148 00000 n 0003760286 00000 n 0003760422 00000 n 0003760525 00000 n 0003760628 00000 n 0003760768 00000 n 0003760904 00000 n 0003761007 00000 n 0003761110 00000 n 0003761267 00000 n 0003761407 00000 n 0003761543 00000 n 0003761646 00000 n 0003761749 00000 n 0003761890 00000 n 0003762026 00000 n 0003762129 00000 n 0003762232 00000 n 0003762373 00000 n 0003762490 00000 n 0003762629 00000 n 0003762765 00000 n 0003762868 00000 n 0003762971 00000 n 0003763111 00000 n 0003763247 00000 n 0003763350 00000 n 0003763453 00000 n 0003763594 00000 n 0003763730 00000 n 0003763833 00000 n 0003763936 00000 n 0003764075 00000 n 0003764211 00000 n 0003764314 00000 n 0003764417 00000 n 0003764557 00000 n 0003764693 00000 n 0003764796 00000 n 0003764899 00000 n 0003765038 00000 n 0003765174 00000 n 0003765277 00000 n 0003765380 00000 n 0003765521 00000 n 0003765657 00000 n 0003765760 00000 n 0003765863 00000 n 0003766020 00000 n 0003766161 00000 n 0003766278 00000 n 0003766420 00000 n 0003766556 00000 n 0003766659 00000 n 0003766762 00000 n 0003766904 00000 n 0003767040 00000 n 0003767143 00000 n 0003767246 00000 n 0003767386 00000 n 0003767522 00000 n 0003767625 00000 n 0003767728 00000 n 0003767869 00000 n 0003768005 00000 n 0003768108 00000 n 0003768211 00000 n 0003768353 00000 n 0003768489 00000 n 0003768592 00000 n 0003768695 00000 n 0003768835 00000 n 0003768971 00000 n 0003769074 00000 n 0003769177 00000 n 0003769318 00000 n 0003769454 00000 n 0003769557 00000 n 0003769660 00000 n 0003769800 00000 n 0003769936 00000 n 0003770039 00000 n 0003770142 00000 n 0003770284 00000 n 0003770401 00000 n 0003770558 00000 n 0003770699 00000 n 0003770816 00000 n 0003770958 00000 n 0003771094 00000 n 0003771197 00000 n 0003771300 00000 n 0003771442 00000 n 0003771578 00000 n 0003771681 00000 n 0003771784 00000 n 0003771924 00000 n 0003772060 00000 n 0003772163 00000 n 0003772266 00000 n 0003772407 00000 n 0003772543 00000 n 0003772646 00000 n 0003772749 00000 n 0003772891 00000 n 0003773027 00000 n 0003773130 00000 n 0003773233 00000 n 0003773373 00000 n 0003773509 00000 n 0003773612 00000 n 0003773715 00000 n 0003773856 00000 n 0003773992 00000 n 0003774095 00000 n 0003774198 00000 n 0003774338 00000 n 0003774474 00000 n 0003774577 00000 n 0003774680 00000 n 0003774822 00000 n 0003774958 00000 n 0003775061 00000 n 0003775164 00000 n 0003775321 00000 n 0003775462 00000 n 0003775579 00000 n 0003775721 00000 n 0003775857 00000 n 0003775960 00000 n 0003776063 00000 n 0003776205 00000 n 0003776341 00000 n 0003776444 00000 n 0003776547 00000 n 0003776687 00000 n 0003776823 00000 n 0003776926 00000 n 0003777029 00000 n 0003777170 00000 n 0003777306 00000 n 0003777409 00000 n 0003777512 00000 n 0003777654 00000 n 0003777790 00000 n 0003777893 00000 n 0003777996 00000 n 0003778136 00000 n 0003778272 00000 n 0003778375 00000 n 0003778478 00000 n 0003778619 00000 n 0003778755 00000 n 0003778858 00000 n 0003778961 00000 n 0003779101 00000 n 0003779237 00000 n 0003779340 00000 n 0003779443 00000 n 0003779585 00000 n 0003779721 00000 n 0003779824 00000 n 0003779927 00000 n 0003780075 00000 n 0003780225 00000 n 0003780342 00000 n 0003780459 00000 n 0003780609 00000 n 0003780726 00000 n 0003780843 00000 n 0003780991 00000 n 0003781108 00000 n 0003781225 00000 n 0003781374 00000 n 0003781491 00000 n 0003781608 00000 n 0003781749 00000 n 0003781866 00000 n 0003782005 00000 n 0003782122 00000 n 0003782262 00000 n 0003782379 00000 n 0003782518 00000 n 0003782635 00000 n 0003782785 00000 n 0003782902 00000 n 0003783019 00000 n 0003783095 00000 n 0003783231 00000 n 0003783348 00000 n 0003783435 00000 n 0003783552 00000 n 0003783669 00000 n 0003783781 00000 n 0003783898 00000 n 0003784091 00000 n 0003784206 00000 n 0003784321 00000 n 0003784436 00000 n 0003784551 00000 n 0003784666 00000 n 0003784781 00000 n 0003784896 00000 n 0003785011 00000 n 0003785126 00000 n 0003785241 00000 n 0003785337 00000 n 0003785453 00000 n 0003785569 00000 n 0003785685 00000 n 0003785797 00000 n 0003785913 00000 n 0003786045 00000 n 0003786160 00000 n 0003786275 00000 n 0003786390 00000 n 0003786505 00000 n 0003786620 00000 n 0003786735 00000 n 0003786850 00000 n 0003786962 00000 n 0003787077 00000 n 0003787207 00000 n 0003787322 00000 n 0003787437 00000 n 0003787552 00000 n 0003787711 00000 n 0003787826 00000 n 0003787941 00000 n 0003788056 00000 n 0003788171 00000 n 0003788286 00000 n 0003788430 00000 n 0003788515 00000 n 0003788685 00000 n 0003788800 00000 n 0003788915 00000 n 0003789031 00000 n 0003789147 00000 n 0003789290 00000 n 0003789406 00000 n 0003789522 00000 n 0003789638 00000 n 0003789754 00000 n 0003789870 00000 n 0003789982 00000 n 0003790098 00000 n 0003790212 00000 n 0003790327 00000 n 0003790442 00000 n 0003790557 00000 n 0003790672 00000 n 0003790787 00000 n 0003790899 00000 n 0003791014 00000 n 0003791119 00000 n 0003791234 00000 n 0003791349 00000 n 0003791464 00000 n 0003791579 00000 n 0003791691 00000 n 0003791806 00000 n 0003791902 00000 n 0003792017 00000 n 0003792132 00000 n 0003792247 00000 n 0003792359 00000 n 0003792474 00000 n 0003792615 00000 n 0003792730 00000 n 0003792845 00000 n 0003792960 00000 n 0003793075 00000 n 0003793190 00000 n 0003793305 00000 n 0003793420 00000 n 0003793535 00000 n 0003793647 00000 n 0003793762 00000 n 0003793885 00000 n 0003794000 00000 n 0003794115 00000 n 0003794230 00000 n 0003794345 00000 n 0003794460 00000 n 0003794575 00000 n 0003794687 00000 n 0003794802 00000 n 0003794934 00000 n 0003795049 00000 n 0003795164 00000 n 0003795279 00000 n 0003795394 00000 n 0003795509 00000 n 0003795624 00000 n 0003795739 00000 n 0003795851 00000 n 0003795966 00000 n 0003796089 00000 n 0003796204 00000 n 0003796525 00000 n 0003796610 00000 n 0003796750 00000 n 0003796865 00000 n 0003797005 00000 n 0003797120 00000 n 0003797214 00000 n 0003797356 00000 n 0003797471 00000 n 0003797613 00000 n 0003797728 00000 n 0003797870 00000 n 0003797985 00000 n 0003798106 00000 n 0003798246 00000 n 0003798361 00000 n 0003798500 00000 n 0003798615 00000 n 0003798755 00000 n 0003798870 00000 n 0003799009 00000 n 0003799124 00000 n 0003799264 00000 n 0003799380 00000 n 0003799516 00000 n 0003799632 00000 n 0003799762 00000 n 0003799902 00000 n 0003800018 00000 n 0003800158 00000 n 0003800274 00000 n 0003800413 00000 n 0003800529 00000 n 0003800669 00000 n 0003800785 00000 n 0003800924 00000 n 0003801040 00000 n 0003801180 00000 n 0003801296 00000 n 0003801432 00000 n 0003801548 00000 n 0003801678 00000 n 0003801819 00000 n 0003801935 00000 n 0003802076 00000 n 0003802192 00000 n 0003802332 00000 n 0003802448 00000 n 0003802589 00000 n 0003802705 00000 n 0003802845 00000 n 0003802961 00000 n 0003803102 00000 n 0003803218 00000 n 0003803355 00000 n 0003803471 00000 n 0003803601 00000 n 0003803741 00000 n 0003803857 00000 n 0003803997 00000 n 0003804113 00000 n 0003804252 00000 n 0003804368 00000 n 0003804508 00000 n 0003804624 00000 n 0003804763 00000 n 0003804879 00000 n 0003805019 00000 n 0003805135 00000 n 0003805271 00000 n 0003805387 00000 n 0003805472 00000 n 0003805614 00000 n 0003805730 00000 n 0003805872 00000 n 0003805988 00000 n 0003806082 00000 n 0003806222 00000 n 0003806338 00000 n 0003806478 00000 n 0003806594 00000 n 0003806734 00000 n 0003806850 00000 n 0003806971 00000 n 0003807113 00000 n 0003807229 00000 n 0003807370 00000 n 0003807486 00000 n 0003807628 00000 n 0003807744 00000 n 0003807885 00000 n 0003808001 00000 n 0003808143 00000 n 0003808259 00000 n 0003808397 00000 n 0003808513 00000 n 0003808643 00000 n 0003808784 00000 n 0003808900 00000 n 0003809041 00000 n 0003809157 00000 n 0003809297 00000 n 0003809413 00000 n 0003809554 00000 n 0003809670 00000 n 0003809810 00000 n 0003809926 00000 n 0003810067 00000 n 0003810183 00000 n 0003810320 00000 n 0003810436 00000 n 0003810566 00000 n 0003810707 00000 n 0003810823 00000 n 0003810964 00000 n 0003811080 00000 n 0003811220 00000 n 0003811336 00000 n 0003811477 00000 n 0003811593 00000 n 0003811733 00000 n 0003811849 00000 n 0003811990 00000 n 0003812106 00000 n 0003812243 00000 n 0003812359 00000 n 0003812489 00000 n 0003812629 00000 n 0003812745 00000 n 0003812885 00000 n 0003813001 00000 n 0003813140 00000 n 0003813256 00000 n 0003813396 00000 n 0003813512 00000 n 0003813651 00000 n 0003813767 00000 n 0003813907 00000 n 0003814023 00000 n 0003814159 00000 n 0003814275 00000 n 0003814391 00000 n 0003814555 00000 n 0003814640 00000 n 0003814781 00000 n 0003814897 00000 n 0003815038 00000 n 0003815154 00000 n 0003815314 00000 n 0003815399 00000 n 0003815540 00000 n 0003815656 00000 n 0003815795 00000 n 0003815911 00000 n 0003816027 00000 n 0003816139 00000 n 0003816255 00000 n 0003816360 00000 n 0003816475 00000 n 0003816795 00000 n 0003816880 00000 n 0003817017 00000 n 0003817132 00000 n 0003817273 00000 n 0003817388 00000 n 0003817482 00000 n 0003817623 00000 n 0003817738 00000 n 0003817879 00000 n 0003817994 00000 n 0003818135 00000 n 0003818250 00000 n 0003818371 00000 n 0003818513 00000 n 0003818628 00000 n 0003818769 00000 n 0003818884 00000 n 0003819026 00000 n 0003819141 00000 n 0003819282 00000 n 0003819397 00000 n 0003819539 00000 n 0003819655 00000 n 0003819797 00000 n 0003819913 00000 n 0003820043 00000 n 0003820180 00000 n 0003820296 00000 n 0003820437 00000 n 0003820553 00000 n 0003820693 00000 n 0003820809 00000 n 0003820950 00000 n 0003821066 00000 n 0003821206 00000 n 0003821322 00000 n 0003821463 00000 n 0003821579 00000 n 0003821720 00000 n 0003821836 00000 n 0003821966 00000 n 0003822102 00000 n 0003822218 00000 n 0003822358 00000 n 0003822474 00000 n 0003822613 00000 n 0003822729 00000 n 0003822869 00000 n 0003822985 00000 n 0003823124 00000 n 0003823240 00000 n 0003823380 00000 n 0003823496 00000 n 0003823636 00000 n 0003823752 00000 n 0003823882 00000 n 0003824018 00000 n 0003824134 00000 n 0003824274 00000 n 0003824390 00000 n 0003824529 00000 n 0003824645 00000 n 0003824785 00000 n 0003824901 00000 n 0003825040 00000 n 0003825156 00000 n 0003825296 00000 n 0003825412 00000 n 0003825552 00000 n 0003825668 00000 n 0003825753 00000 n 0003825891 00000 n 0003826007 00000 n 0003826149 00000 n 0003826265 00000 n 0003826359 00000 n 0003826499 00000 n 0003826615 00000 n 0003826755 00000 n 0003826871 00000 n 0003827011 00000 n 0003827127 00000 n 0003827248 00000 n 0003827390 00000 n 0003827506 00000 n 0003827647 00000 n 0003827763 00000 n 0003827905 00000 n 0003828021 00000 n 0003828162 00000 n 0003828278 00000 n 0003828420 00000 n 0003828536 00000 n 0003828678 00000 n 0003828794 00000 n 0003828924 00000 n 0003829061 00000 n 0003829177 00000 n 0003829318 00000 n 0003829434 00000 n 0003829574 00000 n 0003829690 00000 n 0003829831 00000 n 0003829947 00000 n 0003830087 00000 n 0003830203 00000 n 0003830344 00000 n 0003830460 00000 n 0003830601 00000 n 0003830717 00000 n 0003830847 00000 n 0003830984 00000 n 0003831100 00000 n 0003831241 00000 n 0003831357 00000 n 0003831497 00000 n 0003831613 00000 n 0003831754 00000 n 0003831870 00000 n 0003832010 00000 n 0003832126 00000 n 0003832267 00000 n 0003832383 00000 n 0003832524 00000 n 0003832640 00000 n 0003832770 00000 n 0003832907 00000 n 0003833023 00000 n 0003833164 00000 n 0003833280 00000 n 0003833420 00000 n 0003833536 00000 n 0003833677 00000 n 0003833793 00000 n 0003833933 00000 n 0003834049 00000 n 0003834190 00000 n 0003834306 00000 n 0003834447 00000 n 0003834563 00000 n 0003834679 00000 n 0003834795 00000 n 0003834907 00000 n 0003835023 00000 n 0003835137 00000 n 0003835252 00000 n 0003835367 00000 n 0003835482 00000 n 0003835597 00000 n 0003835712 00000 n 0003835824 00000 n 0003835939 00000 n 0003836053 00000 n 0003836168 00000 n 0003836489 00000 n 0003836574 00000 n 0003836715 00000 n 0003836830 00000 n 0003836971 00000 n 0003837086 00000 n 0003837180 00000 n 0003837320 00000 n 0003837435 00000 n 0003837575 00000 n 0003837690 00000 n 0003837830 00000 n 0003837945 00000 n 0003838066 00000 n 0003838208 00000 n 0003838323 00000 n 0003838464 00000 n 0003838579 00000 n 0003838721 00000 n 0003838836 00000 n 0003838977 00000 n 0003839092 00000 n 0003839234 00000 n 0003839350 00000 n 0003839492 00000 n 0003839608 00000 n 0003839738 00000 n 0003839878 00000 n 0003839994 00000 n 0003840134 00000 n 0003840250 00000 n 0003840389 00000 n 0003840505 00000 n 0003840645 00000 n 0003840761 00000 n 0003840900 00000 n 0003841016 00000 n 0003841156 00000 n 0003841272 00000 n 0003841412 00000 n 0003841528 00000 n 0003841658 00000 n 0003841799 00000 n 0003841915 00000 n 0003842056 00000 n 0003842172 00000 n 0003842312 00000 n 0003842428 00000 n 0003842569 00000 n 0003842685 00000 n 0003842825 00000 n 0003842941 00000 n 0003843082 00000 n 0003843198 00000 n 0003843339 00000 n 0003843455 00000 n 0003843585 00000 n 0003843727 00000 n 0003843843 00000 n 0003843985 00000 n 0003844101 00000 n 0003844242 00000 n 0003844358 00000 n 0003844500 00000 n 0003844616 00000 n 0003844757 00000 n 0003844873 00000 n 0003845015 00000 n 0003845131 00000 n 0003845273 00000 n 0003845389 00000 n 0003845474 00000 n 0003845615 00000 n 0003845731 00000 n 0003845872 00000 n 0003845988 00000 n 0003846082 00000 n 0003846223 00000 n 0003846339 00000 n 0003846480 00000 n 0003846596 00000 n 0003846737 00000 n 0003846853 00000 n 0003846974 00000 n 0003847116 00000 n 0003847232 00000 n 0003847373 00000 n 0003847489 00000 n 0003847631 00000 n 0003847747 00000 n 0003847888 00000 n 0003848004 00000 n 0003848146 00000 n 0003848262 00000 n 0003848404 00000 n 0003848520 00000 n 0003848650 00000 n 0003848791 00000 n 0003848907 00000 n 0003849048 00000 n 0003849164 00000 n 0003849304 00000 n 0003849420 00000 n 0003849561 00000 n 0003849677 00000 n 0003849817 00000 n 0003849933 00000 n 0003850074 00000 n 0003850190 00000 n 0003850331 00000 n 0003850447 00000 n 0003850577 00000 n 0003850717 00000 n 0003850833 00000 n 0003850973 00000 n 0003851089 00000 n 0003851228 00000 n 0003851344 00000 n 0003851484 00000 n 0003851600 00000 n 0003851739 00000 n 0003851855 00000 n 0003851995 00000 n 0003852111 00000 n 0003852251 00000 n 0003852367 00000 n 0003852497 00000 n 0003852637 00000 n 0003852753 00000 n 0003852893 00000 n 0003853009 00000 n 0003853148 00000 n 0003853264 00000 n 0003853404 00000 n 0003853520 00000 n 0003853659 00000 n 0003853775 00000 n 0003853915 00000 n 0003854031 00000 n 0003854171 00000 n 0003854287 00000 n 0003854403 00000 n 0003854519 00000 n 0003854635 00000 n 0003854747 00000 n 0003854863 00000 n 0003854968 00000 n 0003855083 00000 n 0003855408 00000 n 0003855493 00000 n 0003855632 00000 n 0003855747 00000 n 0003855887 00000 n 0003856002 00000 n 0003856096 00000 n 0003856236 00000 n 0003856351 00000 n 0003856491 00000 n 0003856606 00000 n 0003856746 00000 n 0003856861 00000 n 0003856982 00000 n 0003857124 00000 n 0003857239 00000 n 0003857379 00000 n 0003857494 00000 n 0003857636 00000 n 0003857751 00000 n 0003857892 00000 n 0003858007 00000 n 0003858149 00000 n 0003858265 00000 n 0003858406 00000 n 0003858522 00000 n 0003858652 00000 n 0003858793 00000 n 0003858909 00000 n 0003859051 00000 n 0003859167 00000 n 0003859307 00000 n 0003859423 00000 n 0003859565 00000 n 0003859681 00000 n 0003859822 00000 n 0003859938 00000 n 0003860080 00000 n 0003860196 00000 n 0003860337 00000 n 0003860453 00000 n 0003860583 00000 n 0003860724 00000 n 0003860840 00000 n 0003860982 00000 n 0003861098 00000 n 0003861238 00000 n 0003861354 00000 n 0003861496 00000 n 0003861612 00000 n 0003861753 00000 n 0003861869 00000 n 0003862011 00000 n 0003862127 00000 n 0003862268 00000 n 0003862384 00000 n 0003862514 00000 n 0003862655 00000 n 0003862771 00000 n 0003862913 00000 n 0003863029 00000 n 0003863169 00000 n 0003863285 00000 n 0003863427 00000 n 0003863543 00000 n 0003863684 00000 n 0003863800 00000 n 0003863942 00000 n 0003864058 00000 n 0003864199 00000 n 0003864315 00000 n 0003864400 00000 n 0003864539 00000 n 0003864655 00000 n 0003864795 00000 n 0003864911 00000 n 0003865005 00000 n 0003865145 00000 n 0003865261 00000 n 0003865401 00000 n 0003865517 00000 n 0003865657 00000 n 0003865773 00000 n 0003865894 00000 n 0003866036 00000 n 0003866152 00000 n 0003866292 00000 n 0003866408 00000 n 0003866550 00000 n 0003866666 00000 n 0003866807 00000 n 0003866923 00000 n 0003867065 00000 n 0003867181 00000 n 0003867322 00000 n 0003867438 00000 n 0003867568 00000 n 0003867707 00000 n 0003867823 00000 n 0003867963 00000 n 0003868079 00000 n 0003868217 00000 n 0003868333 00000 n 0003868473 00000 n 0003868589 00000 n 0003868728 00000 n 0003868844 00000 n 0003868984 00000 n 0003869100 00000 n 0003869239 00000 n 0003869355 00000 n 0003869485 00000 n 0003869625 00000 n 0003869741 00000 n 0003869882 00000 n 0003869998 00000 n 0003870137 00000 n 0003870253 00000 n 0003870394 00000 n 0003870510 00000 n 0003870650 00000 n 0003870766 00000 n 0003870907 00000 n 0003871023 00000 n 0003871163 00000 n 0003871279 00000 n 0003871409 00000 n 0003871548 00000 n 0003871664 00000 n 0003871804 00000 n 0003871920 00000 n 0003872058 00000 n 0003872174 00000 n 0003872314 00000 n 0003872430 00000 n 0003872569 00000 n 0003872685 00000 n 0003872825 00000 n 0003872941 00000 n 0003873080 00000 n 0003873196 00000 n 0003873312 00000 n 0003873428 00000 n 0003873540 00000 n 0003873656 00000 n 0003874020 00000 n 0003874135 00000 n 0003874250 00000 n 0003874365 00000 n 0003874480 00000 n 0003874595 00000 n 0003874710 00000 n 0003874825 00000 n 0003874940 00000 n 0003875055 00000 n 0003875170 00000 n 0003875286 00000 n 0003875402 00000 n 0003875518 00000 n 0003875634 00000 n 0003875750 00000 n 0003875866 00000 n 0003875982 00000 n 0003876098 00000 n 0003876214 00000 n 0003876330 00000 n 0003876446 00000 n 0003876562 00000 n 0003876678 00000 n 0003876794 00000 n 0003876910 00000 n 0003877026 00000 n 0003877142 00000 n 0003877258 00000 n 0003877374 00000 n 0003877513 00000 n 0003877629 00000 n 0003877745 00000 n 0003877861 00000 n 0003877977 00000 n 0003878055 00000 n 0003878171 00000 n 0003878294 00000 n 0003878493 00000 n 0003878623 00000 n 0003878764 00000 n 0003878880 00000 n 0003879022 00000 n 0003879156 00000 n 0003879296 00000 n 0003879430 00000 n 0003879570 00000 n 0003879704 00000 n 0003879846 00000 n 0003879980 00000 n 0003880121 00000 n 0003880255 00000 n 0003880396 00000 n 0003880530 00000 n 0003880660 00000 n 0003880800 00000 n 0003880934 00000 n 0003881075 00000 n 0003881209 00000 n 0003881348 00000 n 0003881482 00000 n 0003881621 00000 n 0003881755 00000 n 0003881896 00000 n 0003882012 00000 n 0003882152 00000 n 0003882286 00000 n 0003882426 00000 n 0003882560 00000 n 0003882690 00000 n 0003882831 00000 n 0003882947 00000 n 0003883089 00000 n 0003883223 00000 n 0003883363 00000 n 0003883497 00000 n 0003883637 00000 n 0003883771 00000 n 0003883913 00000 n 0003884047 00000 n 0003884188 00000 n 0003884322 00000 n 0003884463 00000 n 0003884597 00000 n 0003884718 00000 n 0003884858 00000 n 0003884974 00000 n 0003885113 00000 n 0003885247 00000 n 0003885386 00000 n 0003885520 00000 n 0003885661 00000 n 0003885795 00000 n 0003885935 00000 n 0003886069 00000 n 0003886209 00000 n 0003886343 00000 n 0003886437 00000 n 0003886576 00000 n 0003886692 00000 n 0003886840 00000 n 0003886956 00000 n 0003887072 00000 n 0003887213 00000 n 0003887329 00000 n 0003887445 00000 n 0003887561 00000 n 0003887677 00000 n 0003887793 00000 n 0003887909 00000 n 0003887996 00000 n 0003888112 00000 n 0003888228 00000 n 0003888340 00000 n 0003888456 00000 n 0003888613 00000 n 0003888728 00000 n 0003888843 00000 n 0003888958 00000 n 0003889073 00000 n 0003889188 00000 n 0003889303 00000 n 0003889568 00000 n 0003889683 00000 n 0003889798 00000 n 0003889913 00000 n 0003890028 00000 n 0003890144 00000 n 0003890260 00000 n 0003890376 00000 n 0003890492 00000 n 0003890608 00000 n 0003890724 00000 n 0003890840 00000 n 0003890956 00000 n 0003891072 00000 n 0003891188 00000 n 0003891304 00000 n 0003891420 00000 n 0003891536 00000 n 0003891652 00000 n 0003891926 00000 n 0003892042 00000 n 0003892158 00000 n 0003892274 00000 n 0003892390 00000 n 0003892506 00000 n 0003892622 00000 n 0003892738 00000 n 0003892854 00000 n 0003892970 00000 n 0003893086 00000 n 0003893202 00000 n 0003893318 00000 n 0003893434 00000 n 0003893550 00000 n 0003893666 00000 n 0003893782 00000 n 0003893898 00000 n 0003894014 00000 n 0003894130 00000 n 0003894208 00000 n 0003894324 00000 n 0003894510 00000 n 0003894626 00000 n 0003894742 00000 n 0003894858 00000 n 0003894974 00000 n 0003895090 00000 n 0003895206 00000 n 0003895322 00000 n 0003895438 00000 n 0003895554 00000 n 0003895670 00000 n 0003895786 00000 n 0003895902 00000 n 0003896018 00000 n 0003896105 00000 n 0003896221 00000 n 0003896337 00000 n 0003896449 00000 n 0003896565 00000 n 0003896688 00000 n 0003896803 00000 n 0003897078 00000 n 0003897163 00000 n 0003897301 00000 n 0003897435 00000 n 0003897536 00000 n 0003897637 00000 n 0003897777 00000 n 0003897892 00000 n 0003897977 00000 n 0003898118 00000 n 0003898233 00000 n 0003898374 00000 n 0003898489 00000 n 0003898610 00000 n 0003898752 00000 n 0003898867 00000 n 0003899009 00000 n 0003899124 00000 n 0003899262 00000 n 0003899377 00000 n 0003899519 00000 n 0003899635 00000 n 0003899777 00000 n 0003899893 00000 n 0003900034 00000 n 0003900150 00000 n 0003900280 00000 n 0003900419 00000 n 0003900535 00000 n 0003900676 00000 n 0003900792 00000 n 0003900933 00000 n 0003901049 00000 n 0003901186 00000 n 0003901302 00000 n 0003901443 00000 n 0003901559 00000 n 0003901700 00000 n 0003901816 00000 n 0003901956 00000 n 0003902072 00000 n 0003902202 00000 n 0003902341 00000 n 0003902457 00000 n 0003902598 00000 n 0003902714 00000 n 0003902855 00000 n 0003902971 00000 n 0003903108 00000 n 0003903224 00000 n 0003903365 00000 n 0003903481 00000 n 0003903622 00000 n 0003903738 00000 n 0003903878 00000 n 0003903994 00000 n 0003904124 00000 n 0003904263 00000 n 0003904379 00000 n 0003904520 00000 n 0003904636 00000 n 0003904777 00000 n 0003904893 00000 n 0003905030 00000 n 0003905146 00000 n 0003905287 00000 n 0003905403 00000 n 0003905544 00000 n 0003905660 00000 n 0003905800 00000 n 0003905916 00000 n 0003906046 00000 n 0003906185 00000 n 0003906301 00000 n 0003906442 00000 n 0003906558 00000 n 0003906699 00000 n 0003906815 00000 n 0003906952 00000 n 0003907068 00000 n 0003907209 00000 n 0003907325 00000 n 0003907466 00000 n 0003907582 00000 n 0003907722 00000 n 0003907838 00000 n 0003907954 00000 n 0003908070 00000 n 0003908186 00000 n 0003908302 00000 n 0003908414 00000 n 0003908530 00000 n 0003908626 00000 n 0003908741 00000 n 0003908856 00000 n 0003908971 00000 n 0003909083 00000 n 0003909198 00000 n 0003909303 00000 n 0003909418 00000 n 0003909533 00000 n 0003909648 00000 n 0003909763 00000 n 0003909875 00000 n 0003909990 00000 n 0003910113 00000 n 0003910228 00000 n 0003910343 00000 n 0003910458 00000 n 0003910573 00000 n 0003910688 00000 n 0003910803 00000 n 0003910915 00000 n 0003911030 00000 n 0003911153 00000 n 0003911268 00000 n 0003911383 00000 n 0003911498 00000 n 0003911613 00000 n 0003911728 00000 n 0003911843 00000 n 0003911955 00000 n 0003912070 00000 n 0003912184 00000 n 0003912299 00000 n 0003912414 00000 n 0003912529 00000 n 0003912644 00000 n 0003912759 00000 n 0003912871 00000 n 0003912986 00000 n 0003913091 00000 n 0003913206 00000 n 0003913321 00000 n 0003913436 00000 n 0003913551 00000 n 0003913663 00000 n 0003913778 00000 n 0003914025 00000 n 0003914140 00000 n 0003914255 00000 n 0003914370 00000 n 0003914485 00000 n 0003914600 00000 n 0003914715 00000 n 0003914830 00000 n 0003914945 00000 n 0003915060 00000 n 0003915175 00000 n 0003915291 00000 n 0003915407 00000 n 0003915523 00000 n 0003915639 00000 n 0003915755 00000 n 0003915871 00000 n 0003916091 00000 n 0003916207 00000 n 0003916323 00000 n 0003916439 00000 n 0003916555 00000 n 0003916671 00000 n 0003916787 00000 n 0003916903 00000 n 0003917019 00000 n 0003917135 00000 n 0003917251 00000 n 0003917367 00000 n 0003917483 00000 n 0003917599 00000 n 0003917695 00000 n 0003917811 00000 n 0003917927 00000 n 0003918043 00000 n 0003918155 00000 n 0003918271 00000 n 0003918385 00000 n 0003918500 00000 n 0003918615 00000 n 0003918730 00000 n 0003918845 00000 n 0003918960 00000 n 0003919072 00000 n 0003919187 00000 n 0003919371 00000 n 0003919486 00000 n 0003919601 00000 n 0003919716 00000 n 0003919831 00000 n 0003919946 00000 n 0003920061 00000 n 0003920176 00000 n 0003920291 00000 n 0003920406 00000 n 0003920493 00000 n 0003920608 00000 n 0003920724 00000 n 0003920836 00000 n 0003920952 00000 n 0003921352 00000 n 0003921467 00000 n 0003921582 00000 n 0003921697 00000 n 0003921812 00000 n 0003921927 00000 n 0003922042 00000 n 0003922157 00000 n 0003922272 00000 n 0003922387 00000 n 0003922502 00000 n 0003922618 00000 n 0003922734 00000 n 0003922850 00000 n 0003922966 00000 n 0003923082 00000 n 0003923198 00000 n 0003923314 00000 n 0003923430 00000 n 0003923546 00000 n 0003923662 00000 n 0003923778 00000 n 0003923894 00000 n 0003924010 00000 n 0003924126 00000 n 0003924242 00000 n 0003924358 00000 n 0003924474 00000 n 0003924590 00000 n 0003924706 00000 n 0003924822 00000 n 0003924938 00000 n 0003925054 00000 n 0003925170 00000 n 0003925248 00000 n 0003925364 00000 n 0003925460 00000 n 0003925576 00000 n 0003925692 00000 n 0003925808 00000 n 0003925920 00000 n 0003926036 00000 n 0003926114 00000 n 0003926229 00000 n 0003926307 00000 n 0003926422 00000 n 0003926534 00000 n 0003926649 00000 n 0003926745 00000 n 0003926860 00000 n 0003926975 00000 n 0003927090 00000 n 0003927202 00000 n 0003927317 00000 n 0003927465 00000 n 0003927580 00000 n 0003927695 00000 n 0003927810 00000 n 0003927925 00000 n 0003928040 00000 n 0003928215 00000 n 0003928330 00000 n 0003928445 00000 n 0003928560 00000 n 0003928675 00000 n 0003928790 00000 n 0003928906 00000 n 0003929022 00000 n 0003929138 00000 n 0003929349 00000 n 0003929465 00000 n 0003929581 00000 n 0003929697 00000 n 0003929813 00000 n 0003929929 00000 n 0003930045 00000 n 0003930161 00000 n 0003930277 00000 n 0003930393 00000 n 0003930509 00000 n 0003930625 00000 n 0003930741 00000 n 0003930819 00000 n 0003930935 00000 n 0003931022 00000 n 0003931138 00000 n 0003931254 00000 n 0003931332 00000 n 0003931448 00000 n 0003931560 00000 n 0003931676 00000 n 0003931781 00000 n 0003931896 00000 n 0003932011 00000 n 0003932126 00000 n 0003932241 00000 n 0003932353 00000 n 0003932468 00000 n 0003932573 00000 n 0003932688 00000 n 0003932803 00000 n 0003932918 00000 n 0003933033 00000 n 0003933145 00000 n 0003933260 00000 n 0003933444 00000 n 0003933559 00000 n 0003933674 00000 n 0003933789 00000 n 0003933904 00000 n 0003934019 00000 n 0003934134 00000 n 0003934249 00000 n 0003934364 00000 n 0003934479 00000 n 0003934690 00000 n 0003934805 00000 n 0003934921 00000 n 0003935037 00000 n 0003935153 00000 n 0003935269 00000 n 0003935385 00000 n 0003935501 00000 n 0003935617 00000 n 0003935733 00000 n 0003935849 00000 n 0003935965 00000 n 0003936081 00000 n 0003936159 00000 n 0003936275 00000 n 0003936353 00000 n 0003936515 00000 n 0003936681 00000 n 0003936819 00000 n 0003936935 00000 n 0003937074 00000 n 0003937190 00000 n 0003937329 00000 n 0003937445 00000 n 0003937583 00000 n 0003937699 00000 n 0003937835 00000 n 0003937951 00000 n 0003938091 00000 n 0003938207 00000 n 0003938346 00000 n 0003938462 00000 n 0003938602 00000 n 0003938718 00000 n 0003938856 00000 n 0003938972 00000 n 0003939112 00000 n 0003939228 00000 n 0003939368 00000 n 0003939484 00000 n 0003939614 00000 n 0003939730 00000 n 0003939846 00000 n 0003939962 00000 n 0003940119 00000 n 0003940235 00000 n 0003940351 00000 n 0003940467 00000 n 0003940583 00000 n 0003940699 00000 n 0003940815 00000 n 0003940893 00000 n 0003941059 00000 n 0003941216 00000 n 0003941357 00000 n 0003941473 00000 n 0003941613 00000 n 0003941729 00000 n 0003941871 00000 n 0003941987 00000 n 0003942129 00000 n 0003942245 00000 n 0003942386 00000 n 0003942502 00000 n 0003942643 00000 n 0003942759 00000 n 0003942899 00000 n 0003943015 00000 n 0003943156 00000 n 0003943272 00000 n 0003943414 00000 n 0003943530 00000 n 0003943670 00000 n 0003943786 00000 n 0003943873 00000 n 0003944034 00000 n 0003944200 00000 n 0003944339 00000 n 0003944455 00000 n 0003944594 00000 n 0003944710 00000 n 0003944850 00000 n 0003944966 00000 n 0003945105 00000 n 0003945221 00000 n 0003945360 00000 n 0003945476 00000 n 0003945617 00000 n 0003945733 00000 n 0003945874 00000 n 0003945990 00000 n 0003946129 00000 n 0003946245 00000 n 0003946395 00000 n 0003946511 00000 n 0003946627 00000 n 0003946768 00000 n 0003946884 00000 n 0003947025 00000 n 0003947141 00000 n 0003947257 00000 n 0003947369 00000 n 0003947485 00000 n 0003947651 00000 n 0003947766 00000 n 0003947881 00000 n 0003947996 00000 n 0003948111 00000 n 0003948226 00000 n 0003948341 00000 n 0003948456 00000 n 0003948534 00000 n 0003948649 00000 n 0003948736 00000 n 0003948851 00000 n 0003948966 00000 n 0003949078 00000 n 0003949194 00000 n 0003949324 00000 n 0003949439 00000 n 0003949554 00000 n 0003949669 00000 n 0003949792 00000 n 0003949907 00000 n 0003950022 00000 n 0003950137 00000 n 0003950252 00000 n 0003950367 00000 n 0003950482 00000 n 0003950666 00000 n 0003950781 00000 n 0003950897 00000 n 0003951013 00000 n 0003951129 00000 n 0003951245 00000 n 0003951361 00000 n 0003951477 00000 n 0003951593 00000 n 0003951709 00000 n 0003951821 00000 n 0003951937 00000 n 0003952067 00000 n 0003952182 00000 n 0003952297 00000 n 0003952412 00000 n 0003952490 00000 n 0003952605 00000 n 0003952717 00000 n 0003952832 00000 n 0003952937 00000 n 0003953104 00000 n 0003953189 00000 n 0003953343 00000 n 0003953458 00000 n 0003953573 00000 n 0003953688 00000 n 0003953824 00000 n 0003953957 00000 n 0003954033 00000 n 0003954181 00000 n 0003954296 00000 n 0003954412 00000 n 0003954528 00000 n 0003954644 00000 n 0003954760 00000 n 0003954872 00000 n 0003954988 00000 n 0003955093 00000 n 0003955208 00000 n 0003955323 00000 n 0003955438 00000 n 0003955553 00000 n 0003955665 00000 n 0003955780 00000 n 0003955966 00000 n 0003956081 00000 n 0003956196 00000 n 0003956311 00000 n 0003956426 00000 n 0003956541 00000 n 0003956656 00000 n 0003956812 00000 n 0003956897 00000 n 0003957054 00000 n 0003957169 00000 n 0003957284 00000 n 0003957399 00000 n 0003957537 00000 n 0003957652 00000 n 0003957768 00000 n 0003957884 00000 n 0003958000 00000 n 0003958116 00000 n 0003958232 00000 n 0003958348 00000 n 0003958460 00000 n 0003958576 00000 n 0003958699 00000 n 0003958814 00000 n 0003958929 00000 n 0003959044 00000 n 0003959159 00000 n 0003959274 00000 n 0003959389 00000 n 0003959501 00000 n 0003959616 00000 n 0003959730 00000 n 0003959845 00000 n 0003959960 00000 n 0003960075 00000 n 0003960190 00000 n 0003960305 00000 n 0003960417 00000 n 0003960532 00000 n 0003960691 00000 n 0003960806 00000 n 0003960921 00000 n 0003961036 00000 n 0003961151 00000 n 0003961266 00000 n 0003961381 00000 n 0003961496 00000 n 0003961611 00000 n 0003961726 00000 n 0003961841 00000 n 0003961953 00000 n 0003962069 00000 n 0003962343 00000 n 0003962458 00000 n 0003962573 00000 n 0003962688 00000 n 0003962803 00000 n 0003962918 00000 n 0003963033 00000 n 0003963148 00000 n 0003963263 00000 n 0003963378 00000 n 0003963493 00000 n 0003963609 00000 n 0003963725 00000 n 0003963841 00000 n 0003963957 00000 n 0003964073 00000 n 0003964189 00000 n 0003964305 00000 n 0003964421 00000 n 0003964537 00000 n 0003964615 00000 n 0003964731 00000 n 0003964818 00000 n 0003964934 00000 n 0003965050 00000 n 0003965162 00000 n 0003965278 00000 n 0003965392 00000 n 0003965507 00000 n 0003965622 00000 n 0003965737 00000 n 0003965852 00000 n 0003965967 00000 n 0003966079 00000 n 0003966194 00000 n 0003966290 00000 n 0003966405 00000 n 0003966520 00000 n 0003966635 00000 n 0003966747 00000 n 0003966862 00000 n 0003967109 00000 n 0003967224 00000 n 0003967339 00000 n 0003967454 00000 n 0003967569 00000 n 0003967684 00000 n 0003967799 00000 n 0003967914 00000 n 0003968029 00000 n 0003968144 00000 n 0003968259 00000 n 0003968375 00000 n 0003968491 00000 n 0003968607 00000 n 0003968723 00000 n 0003968839 00000 n 0003968955 00000 n 0003969069 00000 n 0003969185 00000 n 0003969301 00000 n 0003969417 00000 n 0003969533 00000 n 0003969649 00000 n 0003969761 00000 n 0003969877 00000 n 0003969973 00000 n 0003970088 00000 n 0003970203 00000 n 0003970318 00000 n 0003970430 00000 n 0003970545 00000 n 0003970668 00000 n 0003970783 00000 n 0003970898 00000 n 0003971013 00000 n 0003971128 00000 n 0003971243 00000 n 0003971358 00000 n 0003971470 00000 n 0003971585 00000 n 0003971717 00000 n 0003971832 00000 n 0003971947 00000 n 0003972062 00000 n 0003972177 00000 n 0003972292 00000 n 0003972407 00000 n 0003972522 00000 n 0003972634 00000 n 0003972749 00000 n 0003972908 00000 n 0003973023 00000 n 0003973138 00000 n 0003973253 00000 n 0003973368 00000 n 0003973483 00000 n 0003973598 00000 n 0003973713 00000 n 0003973828 00000 n 0003973943 00000 n 0003974058 00000 n 0003974136 00000 n 0003974252 00000 n 0003974364 00000 n 0003974480 00000 n 0003974567 00000 n 0003974682 00000 n 0003974797 00000 n 0003974909 00000 n 0003975024 00000 n 0003975147 00000 n 0003975262 00000 n 0003975377 00000 n 0003975492 00000 n 0003975607 00000 n 0003975771 00000 n 0003975856 00000 n 0003976017 00000 n 0003976132 00000 n 0003976247 00000 n 0003976362 00000 n 0003976504 00000 n 0003976619 00000 n 0003976734 00000 n 0003976846 00000 n 0003976961 00000 n 0003977057 00000 n 0003977172 00000 n 0003977333 00000 n 0003977418 00000 n 0003977569 00000 n 0003977684 00000 n 0003977799 00000 n 0003977951 00000 n 0003978066 00000 n 0003978181 00000 n 0003978296 00000 n 0003978408 00000 n 0003978523 00000 n 0003978637 00000 n 0003978752 00000 n 0003978867 00000 n 0003978982 00000 n 0003979247 00000 n 0003979332 00000 n 0003979471 00000 n 0003979586 00000 n 0003979727 00000 n 0003979842 00000 n 0003979927 00000 n 0003980066 00000 n 0003980181 00000 n 0003980322 00000 n 0003980437 00000 n 0003980522 00000 n 0003980660 00000 n 0003980775 00000 n 0003980915 00000 n 0003981030 00000 n 0003981115 00000 n 0003981253 00000 n 0003981368 00000 n 0003981508 00000 n 0003981624 00000 n 0003981718 00000 n 0003981857 00000 n 0003981973 00000 n 0003982113 00000 n 0003982229 00000 n 0003982370 00000 n 0003982486 00000 n 0003982571 00000 n 0003982712 00000 n 0003982828 00000 n 0003982970 00000 n 0003983086 00000 n 0003983180 00000 n 0003983318 00000 n 0003983434 00000 n 0003983573 00000 n 0003983689 00000 n 0003983829 00000 n 0003983945 00000 n 0003984030 00000 n 0003984171 00000 n 0003984287 00000 n 0003984429 00000 n 0003984545 00000 n 0003984661 00000 n 0003984773 00000 n 0003984889 00000 n 0003985012 00000 n 0003985303 00000 n 0003985388 00000 n 0003985526 00000 n 0003985641 00000 n 0003985777 00000 n 0003985892 00000 n 0003985986 00000 n 0003986124 00000 n 0003986239 00000 n 0003986375 00000 n 0003986490 00000 n 0003986630 00000 n 0003986764 00000 n 0003986865 00000 n 0003986966 00000 n 0003987060 00000 n 0003987199 00000 n 0003987314 00000 n 0003987451 00000 n 0003987566 00000 n 0003987707 00000 n 0003987822 00000 n 0003987916 00000 n 0003988054 00000 n 0003988170 00000 n 0003988306 00000 n 0003988422 00000 n 0003988562 00000 n 0003988697 00000 n 0003988799 00000 n 0003988901 00000 n 0003988995 00000 n 0003989134 00000 n 0003989250 00000 n 0003989387 00000 n 0003989503 00000 n 0003989644 00000 n 0003989779 00000 n 0003989881 00000 n 0003989983 00000 n 0003990086 00000 n 0003990224 00000 n 0003990340 00000 n 0003990481 00000 n 0003990597 00000 n 0003990733 00000 n 0003990849 00000 n 0003990989 00000 n 0003991124 00000 n 0003991226 00000 n 0003991328 00000 n 0003991422 00000 n 0003991565 00000 n 0003991681 00000 n 0003991819 00000 n 0003991935 00000 n 0003992077 00000 n 0003992212 00000 n 0003992314 00000 n 0003992416 00000 n 0003992519 00000 n 0003992658 00000 n 0003992774 00000 n 0003992916 00000 n 0003993032 00000 n 0003993169 00000 n 0003993285 00000 n 0003993426 00000 n 0003993561 00000 n 0003993663 00000 n 0003993765 00000 n 0003993859 00000 n 0003994000 00000 n 0003994116 00000 n 0003994252 00000 n 0003994368 00000 n 0003994508 00000 n 0003994643 00000 n 0003994745 00000 n 0003994847 00000 n 0003994963 00000 n 0003995259 00000 n 0003995344 00000 n 0003995483 00000 n 0003995599 00000 n 0003995735 00000 n 0003995851 00000 n 0003995936 00000 n 0003996075 00000 n 0003996191 00000 n 0003996327 00000 n 0003996443 00000 n 0003996528 00000 n 0003996668 00000 n 0003996784 00000 n 0003996921 00000 n 0003997037 00000 n 0003997131 00000 n 0003997271 00000 n 0003997387 00000 n 0003997529 00000 n 0003997645 00000 n 0003997782 00000 n 0003997898 00000 n 0003997983 00000 n 0003998124 00000 n 0003998240 00000 n 0003998376 00000 n 0003998492 00000 n 0003998577 00000 n 0003998720 00000 n 0003998836 00000 n 0003998974 00000 n 0003999090 00000 n 0003999175 00000 n 0003999316 00000 n 0003999432 00000 n 0003999568 00000 n 0003999684 00000 n 0003999769 00000 n 0003999911 00000 n 0004000027 00000 n 0004000164 00000 n 0004000280 00000 n 0004000374 00000 n 0004000514 00000 n 0004000630 00000 n 0004000772 00000 n 0004000888 00000 n 0004001025 00000 n 0004001141 00000 n 0004001257 00000 n 0004001555 00000 n 0004001640 00000 n 0004001780 00000 n 0004001896 00000 n 0004002035 00000 n 0004002151 00000 n 0004002236 00000 n 0004002375 00000 n 0004002491 00000 n 0004002629 00000 n 0004002745 00000 n 0004002830 00000 n 0004002970 00000 n 0004003086 00000 n 0004003225 00000 n 0004003341 00000 n 0004003426 00000 n 0004003565 00000 n 0004003681 00000 n 0004003819 00000 n 0004003935 00000 n 0004004029 00000 n 0004004169 00000 n 0004004285 00000 n 0004004427 00000 n 0004004543 00000 n 0004004682 00000 n 0004004798 00000 n 0004004883 00000 n 0004005024 00000 n 0004005140 00000 n 0004005278 00000 n 0004005394 00000 n 0004005479 00000 n 0004005621 00000 n 0004005737 00000 n 0004005876 00000 n 0004005992 00000 n 0004006077 00000 n 0004006220 00000 n 0004006336 00000 n 0004006476 00000 n 0004006592 00000 n 0004006677 00000 n 0004006819 00000 n 0004006935 00000 n 0004007074 00000 n 0004007190 00000 n 0004007284 00000 n 0004007424 00000 n 0004007540 00000 n 0004007682 00000 n 0004007798 00000 n 0004007937 00000 n 0004008053 00000 n 0004008169 00000 n 0004008281 00000 n 0004008397 00000 n 0004008520 00000 n 0004008799 00000 n 0004008884 00000 n 0004009023 00000 n 0004009138 00000 n 0004009278 00000 n 0004009393 00000 n 0004009478 00000 n 0004009618 00000 n 0004009733 00000 n 0004009874 00000 n 0004009989 00000 n 0004010083 00000 n 0004010223 00000 n 0004010338 00000 n 0004010479 00000 n 0004010594 00000 n 0004010735 00000 n 0004010850 00000 n 0004010935 00000 n 0004011075 00000 n 0004011190 00000 n 0004011330 00000 n 0004011445 00000 n 0004011530 00000 n 0004011670 00000 n 0004011785 00000 n 0004011925 00000 n 0004012041 00000 n 0004012126 00000 n 0004012268 00000 n 0004012384 00000 n 0004012526 00000 n 0004012642 00000 n 0004012727 00000 n 0004012868 00000 n 0004012984 00000 n 0004013125 00000 n 0004013241 00000 n 0004013335 00000 n 0004013475 00000 n 0004013591 00000 n 0004013732 00000 n 0004013848 00000 n 0004013989 00000 n 0004014105 00000 n 0004014221 00000 n 0004014475 00000 n 0004014569 00000 n 0004014711 00000 n 0004014827 00000 n 0004014965 00000 n 0004015081 00000 n 0004015221 00000 n 0004015337 00000 n 0004015431 00000 n 0004015572 00000 n 0004015688 00000 n 0004015825 00000 n 0004015941 00000 n 0004016080 00000 n 0004016196 00000 n 0004016290 00000 n 0004016432 00000 n 0004016548 00000 n 0004016686 00000 n 0004016802 00000 n 0004016942 00000 n 0004017058 00000 n 0004017152 00000 n 0004017294 00000 n 0004017410 00000 n 0004017548 00000 n 0004017664 00000 n 0004017804 00000 n 0004017920 00000 n 0004018014 00000 n 0004018156 00000 n 0004018272 00000 n 0004018410 00000 n 0004018526 00000 n 0004018666 00000 n 0004018782 00000 n 0004018898 00000 n 0004019173 00000 n 0004019258 00000 n 0004019399 00000 n 0004019515 00000 n 0004019655 00000 n 0004019771 00000 n 0004019856 00000 n 0004019996 00000 n 0004020112 00000 n 0004020251 00000 n 0004020367 00000 n 0004020452 00000 n 0004020592 00000 n 0004020708 00000 n 0004020847 00000 n 0004020963 00000 n 0004021048 00000 n 0004021189 00000 n 0004021305 00000 n 0004021445 00000 n 0004021561 00000 n 0004021646 00000 n 0004021786 00000 n 0004021902 00000 n 0004022041 00000 n 0004022157 00000 n 0004022251 00000 n 0004022391 00000 n 0004022507 00000 n 0004022647 00000 n 0004022763 00000 n 0004022902 00000 n 0004023018 00000 n 0004023103 00000 n 0004023243 00000 n 0004023359 00000 n 0004023498 00000 n 0004023614 00000 n 0004023708 00000 n 0004023848 00000 n 0004023964 00000 n 0004024104 00000 n 0004024220 00000 n 0004024359 00000 n 0004024475 00000 n 0004024560 00000 n 0004024702 00000 n 0004024818 00000 n 0004024959 00000 n 0004025075 00000 n 0004025191 00000 n 0004025303 00000 n 0004025419 00000 n 0004025506 00000 n 0004025785 00000 n 0004025870 00000 n 0004026009 00000 n 0004026124 00000 n 0004026264 00000 n 0004026379 00000 n 0004026464 00000 n 0004026602 00000 n 0004026717 00000 n 0004026856 00000 n 0004026971 00000 n 0004027056 00000 n 0004027194 00000 n 0004027309 00000 n 0004027448 00000 n 0004027563 00000 n 0004027648 00000 n 0004027787 00000 n 0004027902 00000 n 0004028042 00000 n 0004028157 00000 n 0004028242 00000 n 0004028381 00000 n 0004028496 00000 n 0004028636 00000 n 0004028751 00000 n 0004028836 00000 n 0004028974 00000 n 0004029090 00000 n 0004029229 00000 n 0004029345 00000 n 0004029439 00000 n 0004029578 00000 n 0004029694 00000 n 0004029834 00000 n 0004029950 00000 n 0004030090 00000 n 0004030206 00000 n 0004030291 00000 n 0004030432 00000 n 0004030548 00000 n 0004030689 00000 n 0004030805 00000 n 0004030899 00000 n 0004031037 00000 n 0004031153 00000 n 0004031292 00000 n 0004031408 00000 n 0004031547 00000 n 0004031663 00000 n 0004031748 00000 n 0004031887 00000 n 0004032003 00000 n 0004032142 00000 n 0004032258 00000 n 0004032374 00000 n 0004032486 00000 n 0004032602 00000 n 0004032743 00000 n 0004032858 00000 n 0004032973 00000 n 0004033088 00000 n 0004033203 00000 n 0004033318 00000 n 0004033433 00000 n 0004033548 00000 n 0004033663 00000 n 0004033775 00000 n 0004033890 00000 n 0004034058 00000 n 0004034173 00000 n 0004034288 00000 n 0004034403 00000 n 0004034518 00000 n 0004034633 00000 n 0004034748 00000 n 0004034863 00000 n 0004034978 00000 n 0004035093 00000 n 0004035208 00000 n 0004035324 00000 n 0004035436 00000 n 0004035552 00000 n 0004035711 00000 n 0004035826 00000 n 0004035941 00000 n 0004036056 00000 n 0004036171 00000 n 0004036286 00000 n 0004036401 00000 n 0004036516 00000 n 0004036631 00000 n 0004036746 00000 n 0004036861 00000 n 0004036973 00000 n 0004037089 00000 n 0004037248 00000 n 0004037363 00000 n 0004037478 00000 n 0004037593 00000 n 0004037708 00000 n 0004037823 00000 n 0004037938 00000 n 0004038053 00000 n 0004038168 00000 n 0004038283 00000 n 0004038398 00000 n 0004038510 00000 n 0004038626 00000 n 0004038785 00000 n 0004038900 00000 n 0004039015 00000 n 0004039130 00000 n 0004039245 00000 n 0004039360 00000 n 0004039475 00000 n 0004039590 00000 n 0004039705 00000 n 0004039820 00000 n 0004039935 00000 n 0004040047 00000 n 0004040163 00000 n 0004040313 00000 n 0004040428 00000 n 0004040543 00000 n 0004040658 00000 n 0004040773 00000 n 0004040888 00000 n 0004041003 00000 n 0004041118 00000 n 0004041233 00000 n 0004041348 00000 n 0004041460 00000 n 0004041575 00000 n 0004041743 00000 n 0004041858 00000 n 0004041973 00000 n 0004042088 00000 n 0004042203 00000 n 0004042318 00000 n 0004042433 00000 n 0004042548 00000 n 0004042663 00000 n 0004042778 00000 n 0004042893 00000 n 0004043009 00000 n 0004043121 00000 n 0004043237 00000 n 0004043387 00000 n 0004043502 00000 n 0004043617 00000 n 0004043732 00000 n 0004043847 00000 n 0004043962 00000 n 0004044077 00000 n 0004044192 00000 n 0004044307 00000 n 0004044422 00000 n 0004044534 00000 n 0004044649 00000 n 0004044826 00000 n 0004044941 00000 n 0004045056 00000 n 0004045171 00000 n 0004045286 00000 n 0004045401 00000 n 0004045516 00000 n 0004045631 00000 n 0004045746 00000 n 0004045861 00000 n 0004045976 00000 n 0004046092 00000 n 0004046208 00000 n 0004046320 00000 n 0004046436 00000 n 0004046586 00000 n 0004046701 00000 n 0004046816 00000 n 0004046931 00000 n 0004047046 00000 n 0004047161 00000 n 0004047276 00000 n 0004047391 00000 n 0004047506 00000 n 0004047621 00000 n 0004047733 00000 n 0004047848 00000 n 0004047980 00000 n 0004048095 00000 n 0004048210 00000 n 0004048325 00000 n 0004048440 00000 n 0004048555 00000 n 0004048670 00000 n 0004048785 00000 n 0004048897 00000 n 0004049012 00000 n 0004049207 00000 n 0004049322 00000 n 0004049437 00000 n 0004049552 00000 n 0004049667 00000 n 0004049782 00000 n 0004049897 00000 n 0004050012 00000 n 0004050127 00000 n 0004050242 00000 n 0004050357 00000 n 0004050473 00000 n 0004050589 00000 n 0004050705 00000 n 0004050821 00000 n 0004050933 00000 n 0004051049 00000 n 0004051289 00000 n 0004051404 00000 n 0004051519 00000 n 0004051634 00000 n 0004051749 00000 n 0004051864 00000 n 0004051979 00000 n 0004052094 00000 n 0004052209 00000 n 0004052324 00000 n 0004052439 00000 n 0004052555 00000 n 0004052671 00000 n 0004052787 00000 n 0004052903 00000 n 0004053019 00000 n 0004053135 00000 n 0004053251 00000 n 0004053367 00000 n 0004053483 00000 n 0004053595 00000 n 0004053711 00000 n 0004053843 00000 n 0004053958 00000 n 0004054073 00000 n 0004054188 00000 n 0004054303 00000 n 0004054418 00000 n 0004054533 00000 n 0004054648 00000 n 0004054726 00000 n 0004054841 00000 n 0004054953 00000 n 0004055068 00000 n 0004055200 00000 n 0004055315 00000 n 0004055430 00000 n 0004055545 00000 n 0004055660 00000 n 0004055775 00000 n 0004055890 00000 n 0004056005 00000 n 0004056117 00000 n 0004056232 00000 n 0004056337 00000 n 0004056452 00000 n 0004056567 00000 n 0004056682 00000 n 0004056797 00000 n 0004056909 00000 n 0004057024 00000 n 0004057129 00000 n 0004057244 00000 n 0004057359 00000 n 0004057474 00000 n 0004057589 00000 n 0004057701 00000 n 0004057816 00000 n 0004057921 00000 n 0004058036 00000 n 0004058151 00000 n 0004058266 00000 n 0004058381 00000 n 0004058493 00000 n 0004058608 00000 n 0004058731 00000 n 0004058846 00000 n 0004058961 00000 n 0004059076 00000 n 0004059191 00000 n 0004059306 00000 n 0004059421 00000 n 0004059533 00000 n 0004059648 00000 n 0004059780 00000 n 0004059895 00000 n 0004060010 00000 n 0004060125 00000 n 0004060240 00000 n 0004060355 00000 n 0004060470 00000 n 0004060585 00000 n 0004060697 00000 n 0004060812 00000 n 0004060935 00000 n 0004061050 00000 n 0004061165 00000 n 0004061280 00000 n 0004061395 00000 n 0004061510 00000 n 0004061625 00000 n 0004061737 00000 n 0004061852 00000 n 0004061948 00000 n 0004062063 00000 n 0004062178 00000 n 0004062293 00000 n 0004062405 00000 n 0004062520 00000 n 0004062625 00000 n 0004062740 00000 n 0004062855 00000 n 0004062970 00000 n 0004063085 00000 n 0004063197 00000 n 0004063312 00000 n 0004063435 00000 n 0004063550 00000 n 0004063665 00000 n 0004063780 00000 n 0004063895 00000 n 0004064010 00000 n 0004064125 00000 n 0004064237 00000 n 0004064352 00000 n 0004064448 00000 n 0004064563 00000 n 0004064678 00000 n 0004064793 00000 n 0004064905 00000 n 0004065020 00000 n 0004067516 00000 n 0004067602 00000 n 0004067670 00000 n 0004067738 00000 n 0004067779 00000 n 0004069215 00000 n 0004069517 00000 n 0004071529 00000 n 0004071597 00000 n 0004071656 00000 n 0004071715 00000 n 0004071774 00000 n 0004071833 00000 n 0004071919 00000 n 0004072050 00000 n 0004072136 00000 n 0004072240 00000 n 0004073082 00000 n 0004073249 00000 n 0004073434 00000 n 0004073583 00000 n 0004073714 00000 n 0004073872 00000 n 0004073958 00000 n 0004074062 00000 n 0004074229 00000 n 0004074279 00000 n 0004074338 00000 n 0004074415 00000 n 0004074492 00000 n 0004074560 00000 n 0004074691 00000 n 0004074795 00000 n 0004074881 00000 n 0004075021 00000 n 0004075125 00000 n 0004075211 00000 n 0004075288 00000 n 0004075356 00000 n 0004075505 00000 n 0004075645 00000 n 0004075731 00000 n 0004075817 00000 n 0004075885 00000 n 0004075962 00000 n 0004076075 00000 n 0004076188 00000 n 0004076364 00000 n 0004076531 00000 n 0004076662 00000 n 0004076892 00000 n 0004076987 00000 n 0004077136 00000 n 0004077222 00000 n 0004077398 00000 n 0004077682 00000 n 0004077768 00000 n 0004077890 00000 n 0004078525 00000 n 0004079187 00000 n 0004079264 00000 n 0004080025 00000 n 0004080102 00000 n 0004080530 00000 n 0004080589 00000 n 0004080909 00000 n 0004081238 00000 n 0004081540 00000 n 0004081725 00000 n 0004081793 00000 n 0004081852 00000 n 0004081911 00000 n 0004082006 00000 n 0004082128 00000 n 0004082241 00000 n 0004082651 00000 n 0004082845 00000 n 0004082994 00000 n 0004083080 00000 n 0004083193 00000 n 0004083297 00000 n 0004083383 00000 n 0004083487 00000 n 0004083555 00000 n 0004083848 00000 n 0004084717 00000 n 0004084839 00000 n 0004084916 00000 n 0004084984 00000 n 0004085043 00000 n 0004085120 00000 n 0004085287 00000 n 0004085355 00000 n 0004085909 00000 n 0004085977 00000 n 0004086081 00000 n 0004086410 00000 n 0004086496 00000 n 0004086573 00000 n 0004086641 00000 n 0004086709 00000 n 0004086768 00000 n 0004086845 00000 n 0004086967 00000 n 0004087116 00000 n 0004087310 00000 n 0004087423 00000 n 0004087500 00000 n 0004087559 00000 n 0004087681 00000 n 0004087830 00000 n 0004088069 00000 n 0004088290 00000 n 0004088367 00000 n 0004088426 00000 n 0004088773 00000 n 0004088841 00000 n 0004091528 00000 n 0004091677 00000 n 0004091772 00000 n 0004091957 00000 n 0004092034 00000 n 0004092102 00000 n 0004092161 00000 n 0004092265 00000 n 0004092351 00000 n 0004092446 00000 n 0004093117 00000 n 0004093752 00000 n 0004093829 00000 n 0004094473 00000 n 0004095108 00000 n 0004095788 00000 n 0004096351 00000 n 0004096788 00000 n 0004096847 00000 n 0004096915 00000 n 0004097001 00000 n 0004097087 00000 n 0004097164 00000 n 0004097232 00000 n 0004097552 00000 n 0004097629 00000 n 0004097760 00000 n 0004098125 00000 n 0004098175 00000 n 0004098234 00000 n 0004098527 00000 n 0004098595 00000 n 0004098663 00000 n 0004099280 00000 n 0004099402 00000 n 0004099596 00000 n 0004099754 00000 n 0004099822 00000 n 0004099998 00000 n 0004100084 00000 n 0004100161 00000 n 0004100283 00000 n 0004100513 00000 n 0004100590 00000 n 0004100649 00000 n 0004100870 00000 n 0004100929 00000 n 0004101015 00000 n 0004101110 00000 n 0004101241 00000 n 0004101291 00000 n 0004101404 00000 n 0004101490 00000 n 0004101720 00000 n 0004102535 00000 n 0004103071 00000 n 0004103310 00000 n 0004103414 00000 n 0004103545 00000 n 0004103667 00000 n 0004103789 00000 n 0004103911 00000 n 0004104024 00000 n 0004104155 00000 n 0004104268 00000 n 0004104408 00000 n 0004104521 00000 n 0004104616 00000 n 0004104774 00000 n 0004104977 00000 n 0004105081 00000 n 0004105176 00000 n 0004105244 00000 n 0004105312 00000 n 0004105380 00000 n 0004105466 00000 n 0004105561 00000 n 0004105647 00000 n 0004105706 00000 n 0004105774 00000 n 0004105860 00000 n 0004105919 00000 n 0004105994 00000 n 0004106159 00000 n 0004106303 00000 n 0004106447 00000 n 0004106600 00000 n 0004106754 00000 n 0004106908 00000 n 0004107062 00000 n 0004107216 00000 n 0004107370 00000 n 0004107524 00000 n 0004107678 00000 n 0004107842 00000 n 0004107996 00000 n 0004108150 00000 n 0004108304 00000 n 0004108458 00000 n 0004108612 00000 n 0004108766 00000 n 0004108920 00000 n 0004109074 00000 n 0004109228 00000 n 0004109365 00000 n 0004112319 00000 n 0004112521 00000 n trailer << /Size 7341 >> startxref 144 %%EOF %PDF-1.4 % 1250 0 obj << /CreationDate (D:20110303094452Z) /Creator (OmniPage CSDK 16) /Producer (OmniPage 17) /Title (Du_Combining_statistical_methods_with_dynamical_insight_to_improve_nonlinear_estimation) /ModDate (D:20170517164130) /Author (Barry Monti) >> endobj xref 0 1 0000000000 65535 f 1250 1 0004262106 00000 n trailer << /Size 7365 /Root 7342 0 R /ID [<17075F145E3EABB176A7EF5F871D9AA5> <803AE3731D713C4067E6E1FBFE23997D>] /Prev 144 /Info 1250 0 R >> startxref 4262373 %%EOF